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Abstract. In this paper, we present a complete list of connected arc-transitive graphs of
square-free order with valency 11. The list includes the complete bipartite graph K11,11,
the normal Cayley graphs of dihedral groups and the graphs associated with the simple
group J1 and PSL(2, p), where p is a prime.
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1 Introduction

All graphs considered in this paper are assumed to be finite and simple. Any
unexplained notation and terminology for graphs and permutation groups is as in
[2] and [10].

Let Γ = (V,E) be a connected graph with vertex set V and edge set E. The
number of vertices |V | is called the order of Γ . Let AutΓ be the automorphism
group of Γ , and G be a subgroup of AutΓ , written as G ≤ AutΓ . The graph Γ is
said to be G-vertex-transitive (resp., G-edge-transitive) if G acts transitively on V
(resp., E). Recall that an arc in Γ is an ordered pair of adjacent vertices. Then Γ is
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said to beG-arc-transitive ifG acts transitively on the set of all arcs in Γ . (Note that
the arc-transitivity here yields the vertex-transitivity and edge-transitivity.) For
u ∈ V , we denote the stabilizer of u in G and the neighborhood of u in Γ by Gu and
Γ (u), respectively; that is, Gu = {g ∈ G | ug = u}, Γ (u) = {v ∈ V | {u, v} ∈ E}.
Then Gu induces a permutation group G

Γ(u)
u (on Γ (u)). We call Γ a G-locally

primitive graph if G
Γ(u)
u is a primitive group for any vertex u ∈ V . It is well known

that Γ is G-edge-transitive if it is G-locally primitive, and Γ is G-arc-transitive if
it is both G-vertex-transitive and G-locally primitive.

This paper is one of a series of papers devoted to characterizing edge-transitive
graphs of square-free order. The classisfication of edge-transitive graphs of square-
free order has received considerable attention in the literature. A lot of interesting
results have been given, especially for those of order being a prime or a product
of two primes (see [1, 7, 23–27] for example). In [18], Li et al. gave a reduction
theorem for locally primitive arc-transitive graphs of square-free order. Let Γ be a
connected locally primitive arc-transitive graph of square-free order. It was proved
that, besides the complete bipartite graphs, either AutΓ is soluble, or Γ is a cover of
some ‘basic’ graph arising from PSL(2, p), PGL(2, p) or a finite number (depending
only on the valency of Γ ) of other almost simple groups. Such a reduction makes it
possible to classify arc-transitive graphs of square-free order and special valencies.
For example, the reader may find some classification results on graphs of valency
less than 8 and valency 10 in [17, 19–21]. In this paper, we deal with such graphs
of valency 11. The main result is stated as follows.

Theorem 1.1. Let Γ = (V,E) be a connected graph of square-free order with
valency 11, and G ≤ AutΓ . Assume that G acts transitively on the arc set of Γ .
Then either Γ ∼= K11,11 or one of the following statements holds:

(1) G = D2n : Z11 and Γ is isomorphic to a graph Dn(r, s) given in Example 2.4;
(2) G = J1 and Γ is isomorphic to the graph in Example 2.4;
(3) G = PSL(2, p) or PGL(2, p) for prime p with p ≡ ±1 (mod 11), and for an

edge {u, v} ∈ E the triple (Gu, Guv,NG(Guv)) is listed in Table 1, where
Guv = Gu ∩Gv and NG(Guv) is the normalizer of Guv in G.

Table 1 The PSL(2, p)-graphs of valency 11

G Gu Guv NG(Guv) Remark Bipartite?

PSL(2, p) D22 Z2 Dp±1 p ≡ ±3 (mod 8) No
PGL(2, p) D44 Z2

2 S4 p ≡ ±3 (mod 8) No
PSL(2, p) D44 Z2

2 S4 p ≡ ±7 (mod 16) No
PGL(2, p) D44 Z2

2 S4 p ≡ ±3 (mod 8) Yes

2 Preliminaries

Let V be a nonempty set and G be a transitive permutation group on V . For
a subset B of V , denote by GB the set-wise stabilizer of B in G, and by GBB the
permutation group induced by GB on B. For a G-invariant partition B of V , denote
by GB the permutation group induced by G on B.

