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Abstract

In an edge-colored graph (G,c), let d(v) denote the number of colors on the
edges incident with a vertex v of G and 6°(G) denote the minimum value of d°(v)
over all vertices v € V(G). A cycle of (G, ¢) is called proper if any two adjacent edges
of the cycle have distinct colors. An edge-colored graph (G,c) on n > 3 vertices
is called properly vertex-pancyclic if each vertex of (G, ¢) is contained in a proper
cycle of length ¢ for every ¢ with 3 < ¢ < n. Fujita and Magnant conjectured that
every edge-colored complete graph on n > 3 vertices with 6°(G) > "TH is properly
vertex-pancyclic. Chen, Huang and Yuan partially solve this conjecture by adding
an extra condition that (G,c) does not contain any monochromatic triangle. In
this paper, we show that this conjecture is true if the edge-colored complete graph

contain no joint monochromatic triangles.
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1 Introduction

Let G be a simple graph and let ¢ be an edge-coloring of G. We call (G, ¢) an edge-colored
graph. G is called a c-edge-colored graph if its edges are colored in ¢ colors. A subgraph in
an edge-colored graph is called proper if any two adjacent edges in the subgraph are colored
by distinct colors. Rainbow subgraphs and monochromatic subgraphs are two popular
concepts related to proper subgraphs. A subgraph in an edge-colored graph is called
rainbow if all the edges in the subgraph are colored by distinct colors, and monochromatic

if all the edges in the subgraph are colored by the same color.

Edge-colored graphs contribute more to model certain real life problems. Some of them
concerning about genetic and molecular biology, such as determining the spatial order of
chromosomes; see [10, 11, 12]. Recently, the reconstruction of RNA molecule structure has
been obtained by Nuclear Magnetic Resonance (NMR). This model has been extended to
the more complex 3D case in [21]. 3D NMR maps display the results of NMR experiments,
that allow to determine the shape of a biological molecular. Then in [21], the problem has
been formalized as OCLP (Orderly Colored Longest Path Problem), and the authors in
[13, 20] proposed different optimization models on OCLP, based on search of the longest
path on certain expanded graphs. The other power of edge-colored graphs in modeling
different types of problems, including Chinese Postman Problem, has been extensively
discussed in [7, 15, 18].

Actually, we care more about the Hamiltonian properly colored paths and cycles. The
problems of determining the existence of alternating paths, trails and cycles in 2-edge-
colored multigraphs were suggested in [4]. In recent work (Guo et al. [16, 17]]), sufficient
conditions for the existence of more general compatible spanning circuits (a closed trail
that contains each vertex of () in specific edge-colored graphs have been established. The
authors in [5] found a sufficient condition for a complete graph to have a properly colored
Hamiltonian path. In this paper, we mainly consider proper cycles in an edge-colored
graph. A characterization of c-edge-colored graphs containing properly colored cycles was
presented by Yeo [22] and generalized in [1] for properly colored closed trails. In both
cases, the proposed results were used to construct polynomial time algorithms to check
whether an edge-colored graph contains a properly colored cycle or a properly colored

closed trail.

Once a cycle is found and denoted by the cyclic arrangement of its vertices such that two
vertices are adjacent if they are consecutive in the sequence and nonadjacent otherwise

in an edge-colored graph, one can easily checked whether it is proper or not. So, we often



omit the checking process in the following.

In an edge-colored graph (G, c¢), let d%(v) denote the number of colors on the edges
incident with a vertex v of G and let 6°(G) denote the minimum value of df,(v) over all
vertices v € V(G). When no confusion occurs, we use d°(v) instead of dg,(v). The length
of a path or a cycle is the number of its edges. Let A™"(K¢) denote the maximum
number of edges of the same color incident with a vertex of K¢. An edge-colored graph
(G, c) is called properly Hamiltonian if it contains a properly colored Hamiltonian cycle.
An edge-colored graph (G, ¢) is called properly vertex-pancyclic if every vertex of the graph

is contained in a proper cycle of each length ¢ for every ¢ with 3 < /¢ < n.

In 1952, Dirac [9] obtained a classical theorem that if 6(G) > %, then G is Hamiltonian.
Inspired by this work, there have appeared lots of results and problems on the existence
of proper cycles in different types of edge-colored graphs. In 1976, Bollobas and Erdos [6]
conjectured that every K, with A™"(K¢) < | 5] contains a properly colored Hamiltonian
cycle. The author in [2] showed that for any € > 0, there exists an integer ng such that
every K, with A™"(K;) < (§ —¢)n and n > ng contains a properly colored Hamiltonian
cycle, which implies a result obtained by Alon and Gutin [3] that for every e > 0 and
n > ny(e), any complete graph K, on n vertices whose edges are colored so that no vertex
is incident with more than (1—1/v/2—¢)n edges of the same color, contains a Hamiltonian
cycle in which adjacent edges have distinct colors. Moreover, for every k between 3 and

n, any such K, contains a cycle of length k in which adjacent edges have distinct colors.

2 Preliminaries

Fujita and Magnant in [14] posed the following conjecture.

Conjecture 1 ([14]). Let (G,c) be an edge-colored graph on n > 3 wvertices. If 0°(G) >

n+1

5> then G is properly Hamiltonian.

They showed there that the condition 6¢(G) > ”T“ in Conjecture 1 is sharp by con-

structing an example in [14]. Then, they further posed the following conjecture.

Conjecture 2 ([14]). Let (G,c) be an edge-colored complete graph on n > 3 wvertices. If
¥ (G) > ”T“, then G is properly vertex-pancyclic.

Chen, Huang and Yuan partially solved the conjecture by adding a condition that (G, ¢)

does not contain any monochromatic triangle.



Theorem 2.1. [§] Let (G, c) be an edge-colored complete graph on n > 3 wvertices such
that 6°(G) > ™. If (G, ¢) contains no monochromatic triangles, then (G, c) is properly

vertex-pancyclic.

They employed a term named as “follower vertex”; see the following definition.

Definition 2.1. Let C' = vjvs... vy be a cycle in an edge-colored graph (G, c) and let
Vey1 = v1 and vy = ve. We say that a vertez x € V(G) \ V(C) follows the colors of C
increasingly if c(xv;) = c(vvirr) for all t = 1,2,...,¢, and a vertexr x € V(G) \ V(C)
follows the colors of C' decreasingly if c(xv;) = c(vivi—1) for all i = 1,2,... 0. In either
of these cases, we say that the vertex x € V(G)\ V(C) “follows” the colors of C' and it is

also called a follower vertex.

In the proof of Theorem 2.1, they showed two claims which is stated as follows since

we will use them later in our proof of Lemma 3.2.

Claim 1. Suppose there is a cycle C of length € containing v1, but no proper cycle of length
¢+ 1 containing vy in (G, c), and suppose there is no monochromatic triangle containing
two vertices in V(C) and a vertex in V(G)\ V(C). If there are two vertices which follow
the colors of C in different directions, then c(v;viy1) = c(vizovirs) for all indices i with
1 <@ < €—1, which implies that C' is an even cycle with two colors appearing alternatively

on C.

Claim 2. Suppose there is a cycle C of length £ containing vy, but no proper cycle of length
¢+ 1 containing vy in (G,c), and suppose there is no monochromatic triangle contains
two vertices in V(C') and a vertex in V(G) \ V(C). If the number of follower vertices is
larger than 2, then

(1) for every follower vertex w and every two distinct vertices v; and v; in C, we have
c(wv;) # c(wv;), and

(2) C has the DP,, for every w € Wy, where DP,, is defined in Definition 2.4.

In this paper, we solve the conjecture by adding a looser condition that the edge-colored
complete graph can have monochromatic triangles but not any two joint monochromatic

triangles. Our main result is stated as follows.

Theorem 2.2. Let (G, c) be an edge-colored complete graph on n > 3 vertices. If §°(G) >

n+1
2

pancyclic.

and (G, ¢) contains no joint monochromatic triangles, then (G, c) is properly vertex-



The following new definitions are needed in the sequel.

Definition 2.2. Let v; and v; be two distinct vertices on a cycle C. The distance between
F

v; and v; (denoted by d;;) is the length of the shortest path of viavj and v; Cvj. Appar-

ently, di; = dj; = min{|i — j|, |j —i|, |i+1—j|,|j + 1 —i|} < L. Purthermore, we say that

v; is in front of v; on C if d;; = |v;C'vj.
The authors in [14] gave a property on set version.

Definition 2.3. (Set version) In an edge-colored complete graph (G,c), a set A of
vertices is said to have dependence property with respect to a vertexr v ¢ A (denoted by
DP,) if c(ad’) € {c(va),c(va’)} for every two vertices a,a’ € A.

