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Abstract

In an edge-colored graph (G, c), let dc(v) denote the number of colors on the

edges incident with a vertex v of G and δc(G) denote the minimum value of dc(v)

over all vertices v ∈ V (G). A cycle of (G, c) is called proper if any two adjacent edges

of the cycle have distinct colors. An edge-colored graph (G, c) on n ≥ 3 vertices

is called properly vertex-pancyclic if each vertex of (G, c) is contained in a proper

cycle of length ` for every ` with 3 ≤ ` ≤ n. Fujita and Magnant conjectured that

every edge-colored complete graph on n ≥ 3 vertices with δc(G) ≥ n+1
2 is properly

vertex-pancyclic. Chen, Huang and Yuan partially solve this conjecture by adding

an extra condition that (G, c) does not contain any monochromatic triangle. In

this paper, we show that this conjecture is true if the edge-colored complete graph

contain no joint monochromatic triangles.
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1 Introduction

LetG be a simple graph and let c be an edge-coloring ofG. We call (G, c) an edge-colored

graph. G is called a c-edge-colored graph if its edges are colored in c colors. A subgraph in

an edge-colored graph is called proper if any two adjacent edges in the subgraph are colored

by distinct colors. Rainbow subgraphs and monochromatic subgraphs are two popular

concepts related to proper subgraphs. A subgraph in an edge-colored graph is called

rainbow if all the edges in the subgraph are colored by distinct colors, and monochromatic

if all the edges in the subgraph are colored by the same color.

Edge-colored graphs contribute more to model certain real life problems. Some of them

concerning about genetic and molecular biology, such as determining the spatial order of

chromosomes; see [10, 11, 12]. Recently, the reconstruction of RNA molecule structure has

been obtained by Nuclear Magnetic Resonance (NMR). This model has been extended to

the more complex 3D case in [21]. 3D NMR maps display the results of NMR experiments,

that allow to determine the shape of a biological molecular. Then in [21], the problem has

been formalized as OCLP (Orderly Colored Longest Path Problem), and the authors in

[13, 20] proposed different optimization models on OCLP, based on search of the longest

path on certain expanded graphs. The other power of edge-colored graphs in modeling

different types of problems, including Chinese Postman Problem, has been extensively

discussed in [7, 15, 18].

Actually, we care more about the Hamiltonian properly colored paths and cycles. The

problems of determining the existence of alternating paths, trails and cycles in 2-edge-

colored multigraphs were suggested in [4]. In recent work (Guo et al. [16, 17]]), sufficient

conditions for the existence of more general compatible spanning circuits (a closed trail

that contains each vertex of G) in specific edge-colored graphs have been established. The

authors in [5] found a sufficient condition for a complete graph to have a properly colored

Hamiltonian path. In this paper, we mainly consider proper cycles in an edge-colored

graph. A characterization of c-edge-colored graphs containing properly colored cycles was

presented by Yeo [22] and generalized in [1] for properly colored closed trails. In both

cases, the proposed results were used to construct polynomial time algorithms to check

whether an edge-colored graph contains a properly colored cycle or a properly colored

closed trail.

Once a cycle is found and denoted by the cyclic arrangement of its vertices such that two

vertices are adjacent if they are consecutive in the sequence and nonadjacent otherwise

in an edge-colored graph, one can easily checked whether it is proper or not. So, we often
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omit the checking process in the following.

In an edge-colored graph (G, c), let dcG(v) denote the number of colors on the edges

incident with a vertex v of G and let δc(G) denote the minimum value of dcG(v) over all

vertices v ∈ V (G). When no confusion occurs, we use dc(v) instead of dcG(v). The length

of a path or a cycle is the number of its edges. Let ∆mon(Kc
n) denote the maximum

number of edges of the same color incident with a vertex of Kc
n. An edge-colored graph

(G, c) is called properly Hamiltonian if it contains a properly colored Hamiltonian cycle.

An edge-colored graph (G, c) is called properly vertex-pancyclic if every vertex of the graph

is contained in a proper cycle of each length ` for every ` with 3 ≤ ` ≤ n.

In 1952, Dirac [9] obtained a classical theorem that if δ(G) ≥ n
2
, then G is Hamiltonian.