• Normal quotient. Let Γ = (V,E) be a connected G-arc-transitive graph,
G ≤ AutΓ and N be a normal subgroup of G, written as N EG.
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Assume that N has at least three orbits on V , and let B be the set of N -orbits.
Then B is a G-invariant partition of V . The normal quotient, denoted by ΓN , is
defined on B such that B1, B2 ∈ B are adjacent if and only if there are some u ∈ B1

and v ∈ B2 adjacent in Γ . The graph Γ is called a normal cover of ΓN if, for every
edge {B1, B2} of ΓN , the induced subgraph of Γ by B1 ∪ B2 is a matching. The
next lemma collect some well-known facts about normal quotient and normal cover
of arc-transitive graphs; refer to [20, Lemma 2.6].

Lemma 2.1. Let Γ = (V,E) be a connected G-arc-transitive graph, and N E G.
Assume that N has at least three orbits on V , and let B be the set of N -orbits.
Then ΓN is a GB-arc-transitive graph. Moreover, the following statements hold:

(1) If Γ is a normal cover of ΓN , then Γ and ΓN have the same valency, N is
semiregular on V and N itself is the kernel of G acting on B; in particular,
GB ∼= G/N and |B| = |V |/|N |.

(2) If further Γ is G-locally primitive, then Γ is a normal cover of ΓN .

For the case where N is not semiregular on V , we have the following lemma (see
[20, Lemma 2.5] for example).

Lemma 2.2. Let Γ = (V,E) be a connected G-locally primitive arc-transitive
graph, and N E G ≤ AutΓ . If N is not semiregular on V , then for u ∈ V the
stabilizer Nu is transitive on Γ (u); in particular, Γ is N -edge-transitive and N has
at most two orbits on V .

• Coset graph and Cayley graph. Let G be a finite group and H a core-
free subgroup of G. For a 2-element x ∈ G\H with x2 ∈ H, the coset graph
Cos(G,H, x) is defined on the set [G : H] such that {Hg1, Hg2} is an edge if and
only if g2g

−1
1 ∈ HxH. Note that Cos(G,H, x) is a well-defined (undirected) graph.

View G as a subgroup of Aut Cos(G,H, x), where G acts on [G : H] by the right
multiplication. Then we have the following basic fact.

Lemma 2.3. Let Γ = Cos(G,H, x) be defined as above. Then Γ is a G-arc-
transitive graph with valency |H : (H ∩ Hx)|, and Γ is connected if and only if
G = 〈x,H〉.

Example 2.4. By the Atlas [9], all the subgroups isomorphic to PSL(2, 11) of the
first Janko group J1 are maximal and conjugate. Let PSL(2, 11) ∼= H < J1. Then H
has exactly two conjugation classes of subgroups isomorphic A5. Checking by GAP
[11], we find that one of these classes consists of the subgroups having normalizer
isomorphic to Z2×A5 in J1, while the other contains only self-normalized subgroups.
Take a subgroup K of H with K ∼= A5 and NJ1

(K) ∼= Z2 × A5. Let o be the
involution in the center of NJ1(K). Then o 6∈ H, and so 〈H, o〉 = G. Thus,
Cos(J1, H, o) is a connected arc-transitive graph of order 2 · 7 · 19 with valency 11.
By a direct computation by MAGMA [3], it is easy to see that Cos(J1, H, o) is the
unique connected arc-transitive graph of square-free order with valency 11.

Now let Γ = (V,E) be a G-arc-transitive graph, G ≤ AutΓ and {u, v} ∈ E.
Then there exists x ∈ G with (u, v)x = (v, u). Replacing x by its odd power,
we may choose x as a 2-element. Clearly, x 6∈ Gu. By (u, v)x = (v, u), we have
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Gxuv = Gxu ∩Gxv = Gv ∩Gu = Guv, so x ∈ NG(Guv), and |NG(Guv) : Guv| is even.
Since G is transitive on V , we have a bijection V → [G : Gu] given by ug 7→ Gug,
which is in fact an isomorphism from Γ to Cos(G,Gu, x).

