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Abstract

Let G be a nontrivial connected and vertex-colored graph. A subset X

of the vertex set of G is called rainbow if any two vertices in X have distinct

colors. The graph G is called rainbow vertex-disconnected if for any two vertices

x and y of G, there exists a vertex subset S of G such that when x and y are

nonadjacent, S is rainbow and x and y belong to different components of G−S;

whereas when x and y are adjacent, S + x or S + y is rainbow and x and y

belong to different components of (G− xy)− S. For a connected graph G, the

rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum

number of colors that are needed to make G rainbow vertex-disconnected.

In this paper, we characterize all graphs of order n with rainbow vertex-

disconnection number k for k ∈ {1, 2, n}, and determine the rainbow vertex-

disconnection numbers of some special graphs. Moreover, we study the ex-

tremal problems on the number of edges of a connected graph G with order n

and rvd(G) = k for given integers k and n with 1 ≤ k ≤ n.
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1 Introduction

All graphs considered in this paper are simple, finite and undirected. Let G =

(V (G), E(G)) be a nontrivial connected graph with vertex set V (G) and edge set

E(G). The order of G is denoted by n = |V (G)|. For a vertex v ∈ V (G), the open

neighborhood of v is the set N(v) = {u ∈ V (G)|uv ∈ E(G)} and d(v) = |N(v)| is

the degree of v, and the closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The

minimum and maximum degree of G are denoted by δ(G) and ∆(G), respectively.

Denote by Pn a path on n vertices. For a subset S of V (G), we use G[S] to denote

the subgraph of G induced by S. Let V1, V2 be two disjoint vertex subsets of G. We

denote the set of edges between V1 and V2 in G by E(V1, V2). We follow [2] for graph

theoretical notation and terminology not defined here.

The concept of rainbow connection coloring was introduced by Chartrand et al.

[3] in 2008. A rainbow path is a path whose edges are colored pairwise differently. An

edge-coloring of a graph G is a rainbow connection coloring if any two vertices of G are

connected by a rainbow path. The rainbow connection number of a connected graph

G, denoted by rc(G), is the minimum number of colors that ensures G has a rainbow

connection coloring. There are a large number of papers about the rainbow connection

coloring of graphs. Rainbow vertex-connection was proposed by Krivelevich and

Yuster [5] in 2010. For more details about the rainbow vertex-connection, we refer

to [6] and survey papers and book [7, 8, 9].

As we know that there are two ways to study the connectivity of a graph, one

way is by using paths and the other is by using cuts. So, it is natural to consider the

rainbow edge-cuts and rainbow vertex-cuts for the rainbow connectivity of graphs.

In [4], Chartrand et al. first studied the rainbow edge-cuts by introducing the

concept of rainbow disconnection of graphs. Let G be a nontrivial connected and

edge-colored graph. An edge-cut of G is a set R of edges of G such that G − R is

disconnected. If, moreover, any two edges in R have different colors, then R is called

a rainbow cut. A rainbow cut R is called a u-v rainbow cut if the vertices u and v

belong to different components of G− R. An edge-coloring of G is called a rainbow

disconnection coloring if for every two distinct vertices u and v of G, there exists a

u-v rainbow cut in G, separating them. The rainbow disconnection number rd(G) of

G is the minimum number of colors required by a rainbow disconnection coloring of

G.

In order to study the rainbow vertex-cut, we introduce the concept of rainbow

vertex-disconnection number in this paper. For a connected and vertex-colored graph

G, let x and y be two vertices of G. If x and y are nonadjacent, then an x-y vertex-cut
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is a subset S of V (G) such that x and y belong to different components of G − S.

If x and y are adjacent, then an x-y vertex-cut is a subset S of V (G) such that x

and y belong to different components of (G − xy) − S. A vertex subset S of G is

rainbow if no two vertices of S have the same color. An x-y rainbow vertex-cut is an

x-y vertex-cut S such that if x and y are nonadjacent, then S is rainbow; if x and y

are adjacent, then S + x or S + y is rainbow.

A vertex-colored graph G is called rainbow vertex-disconnected if for any two

vertices x and y of G, there exists an x-y rainbow vertex-cut. In this case, the vertex-

coloring c is called a rainbow vertex-disconnection coloring of G. For a connected

graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the

minimum number of colors that are needed to make G rainbow vertex-disconnected.

A rainbow vertex-disconnection coloring with rvd(G) colors is called an rvd-coloring

of G.

As is well-known, graphs can model a wide variety of practical problems and

applications in a simple and understandable way. Assigning colors to the vertices or

edges of graphs can further improve this ability. The rainbow vertex-disconnection

coloring could also be applied to solve many practical problems. Next, we give two

examples of applications.

The rainbow vertex-disconnection coloring can model frequency assignment prob-

lem for signal towers. The signal towers can transmit and receive information. Fur-

thermore, each tower is equipped with a signal interceptor. In order to prevent the

transmission of information, we want to capture the information between any two

towers and feedback the interception position. In order to solve this problem, we

translate it into a coloring problem as follows: Each signal tower X is represented

by a vertex, also denoted by X. If two signal towers can receive information from

each other, then we say that they adjacent and add an edge between the two cor-

responding vertices. The resulting graph is denoted by G, and we assign a color to

each vertex based on the frequency emitted by the tower. Suppose that we want to

intercept the information from tower A to tower B. If vertices A and B representing

towers A,B are nonadjacent, then the towers in the corresponding A-B vertex-cut

of G open their signal interception devices. If vertices A and B representing towers

A,B are adjacent, in addition to turning on the signal interception devices in the

corresponding A-B vertex-cut of G, we also need to turn on the device of tower B.

