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Abstract. Let G be an additive finite abelian group and S = g1 · . . . ·gl
be a sequence over G. Let k(S) = ord(g1)

−1+ . . .+ord(gl)
−1 be its cross

number. Let t(G) (resp. η(G)) be the smallest integer t such that every
sequence of t elements (repetition allowed) from G has a non-empty
zero-sum subsequence T with k(T ) ≤ 1 (resp. |T | ≤ exp(G)). It is easy
to see that t(G) ≥ η(G). It is known that t(G) = η(G) = |G| when G
is cyclic, and for any integer r ≥ 3, there are infinitely many groups G
of rank r such that t(G) > η(G). It is conjectured in 2012 [G12] that
t(G) = η(G) for all finite abelian groups of rank two. This conjecture
has been verified only for the groups G ∼= Cpα ⊕ Cpα , G ∼= C2 ⊕ C2p

and G ∼= C3 ⊕C3p with p ≥ 5, where p is a prime. In this paper, among
other results, we confirm this conjecture for more groups including the
groups G ∼= Cn ⊕ Cn with the smallest prime divisor of n not less than
the number of the distinct prime divisors of n.

1. Introduction and main results

Let G be a finite abelian group, written additively. If G is cyclic of order
n, it will be denoted by Cn. In the general case, we can decompose G as a
direct sum of cyclic groups Cn1 ⊕ . . . ⊕ Cnr such that 1 < n1 | . . . | nr ∈ N
(if n1 = . . . = nr = n, it will be abbreviated as Cr

n), where r and nr are
respectively called the rank and exponent of G. Usually, the exponent of G
is simply denoted by exp(G). The order of an element g of G will be written
ord(g).

Given a sequence S = g1·. . .·gl over G, we denote by S(d) the subsequence
of S consisting of all terms of S of order d and SH the subsequence of S
consisting of all terms of S belonging to a subgroup H of G. And by k(S)

the cross number of S, which is defined as follows:

k(S) =
l∑

i=1

1

ord(gi)
.

The cross number is an important concept in factorization theory. For
more information on the cross number we refer to ([GG09, GS94, G09,
G12]).
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Let t(G) denote the smallest integer t ∈ N such that every sequence S
over G of length |S| ≥ t has a non-empty zero-sum subsequence S ′ with
k(S ′) ≤ 1. Such a subsequence will be called a tiny zero-sum subsequence.

The study of t(G) goes back to the late 1980s, Lemke and Kleitman
[LK89] proved that t(Cn) = n, which confirmed a conjecture by Erdős
and Lemke. More generally, Lemke and Kleitman [LK89] conjectured that
t(G) ≤ |G| holds for every finite abelian group G. This conjecture was
proved by Geroldinger [G93] in 1993. Furthermore, Elledge and Hurlbert
[EH05] gave a different proof in 2005.

In 2012, Girard [G12] proved that, by using a result of Alon and Dubiner
[AD95], for finite abelian groups of fixed rank, t(G) grows linearly in the
exponent of G, which gives the correct order of magnitude.

Let η(G) denote the smallest integer t ∈ N such that every sequence S
over G of length |S| ≥ t has a non-empty zero-sum subsequence S ′ with
|S ′| ≤ exp(G). Such a subsequence is called a short zero-sum subsequence.
The constant η(G) is one of many classical invariants in so-called zero-sum
theory. For zero-sum theory and its application, the interested reader is
referred to [GG06] and [GH06].

Since k(T ) ≤ 1 implies |T | ≤ exp(G), we know that η(G) ≤ t(G) always
holds. Girard [G12] noticed that if t(G) = η(G) for some finite abelian
group G, then η(H) ≤ η(G) for any subgroup H of G, and then he deduced
that for any positive integer r ≥ 4, there is a finite abelian group of rank
r such that t(G) > η(G). Concerning groups of rank three, the first author
with coauthors [FGPWZ13] found that t(G) > η(G) if G ∼= C2 ⊕ C2 ⊕ C2n,
where n > 1 is a positive integer. Girard [G12] also proved that t(C2

pα) =

η(C2
pα) = 3pα − 2 for any prime p and conjectured that t(G) = η(G) for all

finite abelian groups of rank two. Girard also [G12] noticed the easy fact
that t(G) = η(G) for all elementary p-groups G, since all non-zero elements
of G have same order in this case, and conjectured that t(G) = η(G) for
G ∼= Cr

n.

Conjecture 1.1. ([G12]) For all positive integers m,n with m | n, we have

t(Cm ⊕ Cn) = η(Cm ⊕ Cn) = 2m+ n− 2.