Then, based on the definition on set version, we give a similar definition on vertex

version.

Definition 2.4. (Vertex version) In an edge-colored complete graph (G, c), a pair (u, w)
of distinct vertices is said to have dependence (independence) property with respect to
another vertex v (denoted by DP,) if c(uw) € {c(vu),c(vw)} (c(uw) ¢ {c(vu),c(vw)})

for every two vertices u,w € A. The set of these vertices pairs is denoted by D, (I,).

The following is an important fact appearing in [14], which will be used later.

Fact 1. [14] If a set A of vertices in an edge-colored complete graph (G,c) has the DP,

for some vertex v & A, then there exists a vertex a € A such that

a) dy(a) <2 and

b) if |A| > 2, then at least one of the colors used at a in A is c(va).

Theorem 2.3. [1}] Let (G, ¢) be an edge-colored completed graph on n > 3 vertices such

that 6¢(G) > ”T“ Then every vertex of (G, c) is contained in a rainbow triangle.

Theorem 2.4. [1}] Let (G, ¢) be an edge-colored completed graph on n > 3 vertices such
that 6°(G) > ”T“ If n > 4, then every vertex is contained in a proper cycle of length 4,

and if n > 13, every vertex is contained in a proper cycle of length at least 5.

In this paper, a subgraph induced by V' (C) union a vertex w € V(G)\ V(C) is denoted
by G¢. Then, from Chen, Huang and Yuan [8] we can get the following properties about
Ge.



Proposition 2.1. Suppose there is no proper cycle of length £+ 1 containing vy in (G, c).
Let P be a proper path on C. Let v, and v, be two distinct vertices in V(P) such that
c(wv,) = c(wwy). If there are no monochromatic triangles containing w in (Ge,c), then
c(wua—;) = c(wup—;) (c(wvari) = c(wvps;)) for 1 < i < L if w follows the colors of C

increasingly (decreasingly), (vo+; and vyy; are in V(P)).

Proposition 2.2. Suppose there is no proper cycle of length £+ 1 containing vy in (G, c).
Let P be a proper path on C. If w follows the colors of P increasingly (decreasingly) and
there are two vertices v;,v; € V(P) such that v; is in front of v; and c(wv;) # c(wv;),
then we have (Viy1,v41) € Dy ((vi—1,vj-1) € Dy).

Proposition 2.3. Suppose there is no proper cycle of length £+ 1 containing vy in (G, c).
Let P be a proper path on C. If w follows the colors of P increasingly (decreasingly) and
there are two vertices v;,v; € V(P) such that v; is in front of v; and (v;,v;) ¢ D,,, then

we have c(wv;_1) = c(wvj_1) (c(wvit) = c(wvjsq)).

3 Proof of Theorem 2.2

In this section we will use a few lemmas and propositions to prove our main result
Theorem 2.2.

Let V} be a subset of V(G) and w a vertex of G not in V;. We give a vertex-induced
subgraph G[V;] a coloring orientation. First, we orient the edges whose ends are the vertex
pairs in D,,, that is, orient v;v; by ;0 if ¢(v;v;) = e(wv;), vv; by ;0 if c(viv;) = e(wv;),
and arbitrarily orient v;v; if c(wv;) = c(wv;). Next, orient v;v; if (v;,v;) € I, by two
inverse arcs v;0; and ¥;0;. Thus, we get a digraph D(G[V4]) of (G[V4],¢), and Ay, (v) <
dEJ(G[Vl])(U) + 1.

In the following, we always assume that (G, c¢) is an edge-colored complete graph on
n > 3 vertices such that §°(G) > ”TH, and does not contain any joint monochromatic
triangles. From Theorems 2.3 and 2.4, we know that every vertex v of (G, ¢) is contained
in some proper cycles of lengths 3 and 4. To prove that (G, ¢) is properly vertex-pancyclic,
it suffices to show that if a vertex is contained in a proper ¢-cycle in (G, ¢) for some ¢ with
4 < ¢ <n—1, then it is also contained in a proper (¢ + 1)-cycle in (G, c).

Suppose that (G,c) has a proper cycle C' = vyvy - --vpv; of length ¢ and let v; = v,
Let W1(C') be the set of vertices in V(G) \ V(C) such that for each vertex w € Wi,
the edges in d(w, V(C')) have just one color in (G,c). Let W5(C') be the set of vertices
in V(G) \ V(C) such that each vertex w € W; follows the colors of C. Let W3(C) =
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V(G)\ (V(CYUW(C)uW,(C)). Note that V(C), W, (C), Wa(C), W5(C) form a partition
of V(G). For convenience, if v, € V(C), we regard vy and vgi, (or vx_) as the same
vertex in the sequel. First, we analyze the coloring structure on (G[V(C) U w],¢) for
w e Ws3(C).

For each vertex v € V(G), we use d(v) to denote the set of edges incident to v in G.
Moreover, for two disjoint subsets X,Y C V(G), we use 9(X,Y) to denote the set of
edges between X and YV in G, ie., 0(X,Y) = {zy € E(G) : x € X,y € Y}. 0({z},Y)
will be simply written as d(x,Y). The colors of d({z},Y) will be simply written as
C(x,Y), that is, C(z,Y) = {c(zy) | y € Y}. For a cycle C' = vyvy ... v and two vertices
v, v € V(C) with 1 <i < j </, we use v; C'vj and vi%vj to denote the paths v;v;41 . .. v,

and v;v;_1 ... V10V_1 . .. v}, Tespectively.

Lemma 3.1. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G,c).
Then for any vertex w in W3(C), we can find three and only three vertices vy(w), Vyw) and

Vo) i V(C) which can divide V(C) into three subsets:

Pl(w) = {Vsw), Vaw)+1s - - - Vyw) }»
Pé(w) = {Uy(w)+17 Uy (w)+25 - - - ;'Uz(w)}7
Pg(w) = {Uz(w)—l—ly Vz(w)+25 - - - ,Ua;(w)—1},
such that
(¢ W) = (Vg vx(w)ﬂ) while c(WVgw)-1) 7 (Va(w)Va(w)—1);
(1) (WU (w)) = C(Va(w)Vz(w)—1) While c(WV2w)+1) 7 C(Va(w)Va(w)+1),

Woy(w)) = c(’wvy ()+1) = C(Vy(w)Vy(w)+1);

wv;) = c(vvy)  for v; € Ph(w),

wvl) =c(vvi_1)  for v; € Pi(w),
c(wvy) for vi,v; € P3(w).

(2) < ¢

Proof. (1) Since w does not follow the colors of C, suppose, to the contrary, that c(wv;) #
c(vvigq) for all v; in V(C). Thus, (G¢, ¢) has no monochromatic triangles containing w.
Then from Lemma, we know that w follows the colors of C' decreasingly or w is a single
color vertex of C, a contradiction. Thus, there exist two requested vertices v () and v, ().

As we know, c(wvip1) € {c(wv;), c(vig1vip2)} if c(wy;) = c(vvigr) and c(wv;—y) €
{c(wv;), c(vi—1v;—2)} if c(wv;) = c(v;v;—1). Since w dose not follow the colors of C, there

exist two vertices vy, () and vy, such that c(wvy, w)) = c(Wy, @w)-1) and c(wvy,w)) =



Uy(w)+1 Vy(w)

Figure 1: G[V(C) U {w}] used in the proof of Lemma 3.1.

c(WVyy(wy+1).  Thus, Wy, (w)Vy (w)—1 AN WUy, () Vys(w)+1 are monochromatic. Then, we
have vy(w) = Vy,(w) = Uy (w)—1- As (G, ¢) has no joint monochromatic triangles, vy, Vy(w)
and v, are the only three requested vertices.

(2) Since vp(w), Vy(w) and vy, are the only three vertices satisfying (1), for any vertex
v; € P3(w), we have c(wv;) ¢ {c(v;vi_1),c(vvigr)}. If there is a vertex v; such that
c(wv;) # c(wv;), then there must exist two adjacent vertices vy, vpi1 € P2(w) on C
such that c(wvy) # c(wvgs1). Thus, vkka+187jk is a requested cycle; see Figure 1, a

contradiction. [ |

Note that if C' is a proper cycle of length ¢ but does not contain vy, then we can also
divide V(C') into three parts such that each part satisfying the results stated in Lemma
3.1. According to Lemma 3.1, for any w € W5(C'), wvy(u)Vy@w)+1 is a monochromatic
triangle. We denote the color of this monochromatic triangle by ¢,. Since (G, c) has no

joint monochromatic triangles, [W3(C)| < £.

Lemma 3.2. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G,c). If
|W2(C)| Z 2; then

(1) for every vertex w € Wa(C') and every two distinct vertices v; and v; in C, we have
c(wv;) # c(wv;), and

(2) C has the DP,, for every w € Wy(C).

