Digraphs with proper connection number two^{*}

Luyi Li, Xueliang Li

Center for Combinatorics and LPMC Nankai University, Tianjin 300071, China Email: liluyi@mail.nankai.edu.cn, lxl@nankai.edu.cn

Abstract

A directed path in a digraph is proper if any two consecutive arcs on the path have distinct colors. An arc-colored digraph D is proper connected if for any two distinct vertices x and y of D, there are both proper (x, y)-directed paths and proper (y, x)-directed paths in D. The proper connection number $\vec{pc}(D)$ of a digraph D is the minimum number of colors that can be used to make D proper connected. Obviously, if a digraph has a proper connection number, it must be strongly connected, and $\vec{pc}(D) = 1$ if and only if D is complete. Magnant et al. showed that $\vec{pc}(D) \leq 3$ for all strong digraphs D, and Ducoffe et al. proved that deciding whether a given digraph has proper connection number at most two is NP-complete. In this paper, we give a few classes of strong digraphs with proper connection number two, and from our proofs one can construct an optimal arc-coloring for a digraph of order n in time $O(n^3)$.

Keywords: arc-colored (strong) digraph, proper connected, proper connection number, algorithmic complexity.

AMS subject classification 2020: 05C15, 05C40, 05C20, 68Q25, 68R10.

1 Introduction

Throughout this paper, we use standard terminology and notation in graph theory. For those not defined here, we refer to [3].

Let G = (V, E) be an undirected graph with vertex-set V and edge-set E. An *edge-coloring* of G is a mapping $c : E \mapsto \mathbb{N}$, where \mathbb{N} is the set of colors. We use (G, c) to denote an edge-colored graph with edge-coloring c of G. An edge-colored graph (G, c) is said to be *proper colored* if no two adjacent edges share the same color. We say that a path P in (G, c) is *proper* if any two adjacent edges of P receive different colors. A connected edge-colored graph (G, c) is *proper connected* if there exists at least one proper colored path between each pair of vertices in G. The *proper connection number* of a connected graph G is the minimum number of colors that are needed in order to make G proper connected.

^{*}Supported by NSFC No.11871034.

The concepts of proper connected graphs and proper connection numbers were introduced by Borozan et al. in [5] and have attracted much attention during the last decade. For more details, the reader can see surveys [10, 11] and paper [9]. Melville and Goddard introduced in [13, 14] the notions of proper connected walk and proper connected trail, i.e., a walk (trail) in an edge-colored graph G is said to be proper if and only if it does not use two consecutive edges of the same color. For a connected graph, the proper-trail (properwalk) connection number is the minimum number of colors that one needs in order to get a proper colored trail (walk) between each pair of vertices in (G, c). Bang-Jansen et al. in [1] considered the proper-walk connection number of connected graphs. They established that the problem can always be solved in polynomial time in the size of the graph and provided a characterization of the graphs that can be proper-connected colored with k colors for every possible value of k.

In fact, the concepts of proper connection number, proper-trail connection number and proper-walk connection number for undirected graphs can be naturally generalized to directed graphs or digraphs. The directed versions of the proper connection and the proper-walk connection were introduced by Magnant et al. in [12] and Melville et al. in [13], respectively. In this paper, we study the proper connection numbers of some digraphs.

Let D = (V, A) be a digraph with vertex-set V and arc-set A. In this paper, we only consider digraphs that do not contain any parallel arcs or loops. A digraph D is strongly connected (or strong) if for each pair of distinct vertices x, y of D, there exist both directed paths from x to y and directed paths from y to x in D. An arc-coloring of D is a mapping $c: A \mapsto \mathbb{N}$, where \mathbb{N} is the set of colors. We use (D, c) to denote an arc-colored digraph with arc-coloring c of D. An arc-colored digraph (D,c) is said to be proper colored if no two adjacent arcs share the same color. An arc-colored directed path (walk, trail) is proper if it does not contain two consecutive arcs with the same color. An arc-colored digraph (D, c)is proper connected if, between each ordered pair of vertices, there is a proper directed path connecting them. In that case, we say that the corresponding arc-coloring is a *proper* connection arc-coloring of D. The proper connection number of a digraph D, denoted by $\overrightarrow{pc}(D)$, is the minimum number of colors that are needed to color the arcs of D so that D is proper connected. An arc-colored digraph (D,c) is proper-trail (proper-walk) connected if, between each ordered pair of vertices, there is a proper directed trail (proper directed walk) connecting them. Again, we say that the corresponding arc-coloring is a propertrail (proper-walk) connection arc-coloring of D. Clearly, every proper connected digraph is also a proper-trail (proper-walk) connected and every proper-trail connected digraph is also proper-walk connected. The proper-trail (proper-walk) connection number of a digraph D, denoted by $\overrightarrow{tc}(D)$ ($\overrightarrow{wc}(D)$), is the minimum number of colors that are needed to color the arcs of D so that D is proper-trail (proper-walk) connected. Note that in order to admit an arc-coloring which makes it proper (proper-trail or proper-walk) connected, a digraph must be strongly connected, or it must be a strong digraph. We can obverse that $\overrightarrow{pc}(D) \geq \overrightarrow{tc}(D) \geq \overrightarrow{wc}(D)$ for any strong digraph. For an arc xy in an arc-colored digraph D, let c(xy) denote the color of xy. For two vertex-disjoint subdigraphs F and H of D, we denote by A(F, H) the set of arcs of D with the arcs from F to H. For convenience, let $c(F, H) = \{c(xy), xy \in A(F, H)\}$. If $F = \{v\}$, then we write c(v, H) for $c(\{v\}, H)$.

A digraph D is complete if, for every pair x, y of distinct vertices of D, both arcs xy and yx are in D. A digraph D is semicomplete if there is an arc between every pair of vertices in D. A digraph D is locally in-semicomplete (locally out-semicomplete, respectively) if, for every vertex x of D, all in-neighbours (out-neighbours, respectively) of x induce a semicomplete digraph. A digraph D is locally semicomplete if it is both locally in- and locally out-semicomplete. Similarly, we can define the arc version of locally semicomplete. For two disjoint subsets X and Y of $V(D), X \to Y$ means that some vertices of X dominate some vertices of Y and $X \to Y$ means that $A(X,Y) = \emptyset$. $X \mapsto Y$ means that every vertex of X dominate severy vertex of Y. Also, $X \Rightarrow Y$ stands for $X \mapsto Y$ and no vertex of Y dominates a vertex in X. When u, v are adjacent vertices of D, we will write \overline{uv} . A digraph D is called quasi-transitive if whenever $x \to y$ and $y \to z$ ($x \neq z$) we have that \overline{xz} . It was a natural step to introduce a new class of digraphs. A digraph D is k-quasi-transitive if for every pair of vertices u, v of D, the existence of a (u, v)-path of length k in D implies that \overline{uv} . Clearly, a quasi-transitive digraph is a 2-quasi-transitive digraph.

We often use the following operation, called *composition*, to construct bigger digraphs from smaller ones. Let D be a digraph with vertex-set $\{v_i : i \in [n]\}$, and let $G_1, G_2, ..., G_n$ be digraphs which are pairwise vertex-disjoint. The *composition* $D[G_1, G_2, ..., G_n]$ is the digraph L with vertex-set $V(G_1) \cup V(G_2) \cup \cdots \cup V(G_n)$ and arc-set $(\bigcup_{i=1}^n A(G_i)) \cup \{g_i g_j :$ $g_i \in V(G_i), g_j \in V(G_j), v_i v_j \in A(D)\}$. If $D = H[S_1, \cdots, S_h]$ and none of the digraphs S_1, \cdots, S_h has an arc, then D is an *extension* of H. A digraph on n vertices is *round* if we can label its vertices v_1, v_2, \cdots, v_n so that for each i, we have $N^+(v_i) = \{v_{i+1}, \cdots, v_{i+d^+}(v_i)\}$ and $N^-(v_i) = \{v_{i-d^-}(v_i), \cdots, v_{i-1}\}$ (all subscripts are taken modulo n). We will refer to the labeling v_1, v_2, \cdots, v_n as a *round labeling* of D.

2 Preliminaries

To begin with, we introduce some useful definitions and basic properties.