Inspired by this work, there have appeared lots of results and problems on the existence

of proper cycles in different types of edge-colored graphs. In 1976, Bollobas and Erdos [6]

conjectured that every Kc
n with ∆mon(Kc

n) < bn
2
c contains a properly colored Hamiltonian

cycle. The author in [2] showed that for any ε > 0, there exists an integer n0 such that

every Kc
n with ∆mon(Kc

n) < (n
2
− ε)n and n ≥ n0 contains a properly colored Hamiltonian

cycle, which implies a result obtained by Alon and Gutin [3] that for every ε > 0 and

n > n0(ε), any complete graph Kn on n vertices whose edges are colored so that no vertex

is incident with more than (1−1/
√

2−ε)n edges of the same color, contains a Hamiltonian

cycle in which adjacent edges have distinct colors. Moreover, for every k between 3 and

n, any such Kn contains a cycle of length k in which adjacent edges have distinct colors.

2 Preliminaries

Fujita and Magnant in [14] posed the following conjecture.

Conjecture 1 ([14]). Let (G, c) be an edge-colored graph on n ≥ 3 vertices. If δc(G) ≥
n+1
2

, then G is properly Hamiltonian.

They showed there that the condition δc(G) ≥ n+1
2

in Conjecture 1 is sharp by con-

structing an example in [14]. Then, they further posed the following conjecture.

Conjecture 2 ([14]). Let (G, c) be an edge-colored complete graph on n ≥ 3 vertices. If

δc(G) ≥ n+1
2

, then G is properly vertex-pancyclic.

Chen, Huang and Yuan partially solved the conjecture by adding a condition that (G, c)

does not contain any monochromatic triangle.
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Theorem 2.1. [8] Let (G, c) be an edge-colored complete graph on n ≥ 3 vertices such

that δc(G) ≥ n+1
2

. If (G, c) contains no monochromatic triangles, then (G, c) is properly

vertex-pancyclic.

They employed a term named as “follower vertex”; see the following definition.

Definition 2.1. Let C = v1v2 . . . v`v1 be a cycle in an edge-colored graph (G, c) and let

v`+1 = v1 and v0 = v`. We say that a vertex x ∈ V (G) \ V (C) follows the colors of C

increasingly if c(xvi) = c(vivi+1) for all i = 1, 2, . . . , `, and a vertex x ∈ V (G) \ V (C)

follows the colors of C decreasingly if c(xvi) = c(vivi−1) for all i = 1, 2, . . . , `. In either

of these cases, we say that the vertex x ∈ V (G) \ V (C) “follows” the colors of C and it is

also called a follower vertex.

In the proof of Theorem 2.1, they showed two claims which is stated as follows since

we will use them later in our proof of Lemma 3.2.

Claim 1. Suppose there is a cycle C of length ` containing v1, but no proper cycle of length

`+ 1 containing v1 in (G, c), and suppose there is no monochromatic triangle containing

two vertices in V (C) and a vertex in V (G) \ V (C). If there are two vertices which follow

the colors of C in different directions, then c(vivi+1) = c(vi+2vi+3) for all indices i with

1 ≤ i ≤ `−1, which implies that C is an even cycle with two colors appearing alternatively

on C.

Claim 2. Suppose there is a cycle C of length ` containing v1, but no proper cycle of length

` + 1 containing v1 in (G, c), and suppose there is no monochromatic triangle contains

two vertices in V (C) and a vertex in V (G) \ V (C). If the number of follower vertices is

larger than 2, then

(1) for every follower vertex w and every two distinct vertices vi and vj in C, we have

c(wvi) 6= c(wvj), and

(2) C has the DPw for every w ∈ W2, where DPw is defined in Definition 2.4.

In this paper, we solve the conjecture by adding a looser condition that the edge-colored

complete graph can have monochromatic triangles but not any two joint monochromatic

triangles. Our main result is stated as follows.

Theorem 2.2. Let (G, c) be an edge-colored complete graph on n ≥ 3 vertices. If δc(G) ≥
n+1
2

and (G, c) contains no joint monochromatic triangles, then (G, c) is properly vertex-

pancyclic.
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The following new definitions are needed in the sequel.

Definition 2.2. Let vi and vj be two distinct vertices on a cycle C. The distance between

vi and vj (denoted by dij) is the length of the shortest path of vi
−→
C vj and vi

←−
C vj. Appar-

ently, dij = dji = min{|i− j|, |j − i|, |i+ l− j|, |j + l− i|} ≤ l
2
. Furthermore, we say that

vi is in front of vj on C if dij = |vi
−→
C vj|.

The authors in [14] gave a property on set version.

Definition 2.3. (Set version) In an edge-colored complete graph (G, c), a set A of

vertices is said to have dependence property with respect to a vertex v /∈ A (denoted by

DPv) if c(aa′) ∈ {c(va), c(va′)} for every two vertices a, a′ ∈ A.