Proof. First, we can assert that all vertices in W5 following the colors of C' in the same
direction. Suppose the contrary holds. Then, from Claim 1 we have c(w;v;) = c(wivi42)
for all indices ¢ with 1 < i < ¢. Since (G,c¢) has no joint monochromatic triangles,
there exists at most one index k; for w; € Wy(C') such that c(w;vy,) = c(vk, vk, +2) with
1 < k; < /. Hence, wwlvlvgwgv48w, vlwlvgv4w5v481)1 and vp_swivp_1v1Wes C'vp_o are
cycles of length ¢ 4 1 containing v;. Then, we can easily verify that at least one of them

is proper, a contradiction. The assertion follows. Thus, there are no monochromatic



triangles containing a vertex in W5(C') and two vertices in V(C'). Then, from Claim 2 we

can get the result. |

In the following, we consider the relation between Wy(C') and W3(C). According to
Lemma 3.1, we define some new vertex sets. Let Ro(w) = V (vy(w) C vpw)) € PA(w) such
that vy(uw)+1Vy(w) - - - Ur(w) is @ longest rainbow subpath of vy (u)41Vy(w) - - - Va(w). In a similar
way, we define Qc(w) = V(vy(w)+181}q(w)) C PZ%(w). For convenience, we relabel the
vertices of C' depending on w € W3(C') on a clockwise direction by ujus - - - u, such that

UL = Vy(w), Up = Vg(w), Ut = Vz(w)s Us = Vg(w) aNd Ug = Vp(w).

Lemma 3.3. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G,c).
If Wo(C) # 0, then when |W3(C)| > 2, C' is an even cycle with two colors appearing
alternatively on C. Furthermore, |Wy(C)| < 1.

Proof. Since |W3(C)| > 2, there is a vertex w € Wy such that u; # v;. Without
loss of generality, suppose w' € W5(C') follows the colors of C' increasingly. To avoid
up—w'upwus Cup—y being a requested cycle, we have c(wuy) € {c(wusy),c(w'us)}. If
c(wug) = c(w'uy), then c(ww’) ¢ {c(wus),c(w'us)}. Hence, upw'wus Cuy is a request-
ed cycle. Thus, c(wuy) = c(wuy). Then, u, ¢ Pl(w). Since w ¢ Wi, we have
|PA(w)| > 2, that is, u3 € P%(w). To avoid uzw'UQwu;;aué being a requested cycle,
we have c(w'us) = c(w'ug). Thus, C' is an even cycle with two colors appearing alterna-
tively on C'. According to Lemma 3.2, we know that |W5(C)| < 1. |

Proposition 3.1. Let (G,c) be an edge-colored complete graph on n > 3 vertices such
that 0°(G) > ”T“, and not contain any joint monochromatic triangles.

(1) If Wi(C) # 0, then (G, ¢) is properly vertez-pancyclic.

(2) If [Wo(C)| > 2, then (G, c) is properly vertez-pancyclic.

(3) If [Wa(C)| =1 and W5(C) = 0, then (G, ¢) is properly vertex-pancyclic.

Proof. Suppose, to the contrary, that there exists a vertex v which is contained in a proper
(-cycle C' in (G, ¢) for some ¢ with 4 < ¢ < n — 1, but no proper cycle of length ¢+ 1 in

(G, ¢) contains vertex v.

(1) Let w € Wi(C) and w' € WH(C). If c(ww’) # c(w,V(C)), then at least one of
’U1U)2’U)1U38U1, 'UQU}Q’LU1U48U2 and ’0311}271)11}581)3 is a proper cycle of length £+ 1 containing
v1. Thus, c(ww') = c¢(w, V(C)), that is c(w, W5 (C)) = c(w, V(C)).

If [W1(C)| = 1, then for w € W;(C), we have d*(w) < 1+ [W;| <1+ £ =52 <2t

2
a contradiction. If |[WWy(C)| > 2, then we can assert has W;(C) has the DP,,. Since
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(G, ¢) has no joint monochromatic triangles, there is at most one edge on C' colored by
c(w,V(C)). Suppose, to the contrary, that W;(C) has no DP,,. Then, there are two
vertices wy,wy € Wi such that c(wywse) ¢ {c(viwy),c(viwy)}. Then, at least one of
vlw1w203801 and vlw2w1v38v1 is a requested cycle, a contradiction. According Fact 1,
there exists a vertex w € W1 (C) such that dyy, (w) < w, and at least one of the
colors used in W; at w is e¢(wwvy). Hence, d(w) < WHW;),(CH < W—i—% <

a contradiction.
In the following, we might as well suppose W1(C) = 0.

(2) Since |[W5(C)| > 2, from Lemma 3.2, V(C') has the DP, for w € W5(C). If
W3(C') = ), the result follows. If W3(C') # 0, then from Lemma 3.3 we have |[W3(C)| < 1.
Thus, there is a vertex v € V(C') such that d°(v) < % +1 <2

(3) According to the proof of Case 3 of Theorem 2.1, (G,c¢) has a monochromatic
triangle containing w. Otherwise, V(C) has the DP,. Then, there is a vertex v € V(C)
such that d°(v) < "T“ Let v, and v, be two distinct vertices on C such that ¢(v,, vp) € I,
(suppose may as well v, is in front of v, on C). If wvivig,, is not monochromatic
for any 1 < ¢ < /¢, then c(wv,_x) = c(wvy_y) for k = 0,1,...,¢ — 1. Consequently,
c(wvy) = c(WVgytd,,) for every vertex v, € V(C) and for every positive integer k (except
1 when v, = v,). Furthermore, let (v,,v,) be such a vertex pair in I, that d,, =
min {d, ; | (d;,d;) € I,}, then £ =0 (mod d,p).

Let wv,v, be a unique monochromatic triangle containing w (we may as well suppose
v, is in front of v, on C'). Then, we assert d,, = d,p. Suppose, the contrary holds. Then,
we can get that c(wv;) = c(Wvitra,,) for every vertex v; € V(C) and for every positive
integer k (except 1 when v; = v,). Thus, c(wv,) = c(Wvyira,,) for every positive integer
k. Then, d,, = qd,, where ¢ = 2,--- ’ZT_,:' Otherwise, there is an integer p such that
Aotpdgy, < dap- SinCe C(WUz1pq,,) = c(wWv,) = c(wvy), we have (Veipd,,,vy) € Ly, Which

contradicts the choice of (v, vp,). Therefore, Z—’bl > 3. Hence, d°(w) < 1+d,, < 1+251 <

n+1
2 Y

a contradiction.

For convenience, we relabel the vertices of C' by s1s9---s, on a clockwise direction
such that s; = s, and s144,, = v,. Let s, be such a vertex that (sq,sq14,,) € l» while
(8441, Sqt+dap+1) € Dw. Then, from Proposition 2.3 we have (s;,5i14,,) € Dy for ¢ +1 <
i < 0 and c(ws;) = c(wsiyq,,) for 1 < i < g. Since (G, c) has no joint monochromatic,
{(s4,8i4d,,),1 < i < q} € I,. Suppose that there is such a vertex pair (s, s,) in I,
while not in {(s;, Sita,,),1 < i < ¢} (we may as well suppose s; is in front of s).

Then, according to the above content, we have dy; > dop. Thus, c(ws;) = c(wsijra, ;)

10



for every vertex s; € V(C) and for every positive integer k (except 1 when s; = sy).
Then, C(w,C) = {c(ws;) | s; € V(slﬁsudﬁg)}. Since c(ws1) = c(ws14d,,), d(w) <
1+dpy,—1 < 22 Thus, {(s;, Sitd,,), 1 <i<q} =1,

Let Vi = V(s4a,, C's¢) and Vo = V(C) \ Vi. Since Vi x Vi N1, = 0, V; has the DP,,
Thus, there is a vertex s € V; such that df, (s) < M = 2209t Ginee (5,15) N 1, =
0, c(ss;) € {c(ws),c(ws;)} for s; € Va. Thus, C(s,V2) C C(w, V) U {c(ws)}. Hence,

de(s) < %d“’bﬂ + d,p. Apparently, ¢ < d,p. Now we give a coloring orientation for

(G —w,c). Apparently, the edge set which is oriented arbitrarily is {s;siya,,,2 <1 < g}.
Thus, D(G — w) has at most W + ¢ — 1 arcs. Therefore,
d°(G —w) <d (DG —-w))+1
n—2 q—1
< 1
S + — +
< n 4 da,b —1
2 n—1
< n+1
5
There exists a vertex with color degree less than ”T“ |

Note that there is a special class of vertices w; in W3(C') such that | PL(w;)| = |PA(w;)| =
1. By repeating the proof procedure of Proposition 3.1, we can get Proposition 3.2.