Conjecture 1.2. ([G12]) For all positive integers r, n, we have

t(Cr
n) = η(Cr

n).

Conjectures 1.1 and 1.2 have been confirmed only for a few classes of
groups.
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Theorem 1.3. ([FGPWZ13, GHST07, G12, W20]) Let G be a finite abelian
group, and n, r, α, β be positive integers and p be a prime number. Then
t(G) = η(G) for the following groups.

(1) G ∼= Cn,
(2) G ∼= Cpα ⊕ Cpα,
(3) G ∼= C2 ⊕ C2p,
(4) G ∼= C3 ⊕ C3p with p ≥ 5,
(5) G ∼= C3

n with n = 3α or n = 5β,
(6) G ∼= Cr

n with n = p or n = 2α.

In this paper, we will confirm both Conjecture 1.1 and Conjecture 1.2
for more groups. Now we state our main results.

Theorem 1.4. Let n be a positive integer, and let G ∼= Cn⊕Cn. If
∑

p|n
1
p
<

1, where p runs over all distinct prime divisors of n, then

t(G) = η(G).

In particular, if p(n) ≥ ω(n), then t(G) = η(G), where p(n) denotes the
smallest prime divisor of n and ω(n) denotes the number of distinct prime
divisors of n.

Theorem 1.5. Let α, β be positive integers and p be a prime number. Then
t(G) = η(G) for the following groups.

(a) G ∼= C2 ⊕ C2α,
(b) G ∼= C2 ⊕ C2pβ ,
(c) G ∼= C3

3α5β
.

The paper is organized as follows. Section 2 provides some notation and
concepts which will be used in the sequel. In Section 3 we prove the main
results.

2. Notation and preliminaries

Let N denote the set of positive integers, and N0 = N∪{0}. For any two
integers a, b ∈ N0, we set [a, b] = {x ∈ N0 | a ≤ x ≤ b}. Throughout this
paper, all abelian groups will be written additively.

LetG be an additive finite abelian group with rank r. An r-tuple (e1, . . . , er)
inG\{0} is called a basis ofG ifG ∼= 〈e1〉⊕. . .⊕〈er〉. We denote by F(G) the
free (abelian, multiplicative) monoid with basis G. The elements of F(G)

are called sequences over G. We write sequences S ∈ F(G) in the form
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S =
∏
g∈G

gvg(S), with vg(S) ∈ N0 for all g ∈ G.

We call vg(S) the multiplicity of g in S, and we say that S contains g if
vg(S) > 0. A sequence S ′ is called a subsequence of S if vg(S ′) ≤ vg(S) for
all g ∈ G, denote by S ′ | S, and SS ′−1 denotes the subsequence obtained
from S by deleting S ′, two subsequences S1 and S2 of S are called disjoint
if S1 | SS−12 . The unit element 1 ∈ F(G) is called the empty sequence.

For a sequence

S = g1 · . . . · gl =
∏
g∈G

gvg(S) ∈ F(G),

we call

• |S| = l =
∑

g∈G vg(S) ∈ N0 the length of S,
• σ(S) =

∑l
i=1 gi =

∑
g∈G vg(S)g ∈ G the sum of S,

• supp(S) = {g ∈ G | vg(S) > 0} ⊂ G the support of S,
• S a zero-sum sequence if σ(S) = 0 ∈ G,
• S a zero-sum free sequence if there is no non-empty zero-sum sub-
sequence of S,
• S a minimal zero-sum sequence if it is a non-empty zero-sum se-
quence and has no proper zero-sum subsequence,
• S a short zero-sum sequence if S is zero-sum and 1 ≤ |S| ≤ exp(G),
• S a tiny zero-sum sequence if S is a non-empty zero-sum sequence
and k(S) ≤ 1.

Let D(G) denote the smallest integer t ∈ N such that every sequence
S over G of length |S| ≥ t has a non-empty zero-sum subsequence. The
invariant D(G) is called the Davenport constant of G.

Every map of abelian groups ϕ : G −→ H extends to a homomorphism
ϕ : F(G) −→ F(H), where ϕ(S) = ϕ(g1)·. . .·ϕ(gl). If ϕ is a homomorphism
then ϕ(S) is a zero-sum sequence if and only if σ(S) ∈ ker(ϕ).

Given a positive integer n, let p(n) denote the smallest prime divisor of
n, by convention p(1) = 1, let ω(n) denote the number of distinct prime
divisors of n.