Observation 2.1 A digraph D is complete if and only if $\overrightarrow{pc}(D) = 1$ ($\overrightarrow{tc}(D) = 1$, $\overrightarrow{wc}(D) = 1$).

So, we always suppose that D is a noncomplete digraph in the sequel.

Lemma 2.1 (monotonicity) Let D be a strong digraph and H be a strong spanning subdigraph of D. Then $\overrightarrow{pc}(D) \leq \overrightarrow{pc}(H)$, $\overrightarrow{tc}(D) \leq \overrightarrow{tc}(H)$ and $\overrightarrow{wc}(D) \leq \overrightarrow{wc}(H)$.

In fact, if a strong digraph D contains a strong spanning bipartite subdigraph $H = (X \cup Y, A')$, we only need to color all the arcs with tail in X with red and all the arcs with tail in Y with blue. Then we know that H is proper connected. Combining with Lemma 2.1, we have the following observation.

Observation 2.2 If D contains a strong spanning bipartite subdigraph, then $\overrightarrow{pc}(D) = \overrightarrow{tc}(D) = \overrightarrow{wc}(D) = 2$.

A digraph D is called *vertex-pancyclic* if each vertex of D is contained in a directed cycle of length k for every k with $3 \le k \le n$.

Lemma 2.2 [15] Every strong semicomplete digraph is vertex-pancyclic.

A locally semicomplete digraph D is round decomposable if there exists a round local tournament R on $r(\geq 2)$ vertices such that $D = R[S_1, \dots, S_r]$, where each S_i is a strong semicomplete digraph. We call $R[S_1, \dots, S_r]$ a round decomposition of D.

Lemma 2.3 [2] Let D be a strong locally semicomplete digraph on n vertices which is not round decomposable. Then D is vertex-pancyclic.

Bang-Jensen and Huang gave an excellent structure for quasi-transitive digraphs in [4].

Lemma 2.4 [4] Let D be a quasi-transitive digraph.

(1) If D is not strong, then there exists a transitive oriented graph T with vertices $\{u_1, u_2, \dots, u_t\}$ and strong quasi-transitive digraphs H_1, H_2, \dots, H_t such that $D = T[H_1, H_2, \dots, H_t]$, where H_i is substituted for $u_i, i \in \{1, 2, \dots, t\}$.

(2) If D is strong, then there exists a strong semicomplete digraph S with vertices $\{v_1, v_2, \dots, v_s\}$ and quasi-transitive digraphs Q_1, Q_2, \dots, Q_s such that Q_i is either a vertex or is non-strong and $D = S[Q_1, Q_2, \dots, Q_s]$, where Q_i is substituted for $v_i, i \in \{1, 2, \dots, s\}$.

Let F_n be the digraph on n vertices consisting of a directed 3-cycle xyzx, together with n-3 vertices v_1, \dots, v_{n-3} , such that yv_jz is a directed path for each $1 \leq j \leq n-3$ (see Figure 1).

Figure 1: F_n

Lemma 2.5 [7] Let D be a strong 3-quasi-transitive digraph. Then D is either semicomplete, semicomplete bipartite, or isomorphic to F_n for some $n \ge 4$.

At the end of this section, we give a few lemmas for the structure of strong k-quasitransitive digraphs.

Lemma 2.6 [16] Let k be an integer with $k \ge 2$, and let D be a strong k-quasi-transitive digraph. Suppose that $C = v_0v_1 \cdots v_{r-1}v_0$ is a cycle of length r in D with $r \ge k$. Then, for any $v \in V(D) \setminus V(C)$, v and C are adjacent.

Lemma 2.7 [16] Let k be an integer with $k \ge 2$, and D be a strong k-quasi-transitive digraph, and let $C = v_0v_1 \cdots v_{r-1}v_0$ be a cycle of length r in D with $r \ge k$. Suppose that r and k - 1 are coprime. For any $v \in V(D) \setminus V(C)$, if $(V(C), v) = \emptyset$, then $v \Rightarrow V(C)$; if $(v, V(C)) = \emptyset$, then $V(C) \Rightarrow v$.

Lemma 2.8 [8] Let k be an integer with $k \ge 2$, D be a k-quasi-transitive digraph and $u, v \in V(D)$ such that d(u, v) = k + 2. Suppose that $P = x_0x_1 \cdots x_{k+2}$ is a shortest (u, v)-path, where $u = x_0$, and $v = x_{k+2}$. Then each of the following statements holds:

(1) $x_{k+2}x_{k-i} \in A(D)$, for every odd i such that $1 \le i \le k$;

(2) $x_{k+1}x_{k-i} \in A(D)$, for every even i such that $1 \le i \le k$.

Lemma 2.9 [16] Let k be an even integer with $k \ge 4$ and D be a strong k-quasi-transitive digraph. Suppose that $P = x_0x_1 \cdots x_{k+2}$ is a shortest (x_0, x_{k+2}) -path in D. For any $x \in V(D) \setminus P$, if $(x, P) \ne \emptyset$ and $(P, x) \ne \emptyset$, then either x is adjacent to every vertex of V(P) or $\{x_{k+2}, x_{k+1}, x_k, x_{k-1}\} \Rightarrow x \Rightarrow \{x_0, x_1, x_2, x_3\}$. In particular, if k = 4, then x is adjacent to every vertex of V(P).

3 Digraphs with proper connection number two

From Observation 2.1, we know that D is complete if and only if $p\vec{c}(D) = 1$. Magnant et al. showed that the proper connection number of every strong digraph is at most three in [12] and Ducoffe et al. proved that deciding whether a given digraph has proper connection number at most two is NP-complete in [6]. Then it makes sense to find some sufficient conditions for a digraph with $p\vec{c}(D) \leq 2$. In this section, we show a few classes of digraphs with proper connection number two.

Theorem 3.1 [12] If D is a strong digraph, then $\overrightarrow{pc}(D) \leq 3$.

A partial arc-coloring of D = (V, A) is a mapping $c : A' \mapsto \mathbb{N}$, where \mathbb{N} is set of colors and $A' \subseteq A$. Note that if a partial arc-coloring c of D with k colors can make (D, c) proper connected, then $\overrightarrow{pc}(D) \leq k$. Let $C = v_1 v_2 \cdots v_r v_1$ be a directed cycle of a strong digraph D. We use $v_i C v_j$ to denote the directed path $v_i v_{i+1} \cdots v_{j-1} v_j$ on C.

Lemma 3.1 Let D be a strong digraph of order n and C be an even directed cycle in D. If for any vertex $x \in V(D) \setminus V(C)$ we have $N^+(x) \cap V(C) \neq \emptyset$ and $N^-(x) \cap V(C) \neq \emptyset$, then $\overrightarrow{pc}(D) = 2$ and one can construct an optimal arc-coloring c of D in time $O(n^2)$.

Proof. Suppose that $C = v_1 v_2 \cdots v_r v_1$ is an even directed cycle of a strong digraph D. We define a partial arc-coloring c of D using two colors in the following:

(1) $c(v_iv_{i+1}) = c_1$ if i is odd and $c(v_iv_{i+1}) = c_2$ if i is even;

(2) $c(vv_i) = c(v_{i-1}v_i)$ and $c(v_iv) = c(v_iv_{i+1})$ for any vertex v of $V(D) \setminus V(C)$, where all subscripts are taken modulo r.

Note that we can construct the above arc-coloring c of D in time $O(n^2)$ to guarantee that any two vertices are proper connected in C. Next, we assert that (D, c) is proper connected. For any two distinct vertices $x_1, x_2 \in V(D) \setminus V(C)$, we suppose that v_i is an in-neighbor of x_1 and v_j is an out-neighbor of x_2 in C, respectively. Then $x_2v_jCv_ix_1$ is a proper directed path in D. We suppose that v_a is an in-neighbor of x_2 and v_b is an out-neighbor of x_1 in C, respectively. Then $x_1v_bCv_ax_2$ is a proper directed path in D. Hence, x_1 and x_2 are proper connected. For any two distinct vertices $x_1 \in V(D) \setminus V(C)$ and $x_2 \in V(C)$, we suppose that v_i is an in-neighbor of x_1 and v_j is an out-neighbor of x_1 in C. Then $x_1v_jCx_2$ and $x_2Cv_ix_1$ are two proper directed paths in D. Hence, x_1 and x_2 are proper connected. Consequently, (D, c) is proper connected and $\overrightarrow{pc}(D) = 2$.