Lemma 2.5. Let Γ = (V,E) be a graph, E 6= ∅, and G ≤ AutΓ . If Γ is G-arc-
transitive, for {u, v} ∈ E there is a 2-element x ∈ NG(Guv) such that (u, v)x = (v, u)
and Γ ∼= Cos(G,Gu, x); moreover, Γ is connected if and only if 〈x,Gu〉 = G.

Let R be a finite group, and 1 6∈ S = S−1 ⊂ R. The Cayley graph Cay(R,S) is
defined on R such that x, y ∈ R are adjacent if and only if yx−1 ∈ S. The underlying
group R may be viewed as a regular subgroup of Aut Cay(R,S), where R acts on
the vertices by the right multiplication. The following result is well known.

Lemma 2.6. Let Γ = (V,E) be a G-vertex-transitive graph and G ≤ AutΓ . If
G contains a regular subgroup R, then Γ ∼= Cay(R,S) for some S with 1 6∈ S =
S−1 ⊂ R; in this case, Γ is connected if and only if G = 〈S〉.

Using the Cayley graph, one can easily construct arc-transitive graphs. For
example, taking a finite group R, a subgroup H ≤ Aut(R) and some involution
x ∈ R, we get a G-arc-transitive graph Cay(R, {xσ |σ ∈ H}), where G = R :H is
the semidirect product of R and H.

Example 2.7. Consider the dihedral group D2n = 〈a, b | an = 1 = b2, bab = an−1〉,
where n = p1p2 · · · pl for distinct primes pi no less than 13. Suppose that there
are 0 ≤ s < n and 2 ≤ r < n with (n, r + s − 1) = 1 and 1 + r + · · · + r10 ≡ 0

(mod n). Set Sn,r,s = {(ab)σi | 0 ≤ i ≤ 10} = {ab, a(1+r+···+ri−1)s+rib | 1 ≤ i ≤ 10}
and Dn(r, s) = Cay(D2n, Sn,r,s). Note that 〈Sn,r,s〉 ≥ 〈ab, ar+sb〉 = 〈ab, ar+sbab〉 =
〈ab, ar+s−1〉 = D2n. Then Dn(r, s) is connected. By [16, Lemma 2.2], there is
σ ∈ Aut(D2n) such that aσ = ar and bσ=asb. It is easily shown that σ has order 11

and Sn,r,s={(ab)σi | 0 ≤ i ≤ 10}. Thus, D2n : 〈σ〉 acts transitively on the arc set of
Dn(r, s). For example, taking n = 2047, r = 2 and s = 1, we get an arc-transitive
graph D2047(2, 1) of order 4094 with valency 11.

Remark. The reader can find out the enumeration of these Cayley graphs from [22,
Theorem 1.2].

3 The Vertex-Stabilizers

In this section, we assume that Γ = (V,E) is a connected G-arc-transitive graph

with valency 11, where G ≤ AutΓ . Let u ∈ V . Then G
Γ(u)
u is a transitive per-

mutation group of degree 11. By [4], G
Γ(u)
u is either soluble or 2-transitive. Then

G
Γ(u)
u is known by checking the list of 2-transitive permutation groups; refer to [5,

Theorem 5.3].

Lemma 3.1. Let X be a transitive permutation group on a set Ω with |Ω| = 11,
and let α ∈ Ω. Then, up to isomorphism, X and Xα are listed as follows:

X PSL(2, 11) M11 A11 S11 Z11 :Z10 Z11 :Zl
Xα A5 M10 A10 S10 Z10 Zl

Remark 2-trans. 2-trans. 2-trans. 2-trans. 2-trans. l ∈ {1, 2, 5}
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Let G
[1]
u be the kernel of Gu acting on Γ (u). Then G

Γ(u)
u

∼= Gu/G
[1]
u . Take

v ∈ Γ (u) and set G
[1]
uv := G

[1]
u ∩ G[1]

v . By [12, 2.3], G
[1]
uv is an r-group for some

prime r. Then the next result follows from Lemma 3.1 and [28].