To determine the location of the tower which intercepts the information, the A-B

vertex-cut in G needs to be rainbow; whereas if the vertices representing towers A,B

are adjacent, the vertex set consisting of the vertices in the A-B vertex-cut of G and

vertex B needs to be rainbow. This coloring can be relaxed further. If the vertices
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A,B are adjacent, then we only need that the color of one of the vertices A and B is

different from the colors of the vertices in the A-B vertex-cut. Given a rainbow vertex

set for any two vertices A and B in advance (if the vertices A,B are nonadjacent, it

refers to an A-B rainbow vertex-cut in G; if the vertices A,B are adjacent, it refers

to the set consisting of a A-B rainbow vertex-cut of G and one of the vertices A and

B whose color is different from the colors of vertices in the A-B vertex-cut). It is

used to determine the interception position corresponding to the frequency emitted

by the tower. If it is intercepted by tower B, then tower B sends out the frequency

corresponding to the color of the endpoint in the given rainbow vertex set of A and

B. Since frequencies are expensive, it is hoped that the number of frequencies is as

small as possible. Then the minimum number of frequencies required in the frequency

assignment problem for signal towers is precisely the rainbow vertex-disconnection

number of the corresponding graph.

Another example is as follows. In the circulation of goods, we want to prevent

some things from happening, such as delivering confidential letters, smuggling drugs

and trading in wildlife. We need to intercept these goods in the cities which are

passed by goods. When some city intercepts the goods successfully, the city could

feedback the location by transmitting signals (with some special frequency) to the

other cities. For the sake of solving this practical problem, we denote each city by

a vertex. We assign an edge between two vertices if the corresponding cities are

connected by a transporting road, and assign a color to each vertex based on the

frequency emitted by city. Assume that the goods is transported from city A to

city B (the corresponding vertices are also denoted by A and B). For intercepting

goods, we consider A-B vertex-cut (if vertices A and B are adjacent, we also need

to intercept the goods in city B). To feedback the location of city which intercepts

goods, the A-B vertex-cut need to be rainbow to denote the different locations (if

vertices A and B are adjacent, then the color of vertex B need to differ from the colors

of the vertices in the vertex-cut). We can relax the coloring further. If vertices A and

B are adjacent, then we only need that the color of vertex A or B is different from the

colors of the vertices in the vertex-cut. Then the minimum number of frequencies for

cities required in this problem is precisely the rainbow vertex-disconnection number

of the corresponding graph.

Let x and y be two vertices of a graph G. The local connectivity κG(x, y) of

nonadjacent x and y in G is the minimum number of vertices of G separating x from

y in G. If x and y are adjacent vertices in G, the local connectivity κG(x, y) of x

and y in G is defined as κG−xy(x, y) + 1. The connectivity κ(G) of G is the minimum

number of vertices whose removal results in a disconnected graph or a trivial graph.
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The upper connectivity κ+(G) of G is the upper bound of the function κG(x, y).

This paper is organized as follows. In Section 2, we provide some useful lemmas

that will be used in later discussion, and we also characterize the graphs having

rainbow vertex-disconnection number 1, 2 and n, respectively. In Section 3, we give

the rainbow vertex-disconnection numbers of wheel graphs and complete multipartite

graphs. In Section 4, we determine the minimum size (number of edges) of a connected

graph G of order n with rvd(G) = k for given integers k and n with 1 ≤ k ≤ n.

However, we can only give a range of the maximum size of a connected graph G of

order n with rvd(G) = k for given integers k and n with 1 ≤ k ≤ n. Further efforts

should be made to get the exact value of the maximum size.

2 Preliminaries

At first, we state some fundamental results about the rainbow vertex-disconnection

number of graphs, which will be used in the sequel.

Lemma 2.1 If G is a nontrivial connected graph and H is a connected subgraph of

G, then rvd(H) ≤ rvd(G).

Proof. Suppose that c is an rvd-coloring of G and H is a connected subgraph of

G. Let c′ be a coloring that is obtained by restricting c to H. Let x and y be two

vertices of H and S be an x-y rainbow vertex-cut of G. Then S ′ = S ∩ V (H) is an

x-y rainbow vertex-cut in H; otherwise, if there exists an x-y path P with length at

least 2 in H − S ′, then P is also in G − S, a contradiction. Thus, c′ is a rainbow

vertex-disconnection coloring of H and then rvd(H) ≤ rvd(G). �

A block of a graph G is a maximal connected subgraph of G that contains no cut

vertices. So, a block of G is a cut edge of G or a 2-connected subgraph of G with at

least three vertices. The block decomposition of G is the set of blocks of G.

Lemma 2.2 Let G be a nontrivial connected graph, and let B be a block of G such

that rvd(B) is maximum among all blocks of G. Then rvd(G) = rvd(B).

Proof. Let G be a nontrivial connected graph. Let {B1, B2, · · · , Bt} be the block

decomposition of G, and let k = max{rvd(Bi)|1 ≤ i ≤ t}. If G has no cut vertex,

then G = B1 and the result follows. Next, we assume that G has at least one cut

vertex. Since each block is a connected subgraph of G, rvd(G) ≥ k by Lemma 2.1.
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Let ci be an rvd-coloring of Bi. Let H be a connected graph consisting of some

blocks of G. Let Bi (1 ≤ i ≤ t) be the block having a vertex in common with H,

where Bi is the subgraph of G but not of H. Suppose v is the common vertex of Bi

and H. We define an exchange operation on Bi as follows: If cH(v) = ci(v), we do

nothing. If cH(v) 6= ci(v), without loss of generality, we may assume that cH(v) = 1

and ci(v) = 2. We assign color 1 to the vertices of Bi that were colored with 2, and

assign color 2 to the vertices of Bi that were colored with 1.