Proposition 3.2. Let (G,c) be an edge-colored complete graph on n > 3 wvertices and
n+1
2
w; € W3(C) that |PA(w;)| = |PA(w;)| =1, then (G, ¢) is properly vertez-pancyclic.

with no joint monochromatic triangles such that 6¢(G) > If there exist such vertices

Hence, in the following we suppose that either |PL(w)| or |PZ(w)]| is larger than 1 for
each w € Wj.

Lemma 3.4. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G,c). If
|Wo(C)| < 1, then |C(w,C)| > 3 for w € W3(C).

Proof. The result follows when |W3(C)| = 1. Suppose now |W3(C)| > 2. If W5 # (), then
from Lemma 3.3, we know that C'is an even cycle with two colors appearing alternatively
on C. Let w; € Wy and wy € W5. Without loss of generality, assume that w; follows
the colors of C' increasingly. Then, we assert c(wjws) € C(wsy,C'). If u; # vy, then to
avoid ulw1w2u28u1 being a requested cycle, we have c(wyws) € {c(waus), c(wiur)} C
C(ws, C). If u; = vy, then to avoid w1u4u3u58u1w2w1 being a requested cycle, we have
c(wiwy) € {c(wauy), c(wiuy)} € C(we, C'). Thus, d°(w) < |C(w, C)| + |W3(C)| — 1. Then,
IC(w,C)| > 3. |
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In the following we prove some lemmas to make the coloring structure of (G[V(C) U

{w}], ¢) clear for w € W3(C).

Lemma 3.5. Suppose there is no proper cycle of length { + 1 containing vy in (G, c). For
w € W3(0), if |Pé(w)| > 2, then Ro(w) = PA(w) and Qc(w) = PA(w).

Proof. We prove Lemma 3.5 by contradiction. Assume that there is a vertex u; € Re(w)
such that ¢(wu,) = c(wu;). Then, (us, u;) € I,,. From Proposition 2.3, we have c(wus_1) =
c(wu;_1). Since |P(w)| > 2, c(wus_s) = c(wu;_1) # clwu;_g). Thus, c(us_1u;_1) €
{c(usus_1), c(u;_1u;)}; otherwise, wui_ggus_lui_l us_ow is a requested cycle. Then,
c(us—1ui—1) # c(us—ous—1). Therefore, wui_g(ausuiaus_lui_lw is a requested cycle, a

contradiction. ]

Now we define a cycle C,, = ui,lwuiﬂﬁuiﬂ where u; € {uy,us}. Taking an example
of which C,, is proper, we can get a conclusion. Suppose there is no proper cycle of
length ¢ + 1 containing vy in (G, ¢). If there is a vertex u; such that c(uju;) # c(uuitq),
then c(uju;—1) € {c(uru;), c(ui—1u;—o)}. Otherwise, wugaui_luluiaufw is a requested
cycle. Thus, c¢(uju;_1) # c(u;u;—1). By repeating this proof procedure, we can get that
c(urug) € {e(ugugyr), clug_qug)} and c(ugug) # c(ugugyr) for uy € V(ui_lgm). Notice
that if c(uiu;) = c(uiw;), then c(uguj_1) = c(uiu;), and once there is a vertex u; such
that c(uiu;) = c(ujuj_1), then c(ujuy) = c(ugug—1) for uy, € V(ujguz). Consequently,
c(urug) € {c(ugw;), c(ugug—1)} for up € V(w3 Cug). In a similar way, if there is a
vertex u; such that c(uju;) # c(uju;—q), then c(ujug) € {c(ugu;), c(ugugsq)} for vy €
V(i C ).

Lemma 3.6. Suppose there is no proper cycle of length £+ 1 containing vy in (G,c). For
w € W3(C), we have

(1) Re(w)\ {u.} and Qc(w) \ {up} has the DP,;

(2) (Ro(w) \ {ua}, Qo(w) \ {ws}) € Du;

(3) if neither PL(w) \ Rc(w) nor PA(w) \ Qc(w) is empty, and then (u,, Qc(w) \
{uz}) U (Ro(w) \ {u1}, ) € Dy.

Proof. (1) Suppose, to the contrary, that there exist two vertices u; and u; in Re(w)\{u,}
that have no DP,, (we might as well assume that u; is in front of u;). Then, according to

Proposition 2.3, we have c¢(wu;_1) = c¢(wu;_1), a contradiction.

(2) Suppose, to the contrary, that (UZ’UL) € I, where u; € Re(w) \ {u,} and u; €
Qc(w) \ {up}. Let C" = wuy C'uju; Cugui—y Cujpqw be a cycle of length ¢ + 1 containing
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vi. If w1 # ug, then according to (1) we have c(uju;—1) € {c(wuy), c(wu;—1)}. Thus,
c(ugui—1) ¢ {c(uguz), c(ui—1u;—2)}. Since c(wuy) # c(wujiq), C' is proper, a contradiction.
If u;oy = u,, then we can get that c(uju,) € {c(uiw),c(uquqa—1)}. Otherwise, C is
proper. Thus, c(uju,) # ¢(vavar1). Hence, c(ujug) € {c(uqugsq), c(ugug_1)} for uy €
V(ug__l u<2_) Then, c(uiujy1) # c(ujr1ujy2). Therefore, wus Cuju; Curujyg Cuimqw or

wuy Cuju; Cugujp C'u;qw is a requested cycle, a contradiction.

(3) We prove this statement by classified discussion. If c(wu,_1) = ¢y, then e(ujug_1) #
c(ug_1uq). Since C,, is proper, c(ujug) € {c(uitg_1), c(upug_1)} for uy € V(uq_oCus).
Therefore, c(ujuy) ¢ {cw,c(ugugyr)} for up € PZ(w). Assume that there exist two
vertices u; € Ro(w) \ {ui} and u; € Qc(w) \ {u2} such that (w;,u;) € I,. Then,
c(ugug) & {c(usuig), c(ujui1)}. Since c(urujir) ¢ {cw, c(ujpaujin)} and c(wuiy) #
c(wy), wuy Cujuy Cugug Cu;—qw is a requested cycle, a contradiction. Symmetrically,
the result holds if ¢(wupy1) = ¢y Now suppose ¢, € {c(wu,_1), c(wupyq)}. By repeating
the proof procedure of (2), we know that (ug, Qc(w) \ {up}) U (Re(w) \ {ua}, up) C Dy,
Hence, for u;,u; € Ro(w) U Qe(w) \ {ur, uq, up} we have c(wu;) # c(wu;). We prove
(ta, up) € Dy, in the following cases by contradiction.

If c(wug—1) = c(wuy), then c(uiug—1) € {c(Uug—1uq—2), c(urue)}; otherwise, qugubuag
ulua,lgubﬂw is a requested cycle. When c(uju,—1) = c(ug—1uq—2), we have c(ujuy) =
c(ugug_q) for up € V(ug_1Cus). Hence, c(ujupyr) = c(uptpr) ¢ {c(uiug), c(upsiuprz)}-
Then, wu26ubua uup1 C'ug—yw is arequested cycle, a contradiction. When c(uju,—1) =
c(uyug), we have c(ujug—1) ¢ {c(ug—1uq—2),Cw}. Then, QUU,[(@UQU[) C’ulua_laubﬂw is a
requested cycle, a contradiction. Symmetrically, the result holds if c(wuyi1) = c(wug).

The last case is that c(wu,—1) # c(wuy). According to Proposition 2.1, we know that
there is a vertex u; € Rco(w) such that c(wus) = c(wu;). Since c(wuy) ¢ {c(wupya),
c(wu;_1)}, c(glubﬂ) € {c(upr1up), c(uiug)}; otherwise, one of wug C'upyqu Cupyow and
wug Cupyqug Cusus Cu;_qw is a requested cycle. At the same time we have c(ujupyq) €
{c(upsrups2), c(uyug)}; otherwise, wug<EUQUb<5u1Ub+1 6%_110 is a requested cycle. There-
fore, c(ujups1) = c(ugug) = c(upyrups2). Thus, we can get c(ujug) = c(ugugs1) for ug €
V(ups1 <’lig), Hence, c(ujuq—1) = c(ug_1uq) & {c(uiwg), c(ug—2uqa—1)}. Then, wus Cupu,

Urg—1 Cupqw is a requested cycle, a contradiction. So far, we have completed the
proof of (3). |

Lemma 3.6 (1) and (2) claim that for u;,u; € Re(w) U Qo(w) \ {u1, uq, up}, we have
c(wu;) # c(wu;). Lemma 3.6 (3) claims that if neither PL(w)\ Re(w) nor PZ(w)\ Qc(w)
is empty, then for u;, u; € Ro(w) U Qc(w) \ {u1}, we have c(wu;) # c¢(wu;). Then, from
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Lemmas 3.5 and 3.6, we can get the following result.