We list some results on η(G) which will be used frequently in the sequel.

Lemma 2.1. ([EEGKR07, GHST07]) Let m,n be positive integers. Then

(1) η(Cm ⊕ Cn) = 2m+ n− 2 for m | n,
(2) η(C3

n) = 8n− 7 for n = 3α5β, where α, β ∈ N0.

Lemma 2.2. ([E04]) If n is an odd integer, then η(C3
n) ≥ 8n− 7.
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Lemma 2.3. ([GH06, Proposition 5.7.11]) Let G be a finite abelian group,
and let H be a subgroup of G with exp(G) = exp(H) exp(G/H). Then

η(G) ≤ exp(G/H)(η(H)− 1) + η(G/H).

Lemma 2.4. Let m,n be odd integers. Suppose that η(C3
m) = 8m − 7 and

η(C3
n) = 8n− 7, then η(C3

mn) = 8mn− 7.

Proof. By Lemma 2.2 we have η(C3
mn) ≥ 8mn − 7. Let G ∼= C3

mn and
H ∼= C3

m be a subgroup of G, then G/H ∼= C3
n. It follows from Lemma 2.3

that

η(G) ≤ exp(G/H)(η(H)− 1) + η(G/H) = 8mn− 7.

Therefore, η(C3
mn) = 8mn− 7. �

Lemma 2.5. ([S12, Corollary 3.2]) Let H ∼= Cm⊕Cmn with integers m ≥ 2

and n ≥ 1. Every sequence S over H of length |S| = η(H) − 1 having not
any short zero-sum subsequence has the following form

S = bm−11 bsm−12 (−xb1 + b2)
(n+1−s)m−1,

where {b1, b2} is a generating set of H with ord(b2) = mn, s ∈ [1, n], x ∈
[1,m] with gcd(x,m) = 1 and either

(1) {b1, b2} is an independent generating set of H, or
(2) s = n and x = 1.

Lemma 2.6. ([GH06, Theorem 5.4.5]) Let n > 1 be a positive integer, and
let S ∈ F(Cn) be a sequence of length n − 1. If S is zero-sum free then
S = gn−1 for some generating element g ∈ Cn.

Lemma 2.7. ([FGPWZ13, Lemma 2.3]) Let n > 1 be a positive integer, and
let S ∈ F(Cn) be a sequence of length 2n− 1. If S has no two disjoint non-
empty zero-sum subsequences then S = g2n−1 for some generating element
g ∈ Cn.

3. Proof of main results

In this section we shall prove Theorem 1.4 and Theorem 1.5, and we
begin with some preliminary results.

Lemma 3.1. Let G be a finite abelian group and H be a subgroup of G.
Let S be a sequence over G. Suppose that SS−1H has a factorization SS−1H =

S1S2 · . . . ·SkS ′ such that σ(Si) ∈ H and k(Si) ≤ k(σ(Si)) for every i ∈ [1, k].
If k + |SH | ≥ t(H), then S has a tiny zero-sum subsequence.
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Proof. By the hypothesis of this lemma, σ(S1)σ(S2) · . . . · σ(Sk)SH is a se-
quence over H of length k+ |SH | ≥ t(H). Therefore, it has a tiny zero-sum
subsequence T

∏
i∈I σ(Si), where T | SH and I ⊂ [1, k]. Let W = T

∏
i∈I Si.

Then W is a zero-sum subsequence of S with k(W ) = k(T ) +
∑

i∈I k(Si) ≤
k(T ) +

∑
i∈I k(σ(Si)) = k(T

∏
i∈I σ(Si)) ≤ 1. �

Lemma 3.2. Let G be a finite abelian group and H be a subgroup of G.
Let S be a sequence over G. Suppose that SS−1H has a subsequence L such
that for every T | L with |T | ≤ exp(G/H) we have k(T ) ≤ 1

exp(H)
. If |SH |+

d |L|−(η(G/H)−1)
exp(G/H)

e ≥ t(H), then S has a tiny zero-sum subsequence.

Proof. Let φ be the projection from G onto G/H with ker(φ) = H. By
applying η(φ(G)) = η(G/H) repeatedly on the sequence φ(L), we can get a
factorization L = S1 · . . . ·SkS ′ such that φ(Si) is a short zero-sum sequence
over φ(G) = G/H for every i ∈ [1, k], and such that φ(S ′) has no short
zero-sum subsequence over φ(G) = G/H. It follows that

|S ′| = |φ(S ′)| ≤ η(G/H)− 1.