First, we take a block, say B1, and let G1 = B1. Then we find a block B(∈
{B2, · · · , Bt}) which has a vertex in common with graph Gi (1 ≤ i ≤ t − 1) and

add it to Gi by doing exchange operation on B. Denote the resulting graph by Gi+1.

Repeatedly, we have Gt = G and get a vertex-coloring c′ of G with k colors.

Let x and y be two vertices of G. If there exists a block, say Bi, which contains

both x and y, then any x-y rainbow vertex-cut in Bi with the coloring c′i is an x-y

rainbow vertex-cut in G. If x and y are in different blocks, then there is exactly one

x-y internally disjoint path, say P , in G and the path P contains at least one cut

vertex, say w. Then vertex w is an x-y rainbow vertex-cut in G. Hence, rvd(G) ≤ k.

�

Lemma 2.3 Let G be a nontrivial connected graph, and let u and v be two vertices

of G having at least two common neighbors. Then u and v receive different colors in

any rvd-coloring of G.

Proof. Assume that u, v have two common neighbors x, y. Then uxv, uyv are two

internally disjoint paths between u and v. So, xuy, xvy are two internally disjoint

paths between x and y. Thus, u, v should be assigned different colors in any rvd-

coloring of G. �

The following result is an immediate consequence of Lemma 2.3.

Corollary 2.4 For an integer n ≥ 2,

rvd(Kn) =

{
n− 1, if n = 2, 3,

n, if n ≥ 4.

Theorem 2.5 Let G be a nontrivial connected graph of order n. Then κ(G) ≤
κ+(G) ≤ rvd(G) ≤ n.

Proof. Obviously, the upper bound holds. For the lower bound, let x, y be any

two vertices of G. Assume that S is an x-y rainbow vertex-cut. There are κG(x, y)
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internally disjoint paths between x and y in G. If x and y are nonadjacent, then

rvd(G) ≥ |S| ≥ κG(x, y). If x and y are adjacent, then S + x (or S + y) is rainbow.

So, rvd(G) ≥ |S + x| = |S|+ 1 ≥ κG(x, y). Thus, rvd(G) ≥ κ+(G) ≥ κ(G). �

From the above one can see that for a nontrivial connected graph G of order n,

1 ≤ rvd(G) ≤ n. We now characterize all graphs G for which rvd(G) attains the

lower 1 or upper bound n.

Theorem 2.6 Let G be a nontrivial connected graph. Then rvd(G) = 1 if and only

if G is a tree.

Proof. Assume, to the contrary, that G contains a cycle C. Let x, y be two vertices of

C. Then κG(x, y) ≥ 2. So, rvd(G) ≥ κG(x, y) ≥ 2 by Theorem 2.5, a contradiction. �

Lemma 2.7 If Cn is a cycle of order n ≥ 3, then rvd(Cn) = 2.

Proof. If n = 3, then rvd(C3) = rvd(K3) = 2 by Corollary 2.4. Now consider

n ≥ 4. Since κ(Cn) = 2, it follows from Theorem 2.5 that rvd(G) ≥ 2. Suppose

Cn = v1v2 · · · vnv1. Let c be a coloring of Cn such that c(v1) = c(v2) = 1 and

c(vi) = 2 (i ∈ {3, 4, · · · , n}). Let x and y be two vertices of Cn. If x and y are

adjacent, then there is exactly one path P with length more than two between x and

y in Cn. Since n ≥ 4, we choose a vertex u on P with color different from c(x).

Obviously, u is an x-y vertex-cut and the vertex set {u, x} is rainbow. So, u is an

x-y rainbow vertex-cut. If x and y are nonadjacent, then there are two x-y paths in

Cn. Since n ≥ 4, the two paths must respectively contain an internal vertex u with

color 1 and an internal vertex v with color 2. Then the vertex set {u, v} is an x-y

rainbow vertex-cut. Thus, c is a rainbow vertex-disconnection coloring of Cn using

two colors, and so rvd(Cn) = 2. �

Lemma 2.8 [4] A 2-connected graph G is a cycle if and only if for every two vertices

u and v of G, there are exactly two internally disjoint u-v paths in G.

Theorem 2.9 Let G be a nontrivial connected graph. Then rvd(G) = 2 if and only

if each block of G is either a K2 or a cycle and at least one block of G is a cycle.

Proof. Let G be a nontrivial connected graph. If each block of G is either a K2 or a

cycle and at least one block of G is a cycle, then rvd(G) = 2 by Lemmas 2.2 and 2.7.
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Now we verify the converse. Assume, to the contrary, that there exists at least

one block which is neither a K2 nor a cycle or all the blocks of G are K2. In the

former case, by Lemma 2.8 there exist two vertices x and y of G for which G contains

at least three internally disjoint x-y paths. So, rvd(G) ≥ κG(x, y) ≥ 3 by Theorem

2.5, a contradiction. As for the latter case, if all the blocks of G are K2, then G is a

tree. Then, rvd(G) = 1 from Theorem 2.6, a contradiction. �

Theorem 2.10 Let G be a nontrivial connected graph of order n. Then rvd(G) = n

if and only if any two vertices of G have at least two common neighbors.