Then, based on the definition on set version, we give a similar definition on vertex

version.

Definition 2.4. (Vertex version) In an edge-colored complete graph (G, c), a pair (u,w)

of distinct vertices is said to have dependence (independence) property with respect to

another vertex v (denoted by DPv) if c(uw) ∈ {c(vu), c(vw)} (c(uw) /∈ {c(vu), c(vw)})
for every two vertices u,w ∈ A. The set of these vertices pairs is denoted by Dv (Iv).

The following is an important fact appearing in [14], which will be used later.

Fact 1. [14] If a set A of vertices in an edge-colored complete graph (G, c) has the DPv

for some vertex v /∈ A, then there exists a vertex a ∈ A such that

a) dcA(a) ≤ |A|+1
2

, and

b) if |A| ≥ 2, then at least one of the colors used at a in A is c(va).

Theorem 2.3. [14] Let (G, c) be an edge-colored completed graph on n ≥ 3 vertices such

that δc(G) ≥ n+1
2

. Then every vertex of (G, c) is contained in a rainbow triangle.

Theorem 2.4. [14] Let (G, c) be an edge-colored completed graph on n ≥ 3 vertices such

that δc(G) ≥ n+1
2

. If n ≥ 4, then every vertex is contained in a proper cycle of length 4,

and if n ≥ 13, every vertex is contained in a proper cycle of length at least 5.

In this paper, a subgraph induced by V (C) union a vertex w ∈ V (G)\V (C) is denoted

by GC . Then, from Chen, Huang and Yuan [8] we can get the following properties about

GC .
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Proposition 2.1. Suppose there is no proper cycle of length `+1 containing v1 in (G, c).

Let P be a proper path on C. Let va and vb be two distinct vertices in V (P ) such that

c(wva) = c(wvb). If there are no monochromatic triangles containing w in (GC , c), then

c(wva−i) = c(wvb−i) (c(wva+i) = c(wvb+i)) for 1 ≤ i ≤ ` if w follows the colors of C

increasingly (decreasingly), (va±i and vb±i are in V (P )).

Proposition 2.2. Suppose there is no proper cycle of length `+1 containing v1 in (G, c).

Let P be a proper path on C. If w follows the colors of P increasingly (decreasingly) and

there are two vertices vi, vj ∈ V (P ) such that vj is in front of vi and c(wvi) 6= c(wvj),

then we have (vi+1, vj+1) ∈ Dw ((vi−1, vj−1) ∈ Dw).

Proposition 2.3. Suppose there is no proper cycle of length `+1 containing v1 in (G, c).

Let P be a proper path on C. If w follows the colors of P increasingly (decreasingly) and

there are two vertices vi, vj ∈ V (P ) such that vj is in front of vi and (vi, vj) /∈ Dw, then

we have c(wvi−1) = c(wvj−1) (c(wvi+1) = c(wvj+1)).

3 Proof of Theorem 2.2

In this section we will use a few lemmas and propositions to prove our main result

Theorem 2.2.

Let V1 be a subset of V (G) and w a vertex of G not in V1. We give a vertex-induced

subgraph G[V1] a coloring orientation. First, we orient the edges whose ends are the vertex

pairs in Dw, that is, orient vivj by −−→vivj if c(vivj) = c(wvi), vivj by −−→vjvi if c(vivj) = c(wvj),

and arbitrarily orient vivj if c(wvi) = c(wvj). Next, orient vivj if (vi, vj) ∈ Iw by two

inverse arcs −−→vivj and ←−−vivj. Thus, we get a digraph D(G[V1]) of (G[V1], c), and dcG[V1]
(v) ≤

d−D(G[V1])
(v) + 1.

In the following, we always assume that (G, c) is an edge-colored complete graph on

n ≥ 3 vertices such that δc(G) ≥ n+1
2

, and does not contain any joint monochromatic

triangles. From Theorems 2.3 and 2.4, we know that every vertex v of (G, c) is contained

in some proper cycles of lengths 3 and 4. To prove that (G, c) is properly vertex-pancyclic,

it suffices to show that if a vertex is contained in a proper `-cycle in (G, c) for some ` with

4 ≤ ` ≤ n− 1, then it is also contained in a proper (`+ 1)-cycle in (G, c).

Suppose that (G, c) has a proper cycle C = v1v2 · · · v`v1 of length ` and let v1 = v.