From the above lemma, we thus obtain the following corollary.

Corollary 3.1 If D is vertex-pancyclic, then $\overrightarrow{pc}(D) = 2$.

Theorem 3.2 Let D be a strong locally semicomplete digraph. Then $\overrightarrow{pc}(D) = 2$ or D is an odd directed cycle.

Proof. Suppose that D is a strong locally semicomplete digraph. If D is a strong semicomplete digraph, then D is vertex-pancyclic by Lemma 2.2. If D is not round decomposable, then D is vertex-pancyclic by Lemma 2.3. In such two cases, we can easily show that $\overrightarrow{pc}(D) = 2$ by Corollary 3.1. Now we only need to consider the case that D is not a semicomplete digraph and has a round decomposition $D = R[S_1, S_2, \dots, S_r]$. From the definition of round decomposition, we know that R is a round local tournament and S_i is a strong semicomplete digraph.

Claim 3.1 *R* is Hamiltonian.

Proof. To prove Claim 3.1, we first show that R is strongly connected. In fact, for every nonempty proper subset $X = \{S_{i_1}, S_{i_2}, \cdots, S_{i_a}\}$ of V(R), we know that $X' = V(S_{i_1}) \cup$ $V(S_{i_2}) \cup \cdots \cup V(S_{i_a})$ is a nonempty proper subset of V(D), where $1 \leq a < r$. Because D is strongly connected, we have $\partial_D^+(X') \neq \emptyset$ and $\partial_D^-(X') \neq \emptyset$, which means that $\partial_R^+(X) \neq \emptyset$ and $\partial_R^-(X) \neq \emptyset$. We have $\partial_R^+(X) = \partial_D^+(\{V(S_{i_1}) \cup V(S_{i_2}) \cup \cdots \cup V(S_{i_a})\}) \neq \emptyset$, where $1 \leq a < r$. Consequently, R is strongly connected. We can obverse that $d_R^+(S_i) \neq 0$ and $d_R^-(S_i) \neq 0$ for all $1 \leq i \leq r$. Since R is a round digraph, without loss of generality, we suppose that S_1, S_2, \cdots, S_r is a round labeling of R. Then $S_1S_2 \cdots S_rS_1$ is a Hamiltonian cycle in R. The claim thus follows.

From Claim 3.1, we suppose that $C = S_1 S_2 \cdots S_r S_1$ is a Hamiltonian cycle of R. If r is even, then we can color the edges of C with two colors red and blue alternately. We denote by c the above coloring of C. Now we define a partial arc-coloring c of D: Color every arc of $A(S_i, S_{i+1})$ in D with the color of $S_i S_{i+1}$ in R for all $1 \le i \le r$, where the index i is taken module r. We can easily prove that (D, c) is proper connected and $\overrightarrow{pc}(D) = 2$.

If r is odd and $|S_i| = 1$ for all $1 \le i \le r$, then D is an odd directed cycle, and the result follows. If r is odd and $|S_i| \ge 2$ for some $1 \le i \le r$, without loss of generality, we

suppose that $|S_1| \geq 2$. Since D is a locally semicomplete digraph, we know that $D[S_1]$ is a semicomplete digraph. Then we choose an arc $s_1s'_1 \in D[S_1]$. We can obverse that $C = s'_1s_1s_2\cdots s_rs'_1$ is an even directed cycle, where $s_i \in S_i$ for all $2 \leq i \leq r$. Note that for each vertex $v \in V(D) \setminus V(C)$, we always have $N^+(v) \cap V(C) \neq \emptyset$ and $N^-(v) \cap V(C) \neq \emptyset$. Using Lemma 3.1, we know that $\overrightarrow{pc}(D) = 2$.

In conclusion, if D is a strong locally semicomplete digraph, then $\overrightarrow{pc}(D) = 2$ or D is an odd directed cycle.

The underlying multigraph UMG(D) of D is an undirected multigraph obtained from D by replacing every arc (x, y) with the edge xy. The underlying graph UG(D) of D is obtained from UMG(D) by deleting all multiple edges between every pair of vertices apart from one. The complement \overline{G} of an undirected graph G is the undirected graph with vertex set V(G) in which two vertices are adjacent if and only if they are not adjacent in G.

Lemma 3.2 [4] Let D be a strong quasi-transitive digraph on at least two vertices. Then the following holds:

(a) $\overline{UG(D)}$ is disconnected;

(b) If S and S' are two subdigraphs of D such that $\overline{UG(S)}$ and $\overline{UG(S')}$ are distinct connected components of UG(D), then either $S \Rightarrow S'$ or $S' \Rightarrow S$, or both $S \mapsto S'$ and $S' \mapsto S$, in which case |V(S)| = |V(S')| = 1.

Theorem 3.3 Let D be a strong quasi-transitive digraph of order n. Then $\overrightarrow{pc}(D) = 2$ and one can construct an optimal arc-coloring c of D in time $O(n^2)$.

Proof. Let Q_1, \dots, Q_s be the subdigraphs of D such that each $UG(Q_i)$ is a connected component of $\overline{UG(D)}$. According to Lemma 3.2 (a), each Q_i is either non-strong or just a single vertex. By Lemma 3.2 (b), we obtain a strong semicomplete digraph S if each Q_i is contracted to a vertex. Hence, we can find s + 1 digraphs: S, Q_1, Q_2, \dots, Q_s in time $O(n^2)$. By Lemma 2.4, we know that S is a strong semicomplete digraph with s vertices and Q_1, Q_2, \dots, Q_s are quasi-transitive digraphs. Suppose that $V(S) = \{v_1, v_2, \dots, v_s\}$ and $D = S[Q_1, Q_2, \dots, Q_s]$, where Q_i is substituted for $v_i, i \in \{1, 2, \dots, s\}$. Then S is vertexpancyclic from Lemma 2.2. Without loss of generality, we suppose that $C_1 = v_1 v_2 \cdots v_s v_1$ is a directed Hamiltonian cycle of S. If s is even, then there is an even directed cycle $C'_1 = q_1 q_2 \cdots q_s q_1$ in D, where $q_i \in Q_i$ for all $1 \leq i \leq s$. From the definition of composition, we know that for any vertex $v \in V(D) \setminus V(C'_1)$, we always have $N^+(v) \cap V(C'_1) \neq \emptyset$ and $N^-(v) \cap V(C'_1) \neq \emptyset$. From Lemma 3.1, we know that $\overrightarrow{pc}(D) = 2$ one can construct an optimal arc-coloring c of D in time $O(n^2)$.

If s is odd, by Lemma 2.2 we know that D must contain a directed (s-1)-cycle C_2 . Without loss of generality, suppose that $C_2 = v_1 v_2 \cdots v_{s-1} v_1$. Then there is an even directed cycle $C'_2 = q_1 q_2 \cdots q_{s-1} q_1$ in D, where $q_i \in Q_i$ for all $1 \le i \le s - 1$. From the definition of composition, we know that for any vertex $v \in V(D) \setminus V(C'_2)$, we have $q_{i+1} \in N_D^+(v)$ and $q_{i-1} \in N_D^-(v)$ for all $1 \le i \le s$, where all subscripts are taken modulo s. From Lemma 3.1, we know that $\overrightarrow{pc}(D) = 2$ and one can construct an optimal arc-coloring c of D in time $O(n^2)$. **Theorem 3.4** Let D be a strong 3-quasi-transitive digraph of order n. Then $\overrightarrow{pc}(D) = 2$ and one can construct an optimal arc-coloring c of D in time $O(n^3)$.