Proof. Let rvd(G) = n. Assume, to the contrary, that there exist two vertices u and

v of G which have at most one common neighbor. Let c be a vertex-coloring of G

that assigns color 1 to u, v and colors 2, 3, · · · , n − 1 to the remaining vertices of

G. We claim that c is a rainbow vertex-disconnection coloring; otherwise, there exist

two vertices u′ and v′ such that any u′-v′ vertex-cut has at least two vertices with

the same color. So, any u′-v′ rainbow vertex-cut must contain vertices u, v. Thus,

there are two internally disjoint paths u′uv′ and u′vv′ in G. The vertices u′, v′ are

two common neighbors of u and v. Thus, rvd(G) ≤ n− 1, a contradiction.

For the converse, since there are at least two common neighbors for any two ver-

tices of G, the colors of vertices in G are pairwise different by Lemma 2.3. Therefore,

rvd(G) = n. �

Corollary 2.11 Let G be a nontrivial connected graph of order n. If there is exactly

one pair of vertices which do not have two common neighbors, then rvd(G) = n− 1.

Proof. Let u, v be the only one pair of vertices of G which do not have two common

neighbors. Since any two vertices in V (G)\{u} have at least two common neighbors,

the colors of vertices in V (G)\{u} are pairwise different by Lemma 2.3. So, rvd(G) ≥
n− 1. From Theorem 2.10, rvd(G) ≤ n− 1. �

At the end of this section we present a result related to the girth of a graph.

Recall that for a graph G, the length of a shortest cycle of G is called the girth of G

(the girth of an acyclic graph is zero). The following is an upper bound for rvd(G)

in terms of the girth of G.

Theorem 2.12 Let G be a nontrivial connected graph of order n and girth g with

g ≥ 4. Then rvd(G) ≤ n− g + 2.
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Proof. Let Cg denote a shortest cycle of G where Cg = v1v2 · · · vgv1. Define a vertex-

coloring c: V (G) → [n − g + 2] of G as follows. Let c(v1) = c(v2) = 1, c(vi) = 2

(i ∈ {3, 4, · · · , g}). Color the remaining vertices of G with distinct colors using

3, 4, · · · , n− g + 2. Let x and y be two vertices of G. Assume that x and y are both

in Cg. There exists an x-y rainbow vertex-cut of Cg by Lemma 2.7. We denote it by

S. Since the vertices in V (G) \ V (Cg) have different colors, V (G) \ V (Cg) ∪ S is an

x-y rainbow vertex-cut of G.

Assume that vertices x and y are not both in Cg, say x /∈ V (Cg). Then N(x)

is a rainbow subset; otherwise, {v1, v2} ⊂ N(x) or there exist two vertices vi, vj

(i, j ∈ {3, 4, · · · , g}) with color 2 which are both the neighbors of x. Considering the

former, since v1 and v2 are adjacent, there exists a triangle xv1v2x, a contradiction.

As for the latter, since the length of vivi+1 · · · vj in Cg is less than g− 2, the length of

cycle xvivi+1 · · · vjx is less than g, a contradiction. Then N(x)\{y} is an x-y rainbow

vertex-cut. So, c is a rainbow vertex-disconnection coloring. �

According to Theorem 2.12 and rvd(P3) = 1, we can get the following corollary.

Since rvd(K2,n−2) = n− 2, the upper bound for triangle-free graphs is tight.

Corollary 2.13 Let G be a nontrivial connected triangle-free graph of order n ≥ 3.

Then rvd(G) ≤ n− 2.

3 rvd-values for some special graphs

We present some special graphs G satisfying rvd(G) = κ(G) and rvd(G) = n,

respectively. Firstly, we consider the rainbow vertex-disconnection number of a wheel

graph.

Theorem 3.1 If Wn = Cn ∨K1 is the wheel of order n+ 1 ≥ 5, then

rvd(Wn) =

{
3, if 4 | n,
4, if 4 - n.

.

Proof. Suppose that Cn=v1v2 · · · vnv1 and w is the copy of K1. We distinguish the

following cases.

Case 1. 4 | n.

Since κ(Wn) = 3, it follows from Theorem 2.5 that rvd(Wn) ≥ 3. Let c be a vertex-

coloring of Wn such that c(vi) = 1 (i ≡ 1, 2 (mod 4)) and c(vi) = 2 (i ≡ 0, 3 (mod 4))
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and c(w) = 3. Let x and y be two vertices of Wn. Then one of x and y belongs to

Cn, say x ∈ Cn. Since 4 | n, N(x) is a rainbow subset. The vertex set N(x) \ {y} is

an x-y rainbow vertex-cut of Wn. Thus, c is a rainbow vertex-disconnection coloring

of Wn using three colors, and so rvd(Wn) ≤ 3.

Case 2. 4 - n.

Let c be an rvd-coloring of Wn. Assume that the number of colors in Cn is 2.

Without loss of generality, let c(v1)=1. Since v1 and v3 have two common neighbors

v2, w, the colors of v1 and v3 are different by Lemma 2.3. So, c(v3) = 2. Similarly,

we color v5, v7, · · · alternately by color 1, 2. Finally, we obtain c(vn−1) = c(v1) = 1,

which is a contradiction by Lemma 2.3. So, the number of colors in Cn is at least

3. Since w and vi (i ∈ [n]) have two common neighbors, the colors of w and vi are

different by Lemma 2.3. So, rvd(G) ≥ 4.