Let W1(C) be the set of vertices in V (G) \ V (C) such that for each vertex w ∈ W1,

the edges in ∂(w, V (C)) have just one color in (G, c). Let W2(C) be the set of vertices

in V (G) \ V (C) such that each vertex w ∈ W1 follows the colors of C. Let W3(C) =
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V (G)\(V (C)∪W1(C)∪W2(C)). Note that V (C),W1(C),W2(C),W3(C) form a partition

of V (G). For convenience, if vk ∈ V (C), we regard vk and vk+` (or vk−`) as the same

vertex in the sequel. First, we analyze the coloring structure on (G[V (C) ∪ w], c) for

w ∈ W3(C).

For each vertex v ∈ V (G), we use ∂(v) to denote the set of edges incident to v in G.

Moreover, for two disjoint subsets X, Y ⊆ V (G), we use ∂(X, Y ) to denote the set of

edges between X and Y in G, i.e., ∂(X, Y ) = {xy ∈ E(G) : x ∈ X, y ∈ Y }. ∂({x}, Y )

will be simply written as ∂(x, Y ). The colors of ∂({x}, Y ) will be simply written as

C(x, Y ), that is, C(x, Y ) = {c(xy) | y ∈ Y }. For a cycle C = v1v2 . . . v`v1 and two vertices

vi, vj ∈ V (C) with 1 ≤ i ≤ j ≤ `, we use vi
−→
C vj and vi

←−
C vj to denote the paths vivi+1 . . . vj

and vivi−1 . . . v1v`v`−1 . . . vj, respectively.

Lemma 3.1. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c).

Then for any vertex w in W3(C), we can find three and only three vertices vx(w), vy(w) and

vz(w) in V (C) which can divide V (C) into three subsets:
P 1
C(w) = {vx(w), vx(w)+1, . . . , vy(w)},
P 2
C(w) = {vy(w)+1, vy(w)+2, . . . , vz(w)},
P 3
C(w) = {vz(w)+1, vz(w)+2, . . . , vx(w)−1},

such that

(1)


c(wvx(w)) = c(vx(w)vx(w)+1) while c(wvx(w)−1) 6= c(vx(w)vx(w)−1),

c(wvz(w)) = c(vz(w)vz(w)−1) while c(wvz(w)+1) 6= c(vz(w)vz(w)+1),

c(wvy(w)) = c(wvy(w)+1) = c(vy(w)vy(w)+1);

(2)


c(wvi) = c(vivi+1) for vi ∈ P 1

C(w),

c(wvi) = c(vivi−1) for vi ∈ P 2
C(w),

c(wvi) = c(wvj) for vi, vj ∈ P 3
C(w).

.

Proof. (1) Since w does not follow the colors of C, suppose, to the contrary, that c(wvi) 6=
c(vivi+1) for all vi in V (C). Thus, (GC , c) has no monochromatic triangles containing w.

Then from Lemma, we know that w follows the colors of C decreasingly or w is a single

color vertex of C, a contradiction. Thus, there exist two requested vertices vx(w) and vz(w).

As we know, c(wvi+1) ∈ {c(wvi), c(vi+1vi+2)} if c(wvi) = c(vivi+1) and c(wvi−1) ∈
{c(wvi), c(vi−1vi−2)} if c(wvi) = c(vivi−1). Since w dose not follow the colors of C, there

exist two vertices vy1(w) and vy2(w) such that c(wvy1(w)) = c(wvy1(w)−1) and c(wvy2(w)) =
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w

vy(w)vy(w)+1

vx(w)vz(w)

P 1
C(w)P 2

C(w)

P 3
C(w)

Figure 1: G[V (C) ∪ {w}] used in the proof of Lemma 3.1.

c(wvy2(w)+1). Thus, wvy1(w)vy1(w)−1 and wvy2(w)vy2(w)+1 are monochromatic. Then, we

have vy(w) = vy2(w) = vy1(w)−1. As (G, c) has no joint monochromatic triangles, vx(w), vy(w)

and vz(w) are the only three requested vertices.

(2) Since vx(w), vy(w) and vz(w) are the only three vertices satisfying (1), for any vertex

vi ∈ P 3
C(w), we have c(wvi) /∈ {c(vivi−1), c(vivi+1)}. If there is a vertex vj such that

c(wvi) 6= c(wvj), then there must exist two adjacent vertices vk, vk+1 ∈ P 3
C(w) on C

such that c(wvk) 6= c(wvk+1). Thus, vkwvk+1

−→
C vk is a requested cycle; see Figure 1, a

contradiction.