Proposition 3.3. Let (G, ¢) be an edge-colored complete graph onn > 3 vertices such that
(G) > ”TH, and not contain any joint monochromatic triangles. For any w € W3(C),
if neither PL(w) \ Ro(w) nor PA(w) \ Qc(w) is empty, then (G,c) is properly vertez-

pancyclic.

Proof. Suppose, to the contrary, that there exists a vertex v which is contained in a proper
(-cycle C'in (G, ¢) for some ¢ with 4 < ¢ < n—1, but no proper cycle of length /+1in (G, ¢)
contains vertex v. According to Lemma 3.5, we can get |P2(w)| < 1. If P3(w) = 0, then
c(wug—1) = c(wupr1) = ¢,; otherwise, (G,c) has a reques&ed cycle. Thus, c(usupia) #

c(upsotprs). Then, wug ub+1u1u2ub+28Ugw OT WU Uptq Cuzub+28uzw is a requested

cycle, a contradiction. If |P3(w)| = 1, then c(w, P2(w)) = c(wuq_1) = c(wuy1) = cy-
Thus, c(ujuyr) = c(uggius). Since Cy, is proper, we have c(ujuy) = c(ugugsi) for
u € Pé(w). Hence, wuqu,_1 is monochromatic, a contradiction. |

Thus, if there is no proper cycle of length ¢+ 1 containing vy in (G, ¢) and W5(C) # 0,
then for any w € W5(C'), either PA(w) \ Ro(w) or P2(w) \ Qc(w) is empty. Hence, we
might as well suppose that P%(w) \ Qc(w) = 0, that is Qo (w) = P(w).

Proposition 3.4. Let (G,c) be an edge-colored complete graph on n > 3 wvertices such

that 6¢(G) > ”TH, and not contain any joint monochromatic triangles. If for any w € Wy,
—

Ph(w) = V(u38u2) and Péu1 (u1) = V(usCyusz), and u46u2 is a rainbow path, then

(G, ¢) is properly vertez-pancyclic.

Proof. Suppose, to the contrary, that there exists a vertex v which is contained in a proper
(-cycle C' in (G, c) for some ¢ with 4 < ¢ < n — 1, but no proper cycle of length ¢ + 1
in (G, c) contains vertex v. Since wuk,lgugukaulw is of length ¢ 4+ 1 and contains vy,
we have c(uquy) € {c(ugus), c(ugugsq)} for uy € V(u38u1). According to Lemma 3.6, we
have V(u5aw) has the DP,,. Then, there is a vertex u, such that d;(%aw)(up) < 83
If c(uguy) = c(uptpr), then dé(u,) < 41 < 2l g contradiction. Thus, c(usu,) =
c(uguz) # c(upupiq). Then, to avoid wugupguluiCuguiHBup,lw for u; € V(usCup_q)
and wu;_; C uqu%uiug up—w for u; € V(upi1 Cup) being requested cycles, we have
c(usu;) € {c(wus), c(wu;)} for u; € V(usCuy) \ {u,}. Note that if there is another
vertex u such that c(uug) = c(ugug) # c(wu), we have (us, V(uysC'up—q)) € DP,,. Then,
uz € Re(w); otherwise, (G, ¢) has joint monochromatic triangles. Thus, there is a vertex
n+tl

in V' (us C'ug) whose color degree is less than “3=, a contradiction. Hence, u, is the unique

vertex such that c(ugu,) = c(ugus) # c(upupr1). If n < 7, we can easily find a vertex
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of d°(u) < ™. If n > 8, we give (G[V(ug,au@)],c) a coloring orientation. If there is a
distinct vertex u such that df(u) > 52, then d°(u) < 4! < = a contradiction. Thus,

db(uy) > (6_4)2@_5) — (Z_5)2(£_6) =(—5. Then d°(u,) <4, a Contradlctlon. |

Lemma 3.7. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G, c).
Then for w € W3(C) with P2(w) # 0, we have

(1) (Re(w) \ {ur, ua}, up) U (ta, Qe (w) \ {uz, up}) € Dy
(2) if all of |PL(w)], |P2(w)| and |PE(w)| are larger than 1, then (uq,up) € Dy,

Proof. (1) The proof method is the same as that of Lemma 3.6 (2) and (3).

(2) From (1) and Lemma 3.6 (2) , we can get (Ro(w)\{u1}, Qc(w)\{u2}) \{(ta,us)} C
D, If c(wu;) = c(wuz), we have a = £ and b = 3. Thus, c¢(w, P2(w)) # c(wus); otherwise,
d*(w) = 2 < ™ a contradiction. Thus, c(w, P&(w)) # c(wu,) or c(w, Pa(w)) # c(wus)
holds. Without loss of generality, suppose c(w, P& (w)) # c(wus).

Suppose, to the contrary, that c(usup) € {c(uqtarr),c(upup—_1)}. Since |P2(w)| > 2,
we have u, = us; and w, = w;. Since c(wugrs) # c(wug), we can get c(uguyr) €
{cw, c(ugrug) b If c(uguiyr) = ¢y, then c(w, P2 (w)) # cy. To avoid wuy Cuguy Cugtiyy
us_1w being a requested cycle, we have c(ugusr1) = c(usr1us2). Hence, c(ugugs_1) =
c(ugug_1). Then, wuggutusﬁuws_l(autﬂw or wulgusutguws_lgutﬂw is a request-
ed cycle, a contradiction. If c(ugusi1) = c(uptyr1) # Cw, then c(uguiyr) # (o).
Hence, MU38UtU58U2Ut+1<EUS,1w is a proper cycle of length ¢ containing v, a contra-
diction. |

Lemmas 3.6 (2) and 3.7 claim that if all of |PL(w)|, |PA(w)| and |P2(w)| are larger
than 1, then for u;, u; € Re(w) U Qo (w) \ {wr}, we have c(wu;) # c(wuy).

Lemma 3.8. Suppose there is no proper cycle of length ¢ + 1 containing v; in (G, c).
If [W5(C)| > 2, then for each vertex w € W5(C) such that neither wviv; nor wvivy is
monochromatic, we have that both C,, and C,, are proper cycles of length { containing

V1.

Proof. Let w be a vertex such that wv,v; is not monochromatic for i = 2,/, and w’ be a
distinct vertex. We again relabel the vertices of C' depending on w' € W5(C) by ujub - - - )
in a clockwise direction such that u; = vywr), Uy = Vgw), Ut = Vawr), Us = Vapur) and
Uq = Up(wy. Without loss of generality, suppose |PA(w)| > 2. Then, assume, to the
contrary, that C,, is not proper, that is, |PA(w)| = 1 and c¢(w, P2 (w)) = ¢,, if P2(w) # 0.

Then, uy,w’ € W3(C,,) and C,, is a proper cycle containing v .
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In the first case we assume that Cy, is proper. Then, the coloring of d(uj, C'y;) follows

the statement in Lemma 3.1. If c(wué) Cw, then from Lemma 3.4 we have |R¢ . (w)] > 4.
Apparently, u ¢ P¢ (u2) and then u,w € PZ (uZ)UP3 (uz) Thus, u,_ lwu2u18ue 1

or Up— Qwu2u€8u€ 2 is a requested cycle, a contradlctmn If c(wu2) # ¢y, then v}y € PL(w)
and c(wub) = c(u2u3) When c(wu)) = c(wug), we have w € PZ, (uy). Thus, c(ujuy) =
cw- Then, ujubuiwul C u) is a requested cycle, a contradiction. When c(wuhy) # c(wuy),

we have w € Pg, (uy). Note that c(wuy) # c(wuj); otherwise, wujuy is monochromatic.

Since ugwu2u18ué is a proper cycle of length /41, we have v} = v;. Then, ulww’uguﬁlau’l

o,
or ujwujusyul Cul is a requested cycle, a contradiction.

In the second case we assume that C,; is proper. Then, the coloring of d(u},Cy)
follows the statement in Lemma 3.1. If c(wu)) = c¢,, then it is easy to verify that
there is a requested cycle in (G, c), a contradiction. If c(wu}) # ¢, then v} € PL(w)
and c(wu)) = c(ujuy). When c(wu)) = c(wuy), we have V(wC,y, uy) € PE  (uj). Since
w wulugﬁw is a proper cycle of length ¢, we have v}, = v;. To avoid w wu’Qu’luﬁlaw’ being
a requested cycle, we have c(uju)) = c(uju}). Then, |C(w,C)| < 4, a contradiction. When
c(wuh) # c(wuy), furthermore if c(ww’) = c(ujul,), then ww'u) is monochromatic. Thus,
c(ww') = ¢, it is easy to verify that there is a requested cycle in (G, ¢), a contradiction.
|

In the following we prove an important lemma which can transform a cycle C' at w €
W3(C) with |P&(w)| > 3 into a new cycle Cy, at u; € W5(C,,,) with [Pg, (w;)] < 1,i=1,2

under the condition that there is no proper cycle of length ¢ + 1 containing v; in (G, c¢).