Define a vertex-coloring c : V (G)→ [4] such that c(vi) = 1 (i ≡ 1, 2 (mod 4), i ∈
[n − 2]), c(vi) = 2 (i ≡ 0, 3 (mod 4), i ∈ [n − 2]), c(vn−1) = c(vn) = 3 and c(w) = 4.

Let x and y be two vertices of G. Then one of x and y belongs to Cn, say x ∈ V (Cn).

Then the colors of vertices in N(x) are distinct. The vertex set N(x) \ {y} is an x-y

rainbow vertex-cut of Wn. Thus, rvd(Wn) ≤ 4. �

From the above, we see that κ(Wn) = rvd(Wn) if 4 | n. Next, we determine the

rainbow vertex-disconnection number of a complete multipartite graph. Furthermore,

we know that there are graphs G with rvd(G) = n.

Theorem 3.2 Let G = Kn1,n2,...,nk
be a complete k-partite graph of order n, where

k ≥ 2, 1 ≤ n1 ≤ n2 ≤ · · · ≤ nk and nk ≥ 2. Then

rvd(Kn1,n2,...,nk
) =


n, if k ≥ 4 or k = 3, n3 ≥ n2 ≥ n1 ≥ 2,

n− nk−1, if k = 3, n1 = 1 or k = 2, n2 ≥ n1 ≥ 2,

1, if k = 2 and n1 = 1.

P roof. Let V1, V2, · · · , Vk be the vertex-partition sets of G with |Vi| = ni where

i ∈ [k]. We distinguish the following cases to proceed the proof.

Case 1. k ≥ 4 or k = 3, n3 ≥ n2 ≥ n1 ≥ 2.

Let u and v be any two vertices of G. Assume u ∈ Vi and v ∈ Vj (i, j ∈ [k]). If

k ≥ 4 or k = 3, n3 ≥ n2 ≥ n1 ≥ 2, then |V (G) \ {Vi ∪ Vj}| ≥ 2. So, u and v have at

least two common neighbors. From Theorem 2.10, rvd(G) = n.

Case 2. k = 3, n1 = 1 or k = 2, n2 ≥ n1 ≥ 2.

If k = 3, n1 = 1, then choose u ∈ V1 and v ∈ V2. From Theorem 2.5, rvd(G) ≥
κ(u, v) = n3 + 1 = n − n2. Define a vertex-coloring c : V (G) → [n − n2] such that
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c(V3) = {1, 2, · · · , n3}, c(V2) = {1, 2, · · · , n2} and c(V1) = {n3 + 1}. Then c is a

coloring using n3 + 1 = n − n2 colors. Let x and y be any two vertices of G. Then

one of x and y belongs to V2 ∪ V3, say x ∈ V2 ∪ V3. Then N(x) is a rainbow subset.

So, N(x) \ {y} is an x-y rainbow vertex-cut. Thus, rvd(G) ≤ n− n2.

If k = 2, n2 ≥ n1 ≥ 2, then choose two vertices u and v of V1. From Theorem

2.5, rvd(G) ≥ κG(u, v) = n2 = n− n1. Define a vertex-coloring c′ : V (G)→ [n− n1]

such that c′(V2) = {1, 2, · · · , n2} and c′(V1) = {1, 2, · · · , n1}. Let x and y be any

two vertices of G. Then N(x) is a rainbow subset. So, N(x) \ {y} is an x-y rainbow

vertex-cut. Thus, rvd(G) ≤ n− n1.

Case 3. k = 2 and n1 = 1.

Obviously, the graph G is a tree. From Theorem 2.6, rvd(G) = 1. �

4 Extremal problems

In this section, we first investigate the following problem:

For a given pair k, n of positive integers with 1 ≤ k ≤ n, what is the minimum pos-

sible size of a connected graphG of order n such that the rainbow vertex-disconnection

number of G is k ?

To solve this problem, we first present some useful lemmas.

Lemma 4.1 Let G be a connected graph with δ(G) ≥ 3. Then there exists a cycle C

such that G− V (C) is connected.

Proof. Suppose that for any cycle C of G, G− V (C) is disconnected. Choose a cycle

C0 such that G−V (C0) has a connected component G1 with the maximum order. Let

G2 be another component. We denote the ends of E(Gi, C0) in C0 by Si (i = 1, 2).

Let x0 ∈ S1. Now we distinguish two cases.

Case 1. |S2| = 1.

Since δ(G2) ≥ 2, there exists a cycle C ′ in G2 such that G−V (C ′) has a component

containing G1 and C0, a contradiction.

Case 2. |S2| ≥ 2.

Subcase 2.1. For |S2 \ {x0}| ≥ 2, we assume {x1, x2} ∈ S2 and x1y1, x2y2 ∈
E(G2, C0). There exists a path Q2 between y1 and y2. We note that there is an x1-x2

path Q1 in C0 which does not go through x0. Choose a cycle C ′ = x1Q1x2y2Q2y1x1.

Then G− V (C ′) has a component containing C0 and G1, a contradiction.
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Subcase 2.2. For |S2 \ {x0}| = 1, we assume S2 = {x0, x1}. When |N(x1) ∩
V (G2)| ≥ 2, we assume z1, z2 ∈ N(x1) ∩ V (G2). Then there is a z1-z2 path Q in G2.

Choose a cycle C ′ = x1z1Qz2x1. Then G−V (C ′) has a component containing x0 and

G1, a contradiction. When |N(x1) ∩ V (G2)| = 1, we assume N(x1) ∩ V (G2) = {z1}.
For any vertex v ∈ G2 \ {z1}, the degree of v in G2 is at least 2. Since a tree has

at least two leaves, there is a cycle C ′ in G2. Then G − V (C ′) has a component

containing C0 and G1, a contradiction. �

Corollary 4.2 Let G be a connected graph with δ(G) ≥ 3. Then there exists a cycle

C such that G− E(C) is connected.