Lemma 3.2. One of the following statements holds:

(1) Gu ∼= PSL(2, 11) or A5×PSL(2, 11), and |Gu| = 22 · 3 · 5 · 11 or 24 · 32 · 52 · 11,
respectively;

(2) Gu ∼= M11, A6 ×M11 or M10 ×M11, and |Gu| = 24 · 32 · 5 · 11, 27 · 34 · 52 · 11
or 28 · 34 · 52 · 11, respectively;

(3) Gu ∼= A11, A10×A11, S11, (A10×A11).Z2 or S10×S11, and |Gu| = 27·34·52·7·11,
214 · 38 · 54 · 72 · 11, 28 · 34 · 52 · 7 · 11, 215 · 38 · 54 · 72 · 11 or 216 · 38 · 54 · 72 · 11,
respectively;

(4) Gu ∼= (Zl′×Z11).Zl, |Gu| = 11l′l, where l ∈ {1, 2, 5, 10} and l′ is a divisor of l;

(5) Gu ∼= (G
[1]
u :Z11).Zr, |G[1]

u | = 11rk+1 and |Gu| = 11rk+2, where r ∈ {2, 5} and
k ≥ 1.

Proof. Let {u, v} ∈ E. Consider the action of G
[1]
u on Γ (v), and let (G

[1]
u )Γ(v)

be the resulting permutation group. Then (G
[1]
u )Γ(v) ∼= G

[1]
u G

[1]
v /G

[1]
v
∼= G

[1]
u /G

[1]
uv.

Since Γ is G-arc-transitive, there exists some x ∈ G interchanging u and v. Thus x

interchanges G
[1]
u and G

[1]
v by conjugation, and hence G

[1]
u /G

[1]
uv
∼= G

[1]
v /G

[1]
uv. There-

fore, (G
[1]
u )Γ(v) ∼= G

[1]
v /G

[1]
uv
∼= (G

[1]
v )Γ(u), and we may write

Gu ∼= G
[1]
uv.(G

[1]
v )Γ(u).G

Γ(u)
u .

Moreover, since G
[1]
v EGuv, we have (G

[1]
v )Γ(u) EGΓ(u)

uv = (G
Γ(u)
u )v.

Assume first thatG
Γ(u)
u is 2-transitive. By Lemma 3.1 and [28], we haveG

[1]
uv = 1.

Then Gu ∼= (G
[1]
v )Γ(u).G

Γ(u)
u . Check G

Γ(u)
u and (G

Γ(u)
u )v (see Lemma 3.1). Recall

that (G
[1]
v )Γ(u) E (G

Γ(u)
u )v, and then one of (1)–(4) of this lemma follows.

Assume that G
Γ(u)
u is not 2-transitive. Then G

Γ(u)
u

∼= Z11 :Zl with l ∈ {1, 2, 5}.
If G

[1]
uv = 1, then a similar argument to that above yields (4). Thus, we let G

[1]
uv

be a nontrivial r-group for some prime r. It is easily shown that r is a divisor of

l; see [8, Lemma 1.1] for example. Then l = r. Suppose that G
[1]
u = G

[1]
v . Then

G
[1]
uv = G

[1]
u E 〈Gu, x〉 = G by Lemma 2.5, where x ∈ G with (u, v)x = (v, u).

This implies that G
[1]
uv fixes every vertex of Γ , and so G

[1]
uv = 1, a contradiction.

Thus G
[1]
u 6= G

[1]
v , and hence (G

[1]
u )Γ(v) ∼= G

[1]
u /G

[1]
uv 6= 1. Then (G

[1]
u )Γ(v) ∼= Zr,

G
[1]
u = G

[1]
uv.Zr is an r-group of order divisible by r2, and so item (5) follows. �

4 Graphs Arising from Almost Simple Groups

Let Γ = (V,E) be a connected G-arc-transitive graph of square-free order with
valency 11, where G ≤ AutΓ . In what follows, we assume that G is an almost
simple group with socle soc(G) = T .