Note that if C is a proper cycle of length ` but does not contain v1, then we can also

divide V (C) into three parts such that each part satisfying the results stated in Lemma

3.1. According to Lemma 3.1, for any w ∈ W3(C), wvy(w)vy(w)+1 is a monochromatic

triangle. We denote the color of this monochromatic triangle by cw. Since (G, c) has no

joint monochromatic triangles, |W3(C)| ≤ `
2
.

Lemma 3.2. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c). If

|W2(C)| ≥ 2, then

(1) for every vertex w ∈ W2(C) and every two distinct vertices vi and vj in C, we have

c(wvi) 6= c(wvj), and

(2) C has the DPw for every w ∈ W2(C).

Proof. First, we can assert that all vertices in W2 following the colors of C in the same

direction. Suppose the contrary holds. Then, from Claim 1 we have c(w1vi) = c(w1vi+2)

for all indices i with 1 ≤ i ≤ `. Since (G, c) has no joint monochromatic triangles,

there exists at most one index ki for wi ∈ W2(C) such that c(wivki) = c(vkivki+2) with

1 ≤ ki ≤ `. Hence, v`w1v1v3w2v4
−→
C v`, v1w1v2v4w5v4

−→
C v1 and v`−2w1v`−1v1w2v2

−→
C v`−2 are

cycles of length `+ 1 containing v1. Then, we can easily verify that at least one of them

is proper, a contradiction. The assertion follows. Thus, there are no monochromatic
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triangles containing a vertex in W2(C) and two vertices in V (C). Then, from Claim 2 we

can get the result.

In the following, we consider the relation between W2(C) and W3(C). According to

Lemma 3.1, we define some new vertex sets. Let RC(w) = V (vy(w)

←−
C vr(w)) ⊆ P 1

C(w) such

that vy(w)+1vy(w) . . . vr(w) is a longest rainbow subpath of vy(w)+1vy(w) . . . vx(w). In a similar

way, we define QC(w) = V (vy(w)+1

−→
C vq(w)) ⊆ P 2

C(w). For convenience, we relabel the

vertices of C depending on w ∈ W3(C) on a clockwise direction by u1u2 · · ·u` such that

u1 = vy(w), ub = vq(w), ut = vz(w), us = vx(w) and ua = vr(w).

Lemma 3.3. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c).

If W2(C) 6= ∅, then when |W3(C)| ≥ 2, C is an even cycle with two colors appearing

alternatively on C. Furthermore, |W2(C)| ≤ 1.

Proof. Since |W3(C)| ≥ 2, there is a vertex w ∈ W3 such that u1 6= v1. Without

loss of generality, suppose w′ ∈ W2(C) follows the colors of C increasingly. To avoid

u`−1w
′u`wu2

−→
Cu`−1 being a requested cycle, we have c(wu`) ∈ {c(wu2), c(w′u`)}. If

c(wu`) = c(w′u`), then c(ww′) /∈ {c(wu2), c(w′u`)}. Hence, u`w
′wu2
−→
Cu` is a request-

ed cycle. Thus, c(wu`) = c(wu2). Then, u` /∈ P 1
C(w). Since w /∈ W1, we have

|P 2
C(w)| ≥ 2, that is, u3 ∈ P 2

C(w). To avoid u`w
′u2wu3

−→
Cu` being a requested cycle,

we have c(w′u2) = c(w′u`). Thus, C is an even cycle with two colors appearing alterna-

tively on C. According to Lemma 3.2, we know that |W2(C)| ≤ 1.

Proposition 3.1. Let (G, c) be an edge-colored complete graph on n ≥ 3 vertices such

that δc(G) ≥ n+1
2

, and not contain any joint monochromatic triangles.

(1) If W1(C) 6= ∅, then (G, c) is properly vertex-pancyclic.

(2) If |W2(C)| ≥ 2, then (G, c) is properly vertex-pancyclic.

(3) If |W2(C)| = 1 and W3(C) = ∅, then (G, c) is properly vertex-pancyclic.

Proof. Suppose, to the contrary, that there exists a vertex v which is contained in a proper

`-cycle C in (G, c) for some ` with 4 ≤ ` ≤ n− 1, but no proper cycle of length ` + 1 in

(G, c) contains vertex v.