Proof. By Lemma 4.1, we choose a minimum cycle, say C, such that G − V (C) is

connected. Then C has no chord; otherwise we can choose a smaller cycle C ′ such

that G− V (C ′) is connected. Therefore, G− E(C) is connected. �

For any two vertices x and y of G, let SG(x, y) be a rainbow vertex-cut of x and

y in G. Let S̄G(x, y) be a rainbow vertex set such that if x, y are adjacent, then

S̄G(x, y) = SG(x, y) + x or SG(x, y) + y is rainbow; if x, y are nonadjacent, then

S̄G(x, y) = SG(x, y) is rainbow. In order to prove that a vertex-coloring of G is a

rainbow vertex-disconnection coloring, we only need to find SG(x, y) or S̄G(x, y) for

any two vertices x, y of G.

Lemma 4.3 For integers k and n with 1 ≤ k ≤ n − 1, the minimum size of a

connected graph G of order n with rvd(G) = k is n+ k − 2.

Proof. First, we show that if the size of a connected graph G of order n is n+ k− 2,

then rvd(G) ≤ k. By induction on k. For k = 1, the result is true by Theorem 2.6.

Suppose the result holds for 2 ≤ k ≤ n − 2. Let G be a connected graph of order n

and size n+ (k+ 1)− 2 = n+ k− 1. We show that rvd(G) ≤ k+ 1. Now we proceed

the proof by distinguishing the following three cases.

Case 1. δ(G) ≥ 3.

Let |C| = ` (≥ 3) and G′ = G− E(C). Then by Corollary 4.2, G′ is a connected

graph with |V (G′)| = n and |E(G′)| = n + k − 1 − `. By the induction hypothesis,

we have rvd(G′) ≤ k + 1 − `. Suppose the coloring c′ of G′ is a rainbow vertex-

disconnection coloring using k + 1 − ` colors. We now extend the coloring c′ of G′

to a coloring c of G by assigning c(x) = c′(x) for x ∈ V (G) \ V (C) and assigning

` distinct new colors to the vertices of C. We can verify that the coloring c is a

12



rainbow vertex-disconnection coloring of G. For any two vertices x, y ∈ V (G), we

have SG(x, y) = SG′(x, y) ∪ (V (C) \ {x, y}). Hence, rvd(G) ≤ k + 1.

Case 2. There exists at least one vertex in G with degree 2.

Subcase 2.1. There exists a vertex u in G which is not a cut vertex and d(u) = 2.

Let N(u) = {w,w′} and G′ be a graph obtained by removing the edge uw from

G. Since the size of G′ is n+ k− 2, we get rvd(G′) ≤ k by the induction hypothesis.

Suppose that the coloring c′ of G′ is a rainbow vertex-disconnection coloring using

colors from [k]. If c′(w) 6= c′(w′), then we extend the coloring c′ of G′ to a coloring

c of G as follows. Let c(u) = k + 1 and c(x) = c′(x) for x ∈ V (G) \ {u}. We can

verify that the coloring c is a rainbow vertex-disconnection coloring of G. For two

vertices x, y ∈ V (G) \ {u}, we find S̄G(x, y) = S̄G′(x, y) ∪ {u}. For the case that

one vertex is u and the other is p ∈ V (G) \ {u}, we have S̄G(u, p) = {w,w′}. If

c(w) = c(w′), then we extend the coloring c′ of G′ to a coloring c of G as follows.

Let c(u) = c(w) = k + 1 and c(x) = c′(x) for x ∈ V (G) \ {u,w}. We can verify that

the coloring c is a rainbow vertex-disconnection coloring of G. For any two vertices

x, y ∈ V (G) \ {u,w′}, if w /∈ S̄G′(x, y), then S̄G(x, y) = S̄G′(x, y) ∪ {u}; otherwise,

S̄G(x, y) = S̄G′(x, y) ∪ {w′}. For the case that one of the vertices is w′ and the other

vertex is p ∈ V (G) \ {u,w,w′}, if w /∈ S̄G′(w, p), then S̄G(w, p) = S̄G′(w, p) ∪ {u};
otherwise, S̄G(w, p) = S̄G′(w, p). For the case that one vertex is w and the other is

w′, if w and w′ are adjacent, then S̄G(w,w′) = S̄G′(w,w′) \ {w} ∪ {w′, u}; otherwise,

S̄G(w,w′) = S̄G′(w,w′) ∪ {u}. For the case that one vertex is u and the other is

p ∈ V (G) \ {u}, S̄G(u, p) = {w,w′}.
Subcase 2.2. All the vertices with degree 2 are cut vertices.

Suppose that there exist q vertices with degree 2. We contract all the vertices

with degree 2 of G, namely, we contract q edges of G. Denote the resulting graph by

G′. Then |V (G′)| = n′ = n − q, |E(G′)| = n + k + 1 − 2 − q = n′ + k + 1 − 2 and

δ(G′) ≥ 3. It follows that rvd(G′) ≤ k + 1 from Case 1. Suppose that the coloring

c′ of G′ is a rainbow vertex-disconnection coloring using colors from [k + 1]. We now

extend the coloring c′ of G′ to a coloring c of G by assigning c(x) = c′(x) for the

vertices with degree at least 3 and assigning color 1 to the vertices with degree 2. We

can verify that this coloring c is a rainbow vertex-disconnection coloring of G. For

any two vertices x, y, if d(x), d(y) ≥ 3, we have S̄G(x, y) = S̄G′(x, y); otherwise, there

exists at least one vertex with degree 2. Suppose d(x) = 2. Then there exists only

one path P between x and y. We denote the neighbor of x in P by z. Then we have

S̄G(x, y) = {z}. Hence, rvd(G) ≤ k + 1.