Proof. Suppose that D is a strong 3-quasi-transitive digraph of order n. According to Lemma 2.5, we know that D is either semicomplete, semicomplete bipartite or isomorphic to F_n for some $n \ge 4$. We can check whether D is semicomplete in time $O(n^2)$. If D is not semicomplete, then we can check whether D contains a directed triangle in time $O(n^3)$. If D contains a directed triangle, then D must be isomorphic to F_n . Otherwise, D is semicomplete bipartite. If D is a strong semicomplete or strong semicomplete bipartite, then it is clear that $p\vec{c}(D) = 2$. If D is a copy of F_n , then we can color yv_i and zx with red for all $1 \le i \le n-3$ and the other arcs with blue. Hence, we can construct an arc-coloring c of D in time $O(n^3)$. We can obverse that D is proper connected and $\vec{pc}(D) = 2$. This completes the proof.

The distance dist(x, y) from a vertex x to a vertex y is the length of a shortest (x, y)directed path in a digraph D. The distance dist(X, Y) from a vertex set X to another vertex set Y is the length of a shortest (x, y)-directed path for any pair of vertices $x \in X$ and $y \in Y$ in a digraph D. This means that $dist(X, Y) = min\{dist(x, y) : x \in X \text{ and } y \in Y\}$. If there is no a directed path from x to y, then we have $dist(x, y) = \infty$; otherwise, $dist(x, y) < \infty$. The diameter of D is the maximum of the distances dist(x, y) over all pairs of vertices x and y in D. Let DFS denote the depth-first search on a digraph. A digraph T_s is an out-tree (in-tree) if T_s is an oriented tree with just one vertex s of in-degree zero (out-degree zero). The vertex s is the root of T_s . If an out-tree (in-tree) T_s is a spanning subdigraph of D, T_s is called an out-branching (in-branching).

Inspired by Theorems 3.3 and 2.5, we thus want to determine the proper connection number of strong k-quasi-transitive digraphs. However, all digraphs D with $diam(D) \leq k - 1$ must be k-quasi-transitive digraph. Then, in the next section we shall study the proper connection number of strong k-quasi-transitive digraphs with $diam(D) \geq k$. We will consider k-quasi-transitive digraphs by the parity of k. Then we give the following theorem.

Theorem 3.5 Let D be a strong k-quasi-transitive digraph of order n with diam $(D) \ge k+2$. Then $\overrightarrow{pc}(D) = 2$ and one can construct an optimal arc-coloring c of D in time $O(n^3)$.

We will prove Theorem 3.5 in two parts. To begin with, we consider the case that k is even.

Theorem 3.6 Let k be an even integer with $k \ge 4$, D be a strong k-quasi-transitive digraph of order n with $diam(D) \ge k + 2$. Then $\overrightarrow{pc}(D) = 2$ and one can construct an optimal arc-coloring c of D in time $O(n^3)$.

Proof. Since $diam(D) \ge k+2$, there exist two vertices $t, t' \in V(D)$ such that d(t, t') = k+2in D. Using DFS for every vertex $v \in D$, we can find a shortest (t, t')-path P of D in time $O(n^3)$. Without loss of generality, we suppose that $P = t_0 t_1 \cdots t_{k+2}$, where $t = t_0$ and $t' = t_{k+2}$. Because k is even, we know that k-3 is odd. From Lemma 2.8, we have $t_{k+2}t_3 \in A(D)$. Thus, $C = t_3t_4 \cdots t_{k+2}t_3$ is a directed cycle of length k. For the sake of simplicity, let $C = s_1s_2 \cdots s_ks_1$. Choosing any vertex $v \in V(D) \setminus V(C)$, one can check whether v is adjacent to every vertex of C in time O(n). Then we can get the following three vertex sets in time $O(n^2)$:

$$X = \{ v \in V(D) \setminus V(C) : v \to V(C) \text{ and } V(C) \not\rightarrow v \},\$$

$$Y = \{ v \in V(D) \setminus V(C) : v \not\rightarrow V(C) \text{ and } V(C) \to v \},\$$

$$Z = \{ v \in V(D) \setminus V(C) : v \to V(C) \text{ and } V(C) \to v \}.\$$

Since k-2 is even, from Lemma 2.8 we know that $t_{k+1} \to t_2 \to t_3$. This means $s_{k-1} \to t_2 \to s_1$. Then $t_2 \in Z$. It is clear that $t_0, t_1 \notin Z$. From Lemma 2.6, we know that for any $v \in V(D) \setminus V(C)$, v and C are adjacent. Hence, (X, Y, Z, V(C)) is a vertex partition of D. We define a partial arc-coloring c of D using two colors in the following:

(1) $c(s_i s_{i+1}) = c_1$ if i is odd and $c(s_i s_{i+1}) = c_2$ if i is even;

(2) $c(vs_i) = c(s_{i-1}s_i)$ and $c(s_iv) = c(s_is_{i+1})$ for any vertex v of $V(D) \setminus V(C)$, where all subscripts are taken modulo k.

It is clear that c is also a partial arc-coloring of $H_1 = D[V(C) \cup Z]$. By Lemma 3.1, we can conclude that (H_1, c) is proper connected and $\overrightarrow{pc}(H_1) = 2$. Since k and k-1 are coprime, we can get that $V(C) \Rightarrow x$ for any vertex $x \in X$ and $y \Rightarrow V(C)$ for any vertex $y \in Y$ by Lemma 2.7. Then we can obverse that $c(O(C), x) = c(y, E(C)) = \{c_1\}$ and $c(E(C), x) = c(y, O(C)) = \{c_2\}$, where $O(C) = \{s_1, s_2, \cdots, s_{k-1}\}$ and $E(C) = \{s_2, s_4, \cdots, s_k\}$. Hence, we have the following claim.

Claim 3.2 (a) For any two vertices $x \in X$ and $v \in V(D) \setminus X$, there exists a proper directed (x, v)-path in (D, c);

(b) For any two vertices $y \in Y$ and $v \in V(D) \setminus Y$, there exists a proper directed (v, y)-path in (D, c).

Proof. Choose an arbitrary vertex $x \in X$, if $v \in V(C)$, then xv is a proper directed (x, v)-path. If $v \in Z$, then xs_iv is a proper directed (x, v)-path for any vertex $s_i \in V(C)$ and $s_i \to v$. If $v \in Y$, then xs_iv is a proper directed (x, v)-path for any vertex $s_i \in V(C)$ and $s_i \to v$. The statement of (a) is right. By a similar argument, we can prove (b). \Box

Next, we consider the vertices of X and Y in more detail and give the following partitions of X and Y in time $O(n^2)$ (see Figure 2).

$$X_1 = \{ v \in X : v \to Y \},$$
$$Y_1 = \{ v \in Y : X \to v \},$$
$$X_2 = \{ v \in X \setminus X_1 : v \to Z \},$$
$$Y_2 = \{ v \in Y \setminus Y_1 : Z \to v \},$$

$$X_3 = X \setminus (X_1 \cup X_2) \text{ and } Y_3 = Y \setminus (Y_1 \cup Y_2).$$

For any vertex $z \in Z$, there may be many out-neighbors and in-neighbors of z in C. If $z \in Z \setminus t_2$, from Lemma 2.9, we know that either z adjacent to every vertex of C or $\{s_k, s_{k-1}, s_{k-2}, s_{k-3}\} \Rightarrow z \Rightarrow s_1$. If $z = t_2$, then $s_{k-1} \to t_2 \to s_1$. Consequently, we always can find two vertices s_{z_+} and s_{z_-} in C such that $s_{z_-} \to z \to s_{z_+}$ and $c(s_{z_-}z) \neq c(zs_{z_+})$ for every vertex $z \in Z$. Now we extend the partial arc-coloring c of D in the following method:

- (1) $c(xy) = c_1$ for every arc $xy \in A(X_1, Y_1)$;
- (2) $c(xz) \neq c(zs_{z_+})$ for any vertex $x \in X_2$, where $x \to z \in Z$;
- (3) $c(zy) \neq c(s_{z_{-}}z)$ for any vertex $y \in Y_2$, where $z \to y$ and $z \in Z$.

This vertex partition and arc-coloring of D is illustrated in Figure 2. It is clear that c is also a partial arc-coloring of $H_2 = D[V(D) \setminus (X_3 \cup Y_3)]$.

Claim 3.3 (H_2, c) is proper connected.