Lemma 3.9. Suppose there is no proper cycle of length {+1 containing vy in (G, c). Then
for w € Wi(C), if [P2(w)] > 3 then uy € Wy(Cuy) with |PZ, (ur)| <1 or uy € Wi(Cy,)
with |P(?}u2 (ug)| < 1.

Proof. In the first case we assume that both |PA(w)| and |PZ(w)| are larger than 1.
Then, according to Lemmas 3.6 (2) and 3.7, we have c(wu;) # c(wus). Apparently,
cw & {c(wuy, c(wusz))}, and then C,, and C,, are proper. Since |PS(w)| > 3, there is a
vertex u, € P3(w) such that u, 1,u,,1 € PS(w); see Figure 2.

If c(w, P2(w)) = ¢y, then c(uug) # ¢, for up € P3(w) and ¢ = 1,2. Tt is simple to
verify c(uju,) = c(upy1up,) and c(uguy,) = c(up—1u,). Thus, c(ugu,) ¢ {c(upupr1), ¢} and
céulup) ¢ {c(upup—1),cyw}. Then, to avoid wug Cupy_1uiusu, Cupw and wus C uyug sty

ugw being requested cycles, we have c(uju,—1) = c(up_1up—2) and c(ugtiyr1) = c(Upr1Upia).

Hence, u; € W3(C,,) with Pgul (u1) = 0 and uy € W5(C,,,) with Pguz (ug) = 0.
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u3

U2 Uy

Figure 2: G[V(C) U {w}] used in the proof of Lemma 3.9.

If c(w, P3(w)) = c(wus), then c(w, P2 (w)) # c(wuy). Tt is simple to verify c(uju,) €
{c(up-1up), clurue) } N {c(upriuy), co} and clugu,) € {c(upiruy), clugus)t. If cluru,) =
c(uptp—1) = ¢y, then c(ugu,) # c¢,. Since C,, is proper, we have c(ujug) = c(ugpug—1)
for up, € V(u,Cuz). Then, c(ujus) = c(usug) ¢ {c(usuy), c(uiue)}. Thus, wusu, Cuzu,
<5up+1w is a requested cycle, a contradiction. Hence, c(uju,) = c(uiuy) = c(uptpi1).
Then, c(uju,) ¢ {cw, c(upu,—1)}. Furthermore, if c(ugu,) = c(upuyr1), then since C, is
proper, we have c(uguy) = c(ugugs1) for u € V(u,Cup). Then, c(usuy) = c(upur) ¢
{c(ugus), c(upup—_1)}. Thus, 'IUU1UPC'LL2'U/[<5UP+1U) is a requested cycle. Hence, c(uqu,) =
c(ugus) # c(upupy1). Then, to avoid wu38up_1u1u2up8ugw being a requested cycle, we
have c(uiuy—1) € {cw, c(up_1up—2)}. Since c(wu,) # ¢y, it is simple to verify c(uju,—1) €
{c(up—1up—2), c(upue—1)}. Thus, c(ugup—1) = c(up_1uy—2). Therefore, uy € Ws(C,,) with
Pgul (u1) = 0. Symmetrically, if c¢(w, P2(w)) = c(wuy), we can get uy € W3(C,,) with
Pgu2 (ug) = 0.

If c(w, P2(w)) ¢ {cw, c(wuy), c(wuz)}, then it is simple to verify c(uju,) € {c(up-_1u,),
c{11e) F e (s 1t5)} and c{uizty) € {118, )} cltpsrty), i)} T cluriy)
= c(up_1up) = ¢y, then c(usu,) = ¢,,. Hence, (G, ¢) has joint monochromatic triangles, a
contradiction. Thus, c(uiu,) = c(urue) = c(upp1uy) and c(ugu,) = c(up_1uy) = c(ugug).
Then, c(uju,) ¢ {c(up—1u,), ¢ }. Thus, we have c(ugup+1) € {cw, c(Upt1upi2)}; otherwise,
wuz Cupyugusuyg Cugw is a requested cycle. Since c(wuy,) # ¢y, it is simple to verify
c(uguptr) € {c(upriupya), c(ugus)}. Thus, c(ustpr1) = c(Upp1upy2). Symmetrically, we
have ¢(uyup—1) = ¢(up—1up—2). Since both C,, and C,, are proper, we have u; € W3(Cy,)
with P7, (u1) = 0 and up € W3(Cy,) with P2, (us) = 0.

Thus the cycle C' with a vertex w € W3(C') which is of |P2(w)| > 2 and |P3(w)| > 3
can be changed into another cycle C,, with u; € W3(C,,) and P38 (u;) = 0,7 =1 or 2;

i

see Figures 2 and 3.

In the second case we assume that either |PA(w)| or |PA(w)| is 1. Without loss of

generality, suppose |P2(w)| = 1. Then, C,, is proper. Since |P2(w)| > 3, usz,us,us €
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Figure 3: G[V(Cu;) U {u;}] used in the proof of Lemma 3.9.

P(w). TIf c(wuz) ¢ {cw,c(wuy)}, we can get u; € Wi(C,,) with Pgul (uy) = 0. If
c(wug) = ¢y, then it is simple to verify c(ujuy) = c(ugus). Thus, uy € Wi(uy) with
Pgul C {us}. If c(wus) = c(wuy), then C,, is proper. To avoid wugusus Cujw being a
requested cycle, we have c(uguy) € {c(usug), c(ugus)}. Once c(ugug) = c(uqus), we get
uy € Ws(Cy,) with Pg}u2 C {us}. Once c(uguy) = c(usug) # c(ugus), then us € Pqu (ug).
Thus, u, € Péu2 (ug). It is easy to verify c(ugus) ¢ {cw,c(ugus)}. Then, we can get
uy € Ws(Cy,) with Pglq (ug) = 0.

Thus the cycle C' with a vertex w € W3(C') which is of |P2(w)| = 1 and |P3(w)| > 3
can be changed into another cycle C,, with u; € W5(C,,) and |PZ (u;)] < 1,4 =1 or 2;

2

see Figures 4 and 5.

Us
. Uy
P(w)
us Uy
Us Uy

Figure 4: G[V(C) U {u}] used in the proof of Lemma 3.9.

1, (u1) P, (u2)

or

U4
0%

usz

U2 w w uy

Figure 5: G[V(Cy;) U {u;}] used in the proof of Lemma 3.9.
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From Lemmas 3.8 and 3.9, we get the following important corollary.

Corollary 3.1. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G,c).
Then, |W3(C)| < 3.

Proof. First, we prove a claim: For a vertex w in W3(C') such that wwv;v; is not monochro-
matic for i = 2, ¢, we have u; ¢ PL(w') and uy ¢ PZ(w') for any distinct w' € W3(C).
According to Lemma 3.8, we know that C,,, and (', are proper cycles of length ¢ contain-
ing vy. If u; € PL(w'), then uz € PL(w'). Thus, c(ww’) = c¢(wuz). According to Lemma
3.8 again, we know that c(ujus) ¢ {c(wuy), c(ugus)}. Thus, ww'uius Cw is proper cycle
of length ¢ + 1 containing vy, a contradiction. Thus, u; ¢ PL(w’). In a similar way, we
can get up ¢ PA(w').

Suppose, to the contrary, that |W3(C)| > 4. Since (G, ¢) has no joint monochromatic
triangles, there exists a vertex w € W3(C') with |P3(w)| > 4 such that wvyv;, i = 2,4, is

not monochromatic; see Figure 6.

Figure 6: A cycle C with [W3(C')| > 4 used in the proof of Corollary 3.1.

According to Lemma 3.9, without loss of generality, suppose u; € W3(C,,) with
|Pgu1 (u1)] < 1. Then, [W3(Cy,)| < 3. Since V(C,,) NV(C) = V(u28u€), we have
W3(Cyy) = W5(C) U {ur } \ {w}, that is, [W3(Cy, )| > 4, a contradiction. |

Lemma 3.10. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G,c).
Then for w € W3(C) with |P2(w)| < 2, if both |PL(w)| and |PA(w)| are larger than 1,

there is a vertex set Vi of size £ — 4 such that c(wu) = c(uuy) = c(uug) for u € Vi.