Therefore,

k ≥ d|L| − (η(G/H)− 1)

exp(G/H)
e.

By the hypothesis, k(Si) ≤ 1
exp(H)

≤ 1
ord(σ(Si))

= k(σ(Si)) for every i ∈ [1, k].
Now the result follows from Lemma 3.1 since k + |SH | ≥ d |L|−(η(G/H)−1)

exp(G/H)
e+

|SH | ≥ t(H). �

Proposition 3.3. Let c, n, r be three positive integers such that for every
positive divisor m(> 1) of n, we have η(Cr

m) = c(m− 1) + 1. If
∑

p|n
1
p
< 1,

where p runs over all distinct prime divisors of n, then

t(Cr
n) = η(Cr

n).

Proof. Let G ∼= Cr
n. Let p1, . . . , ps be the all distinct prime divisors of n. By

the hypothesis of this proposition,
s∑
i=1

1

pi
< 1.

For every positive integer m | n, let Gm = {x ∈ G | mx = 0}. Clearly,
Gm is a subgroup of G with Gm

∼= Cr
m.

Let d(n) denote the number of positive divisors (> 1) of n. We proceed
by induction on d(n). If d(n) = 1 then n is a prime, therefore t(G) = η(G)

follows from Theorem 1.3(6) and we are done. Suppose that the proposition
is true for d(n) < k (k ≥ 2) and then we want to prove it is true also for
d(n) = k.
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As mentioned in the introduction we always have t(G) ≥ η(G). So, it
suffices to prove that

t(G) ≤ η(G) = c(n− 1) + 1.

Let S be a sequence of length |S| = c(n − 1) + 1 over G. We want to
show that S has a tiny zero-sum subsequence. If 0 | S, then S ′ = 0 has the
required property and we are done. Next we suppose that 0 - S. Assume to
the contrary that S has no tiny zero-sum subsequence. Let

S = TW

such that ord(g) = n for all g ∈ supp(T ), and ord(h) < n for all h ∈
supp(W ). If S = T , then it is easy to see that S has a tiny zero-sum sub-
sequence, a contradiction. Next we assume that T is a proper subsequence
of S. For every i ∈ [1, s], let Wi be the subsequence of W consisting of all
terms of W in G n

pi
. Then,

|W1|+ . . .+ |Ws| ≥ |W |.

Since for every T ′ | T with |T ′| ≤ exp(G/G n
pi

) we have k(T ′) ≤
exp(G/G n

pi
)

exp(G)
=

1
exp(G n

pi
)
, by Lemma 3.2 we obtain that

|Wi|+ d
|T | − (η(G/G n

pi
)− 1)

exp(G/G n
pi

)
e ≤ t(G n

pi
)− 1.

Therefore, by induction we have
|T | − c(pi − 1)

pi
+ |Wi| ≤ c(

n

pi
− 1)

for every i ∈ [1, s], or equivalently,
|T |
pi

+ |Wi| ≤
c(n− 1)

pi
.

So,

|T |
s∑
i=1

1

pi
+ |W1|+ . . .+ |Ws| ≤ c(n− 1)

s∑
i=1

1

pi
,

it follows that |W1|+ . . .+ |Ws| ≤ (cn− c− |T |)
∑s

i=1
1
pi
. Since |W1|+ . . .+

|Ws| ≥ |W |, we deduce that

c(n−1)+1−|T | = |S|−|T | = |W | ≤ |W1|+. . .+|Ws| ≤ (cn−c−|T |)
s∑
i=1

1

pi
.

So we have 1 ≤ (cn− c− |T |)(
∑s

i=1
1
pi
− 1). It follows from

∑s
i=1

1
pi
< 1 and

|T | ≤ |S| − 1 = c(n− 1) that

1 ≤ (cn− c− |T |)(
s∑
i=1

1

pi
− 1) ≤ 0,
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a contradiction. �

Proof of Theorem 1.4. Since η(Cm ⊕ Cm) = 3m − 2 = 3(m − 1) + 1

for every positive integer m, the first part of this theorem follows from
Proposition 3.3. If p(n) ≥ ω(n), we clearly have∑

p|n

1

p
≤ ω(n)

p(n)

with equality holding if and only if ω(n) = 1. Therefore, we have
∑

p|n
1
p
< 1

and the result follows from the first part of this theorem. �

Remark 3.4. Clearly, if ω(n) ≤ 2 then
∑

p|n
1
p
< 1. If ω(n) = 3 and

n 6= 2α3β5γ then we also have
∑

p|n
1
p
< 1. It would be interesting to prove

t(Cn ⊕ Cn) = η(Cn ⊕ Cn) for n = 2α3β5γ.