By Lemma 2.2, Γ is T -edge-transitive, and T has at most two orbits on V . Take
a T -orbit U and let u ∈ U . Then |T : Tu| = |U | = |V | or |V |/2; in particular, |U | is
square-free. Since Tu is transitive on Γ (u), the order of Tu is divisible by 11.
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Lemma 4.1. Γ 6∼= K11,11.

Proof. Suppose that Γ ∼= K11,11. Then T has two orbits on V , and hence we obtain
11 = |U | = |T : Tu|. By Lemma 2.2, Γ is T -edge-transitive, and then Tu is transitive
on Γ (u). In particular, |Tu| is divisible by 11. It follows that |T | is divisible by 112.
Let K be the kernel of the action of T on U . It is easily shown that K fixes every
vertex of K11,11, and we have K = 1. Then T is a transitive permutation group of
degree 11 (on U). By Lemma 3.1, T ∼= PSL(2, 11), M11 or A11. Thus, |T | is not
divisible by 112, a contradiction. �

By Lemma 4.1 and [18, Theorem 4], T is isomorphic to one of the following
simple groups:

(1) M11,M12,M22,M23,M24, J1, An with 11 ≤ n < 33, PSL(2, p), PSL(2, 112);
(2) PSL(d, pf ) with d ≥ 3, PSU(d, pf ) with d ≥ 3, PSp(d, pf ) with even d ≥ 4,

Ω(d, pf ) with odd d ≥ 7, PΩ±(d, pf ) with even d ≥ 6, where p ≤ 11;
(3) G2(pf ), 3D4(pf ), F4(pf ), 2E6(pf ) and E7(pf ) with p ≤ 11;

here p is a prime. Note that |T | = |Tu||T : Tu| and that |U | = |T : Tu| is square-
free. Since Tu is a normal subgroup of Gu, the order of Tu is a divisor of Gu. In
particular, |Tu| is not divisible by 112 or s, and so |T | is not divisible by 113 or s2,
where s is a prime no less than 13.

Checking the orders of simple groups in (1)–(3) (refer to [15, Tables 5.1.A–C]),
we conclude that T is one of the simple groups listed in the following lemma.

Lemma 4.2. T is one of J1, PSL(2, 112) and PSL(2, p), where p is a prime with
p2 ≡ 1 (mod 11).

Proof. If T = PSL(2, p), then since |T | is divisible by 11, either p = 11 or p2 ≡ 1
(mod 11). In the following, we prove this lemma by excluding the simple groups
not involved in this lemma. First, the groups PSL(2, 11) and M11 are excluded, as
they have no subgroup of square-free index and of order divisible by 11. Next we
lay out the argument in three cases.

Case 1. Suppose that T is a simple group listed in (1) other than M11, J1,
PSL(2, p) and PSL(2, 112). For T = Mn with n ∈ {12, 22, 23, 24}, the order of T
is divisible by 26 · 32, and hence the order of Tu is divisible by 25 · 3 since |T : Tu|
is square-free. Then the order of Gu is divisible by 25 · 3, and by Lemma 3.2,
|Gu|, and hence |G|, is divisible by 34, which is impossible when T = Mn, where
n ∈ {12, 22, 23, 24}.

Now let T = An with n ≥ 11. Note that |T | is divisible by 27 · 34, and it follows
that |Tu|, and hence |Gu|, has order divisible by 26 · 33. By Lemma 3.2, |Gu|, and
hence |Tu|, is indivisible by 217, and Gu has a subgroup isomorphic to A11. Then
|T | is indivisible by 218 and T has a proper subgroup A11, and thus 12 ≤ n ≤ 21.
In particular, |Tu|, and hence |Gu|, has order divisible by 28 · 34. Again by Lemma
3.2, Gu, and hence G, has a subgroup isomorphic to A10 × A11. It follows that
n = 21 and A10 × A11 ≤ Gu ≤ S10 × S11. Thus, 4 is a divisor of |V | = |G : Gu|, a
contradiction.