Proof. In the first case suppose c¢(wu,) = c(wuz). When ¢ = 5, the result follows appar-
ently. In the following assume ¢ > 6. From Lemmas 3.4 and 3.7, we get P2 (w) = 0.
Let C; = wuzuggulmgw_lw, Cy = quU3u@u1u48w_1w, C3 = wusuy Cuguy C'up_qw
and Cywuqupugusuy C'ug_qw be cycles of length ¢ + 1 containing v;. We might as well

suppose u, = uz. (Note that when Ro(w) € Pl(w), we have u, = uy; otherwise, C}
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is proper.) Then, |Rc(w)| > 3. To avoid C; and Cy being proper, we have c(ujuy) €
{cw, c(uqus)} N {c(urup—r), c(ugus)}. Then, c(ujuy) = c(ugus). Since C,, is proper, we
have c(ujug) = c(ugugsq) for ug, € V(ug Cuy). Then, c(wuy) # c(wuy) for uy, € V(u48u5).
To avoid C3 being proper, we have c(ugug) € {cy, c(uqus)}. Thus, c(ugug) = c(uqus); oth-
erwise, Cy is proper. Since C,, is proper, we have c(ugug) = c(ugugs1) for ug € V(ug Cuy).
The result follows as Vi = V(uy Cuy).

In the second case suppose c(wuy) # c(wug). First, we prove a claim: There is a vertex
set V7 of size £ — 4 such that c(uug) # ¢, for u; € Ph(w) N'Vy and c(ujuy) # ¢, for
u; € PE(w) N Vi. Apparently, the claim holds for v € Ro(w) U Qc(w) \ {ua, up, ur, us}.
Let Vo = Re(w)UQe(w) \ {ur, us}. If Ro(w) = PL(w), then the claim follows apparently
when P2 (w) = 0 or c(w, P(w)) # c(wuy). While when |P3(w)| = 1 and c(w, P3(w)) =
c(wuy), suppose, to the contrary, that c(usus) = c(uuy) = ¢p. Then, c(usuiyr) # cu.
Thus, wususus ulut(au;),w is a requested cycle, a contradiction. Hence, at least one
of c(ugus) and c(ujuy) is not ¢,. Therefore, the claim follows as V; = Vj \ {us} or
Vi = Vo \ {u}. When |P3(w)| = 2 and c(w, P& (w)) = ¢y, since c(wuz) # c(wugs), we
have c(uguiy1) € {co, c(upuesr)}. Thus, c(ugueyr) # c(upritg2). Then, cluguy) # Cu;
otherwise, wususi1 Cuju; Cugw is a requested cycle. Therefore, the claim follows as
Vi = V. If Re(w) & PA(w), according to Lemma 3.5 we know |P2(w)] < 1. When
c(wug—1) # c(wuy ), the claim follows as Vi = Vo \{us, us—1}. When c(wuq—1) = c(wuy), we
can get an assertion that to avoid wust,_1 ulua_;au;;w and wulC'ua_lmulua_g%u?,w
being requested cycles, we have c(u1u,—2) € {cw, c(ta—2uq—3)} N {c(uiw), c(uq_suq—3)}-
In the following we prove the assertion that |PA(w) U P2 (w) \ Re(w)| < 1. If not, since
c(wiug_2) = c(wuy), we have c(ujuy) # c(ug_ouq—3). Thus, c(uju, o) = c(ug_ouq_3). Since
C.,, is proper, we have c(ujug) = c(ugug—1) for up € V(ug_2Cus). Then, c(ujuz) =
c(uguz) ¢ {c(ugug),c(uiue)}. Thus, wueCug_qusuiusCu,_ow is a requested cycle, a
contradiction. The assertion thus follows. Since Ro(w) & Ph(w), we have P2(w) = 0.
Thus, c(wus) = ¢,. Then, c(uju;) # cy; otherwise, wu, Cuguguius Cuzw is a requested
cycle. Hence, the claim follows as V; = Vj \ {us, us }-

Next suppose, to the contrary, that there exists a vertex u; € Piw N V; such that
c(ulug_) # c(wu;). Since c(u;ug) # ¢y, to avoid wugua,lgulua,g Cuszw and wuy C g1 uguy
uq—2 C'ugw being requested cycles, we have c(uju;_1) = c(u;_ju;_2). Since C,, is prop-
er, we have c(ujug) = c(ugug—1) for up € V(u;—1Cus). In a similar way, we can get
c(uyu;) = c(wu;) for u; € P2(w) N Vi, Then, u2u1u38u1u2 is a proper cycle of length
¢ containing v. Then, by repeating this as above, we can get that c(u;u;) = c(wu;) for
u; € PL(w) N'Vy and c(uguj) = c(wuy) for u; € P2(w) N Vi. The result thus follows. 1
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Lemma 3.11. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G,c).
For w € W3(C) with |P2(w)] = 1 and |P3(w)| > 3, if both c(w, P2(w)) = ¢, and

c(uyuz) # c(ugus), then c(usuy) = c(usuy) = c(ugugs1) for ug € V(usCuy).

Proof. Since c(wuz) # c(wuy), we have c(ujuy) = c(ugus). From 3.4 we know that
Cy, is proper. Thus, c(uur) = c(ugugsr) for up € V(ugCuy). Hence, c(ujug) ¢
{c(upug—1),cy} for up € V(ugCuy). Since for u, € V(usCuy), wuluk_lquuk Ugw,
wWU3 uk,lulugukguew and wu48uk,1u18u3uk8u5w are of length ¢+ 1 and contain vy,
we have c(uguy) € {c(ugus), c(ugugs1) }N{cw, c(upurs) } and c(usuy) € {c(ugus), c(ugugs1)}
Thus, apparently we have c(usuyg) = c(ugugyr) for up € V(usCup). While if e(usuy) =
c(ugug) # c(uptps1), then c(ujug) ¢ {cw, c(usur)}. Thus, wuy C’uku;),uluguk_l(gmw is a

requested cycle, a contradiction. The result thus follows. |

Lemma 3.12. Suppose there is no proper cycle of length (+1 containing vy in (G, c). Then
forw € W3(C) with |PA(w)| = 1 and |P2(w)| = 2, we have c(ujug) = c(uguy,) = c(upupi1)
for ug, € V(usCuy).

%
Proof. In the first case suppose c(w, PS(w)) = ¢,. Then, to avoid wus Cu1u48u5w

being a requested cycle, we have c(ujuy) = c(uqus). Thus, c(ujug) = %ukukﬂ) for
up € V(mgul). Apparently, c(usug) € {cw,c(ururyr)} for up € V(usCuy); other-
%

wise, wuyug_1 Cusuy C'upw is a requested cycle. If c(uguy) = c(ugug) # c(ugugyy), then
c(uguy) # c(ujug). Thus, "LUU38U]€,1U1UQUIC<5U4U} is a requested cycle, a contradiction.
Hence, c(uguy,) = c(upuyy 1) for ug € V(u58u1).

In the second case suppose c(w, P3(w)) # ¢,. Then, to avoid wu48u1u3u2w be-
ing a requested cycle, we have c(ujus) € {c(ujug), c(ugug)}. Hence, c(ujus) # cp. If
c(w, P2(w)) # c(wuy), then c(ujuz) # c(wug). Thus, c(ugus) = c(ugus); otherwise,
wuguyugy C ugw is a requested cycle. Therefore, c(usuy) = c(upugry) for ug € V(usCuy).
If c(w, P3(w)) = c(wuy), then to avoid wuguy, u2u4gw,1w and wu3u2u48u1w being re-
quested cycles, we have c(ugug) € {cw,c(uqus)} N {c(ugus), c(ugus)}. Thus, c(uguy) =
c(uqus). Since C,, is proper, we have c(uguy) = c(ugugy1) for up € V(uy Cuy). Further-
more, if c(ujug) = c(usuy), then since C,, is proper, we can get c(ujuy) = c(ugug1) for
up € V(usCuyp); if c(ujug) # c(ugug), then C" = ujus Cupuguy is proper such that both
|PL,(w)] and |P2,(w)| are larger than 1 or |P2,(w)| = 2. Thus, according to Lemma 3.10

or the proof above, we can get c(ujug) = c(ugugy1) for vp € V(us Cuy). |

Lemma 3.13. Suppose there is no proper cycle of length ¢ + 1 containing vy in (G,c).
Then for w € W3(C) with |PA(w)| = 1 and |P2(w)] < 1, we have c(ujuy) = c(wuy) and

c(wuy) € {c(ugug), c(usug)} for up € V(usCuy).
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Proof. First, we prove the assertion that |PA(w) U P3(w) \ Re(w)| < 2. Suppose, the
contrary holds and let c(wuq—1) = c(wuy), u, € Re(w). If c(wu,—3) = c(wuy), then
c(wuq-1) = c(wug) and |Re(w)| = 3. Apparently, d*(w) < 25 if [Wo(C)| + [W5(0)] <
3. Thus, |[Wy(C)| + |[W5(C)| = 4. From Corollary 3.1 and Proposition 3.1 we know
[Wo(C)| = 1 and |[W3(C)| = 3. Then, c(wus) = c(wus) while c(wuy) # c(wus) or
c(wuy) = c(wuy) while c(wugz) # c(wuy), a contradiction. If c¢(wu,—3) # c(wuy), then
(u1,uq—2) € DP,. Furthermore, if u, # wuy, then c(uju,—2) € {c(urue), c(ta—2us—3)};