Case 3. δ(G) = 1 and no vertex is of degree 2.
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Delete all the pendent vertices and pendent trees from G and denote the resulting

graph by G′. Suppose that we delete z vertices which are denoted by the set Z. Then

we have δ(G′) ≥ 2 and |V (G′)| = n′ = n − z and |E(G′)| = n + k + 1 − 2 − z =

n′ + k + 1 − 2. It follows from Cases 1 and 2 that rvd(G) ≤ k + 1. Suppose the

coloring c′ of G′ is a rainbow vertex-disconnection coloring using colors from [k + 1].

We now extend the coloring c′ of G′ to a coloring c of G by assigning c(x) = c′(x)

for x ∈ V (G) \ Z and assigning color 1 to remaining vertices. We can verify that

this coloring c is a rainbow vertex-disconnection coloring of G. If x, y ∈ G \ Z, then

S̄G(x, y) = S̄G′(x, y). If x ∈ Z, then there exists only one path P between x and

y. We denote the neighbor of x in P by v. Then we have S̄G(x, y) = {v}. Hence,

rvd(G) ≤ k + 1.

Now we have that if rvd(G) = k, then the size of a connected graph G of order n

is at least n + k − 2. It remains to show that for each pair k, n of positive integers

with 1 ≤ k ≤ n− 1, there is a connected graph G of order n and size n+ k − 2 such

that rvd(G) = k. We construct the graph Gk as follows. For 1 ≤ k ≤ n − 2, given

two vertices u and v, Gk is a graph obtained by adding k paths of length 2 between

u and v and n − k − 2 pendent edges to u. Now we assign distinct colors to the k

common neighbors of u and v using colors in [k], and assign color 1 to vertex u, color

2 to the remaining vertices. For k = n − 1, let Gn−1 = Gn−2 + uv. Now we assign

distinct colors to the n− 2 common neighbors of u and v using colors in [n− 2], and

assign color 1 to u, color n−1 to vertex v. It is easy to verify that these colorings are

rainbow vertex-disconnection colorings of Gk (1 ≤ k ≤ n − 1). Thus, rvd(Gk) ≤ k.

Furthermore, rvd(Gk) ≥ k by Theorem 2.5, and so rvd(Gk) = k. �

Lemma 4.4 For a graph G, if any two vertices have at least two common neighbors,

then |E(G)| ≥ 2n− 4 + dn
2
e. Furthermore, the bound is sharp.

Proof. Suppose that G is an extremal such graph with minimum size. It remains to

prove that |E(G)| ≥ 2n− 4 + dn
2
e. Since any two vertices have at least two common

neighbors, we have δ(G) ≥ 3. If there is exactly one vertex with degree at most 4,

then e(G) > 5(n−1)
2

> 2n−4+dn
2
e, a contradiction. So, there are at least two vertices

of G with degree at most 4. Therefore, there are two vertices u, v of G, such that

either d(u) = d(v) = 4, or d(u) = 3, d(v) = 4, or d(u) = d(v) = 3. Let N(u)−v = S1,

N(v)− u = S2 and S = S1 ∪ S2. Let

θ =

1, if u is adjacent to v,

0, if u is nonadjacent to v.
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Note that every vertex of Q = V (G) − S − u − v has at least two vertices in S

and its degree is at least 3. Let E0 be the set of edges having at least one end in Q.

Then, |E0| ≥ 2|Q|+
⌈
|Q|
2

⌉
. Therefore,

|E(G)| ≥ |E(u, S1)|+ |E(v, S2)|+ |E(G[S])|+ θ + |E0|

≥ |S1|+ |S2|+ |E(G[S])|+ θ + 2|Q|+
⌈
|Q|
2

⌉
.

Let x be a vertex of G. For y ∈ N(x), the two common neighbors of x and y are

in N(x). So, every vertex of N(x) has a degree at least two in G[N(x)]. Furthermore,

if d(x) = 4, then G[N(x)] contains a 4-cycle; if d(x) = 3, then G[N(x)] is a 3-cycle.

Case 1. d(u) = d(v) = 4.

Suppose N(u) = {x1, x2, x3, x4}.
Subcase 1.1. |S1 ∩ S2| = 2. For θ = 0, S1 = N(u) and G[S1] contains a 4-cycle.

u v

x1

x2

x3

x4

y1

y2

Figure 1

By symmetry, G[S2] contains a 4-cycle, as shown in Fig. 1. Since x1, v (x2, v) have

two common neighbors in S2, there is an edge connecting x1 (x2) to some vertex of

S2. Therefore, |E(G[S])|+ θ ≥ 9. So, |E(G)| ≥ 2n− 3 + dn
2
e.

For θ = 1, suppose x4 = v and S1 ∩ S2 = {x2, x3}. Since G[N(u)] contains a

4-cycle, |E(G[S1])| ≥ 2. By symmetry, |E(G[S2])| ≥ 2. Therefore, |E(G[S])| ≥ 4,

|E(G[S])|+ θ ≥ 5. So, |E(G)| ≥ 2n− 4 + dn
2
e.