Case 2. Suppose that T is listed in (2). Then |T | has a divisor pdf , and |Tu|,
and hence |Gu|, is divisible by pdf−1. Check the order of Gu. Since df − 1 ≥ 2, by
Lemma 3.2, |G : Gu| is divisible by p2 when p ≥ 11, and hence we have p < 11.
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For p = 7, by Lemma 3.2, 73 is not a divisor of |Gu|, and so 74 is not a divisor of
|T |. This implies f = 1. Checking the orders of simple classical groups, we conclude
that T = PSL(3, 7) or PSU(3, 7). Thus, |T | is indivisible by 11, a contradiction.

Let p = 5. Then by Lemma 3.2, either 3 is not a divisor of |Gu| or 55 is not a
divisor of |Gu|. The latter case yields T = PSL(3, 5), PSU(3, 5) or PSp(4, 5), and
hence |T | is indivisible by 11, a contradiction. Thus 3 is not a divisor of |Gu|, and
|T | is not divisible by 32. Then one of (4) and (5) in Lemma 3.2 occurs; thus, |Tu|
has no divisor being 23, and |T | is indivisible by 24, which is impossible as d ≥ 3.

Let p = 3. Recalling that |T | has a divisor 3df , we know that Tu has order divis-
ible by 32. By Lemma 3.2, |Tu| is indivisible by 39, and so 310 is not a divisor of |T |.
It follows that T is isomorphic to one of PSL(3, 3), PSL(3, 9), PSL(3, 27), PSL(4, 3),
PSU(3, 3), PSU(3, 9), PSU(3, 27), PSU(4, 3), PSp(4, 3), PSp(4, 9), PSp(6, 3). How-
ever, none of these simple groups has order divisible by 11, a contradiction.

Let p = 2. Suppose that |Tu| is indivisible by 25. Checking the order of T , we
get T = PSL(3, 2), and then |T | is indivisible by 11, a contradiction. Suppose that
|Tu| is indivisible by 3. Then one of (4) and (5) in Lemma 3.2 occurs, and so |Tu| is
not divisible by 23. Thus, |T | is indivisible by 24, a contradiction. Accordingly, |Tu|
is divisible by 3·25. By Lemma 3.2, |Tu| is indivisible by 217, and Gu has a subgroup
isomorphic to one of A6 ×M11 and A11. Noting that G/T is soluble, we see that
T has a subgroup isomorphic to A6 ×M11 or A11. By [15, Propositions 5.3.7, 5.3.8
and 5.5.7], we conclude that d ≥ 8. Checking the orders of simple classical groups,
we have T = PSp(8, 2), PΩ+(8, 2) or PΩ−(8, 2). Then |T | is indivisible by 11, a
contradiction.

Case 3. Suppose that T is listed in (3). Then |T | has a divisor p6f , and |Tu|,
and hence |Gu|, is divisible by p6f−1. Check the order of Gu. Since 6f − 1 ≥ 5, by
Lemma 3.2, |G : Gu| is divisible by p2 when p ≥ 7, and then we have p ∈ {2, 3, 5}.

Assume that p = 5. Then 56 is a divisor of |T |, and hence |G|. We conclude
that |Gu| is divisible by 55. Thus, by Lemma 3.2, the only possibility of Gu is the
case (5) of this lemma, and hence |Gu| = 11 · 5k+2 for k ≥ 3. Therefore, 3 is not a
divisor of |Tu|, and |T | is not divisible by 32 since |T : Tu| is square-free, which is
impossible.

Let p = 3. Then by Lemma 3.2, |Gu| is not divisible by 39, and so T is not
divisible by 310. This forces T = G2(3), which has order indivisible by 11, a
contradiction.

Now let p = 2. Since |T | has a divisor (p2f − 1)2, we know that |T | is divisible
by 32, and hence Tu has order divisible by 3. By Lemma 3.2, we conclude that 217

is not a divisor of |Gu|. Thus, 218 is not a divisor of |T |. Checking the order of T ,
we get T = G2(4) or 3D4(2); then |T | has no divisor being 11, a contradiction. �

Theorem 4.3. Let Γ = (V,E) be a connected G-arc-transitive graph of square-free
order with valency 11. Assume that G is almost simple with socle T . Then either

(1) T = J1 and Γ is isomorphic to the graph given in Example 2.4, or
(2) T = PSL(2, p) for a prime p with p2 ≡ 1 (mod 11), and for {u, v} ∈ E, Gu,

Guv and NG(Guv) are listed in Table 1.