Proof. Choose any two vertices $x \in X_1$ and $w \in V(H_2) \setminus x$, we suppose that y is an outneighbor of x in Y_1 . If $w \in X_1 \setminus x$, then xys_1w is a proper (x, w)-path in D. If $w \in V(C)$, then xys_1Cw is a proper (x, w)-path in D. If $w \in Y_1$ and $x \nleftrightarrow w$, then $xys_1s_2x'w$ is a proper (x, w)-path in D, where $x' \in X$ and $x' \to w$. If $w \in X_2$, then xys_1w is a proper (x, w)-path in D. If $w \in Z$, then $xys_1Cs_{w_-}w$ is a proper (x, w)-path in D. If $w \in Y_2$, then $xys_1Cs_{z_-}zw$ is a proper (x, w)-path in D, where $z \in W$ and $z \to w$. Similarly, for any two vertices $y \in Y_1$ and $w \in V(H_2) \setminus y$, we can also find a proper (w, y)-path in D.

Choose any two vertices $x \in X_2$ and $w \in V(H_2) \setminus x$, we suppose that z is an out-neighbor of x in Z. If $w \in X_2 \setminus x$, then $xzs_{z_+}Cs_1w$ is a proper (x, w)-path in D. If $w \in V(C)$, then $xzs_{z_+}Cw$ is a proper (x, w)-path in D. If $w \in Y_2$ and $z \to w$, then xzw is a proper (x, w)path in D, If $w \in Y_2$ and $z \to w$, then $xzs_{z_+}Cs_{z'_-}z'w$ is a proper (x, w)-path in D, where $z' \in Z$ and $z' \to w$. If $w \in X_1$, then $xzs_{z_+}w$ is a proper (x, w)-path in D. If $w \in Y_1$, then $xzs_{z_+}Cx_kx'w$ is a proper (x, w)-path in D, where $x' \in X_1$ and $x' \to w$. If $w \in Z$ and $x \to w$, then $xzs_{z_+}s_{w_-}w$ is a proper (x, w)-path in D. Similarly, for any two vertices $y \in Y_2$ and $w \in V(H_2) \setminus y$, we can also find a proper (w, y)-path in D. Combining with Claim 3.2, the claim follows.

From the definition of X_3 and the fact that D is strongly connected, we have that $N^+(x') \subseteq X$ for any vertex $x' \in X_3$. Then, for every vertex $x' \in X_3$, we know that $dist(x', X_1) < \infty$ or $dist(x', X_2) < \infty$. Set

$$X_3^1 = \{ x' \in X_3 : dist(x', X_1) < \infty \}$$

and

$$X_3^2 = \{ x' \in X_3 : dist(x', X_1) = \infty \text{ and } dist(x', X_2) < \infty \}.$$

The vertex partition (X_3^1, X_3^2) of X_3 is illustrated in Figure 2. We can obtain a digraph D_1 from $D[X_1 \cup X_3^1]$ by shrinking X_1 to a vertex e and a digraph D_2 from $D[X_2 \cup X_3^2]$ by shrinking X_2 to a vertex f. Using DFS for the vertex e in D_1 and the vertex f in D_2 , we can find an in-branching T_e of D_1 and an in-branching T_f of D_2 in time $O(n^2)$, respectively.

Figure 2: Vertex partition and arc-coloring of D.

We can obverse that there is a unique (x', e)-path in T_e for every vertex $x' \in X_3^1$ and a unique (x', f)-path in T_f for every vertex $x' \in X_3^2$, which means that we can find a shortest directed (x', x)-path $P_1(x', x)$ such that $x \in X_1$ in $D[X_1 \cup X_3^1]$ corresponding to every (x', e)-path of T_e and a shortest directed (x', x)-path $P_2(x', x)$ such that $x \in X_2$ in $D[X_2 \cup X_3^2]$ corresponding to every (x', f)-path of T_f . If $x \in X_1$ (X_2) , then we choose a vertex $y \in Y$ $(z \in Z)$ such that $x \to y$ $(x \to z)$. We suppose that $P_1(x') = P(x', x)y$ for every vertex $x' \in X_3^1$ and $P_2(x') = P_2(x', x)z$ for every vertex $x' \in X_3^2$. Note that xy and xz have been colored in the previous step. Now we extend the partial arc-coloring c of Din the following method again:

(1) Color the arcs of $P_i(x')$ for every vertex $x' \in X_3^i$ with $\{c_1, c_2\}$ such that $P_i(x')$ is proper, where i = 1, 2;

(2) Color the uncolored arcs of A(X) with either c_1 or c_2 .

It is clear that c is also a partial arc-coloring of $H_3 = D[V(D) \setminus Y_3]$.

Claim 3.4 (H_3, c) is proper connected.

Proof. Choose two vertices $x' \in X_3^1$ and $u \in V(H_3) \setminus x'$, if $u \in X$ and $x \nleftrightarrow u$, then $P_1(x')s_1u$ is a proper (x', u)-path in D. If $u \in V(C)$, then $P_1(x')s_1Cu$ is a proper (x', u)-path in D. If $u \in Z$, then $P_1(x')s_1Cs_{u_-}u$ is a proper (x', u)-path in D. If $u \in Y_1 \setminus \{y_{x_+}\}$ and $x \nleftrightarrow u$, then $P_1(x')s_1Cs_kx_{u_-}u$ is a proper (x', u)-path in D. If $u \in Y_1 \setminus \{y_{x_+}\}$ and $x \to u$, then $P_1(x', x)u$ is a proper (x', u)-path in D. If $u \in Y_2$, then $P_1(x')s_1Cs_{z_-}zu$ is a proper (x', u)-path in D, where $z \to u$.

Choose two vertices $x' \in X_3^2$ and $u \in V(H_3) \setminus x'$, if $u \in X \setminus \{x\}$, then $P_2(x')s_{z_+}u$ is a proper (x', u)-path in D. If $u \in V(C)$, then $P_2(x')s_{z_+}Cu$ is a proper (x', u)-path in D. If $u \in Y_1$, then $P_2(x')s_{z_+}x_1u$ is a proper (x', u)-path in D, where $x_1 \to u$. If $u \in Y_2$ and $z_{x_+} \to u$, then $P_2(x')u$ is a proper (x', u)-path in D. If $u \in Y_2$ and $z \not \to u$, then $P_2(x')s_{z_+}Cs_{z'_-}z'u$ is a proper (x', u)-path in D, where $z' \in Z$ and $z' \to u$. If $u \in Z \setminus \{z_{x_+}\}$, then $P_2(x')s_{z_+}Cs_{u_-}u$ is a proper (x', u)-path in D. In conclusion, there exists a proper directed (x', u)-path in D for any two vertices $x' \in X_3$ and $u \in V(H_3) \setminus x'$. Combining with Claim 3.3, the claim follows.

From the definition of Y_3 and the fact that D is strongly connected, we know that $N^-(y') \subseteq Y$ for any vertex $y' \in Y_3$. Then for every vertex $y' \in Y_3$, we have $dist(Y_1, y') < \infty$ or $dist(Y_2, y') < \infty$. Set

$$Y_3^1 = \{ y' \in Y_3 : dist(Y_1, y') < \infty \}$$

and

$$Y_3^2 = \{y' \in Y_3 : dist(Y_1, y') = \infty \text{ and } dist(Y_2, y') < \infty\}.$$

The vertex partition (Y_3^1, Y_3^2) of Y_3 is illustrated in Figure 2.

We can obtain a digraph F_1 from $D[Y_1 \cup Y_3^1]$ by shrinking Y_1 to a vertex g and a digraph F_2 from $D[Y_2 \cup Y_3^2]$ by shrinking Y_2 to a vertex h. Using DFS for the vertex g in D_1 and the vertex h in D_2 , we can find an out-branching T_g of D_1 and an out-branching T_h of D_2 in time $O(n^2)$, respectively. We can obverse that there is a unique (g, y')-path in T_g for every vertex $y' \in Y_3^1$ and a unique (h, y')-path in T_h for every vertex $y' \in Y_3^2$. This means that we can find a shortest directed (y, y')-path $Q_1(y, y')$ such that $y \in Y_1$ in $D[Y_1 \cup Y_3^1]$ corresponding to every (g, y')-path of T_g and a shortest directed (y, y')-path $Q_2(y, y')$ such that $y \in Y_2$ in $D[Y_2 \cup Y_3^2]$ corresponding to every (h, y')-path of T_h . If $y \in Y_1$ (Y_2) , then we choose a vertex $x \in X_1$ $(z \in Z)$ such that $x \to y$ $(z \to y)$. Let $Q_1(y') = xQ_1(y, y')$ for every vertex $y' \in Y_3^1$ and $Q_2(y') = zQ_2(y, y')$ for every vertex $y' \in Y_3^2$. Note that xy and zy have been colored in the previous step. Now we extend the partial arc-coloring c of D in the following method again:

(1) Color the arcs of $Q_i(y')$ for every vertex $y' \in Y_3^i$ with $\{c_1, c_2\}$ such that $Q_i(y')$ is proper, where i = 1, 2;

(2) Color the uncolored arcs of A(Y) with either c_1 or c_2 .