Lemma 3.5. Let n be a positive even integer and let G ∼= C2⊕C2n. Let S be
a sequence over G with |S| = 2n+ 1. If ord(x) = 2n for every x ∈ supp(S),
then S has a tiny zero-sum subsequence.

Proof. Let (e1, e2) be a basis of G. If S has a short zero-sum subsequence S ′,
then k(S ′) = |S′|

2n
≤ 1 and we are done. Next we assume that S has no short

zero-sum subsequence. Since |S| = 2n + 1 = η(G)− 1, then by Lemma 2.5
we have

S = b1b
2s−1
2 (−b1 + b2)

2(n+1−s)−1,

where {b1, b2} is a generating set of G with ord(b2) = 2n, s ∈ [1, n]. Let
b1 = x1e1 + y1e2 and b2 = x2e1 + y2e2, where xi ∈ [0, 1], yi ∈ [0, 2n− 1] for
i ∈ {1, 2}. Since ord(b1) = ord(b2) = 2n and since n is assumed to be even,
y1, y2 are odd. It follows that −b1 + b2 = (−x1 + x2)e1 + (−y1 + y2)e2, since
−y1 + y2 is even, we have ord(−b1 + b2) ≤ n, a contradiction. �

Lemma 3.6. Let G ∼= C3
n be a finite abelian group with n = pα1

1 · · · pαss ,
where p1, . . . , ps are distinct odd prime numbers and α1, . . . , αs ∈ N. If∑s

i=1
1
pi
< 1 and η(C3

p
αi
i

) = 8pαii − 7, then

t(G) = η(G).

Proof. By Lemma 2.4 we have η(C3
n) = 8n− 7. By Proposition 3.3 we have

t(G) = η(G). �

Proof of Theorem 1.5. (a) Let G ∼= C2 ⊕ C2α with α ∈ N and (e1, e2)

be a basis of G. The result follows from Theorem 1.3(3) for α ≤ 2. Next we
may assume that α ≥ 3.

We proceed by induction on α. Suppose that t(C2 ⊕ C2l) = η(C2 ⊕ C2l)

for l ≤ α− 1. Next we need to prove it holds for l = α.
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As mentioned in the introduction we always have that t(G) ≥ η(G). So,
it suffices to prove that

t(G) ≤ η(G) = 2α + 2.

Let S be a sequence of length |S| = 2α + 2 over G. We want to show
that S has a tiny zero-sum subsequence. If 0 | S, then S ′ = 0 has the
required property and we are done. Next we suppose that 0 - S. Assume to
the contrary that S has no tiny zero-sum subsequence.

Let us recall that we denote by S(d) the subsequence of S consisting of all
terms of S of order d. Let H1 be a subgroup of G isomorphic to C2⊕C2α−1

such that H2 = G/H1 is isomorphic to C2. Then S = SH1S(2α) and

(3.1) |S| = |SH1 |+ |S(2α)| = 2α + 2.

Since for every T | S(2α) with |T | ≤ exp(G/H1) we have k(T ) ≤ exp(G/H1)
exp(G)

=
1

exp(H1)
, by Lemma 3.2 we obtain that

|SH1|+ d
|S(2α)| − (η(G/H1)− 1)

exp(G/H1)
e ≤ t(H1)− 1.

Therefore,

2|SH1 |+ |S(2α)| ≤ 2α + 3.

Combining equality (3.1), we obtain that |SH1| ≤ 1. If |SH1| = 0, then
S = S(2α). Hence S has a short zero-sum subsequence T ′ with k(T ′) ≤ 1, a
contradiction.

Next we assume that |SH1| = 1, by (3.1) we have |S(2α)| = 2α + 1. By
Lemma 3.5 we obtain that S(2α) has a tiny zero-sum subsequence, so S has
a tiny zero-sum subsequence, a contradiction again.

(b) Let G ∼= C2⊕C2pβ with β ∈ N and p be a prime number and (e1, e2)

be a basis of G. The results follow from Theorem 1.3 and (a) for β = 1 or
p = 2. Next we may assume that β ≥ 2 and p ≥ 3.

We proceed by induction on β. Suppose that t(C2⊕C2ps) = η(C2⊕C2ps)

for s ≤ β − 1. Next we need to prove it holds for s = β.
As mentioned in the introduction we always have that t(G) ≥ η(G). So,

it suffices to prove that

t(G) ≤ η(G) = 2pβ + 2.