Proof. Suppose that T = PSL(2, 112). Check the subgroups of T with index
square-free and order divisible by 11 (refer to [14, II.8.27]). Then Tu ∼= PSL(2, 11)
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or PGL(2, 11). Checking the maximal subgroups of PGL(2, 11) by the Atlas [9], we
deduce that PGL(2, 11) has no transitive permutation representation of degree 11,
and we have Tu ∼= PSL(2, 11), so Tuv ∼= A5. In this case, |T : Tu| is even, and |V | is
divisible by 4 when T has two orbits on V , a contradiction. Thus, T is transitive on
V , and Γ is T -arc-transitive. However, it is easy to check that Tuv is self-normalized
in T , which contradicts Lemma 2.5.

By Lemma 3.2, we only need to deal with two cases: T = J1 and T = PSL(2, p).

Case 1. Let T = J1. Then G = T , and Tu has order divisible by 44, where
u ∈ V . Let M be a maximal subgroup of T with Tu ≤ M . Checking the maximal
subgroups of J1 in [9], we conclude that M ∼= PSL(2, 11) and |T : M | = 266. Note
that |V | = |T : Tu| = |T : M ||M : Tu|. We know that (|T : M |, |M : Tu|) = 1
and |M : Tu| is square-free. Checking the (maximal) subgroups of PSL(2, 11), we
conclude that M has no subgroup with square-free index and order divisible by 11.
It follows that Tu = M ∼= PSL(2, 11), and so Tuv ∼= A5 for v ∈ Γ (u). By Lemma
2.5, Γ is isomorphic to the graph given in Example 2.4.

Case 2. Let T = PSL(2, p) for prime p with p2 ≡ 1 (mod 11). Then G = T or
PGL(2, p). Let {u, v} ∈ E. Checking the subgroups of G (refer to [14, II.8.27] and
[6, Theorem 2]). Since |Gu| is divisible by 11, we have Gu ∼= D22m for some integer
m ≥ 1, and hence Guv ∼= D2m. Suppose that m > 2. Then both D22m and D2m

have a unique cyclic subgroup of order m. Let Z be the cyclic subgroup of Guv of
order m. Then Z is a characteristic subgroup of Gu and of Guv. Thus, Z E 〈Gu, x〉
for every x ∈ NG(Guv). Since Γ is connected, we may choose x ∈ NG(Guv) with
G = 〈Gu, x〉. Then Z is normal in G, and then Z fixes every vertex of Γ , a
contradiction. Therefore, m ≤ 2, and Gu ∼= D22 or D44.

Let Gu ∼= D44. Then Guv ∼= Z2
2. If G = PGL(2, p), since |G : Gu| is even and

square-free, we have p ≡ ±3 (mod 8), and S4
∼= NG(Guv) 6≤ T ; in this case, T is

transitive on V since |V | is divisible by 4 when T has two orbits on V . Thus, Γ is
T -arc-transitive. For G = T = PSL(2, p), we get p ≡ ±7 (mod 16), NG(Guv) ∼= S4.

Let Gu ∼= D22. Then G = T , and since |G : Gu| is square-free, we obtain p ≡ ±3
(mod 8). In this case, Guv has order 2, and NG(Guv) = CG(Guv) ∼= Dp±1. �

5 The Proof of Theorem 1.1

Let Γ = (V,E) be a connected G-arc-transitive graph of square-free order with
valency 11. Assume that Γ � K11,11, and let {u, v} ∈ E.