F
Cupua_laup_lw is a requested cycle. Since c(wu,_o) # c(wuy),

otherwise, wuzaua_zul
we have c(uju,—2) = c(Ug—2Ua—3) = . Thus, |Re(w)| = 2, a contradiction. If u, = uy,
then since |Rc(w)| > 3, we have (uj,u,—2) € DP,. Since wuzaua_gulua_lgww is
of length ¢ + 1 and contains vy, we have c(uju,—2) € {c(ug—1u1), c(tg—2uq—3)}. Then,
c(urtg—2) = c(Ug_ouq—1) = c(uqg_1up). Thus, there exist joint monochromatic triangles in
(G, ), a contradiction. Hence, the assertion follows.

Since C,, is proper, according to Lemma 3.12, if \Pgul (u1)| = 2, the result follows. In

the following suppose [PZ, (u1)] # 2.

In the first case suppose |Pgu1 (u1)] > 3. Then, |Pgu1 (u1)] = 1; otherwise, c(wus) =
c(ugug), a contradiction. If c(ul,Péu1 (u1)) = cw, then according to Lemma 3.11, the
result follows. If c(uq, Péul (u1)) # Cw, then c(uu;) ¢ {cw, c(uuirq)} for ¢ = 4,5. Hence,
c(wuy) = c(wuz) = c(wuy), which means |P3(w)| = 2, a contradiction.

In the second case suppose [P&(w)| =1 and |PZ, (u1)| < 1. When c(wus) # cu, Cu, is
proper. Since wu3u2u48u1w is a cycle of length ¢+ 1 and contains vy, we have c¢(uquy) €
{c(ugus), c(ugus)}. If c(uguy) = c(ugus), then the result holds. If c(uguy) = c(ugug) #
c(ugus), then uy € W5(C,,) with |Pgu2 (ug)| > 2. Thus, according to Lemmas 3.11 and
3.12, the result follows. When c¢(wu3z) = ¢, from our assertion we know R¢(w) = PA(w) =
V(u48u1). Since for uy, € V(Ug’,g’d@), both ’LUU38U]€,1U1UQU]€8U@UJ and wuy_, Cugug, Cuy
are of length ¢+ 1 and contain vy, we have c(ugug) = ¢(ugugs1). The result thus follows.

In the third case suppose P2(w) = 0 and |PZ, (u1)| < 1. Apparently, if [P, (u1)] = 1,
the result holds. In the following suppose Pgul (uy) = 0. If u38u2 is rainbow, from
Proposition 3.4, there is a requested cycle in (G,c). If uy ¢ Re(w), then assuming
c(wuy) = c(uuy,), we have u, € Ro(w). Since c(ujug) = c(wuy), we have c(wuy) # ¢y
for up € PL(w). Since wuguzu; Cuyu, 1 Cu, qw is of length £ + 1 and contains vy, we
have c(ujus) = c(ujuy), that is, c(wus) = c(wuy). Then, u46u1 is rainbow. According to

Proposition 3.4, there is a requested cycle in (G, ¢). |

Proposition 3.5. Let (G,c) be an edge-colored complete graph on n > 3 vertices such

that 0°(G) > ”TH, and not contain joint monochromatic triangles. For any w € W3(C),
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if Qc(w) = PA(w), then (G, c) is properly vertex-pancyclic.

Proof. Suppose, to the contrary, that there exists a vertex v which is contained in a
proper (-cycle C' in (G, ¢) for some ¢ with 4 < ¢ < n — 1, but no proper cycle of length
¢+ 1 in (G, c) contains vertex v. According to Lemma 3.9, suppose that there is a vertex
w € W3(C) such that |P3(w)] < 2.

According to Lemmas 3.10, 3.11, 3.12 and 3.13, there is a vertex set V; of size ¢ — 4
such that |C(u, V(C)\ Vi) NC(u, V1)| > 2 for u € V}, and V; has the DP,. Then, there

is a vertex u, € Vi with dy, ) (up) < BT Wi (C) = {w}, dy oy (up) < gl < ot

a contradiction. Thus, |W3(C)| > 2. Then, we give (G[Vi],¢) a coloring orientation.

Assume u,, is the maximum out-degree in D(G[V}]).

If W5(C) = {w,w'}, then dj,(u,) = 52; otherwise, d°(u,) < (—5—52+4 = 42 < bl

a contradiction. Since the average out-degree of D is 6_75, we have df,(u) = 5 for u € V).
Therefore, V; C P2 (w'); otherwise, the color of w'u is a used color in C(u, (C’)) Then,
there is a vertex whose color degree less that 2. Thus, P3(w') = usCuy or P3(w') =
u38ué o; otherwise, according to Lemma 3.1, (G ¢) has joint monochromatic triangles.
Then, we might as well suppose P3(w’) = usCu;. Then, w'uzuy is monochromatic.
According to Lemma 3.9, we have that uz € Wj3(C,,) with \Pgus (uz)] < 1 or uy €
W3(Cy,) with [P2, (us)] < 1. (Note that Cy, = ui_lw’uiﬂaui_l, i = 3,4). Thus,
there is a vertex u; € Vj such that {c(usw;), c(ugu;)} N {c(uwjuirr), c(usui—1)} # 0. Then,

d(u;) < 0 —5—53 +3 =41 <2t 4 contradiction.

If W3(C') = {w,w’, w"}, then we can suppose that wv;v; is not monochromatic, i = 2, ¢.

Then u, € P&(w') N Pa(w"); otherwise, d°(u,) < ¢ —5— 55 +1+4+3 = 43 < ol

a contradiction. Thus, ‘5_75 < df(u,) < 624, otherwise, d°(u,) < ¢ —5 — 4—73 +5 =

“73 < "TH, a contradiction. When d°(u,) = 455, since the average out-degree of D

is 52, we have dj(u) = 52 for u € V;. Therefore, V; C P&(w') N P3(w”). Thus,
Pi(w') N P3(w") = u58u5 or P3(w') N Pi(w") = uggw,g. Then, there is a vertex
u € Vi such that d°(u) < %, a contradiction. When d°(u,) = 52, there is a distinct
vertex v’ in V; such that d(v) > 52, Thus, {u,,u'} C Pg(w') N Pa(w"). According
to the claim of Corollary 3.1, we have |P2(w') N P3(w”)| > 3. According to Lemma
3.9, we might as well have |P3(w’)| < 1 and w”v;v; is monochromatic, i = 2,¢. Then,
c(w'uy) C {c(uptpr), clupuy_1)}. Thus, d(u,) < 0—5—52+1+3 =52 < 2l 4
contradiction. |

Eventually, combining Propositions 3.1 through 3.5, we get the proof of our main result
Theorem 2.2.
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4 Concluding remarks

Many years have passed since Conjecture 2 was proposed by Fujita and Magnant.
However Conjecture 1 has not been solved, yet. Fujita and Magnant proved the existence
of properly colored cycles of lengths 3,4, and at least 5 passing though a given vertex.
Inspired by this idea, Chen et al. in [8] proved that Conjecture 2 is true by adding an extra
condition “without monochromatic triangles” and they used induction and contradiction
technique to prove it. They analysed the relationship between a properly colored cycle
of a fixed length and the vertices that are not on the cycle, and divided this vertices into
two categories. Recently, Li in [19] investigated the existence of properly colored cycles in
edge-colored complete graphs when monochromatic triangles are forbidden, to obtain a

vertex-pancyclic analogous result combined with a characterization of all the exceptions.

Based on Theorem 2.1, we add a looser condition that the edge-colored complete graphs
can have monochromatic triangles but do not have any two joint monochromatic triangles
and show that Conjecture 2 is true under this condition. We show this also using induc-
tion and contradiction technique and some claims proved in [8]. Our results, although
improving the known result Theorem 2.1 and partially solving Conjecture 2, are still far
from a solution for Conjecture 2. Up to now, we have not found any better method to

solve it. Further study is needed.
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