Let S be a sequence of length |S| = 2pβ + 2 over G. We want to show
that S has a tiny zero-sum subsequence. If 0 | S, then S ′ = 0 has the
required property and we are done. Next we suppose that 0 - S. Assume to
the contrary that S has no tiny zero-sum subsequence.
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Let H1 be a subgroup of G isomorphic to Cpβ such that G/H1
∼= C2⊕C2.

Let also H2 be a subgroup of G isomorphic to C2⊕C2pβ−1 such that G/H2
∼=

Cp. Let ϕ1 and ϕ2 be projections from G to G/H1 and G/H2, respectively,
then ker(ϕ1) = H1

∼= Cpβ and ker(ϕ2) = H2
∼= C2 ⊕ C2pβ−1 . Therefore,

S = SH1 · S(2) · S(2p) · . . . · S(2pβ−1) · S(2pβ) = SH2 · S(pβ) · S(2pβ)

and
(3.2)
|S| = |SH1|+|S(2)|+|S(2p)|+. . .+|S(2pβ−1)|+|S(2pβ)| = |SH2|+|S(pβ)|+|S(2pβ)|.

Since for every T | S(2pβ) with |T | ≤ exp(G/H1) we have k(T ) ≤
exp(G/H1)
exp(G)

= 1
exp(H1)

, by Lemma 3.2 we obtain that

|SH1|+ d
|S(2pβ)| − (η(G/H1)− 1)

exp(G/H1)
e ≤ t(H1)− 1.

Therefore,

2|SH1|+ |S(2pβ)| ≤ 2pβ + 1.

Combining equality (3.2), we obtain that
(3.3)
|SH1| ≤ 2pβ+1−(|SH1|+|S(2pβ)|) = |S(2)|+|S(2p)|+. . .+|S(2pβ−1)|−1 ≤ |SH2 |−1.

Since for every T | S(2pβ) with |T | ≤ exp(G/H2) we have k(T ) ≤
exp(G/H2)
exp(G)

= 1
exp(H2)

, by Lemma 3.2 we obtain that

(3.4) |SH2|+ d
|S(2pβ)| − (η(G/H2)− 1)

exp(G/H2)
e ≤ t(H2)− 1.

Therefore,

|S(2pβ)|+ p|SH2| ≤ 2pβ + 2p− 1.

Combining equality (3.2) and inequality (3.3),

p|SH2| ≤ 2pβ + 2p− 1− |S(2pβ)|

= 2pβ + 2p− 1− (|S| − |SH2| − |S(pβ)|)

= 2p− 3 + |SH2|+ |S(pβ)|

≤ 2p− 3 + |SH2|+ |SH1|

≤ 2p− 4 + 2|SH2|.

Therefore, |SH2| ≤ 2 and |S(pβ)| ≤ |SH1| ≤ |SH2 |− 1 ≤ 1. Hence, we have
the following possibilities:

|SH2| = 1 and |S(pβ)| = 0, |SH2| = 2 and |S(pβ)| = 1, |SH2| = 2 and |S(pβ)| = 0.

We proceed case by case.
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Case 1. |SH2 | = 1 and |S(pβ)| = 0, then |S(2pβ)| = 2pβ + 1 = D(G) and
S(2pβ) is a minimal zero-sum subsequence.

It follows that we can decompose S(2pβ) into

S(2pβ) = V1 · . . . · Vn

such that σ(ϕ2(Vi)) = 0 and |Vi| ≤ p for every 1 ≤ i ≤ n, then σ(Vi) ∈
ker(ϕ2) = H2 and k(Vi) = |Vi|

exp(G)
≤ p

exp(G)
= 1

exp(H2)
≤ k(σ(Vi)) for 1 ≤ i ≤ n.

So we have n ≥ d
|S

(2pβ)
|

p
e = d2pβ+1

p
e = 2pβ−1 + 1, then

n+ |SH2| ≥ 2pβ−1 + 1 + 1 = 2pβ−1 + 2 = η(H2) = t(H2),

a contradiction with Lemma 3.1.
Case 2. |SH2| = 2 and |S(pβ)| = 1. Recall that |SH1| = 1, then |S(2pβ)| =

2pβ − 1. Let
S(2pβ) = U1 · . . . · UmU ′ = V1 · . . . · VnV ′,

where σ(ϕ1(Ui)) = 0 ∈ G/H1 and |Ui| = 2 for 1 ≤ i ≤ m and ϕ1(U
′) has no

short zero-sum subsequence over G/H1, σ(ϕ2(Vj)) = 0 ∈ G/H2 and |Vj| ≤ p

for 1 ≤ j ≤ n and ϕ2(V
′) has no short zero-sum subsequence over G/H2.