It is clear that c is also a partial arc-coloring of $H_4 = D[V(D) \setminus X_3]$. Then we give the following claim.

Claim 3.5 (H_4, c) is proper connected.

Proof. In fact, the proof of Claim 3.5 is similar to Claim 3.4, and so we omit it. \Box

We extend c by coloring the uncolored arcs of A(D) with either c_1 or c_2 . So, c is an arc-coloring of D. Note that we can construct such an arc-coloring c of D in time $O(n^2)$. Finally, we prove that (D, c) is proper connected. From Claim 3.2 to Claim 3.5, we only need to show that there is a proper (x', y')-path for any two vertices $x' \in X_3$ and $y' \in Y_3$ in D.

Choose any two vertices $x' \in X_3^1$ and $y' \in Y_3^1$, there exist two proper directed paths $P_1(x', x)$ and $Q_1(y, y')$. If $x \to y$, then $P_1(x', x)Q_1(y, y')$ is a proper directed path in D. If $x \to y$, then $P_1(x')s_1s_2Q_1(y')$ is a proper directed path in D. For any two vertices $x' \in X_3^1$ and $y' \in Y_3^2$, there exist two proper directed paths $P_1(x')$ and $Q_2(y')$. Hence, $P_1(x')s_1Cs_{z-}Q_2(y')$ is a proper directed path in D. For any two vertices $x' \in X_3^2$ and $y' \in Y_3^2$ and $y' \in Y_3^2$. Y_3^1 , there exist two proper directed paths $P_2(x')$ and $Q_1(y')$. Hence, $P_2(x')s_{z_+}Cs_2Q_1(y')$ is a proper directed path in D. For any two vertices $x' \in X_3^2$ and $y' \in Y_3^2$, there exist two proper directed paths $P_2(x') = P_2(x', x)z$ and $Q_2(y') = Q_2(y, y')$. If $z = z_{x_+} = z_{y_-} = z'$, then $P_2(x', x)zQ_2(y, y')$ is a proper directed path in D. If $z = z_{x_+} \neq z_{y_-} = z'$, then $P_2(x')s_{z_+}Cs_{z'_-}Q_2(y')$ is a proper directed path in D. Consequently, we find a proper directed path for any two vertices $x' \in X_3$ and $y' \in Y_3$. Then (D, c) is proper connected and $\overrightarrow{pc}(D) \doteq 2$, the result follows. \Box

To study the case that k is odd, we need some more lemmas and notations below. Now let k be an odd integer with $k \ge 5$, D be a strong k-quasi-transitive digraph of order n with $diam(D) \ge k$. Because $diam(D) \ge k$, there exist two vertices s_0 and s_k such that $dist(s_0, s_k) = k$ in D. Using DFS for every vertex $v \in D$, we can find a shortest (s_0, s_k) path $P = s_0 s_1 \cdots s_k$ of D in time $O(n^3)$. Because D is a k-quasi-transitive digraph, we know that $C = s_0 s_1 \cdots s_k s_0$ is a (k + 1)-cycle in D. By the parity of the subscripts, we divide $\{s_0, s_1, \cdots, s_k\}$ into two vertex sets: $E(C) = \{s_0, s_2, \ldots, s_{k-1}\}$ and $O(C) = \{s_1, s_3, \ldots, s_k\}$. Choosing any vertex $v \in V(D) \setminus V(C)$, one can check whether v is adjacent to every vertex of C in time O(n). Then, combining with Lemma 2.6, we can get the following three vertex sets in time $O(n^2)$:

$$X = \{ v \in V(D) \setminus V(C) : v \to V(C) \} and V(C) \not\rightarrow v \};$$

$$Y = \{ v \in V(D) \setminus V(C) : v \not\rightarrow V(C) \} and V(C) \rightarrow v \};$$

$$Z = \{ v \in V(D) \setminus V(C) : v \to V(C) \} and V(C) \rightarrow v \}.$$

Lemma 3.3 For every vertex $v \in V(D) \setminus V(C)$, we have the following properties:

If $v \in X$, then either $v \mapsto O(C)$ or $v \mapsto E(C)$;

If $v \in Y$, then either $E(C) \mapsto v$ or $O(C) \mapsto v$;

If $v \in Z$, then there exist two vertices s_i and s_{i+2} such that $s_i \to z \to s_{i+2}$ or $E(C) \mapsto v \mapsto O(C)$ or $O(C) \mapsto v \mapsto E(C)$, where the subscripts are taken modulo n.

Proof. If $v \in X$, then $(v, V(C)) \neq \emptyset$. Hence, there exists one vertex $s_i \in V(C)$ such that $v \to s_i$. Since D is a k-quasi-transitive digraph, we have $\overline{vs_{i-2}}$. Note that vs_iCs_{i-2} is a k-path in D. Since $(V(C), v) = \emptyset$, we can get $v \to s_{i-2}$. It is clear that $vs_{i-2}Cs_{i-4}$ is also a k-path in D. Note that C is an even cycle. Repeating the above discussions, we know that if $s_i \in O(C)$, then $v \mapsto O(C)$. If $s_i \in E(C)$, then $v \mapsto E(C)$. Similarly, we can show that either $E(C) \mapsto v$ or $O(C) \mapsto v$ if $v \in Y$.

If $v \in Z$ and there exists two vertices s_i and s_{i+2} such that $s_i \to z \to s_{i+2}$ in V(C), then the assertion holds. Next, we suppose that there do not exist such two vertices in V(C). Since $(v, V(C)) \neq \emptyset$, without loss of generality, suppose that there exists one vertex $s_i \in E(C)$ such that $v \to s_i$. Note that vs_iCs_{i-2} is a k-path in D. If $s_{i-2} \to v$, which contradicts the hypothesis. If $v \to s_{i-2}$, then $vs_{i-2}Cs_{i-4}$ is a k-path in D. Repeating the above discussions, we know that $v \mapsto E(C)$. Since $(V(C), v) \neq \emptyset$, there is one vertex $s_j \in O(C)$ such that $s_j \to v$. Then $s_{j+2}Cs_jv$ is a k-path in D. If $v \to v_{j+2}$, which contradicts the hypothesis. If $v_{j+2} \to v$, then $s_{j+4}Cs_{j+2}v$ is a k-path in D. Repeating the above discussions, we know that $O(C) \to v$. By symmetry, we can conclude that $E(C) \mapsto v \mapsto O(C)$ when $s_i \in O(C)$.

From Lemma 3.3, as shown in Figure 3, we can give the following partitions of X and Y in time $O(n^2)$.

$$X_{1} = \{v \in X : v \mapsto O(C) \text{ and } v \not\rightarrow E(C)\};$$

$$X_{2} = \{v \in X : v \not\rightarrow O(C) \text{ and } v \mapsto E(C)\};$$

$$X_{3} = \{v \in X : v \mapsto V(C)\};$$

$$Y_{1} = \{v \in Y : O(C) \mapsto v \text{ and } E(C) \not\rightarrow v\};$$

$$Y_{2} = \{v \in Y : O(C) \not\rightarrow v \text{ and } E(C) \mapsto v\};$$

$$Y_{3} = \{v \in Y : V(C) \mapsto v\};$$

Figure 3: Vertex partitions of X and Y.