Subcase 1.2. |S1 ∩ S2| = 3.

For θ = 0, since G[Si] contains a 4-cycle Ci where i ∈ [2] and C1, C2 have at most

two common edges, |E(G[S])|+ θ ≥ 6. So, |E(G)| ≥ 2n− 3 + dn−1
2
e. For θ = 1, since

G[S1] contains a 4-cycle, |E(G[S1])|+ θ ≥ 3. So, |E(G)| ≥ 2n− 3 + dn−1
2
e.

Subcase 1.3. |S1 ∩ S2| = 4. Obviously, θ = 0. Since G[S] contains a 4-cycle C4,

|E(G[S])|+ θ ≥ 4. So, |E(G)| ≥ 2n− 3 + dn
2
e.

Case 2. d(u) = d(v) = 3.

Assume that |S1∩S2| = 2. For θ = 0, sinceG[Si] contains a 3-cycle Ci where i ∈ [2]

and C1, C2 have one common edge, |E(G[S])| + θ ≥ 5. So, |E(G)| ≥ 2n − 4 + dn
2
e.

For θ = 1, |E(G[S1])| + θ ≥ 2. So, |E(G)| ≥ 2n − 4 + dn
2
e. Assume |S1 ∩ S2| = 3.
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Obviously, θ = 0. Since G[S] contains a 3-cycle C3, |E(G[S])|+ θ ≥ 3. So, |E(G)| ≥
2n− 3 + dn−1

2
e.

Case 3. d(u) = 4 and d(v) = 3.

Suppose |S1 ∩S2| = 2. For θ = 0, similar to the proof of Subcase 1.1, |E(G[S])|+
θ ≥ 8. So, |E(G)| ≥ 2n−2+dn−1

2
e. For θ = 1, |E(G[S1])|+θ ≥ 4. So, |E(G)| ≥ 2n−

3 + dn−1
2
e. Suppose that |S1 ∩S2| = 3. Obviously, θ = 0. We have |E(G[S])|+ θ ≥ 5.

So, |E(G)| ≥ 2n− 3 + dn
2
e.

Above all, |E(G)| ≥ 2n−4+dn
2
e. Furthermore, we prove that the bound is sharp.

Let H be a graph by adding dn−2
2
e edges to Gn−1 (mentioned in the proof of Lemma

4.3) such that each component of G[V (G) \ {u, v}] is a P2 or P3 and at most one

component is P3. Then |E(H)| = 2n− 3 + dn−2
2
e = 2n− 4 + dn

2
e. Observe that any

two vertices of the graph H have at least two common neighbors. Thus, H is the

graph attaining the bound. �

By Theorem 2.10, and Lemmas 4.3 and 4.4, we have the following result.

Theorem 4.5 For integers k and n with 1 ≤ k ≤ n, the minimum size of a connected

graph G of order n ≥ 4 with rvd(G) = k is

|E(G)|min =

n+ k − 2, 1 ≤ k ≤ n− 1,

2n− 4 + dn
2
e, k = n.

Next, it is natural to consider the following extremal problem:

For a given pair k, n of positive integers with 1 ≤ k ≤ n, what is the maxi-

mum possible size of a connected graph G of order n such that the rainbow vertex-

disconnection number of G is k ?

However, for this problem we can only get the lower and upper bounds on the

maximum size of a connected graph G of order n with rvd(G) = k. We now present

two known lemmas which we will be used in our proof.

Lemma 4.6 [1] Let k = 2, 3 and let G be a graph of order n such that κ+(G) ≤ k.

Then |E(G)| ≤ bk+1
2

(n− 1)c.

Lemma 4.7 [10] Let G be a graph of order n. Then for k ≥ 4, max{|E(G)| :

κ+(G) ≤ k} ≤ k(n− 1)−
(
k
2

)
.

From these lemmas we have the following results.

16



Theorem 4.8 For k = 2, 3, let G be a graph of order n with rvd(G) = k. Then,

|E(G)|max = bk+1
2

(n− 1)c.

Proof. Since rvd(G) = k, we have κ+(G) ≤ k by Theorem 2.5. Then we get that the

maximum size of a graph G of order n with rvd(G) = k is no more than bk+1
2

(n−1)c
by Lemma 4.6. Furthermore, for k = 2, let H be the set of connected graphs whose

blocks are triangles with the exception that at most one block is a cut edge or C4.

Then for any graph G ∈ H, we have that |E(G)| = b3
2
(n− 1)c and rvd(G) = 2. For

k = 3, we know that rvd(Wn) = 3 for 4 | n and |E(Wn)| = 2n = b2(|V (Wn)| − 1)c.
�

Theorem 4.9 For k ≥ 4, let G be a graph of order n with rvd(G) = k. Then,
1
2
k(n− 1)−

(
k
2

)
≤ |E(G)|max ≤ k(n− 1)−

(
k
2

)
.

Proof. Similar to the proof of Theorem 4.8, we get |E(G)|max ≤ k(n − 1) −
(
k
2

)
by

Theorem 2.5 and Lemma 4.7. For the lower bound, let G be a graph such that each

block is a Kk except that at most one block is Kt, where t = n − (k − 1)bn−1
k−1c.

Obviously, rvd(G) = k. Thus, |E(G)|max ≥ bn−1k−1c× |E(Kk)|+ |E(Kt)| ≥ 1
2
k(n−1)−(

k
2

)
. �

As one can see, further efforts are needed to get the exact value of |E(G)|max for

k ≥ 4.
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