By Lemmas 3.1 and 3.2 we have

d
|S(2pβ)| − (η(G/H2)− 1)

exp(G/H2)
e+ |SH2| ≤ n+ |SH2| ≤ t(H2)− 1,

therefore n = 2pβ−1 − 1, and every subsequence of ϕ2(S(2pβ)) of length
p − 1 is zero-sum free. Otherwise, suppose that there exists a subsequence
S ′
(2pβ)
| S(2pβ) of length |S ′(2pβ)| ≤ p−1 such that ϕ2(S

′
(2pβ)

) is zero-sum, then
|ϕ2(S(2pβ)S

′−1
(2pβ)

)| ≥ 2pβ − p, we can find at least 2pβ−1− 1 disjoint zero-sum
subsequences of length at most p of ϕ2(S(2pβ)S

′−1
(2pβ)

) by Lemma 3.2, so we
can find at least 2pβ−1 disjoint zero-sum subsequences of length at most p
of ϕ2(S(2pβ)), a contradiction with n = 2pβ−1 − 1. Therefore,

ϕ2(S(2pβ)) = h2p
β−1

for some h ∈ ϕ2(G) = G/H2 by Lemma 2.7.
By Lemmas 3.1 and 3.2 we have

d
|S(2pβ)| − (η(G/H1)− 1)

exp(G/H1)
e+ |SH1| ≤ m+ |SH1 | ≤ t(H1)− 1,

therefore m = pβ − 2.
Let S(2pβ) = U1 · . . . · Upβ−2 · U0, where U0 = S(2pβ)(U1 · . . . · Upβ−2)−1.

Since ϕ1(U0) has no short zero-sum subsequence over G/H1 and |U0| =

3 = D(G/H1), σ(ϕ1(U0)) = 0 ∈ G/H1 and supp(ϕ1(U0)) = G/H1 \ {0} =

{h1, h2, h3}. Since |S(pβ) · σ(U0) · σ(U1) · . . . · σ(Upβ−2)| = pβ = t(H1), S(pβ) ·
σ(U0) · σ(U1) · . . . · σ(Upβ−2) has a tiny zero-sum subsequence W0. If |W0| ≤



12 W.D. GAO, W.Z. HUI, X. LI, X.E. QIN, AND Q.Y. YIN

pβ − 1, suppose that W0 = S ′
(pβ)

Πi∈Iσ(Ui), where S ′(pβ) | S(pβ), I ∈ [0, pβ −
2] and |S ′

(pβ)
| + |I| ≤ pβ − 1, then W ′

0 = S ′
(pβ)

Πi∈IUi is a tiny zero-sum
subsequence of S, a contradiction. Therefore S(pβ) ·σ(U0)·σ(U1)·. . .·σ(Upβ−2)

is a minimal zero-sum sequence over Cpβ . So we have S(pβ) = σ(U0) =

σ(U1) = . . . = σ(Upβ−2). Then

ϕ1(S(2pβ)) = h1+2l1
1 h1+2l2

2 h1+2l3
3 ,

where li ∈ [0, pβ − 2] and l1 + l2 + l3 = pβ − 2.
Claim. Let hi ∈ supp(ϕ1(S(2pβ))) with vhi(ϕ1(S(2pβ))) ≥ 3 and let g1, g2 ∈

supp(S(2pβ)). If ϕ1(g1) = ϕ1(g2) = hi, then g1 = g2.
Proof of the Claim. Assume to the contrary that g1 6= g2. Without loss of

generality we may assume that g1 | U1 and g2 | U0. Let U ′1 = U1g
−1
1 g2. Thus,

both S(pβ) ·σ(U1) · . . . ·σ(Upβ−2) and S(pβ) ·σ(U ′1) · . . . ·σ(Upβ−2) are zero-sum
free of length pβ − 1. It follows from Lemma 2.6 that σ(U1) = σ(U ′1) and
hence g1 = g2, a contradiction. �

Since ϕ1(S(2pβ)) = h1+2l1
1 h1+2l2

2 h1+2l3
3 , where li ∈ [0, pβ−2] and l1+l2+l3 =

pβ−2. For i ∈ [1, 3], if li ≥ 1, then vhi(ϕ1(S(2pβ))) ≥ 3, by the Claim we have
that there exists a subsequence g1+2li

i | S(2pβ) such that ϕ1(g
1+2li
i ) = h1+2li

i ,
if li = 0, then there exists a subsequence gi | S(2pβ) such that ϕ1(gi) = hi.