Lemma 3.4 (1) $Y_2 \nleftrightarrow X_2 \cup X_3$ and $Y_1 \nleftrightarrow X_1 \cup X_3$;

- (2) $X_1 \cup X_2 \nrightarrow X_3$ and $Y_3 \nrightarrow Y_1 \cup Y_2$;
- (3) $A(X_1) = A(X_2) = A(Y_1) = A(Y_2) = \emptyset.$

Proof. Suppose to the contrary that there exist two vertices $x \in X_2 \cup X_3$ and $y \in Y_2$ such that $y \to x$. Then yxs_0Cs_{k-2} is k-path in D. Hence, y and s_{k-2} are adjacent. If $s_{k-2} \to y$, from Lemma 3.3 we know that $O(C) \mapsto y$, which contradicts the definition of Y_2 . If $y \to s_{k-2}$, then $y \in Z$, a contradiction. Then $y \neq x$, which means that $Y_2 \neq X_2 \cup X_3$. Similarly, we can conclude that $Y_1 \neq X_1 \cup X_3$. Then statement (1) is right. The proof of statement (2) is similar to statement (1), and so we omit it here.

We show statement (3) by contradiction. If $A(X_1) \neq \emptyset$, then there exists at least one arc $x_1x_2 \in A(X_1)$. Then $x_1x_2s_1Cs_{k-1}$ is k-path in D. Hence, x_1 and s_{k-1} are adjacent. If $x_1 \to s_{k-1}$, from Lemma 3.3 we know that $x_1 \mapsto E(C)$, which contradicts the definition of X_1 . If $s_{k-2} \to x_1$, then $x_1 \in Z$, a contradiction. Similarly, we can conclude that $A(X_2) = A(Y_1) = A(Y_2) = \emptyset$. Then statement (3) is right. \Box

From Lemma 3.4, we can get the following corollary.

Corollary 3.2 (1) For any two vertices $y \in Y$ and $z \in Z$, if $y \in Y_1$ and $y \to z$, then $z \neq O(C)$. If $y \in Y_2$ and $y \to z$, then $z \neq E(C)$.

(2) For any two vertices $x \in X$ and $z \in Z$, if $x \in X_1$ and $z \to x$, then $O(C) \not\rightarrow z$. If $x \in X_2$ and $z \to x$, then $E(C) \not\rightarrow z$.

Theorem 3.7 Let k be an odd integer with $k \ge 5$, D be a strong k-quasi-transitive digraph of order n with diam $(D) \ge k$. Then $\overrightarrow{pc}(D) = 2$ and one can construct an optimal arccoloring c of D in time $O(n^3)$.

Proof. We define a partial arc-coloring c of D using two colors in the following:

(1) $c(s_i s_{i+1}) = c_1$ if i is odd and $c(s_i s_{i+1}) = c_2$ if i is even;

(2) $c(vs_i) = c(s_{i-1}s_i)$ and $c(s_iv) = c(s_is_{i+1})$ for any vertex v of $V(D) \setminus V(C)$, where all subscripts are taken modulo k.

This partial arc-coloring of D is illustrated in Figure 3. It is clear that c is also a partial arc-coloring of $H_1 = D[V(C) \cup Z]$. By Lemma 3.1, we can conclude that (H_1, c) is proper connected and $\overrightarrow{pc}(H_1) = 2$.

Claim 3.6 (a) For any two vertices $x \in X$ and $v \in V(D) \setminus X$, there exists a proper directed (x, v)-path in (D, c);

(b) For any two vertices $y \in Y$ and $v \in V(D) \setminus Y$, there exists a proper directed (v, y)-path in (D, c);

Proof. The proof is similar to that of Claim 3.2, and so we omit it here.

We can obverse that $c(X, E(C)) = c(O(C), Y) = c_1$ and $c(X, O(C)) = c(E(C), Y) = c_2$. For every vertex $z \in Z$, we fix an out-neighbor s_{z^+} and an in-neighbor s_{z^-} in C. Now we extend the partial arc-coloring c of D in the following method:

(1) $c(yv) = c_1$ for any arc $yv \in A(Y_2, X_1 \cup Z)$ and $c(yv) = c_2$ for any arc $yv \in A(Y_1, X_2 \cup Z)$;

(2) $c(yx) = c_1$ for any arc $yx \in A(Y_3, X_1)$ and $c(yx) = c_2$ for any arc $yx \in A(Y_3, X_2 \cup X_3)$;

(3) $c(yz) \neq s(zs_{z^+})$ for any arc $yz \in A(Y_3, Z)$ and $c(zx) \neq c(s_{z^-}z)$ for any arc $zx \in A(Z, X)$.

Let X^1 be a subset of X such that for any vertex $x \in X^1$, all the in-arcs of x are uncolored, and let Y^1 be a subset of Y such that for any vertex $y \in Y^1$, all the out-arcs of y are uncolored. Let $X_i^1 = X_i \setminus X^1$ and $Y_i^1 = Y_i \setminus Y^1$ for every i = 1, 2, 3 (see Figure 4). It is obvious that c is also a partial arc-coloring of $H_2 = D[V \setminus (X^1 \cup Y^1)]$.

Figure 4: Vertex partition and arc-coloring of D.

Claim 3.7 (H_2, c) is proper connected.

Proof. To begin with, using Corollary 3.2, we will find a proper 2-path for all $u \in X \cup Y \setminus (X^1 \cup Y^1)$ in H_2 . If $u \in X_1^1$, then we have $Y_2 \to u$ or $Z \to u$ or $Y_3 \to u$. We can obverse that there exists a vertex $s_i \in E(C)$ such that $P_{X_1}(u) = s_i vu$ is a proper path in H_2 , where $v \in Y_2$ or $v \in Z$ or $v \in Y_3$. If $u \in X_2^1$, then we have $Y_1 \to u$ or $Z \to u$ or $Y_3 \to u$. We can obverse that there exists a vertex $s_i \in O(C)$ such that $P_{X_2}(u) = s_i vu$ is a proper path in H_2 , where $v \in Y_1$ or $v \in Z$ or $v \in Y_3$. If $u \in X_3^1$, then we have $Z \to u$ or $Y_3 \to u$. We can obverse that there exists a vertex $s_i \in O(C)$ such that $P_{X_2}(u) = s_i vu$ is a proper path in H_2 , where $v \in Y_1$ or $v \in Z$ or $v \in Y_3$. If $u \in Y_1^1$, then we have $Y_1 \to X_2$ or $Y_1 \to Z$. We can obverse that there exists a vertex $s_i \in E(C)$ such that $P_{Y_1}(u) = uvs_i$ is a proper path in H_2 , where $v \in Z$ or $v \in Y_3$. If $u \in Y_1^1$, then we have $Y_1 \to X_2$ or $Y_1 \to Z$. We can obverse that there exists a vertex $s_i \in E(C)$ such that $P_{Y_1}(u) = uvs_i$ is a proper path in H_2 , where $v \in X_2$ or $v \in Z$. If $u \in Y_2^1$, then we have $Y_1 \to X_1$ or $Y_1 \to Z$. We can obverse that there exists a vertex $s_i \in O(C)$ such that $P_{Y_2}(u) = uvs_i$ is a proper path in H_2 , where $v \in X_1$ or $v \in Z$. If $u \in Y_3^1$, then we have $Y_3 \to X \setminus X^1$ or $Y_3 \to Z$. We can obverse that there exists a vertex $s_i \in V(C)$ such that $P_{Y_3}(u) = uvs_i$ is a proper path in H_2 , where $v \in X \setminus X^1$ or $v \in Z$. If $u \in Y_3^1$, then we have $Y_3 \to X \setminus X^1$ or $Y_3 \to Z$. We can obverse that there exists a vertex $s_i \in V(C)$ such that $P_{Y_3}(u) = uvs_i$ is a proper path in H_2 , where $v \in X \setminus X^1$ or $v \in Z$.