Case 1. Assume first that G is soluble. By [18, Theorem 4], Gu ∼= Z11 and
G has a normal regular subgroup isomorphic to D2n, where n = p1p2 · · · pl for
distinct primes no less than 13. Then Γ is a Cayley graph of D2n, and thus we
write Γ = Cay(D2n, S), where 1 6∈ S = S−1 ⊂ D2n (see Lemma 2.6). Let u be
the vertex corresponding to the identity of D2n. By [13, Lemma 2.1], Gu = 〈σ〉 for
σ ∈ Aut(D2n) with Sσ = S. Since Γ is G-arc-transitive, 〈σ〉 is transitive on S, and
so all elements in S have the same order in D2n. On the other hand, Γ has odd
valency and S−1 = S, and it follows that S consists of 11 involutions of D2n. Write
D2n = 〈a, b | an = b2 = 1, bab = a−1〉. Since n is odd, all involutions in D2n are
conjugate under 〈a〉. Without loss of generality, we let ab ∈ S.

Noting that 〈a〉 is a characteristic subgroup of D2n, we may let aσ = ar and



Arc-Transitive Graphs 653

bσ = asb for some integers 1 ≤ r ≤ n − 1 and 0 ≤ s ≤ n − 1 with (n, r) = 1.

Then S = {(ab)σi | 0 ≤ i ≤ 10} = {ab, a(1+r+···+ri−1)s+rib | 1 ≤ i ≤ 10}. Since σ

has order 11, we have a = aσ
11

= ar
11

and b = bσ
11

= a(1+r+···+r
10)sb. This yields

r11 ≡ 1 (mod n) and (1 + r + · · ·+ r10)s ≡ 0 (mod n). If r = 1, then s is divisible
by n as (11, n) = 1, and so σ is an identity map, a contradiction. Thus, we have
r ≥ 2 and 1 + r + · · ·+ r10 ≡ 0 (mod n). Since Γ is connected,

G = 〈S〉 = 〈ab, a(1+r+···+ri−1)s+rib | 1 ≤ i ≤ 10〉
= 〈ab, a(1+r+···+ri−1)s+ribab | 1 ≤ i ≤ 10〉
= 〈ab, a(1+r+···+ri−1)s+ri−1 | 1 ≤ i ≤ 10〉
= 〈a(1+r+···+ri−1)s+ri−1 | 1 ≤ i ≤ 10〉〈ab〉.

This implies

〈a〉 = 〈a(1+r+···+ri−1)s+ri−1 | 1 ≤ i ≤ 10〉
= 〈a(1+r+···+ri−1)(r−1+s) | 1 ≤ i ≤ 10〉 = 〈ar−1+s〉.

Then ar−1+s generates 〈a〉, so (n, r− 1 + s) = 1. Thus, (1) of Theorem 1.1 follows.
Case 2. Let G be insoluble, and M be the maximal soluble normal subgroup

of G. By [18, Theorem 4], |M | is square-free, Γ is a normal cover of ΓM (see
also Lemma 2.1), and G has an almost simple subgroup X such that G = M :X.
Moreover, let T = soc(X), and thus we have MT = M × T .

Let B the the set of M -orbits on V . Then |B| = |V |/|M | is square-free. Since
ΓM has valency 11, we know that |B| is even, and so |M | is odd as |V | is square-free.

Take a T -orbit U on V . Since MT = M × T , we have a T -orbit Ux for each
x ∈M . By Lemma 2.2, T has at most two orbits on V . It follows that |M : MU | ≤ 2,
and so M = MU as |M | is odd. Let u ∈ U and B ∈ B with u ∈ B. Then we have
B ⊆ U . It follows that TB is transitive on B. Consider the action of MTB on B.
Since M is regular on B and M centralizes TB , by [10, Theorem 4.2A], TB induces
a (semi)regular permutation group on B. This implies that Tu is normal in TB , and
thus TB has a normal subgroup of odd and square-free index |M |.

It is easily shown that GB = XB ∼= X, and thus ΓM is XB-arc-transitive and
of square-free order |B|. Note that XB is an almost simple group with socle TB.
Thus, up to isomorphism, the graph ΓM is known by Theorem 4.3. In particular,
TB ∼= (TB)B ∼= D22, D44 or PSL(2, 11). Then the only normal subgroup of TB with
odd index is TB itself. It follows that M = 1. Hence, G is almost simple, and then
(2) or (3) of Theorem 1.1 holds by Theorem 4.3. This completes the proof.
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