Therefore, we have

S(2pβ) = g1+2l1
1 g1+2l2

2 g1+2l3
3 ,

where ϕ1(gi) = hi for i ∈ [1, 3]. If there exist i, j ∈ [1, 3] and i 6= j such that
li ≥ 1 and lj ≥ 1. Without loss of generality, we assume that {i, j} = {1, 2}.
Since S(pβ) = σ(U0) = σ(U1) = . . . = σ(Upβ−2), we have g1 + g2 + g3 = 2g1

and g1 + g2 + g3 = 2g2, it deduces that 2g3 = 0, a contradiction. Therefore,
there at least exist two zeros among l1, l2, l3 and without loss of generality,
we assume that l2 = l3 = 0. Then

S(2pβ) = g2p
β−3

1 g2(−g2 + g1),

and S(pβ) = 2g1.
Let h | SH2 , then ord(h) = 2pl, l ∈ [0, β−1]. We write h = a1e1+p

β−ly1g1,
where a1 ∈ [0, 1] and (y1, p) = 1. Let U1 = . . . = Upβ−2 = g21 and Upβ−1 =

Spβ = 2g1. Without loss of generality, we assume that ϕ1(h) = ϕ1(g1).
Let T1 = hg1, T2 = hg2(−g2 + g1), T3 = g1g2(−g2 + g1). Then σ(Ti) ∈

ker(ϕ1) for i ∈ [1, 3]. So, for every i ∈ [1, 3], the sequence σ(U1) · . . . ·
σ(Upβ−1) · σ(Ti) has a zero-sum subsequence Xi over ker(ϕ1), i.e., there
exists a subset Ji ⊂ [1, pβ − 1] such that Xi = σ(Ti)Πj∈Jiσ(Uj) for each
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i ∈ [1, 3]. Let Yi = TiΠj∈JiUj for each i ∈ [1, 3]. Then Y1, Y2 and Y3 are zero-
sum subsequences of S. Let ti = |Ji| for i ∈ [1, 3]. Then X1 = (2g1)

t1(h+g1),
X2 = (2g1)

t2(h+ g2 + (−g2 + g1)), X3 = (2g1)
t3(g1 + g2 + (−g2 + g1)).

Since k(Yi) > 1 for every i ∈ [1, 3], we have

k(Y1) =
1

ord(h)
+

1

ord(g1)
+

2t1
ord(g1)

=
pβ−l + 2t1 + 1

2pβ
> 1,

k(Y2) =
1

ord(h)
+

1

ord(g2)
+

1

ord(−g2 + g1)
+

2t2
ord(g1)

=
pβ−l + 2t2 + 2

2pβ
> 1,

k(Y3) =
1

ord(g1)
+

1

ord(g2)
+

1

ord(−g2 + g1)
+

2t3
ord(g1)

=
2t3 + 3

2pβ
> 1.

Combining ti ≤ pβ − 1, by a straightforward computation we obtain that

pβ − pβ−l − 1

2
≤ t1 ≤ pβ − 1, pβ − pβ−l + 1

2
≤ t2 ≤ pβ − 1, t3 = pβ − 1.

From Xi is zero-sum over ker(ϕ1) we infer that

2t1g1+h+g1 = 2t2g1+h+g2+(−g2+g1) = 2(pβ−1)g1+g1+g2+(−g2+g1) = 0.

Therefore,

2t1g1+h+g1+2t2g1+h+g2+(−g2+g1)−2(pβ−1)g1−g1−g2−(−g2+g1) = 0.

This deduces that (2t1 + 2t2 + 2)g1 + 2h = 0. Therefore (2t1 + 2t2 + 2)g1 +

2pβ−lyg1 = 0, then (t1 + t2 + 1 + pβ−ly) ≡ 0 (mod pβ), but 2pβ − pβ−l + 1 +

pβ−ly ≤ t1 + t2 + 1 + pβ−ly ≤ 2pβ − 1 + pβ−ly, a contradiction.
Case 3. |SH2| = 2 and |S(pβ)| = 0, then |S(2pβ)| = 2pβ. Therefore,

|SH2|+ d
|S(2pβ)| − (η(G/H2)− 1)

exp(G/H2)
e = 2 + 2pβ−1 = η(H2),

a contradiction with inequality (3.4).

(c) The result follows from Lemma 2.1 and Lemma 3.6. �
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