Choose any two distinct vertices $u, v \in H_2$, if $u, v \in X_1^1$, then $us_0Cs_iP_{X_1}(v)$ and $vs_0Cs_iP_{X_1}(u)$ are two proper paths in H_2 . If $u \in X_1^1$ and $v \in X_2^1$, then $us_0Cs_iP_{X_2}(v)$ and $vs_0Cs_iP_{X_1}(u)$ are two proper paths in H_2 . If $u \in X_1^1$ and $v \in X_3^1$, then $us_0Cs_iP_{X_3}(v)$ and $vs_0Cs_iP_{X_1}(u)$ are two proper paths in H_2 . If $u \in X_1 \setminus X^1$ and $v \in Y_1^1$, then $P_{Y_1}(v)CP_{X_1}(u)$ is a proper path in H_2 . If $u \in X_1^1$ and $v \in Y_2^1$, then $P_{Y_2}(v)CP_{X_1}(u)$ is a proper path in H_2 . If $u \in X_1^1$ and $v \in Y_3^1$, then $P_{Y_3}(v)CP_{X_1}(u)$ is a proper path in H_2 . If $u \in X_1^1$ and $v \in V(C)$, then $vCP_{X_1}(u)$ is a proper path in H_2 . If $u \in X_1^1$ and $v \in Z$, then $vs_jCP_{X_1}(u)$ is a proper path in H_2 . By a similar discussion and combining with Claim 3.6, we can show that (H_2, c) is proper connected.

Let D_1 be a digraph by shrinking the subset $X \setminus X^1$ of D[X] to a vertex e, and let D_2 be a digraph by shrinking the subset $Y \setminus Y^1$ of D[Y] to a vertex f. Using DFS for the vertex e in D_1 and the vertex f in D_2 , we can find an in-branching T_e of D_1 and an out-branching T_f of D_2 in time $O(n^2)$, respectively. We can obverse that there is a unique (x', e)-path in T_e for every vertex $x' \in X^1$ and a unique (f, y')-path in T_f for every vertex $y' \in Y^1$. These mean that for every vertex $x' \in X^1$, we can find a shortest directed (x', x)-path P(x', x)such that $x' \in X \setminus X^1$ in D[X] corresponding to every (x', e)-path of T_e , and for every vertex $y' \in Y^1$, we can find a shortest directed (y, y')-path Q(y, y') such that $y' \in Y \setminus Y^1$ in D[Y] corresponding to every (f, y')-path of T_f , see Figure 4.

Then we define another path P(x) for every vertex $x \in X^1$ and another path Q(y) for every vertex $y \in Y^1$:

$$P(x) = \begin{cases} P_{X_1}(x')P(x',x), x' \in X_1; \\ P_{X_2}(x')P(x',x), x' \in X_2; \\ P_{X_3}(x')P(x',x), x' \in X_3. \end{cases}$$
(1)

and

$$Q(y) = \begin{cases} Q(y, y')P_{Y_1}(y'), x' \in Y_1; \\ Q(y, y')P_{Y_2}(y'), x' \in Y_2; \\ Q(y, y')P_{Y_3}(y'), x' \in Y_3. \end{cases}$$
(2)

Note that $P_{X_i}(x')$ and $P_{Y_i}(y')$ have been colored in the previous step for all i = 1, 2, 3. Now we extend the partial arc-coloring c of D in the following method again:

- (1) Color the arcs of P(x) for all vertex $x \in X^1$ with $\{c_1, c_2\}$ such that P(x) is proper;
- (2) Color the arcs of Q(y) for all vertex $y \in Y^1$ with $\{c_1, c_2\}$ such that Q(y) is proper;
- (3) Color the uncolored arcs of A(D) with either c_1 or c_2 .

Note that we can construct such an arc-coloring c of D in time $O(n^2)$. Then we assert that (D, c) is proper connected. In fact, for any two vertices u and v in D, if $u, v \notin X^1 \cup Y^1$, then u and v are proper connected by Claim 3.7. If $u, v \in X^1$, then $us_0Cs_iP(v)$ and $vs_0Cs_iP(u)$ are two proper paths in D. If $u \in X^1$ and $v \in X_1^1$, then $us_0Cs_iP_{X_2}(v)$ and $vs_0Cs_iP(u)$ are two proper paths in D. If $u \in X^1$ and $v \in X_3^1$, then $us_0Cs_iP_{X_3}(v)$ and $vs_0Cs_iP(u)$ are two proper paths in D. If $u \in X^1$ and $v \in Y_1^1$, then $P_{Y_1}(v)CP(u)$ is a proper path in D. If $u \in X^1$ and $v \in Y_1^1$, then $P_{Y_1}(v)CP(u)$ is a proper path in D. If $u \in X^1$ and $v \in Y_2^1$, then $P_{Y_2}(v)CP(u)$ is a proper path in D. If $u \in X^1$ and $v \in Y^1$, then Q(v)CP(u) is a proper path in D. If $u \in X^1$ and $v \in V(C)$, then vCP(u) is a proper path in D. If $u \in X^1$ and $v \in Z$, then $vs_jCP(u)$ is a proper path in D. By a similar discussion and combining with Claim 3.6, we can show that (D, c) is proper connected and $\overrightarrow{pc}(D) = 2$, the result thus follows.

Combining Theorem 3.3, Theorem 3.4, Theorem 3.6 and Theorem 3.7, we can easily show Theorem 3.5.

Remark: Let $D_1 = C_{k+1}$ and let D_2 be a digraph on k+2 vertices consisting of a directed (k+1)-cycle $C = v_0v_1 \cdots v_kv_0$, together with one vertex v_{k+1} , such that $v_k \rightarrow v_{k+1} \rightarrow v_1$. Then we can obverse that D_1 is a k-quasi-transitive digraph with $diam(D_1) = k$ and D_2 is a k-quasi-transitive digraph with $diam(D_2) = k+1$. If $k \ge 4$ and k is even, then we can easily conclude that $\overrightarrow{pc}(D_i) = 3$, where i = 1, 2. Thus, the bound of the condition $diam(D) \ge k+2$ in Theorem 3.5 is sharp.

Acknowledgment

The authors would like to thank the editor and the anonymous referees for their constructive comments and insightful suggestions.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- J. Bang-Jensen, T. Bellitto, A.Yeo, Proper-walk connection number of graphs, J. Graph Theory 96 (2021), 137–159.
- [2] J. Bang-Jensen, Y. Guo, G. Gutin, L. Volkmann, A classification of locally semicomplete digraphs, Discrete Math. 167/168 (1997), 101–114.
- [3] J. Bang-Jensen, G. Gutin, Classes of Directed Graphs, Springer, London, 2018.
- [4] J. Bang-Jensen, J. Huang, Quasi-transitive digraphs, J. Graph Theory, 20(2)(1995), 141–161.
- [5] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Zs. Tuza, Proper connection of graphs, Discrete Math. 312(17) (2012), 2550–2560.
- [6] G. Ducoffe, R. Marinescu-Ghemeci, A. Popa, On the (di)graphs with (directed) proper connection number two, Discrete Appl. Math. 281 (2020), 203–215.
- [7] H. Galeana-Sánchez, I.A. Goldfeder, I. Urrutia, On the structure of strong 3-quasitransitive digraphs, Discrete Math. 310(19) (2010), 2495–2498.
- [8] H. Galeana-Sánchez, C. Hernández-Cruz, M.A. Juárez-Camacho, On the existence and number of (k + 1)-kings in k-quasi-transitive digraphs, Discrete Math. 313 (2013), 2582–2591.
- [9] F. Huang, X. Li, Z. Qin, C. Magnant, Minimum degree condition for proper connection number 2, Theoret. Comput. Sci. 774(2019), 44–50.

- [10] X. Li, C. Magnant, Properly colored notions of connectivity a dynamic survey, Theory Appl. Graphs (1) (2015). Art. 2.
- [11] X. Li, C. Magnant, Z. Qin, Properly Colored Connectivity of Graphs, Springer Briefs in Math., Springer (2018).
- [12] C. Magnant, P. Morley, S. Porter, P.S. Nowbandegani, H. Wang, Directed proper connection of graphs, Mat. Vesn. 68 (2016), 58–65.
- [13] R. Melville, W. Goddard, Coloring graphs to produce properly colored walks, Graphs Combin. 33 (2017), 1271–1281.
- [14] R. Melville, W. Goddard, Properly colored trails, paths, and bridges, J. Comb. Optim. 35 (2018), 463–472.
- [15] J.W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297– 301.
- [16] R. Wang, H. Zhang, Hamiltonian paths in k-quasi-transitive digraphs, Discrete Math. 339(8) (2016), 2094–2099.