(1) Let w ∈ W1(C) and w′ ∈ W2(C). If c(ww′) 6= c(w, V (C)), then at least one of

v1w2w1v3
−→
C v1, v2w2w1v4

−→
C v2 and v3w2w1v5

−→
C v3 is a proper cycle of length `+1 containing

v1. Thus, c(ww′) = c(w, V (C)), that is c(w,W2(C)) = c(w, V (C)).

If |W1(C)| = 1, then for w ∈ W1(C), we have dc(w) ≤ 1 + |W3| ≤ 1 + `
2

= `+2
2
< n+1

2
,

a contradiction. If |W1(C)| ≥ 2, then we can assert has W1(C) has the DPv1 . Since

9



(G, c) has no joint monochromatic triangles, there is at most one edge on C colored by

c(w, V (C)). Suppose, to the contrary, that W1(C) has no DPv1 . Then, there are two

vertices w1, w2 ∈ W1 such that c(w1w2) /∈ {c(v1w1), c(v1w2)}. Then, at least one of

v1w1w2v3
−→
C v1 and v1w2w1v3

−→
C v1 is a requested cycle, a contradiction. According Fact 1,

there exists a vertex w ∈ W1(C) such that dcW1(C)(w) ≤ |W1(C)|+1
2

, and at least one of the

colors used in W1 at w is c(wv1). Hence, dc(w) ≤ |W1(C)|+1
2

+|W3(C)| ≤ |W1(C)|+1
2

+ `
2
< n+1

2
,

a contradiction.

In the following, we might as well suppose W1(C) = ∅.

(2) Since |W2(C)| ≥ 2, from Lemma 3.2, V (C) has the DPw for w ∈ W2(C). If

W3(C) = ∅, the result follows. If W3(C) 6= ∅, then from Lemma 3.3 we have |W3(C)| ≤ 1.

Thus, there is a vertex v ∈ V (C) such that dc(v) ≤ |W2(C)+1|
2

+ 1 < n+1
2

.

(3) According to the proof of Case 3 of Theorem 2.1, (G, c) has a monochromatic

triangle containing w. Otherwise, V (C) has the DPw. Then, there is a vertex v ∈ V (C)

such that dc(v) < n+1
2

. Let va and vb be two distinct vertices on C such that c(va, vb) ∈ Iw
(suppose may as well va is in front of vb on C). If wvivi+da,b is not monochromatic

for any 1 ≤ i ≤ `, then c(wva−k) = c(wvb−k) for k = 0, 1, . . . , ` − 1. Consequently,

c(wvx) = c(wvx+kda,b) for every vertex vx ∈ V (C) and for every positive integer k (except

1 when vx = va). Furthermore, let (va, vb) be such a vertex pair in Iw that da,b =

min {di,j | (di, dj) ∈ Iw}, then ` ≡ 0 (mod da,b).

Let wvxvy be a unique monochromatic triangle containing w (we may as well suppose

vx is in front of vy on C). Then, we assert dx,y = da,b. Suppose, the contrary holds. Then,

we can get that c(wvi) = c(wvi+kda,b) for every vertex vi ∈ V (C) and for every positive

integer k (except 1 when vi = va). Thus, c(wvx) = c(wvx+kda,b) for every positive integer

k. Then, dx,y = qda,b where q = 2, · · · , n−1
da,b

. Otherwise, there is an integer p such that

dx+pda,b,y < da,b. Since c(wvx+pda,b) = c(wvx) = c(wvy), we have (vx+pda,b , vy) ∈ Iw, which

contradicts the choice of (va, vb). Therefore, n−1
da,b
≥ 3. Hence, dc(w) ≤ 1+da,b ≤ 1+ n−1

3
<

n+1
2

, a contradiction.

For convenience, we relabel the vertices of C by s1s2 · · · s` on a clockwise direction

such that s1 = sx and s1+da,b = vy. Let sq be such a vertex that (sq, sq+da,b) ∈ Iw while

(sq+1, sq+da,b+1) ∈ Dw. Then, from Proposition 2.3 we have (si, si+da,b) ∈ Dw for q + 1 <

i ≤ ` and c(wsi) = c(wsi+da,b) for 1 ≤ i < q. Since (G, c) has no joint monochromatic,

{(si, si+da,b), 1 < i < q} ⊆ Iw. Suppose that there is such a vertex pair (sf , sg) in Iw

while not in {(si, si+da,b), 1 < i < q} (we may as well suppose sf is in front of sg).

Then, according to the above content, we have dg,f > da,b. Thus, c(wsi) = c(wsi+kdg,f )
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for every vertex si ∈ V (C) and for every positive integer k (except 1 when si = sf ).

Then, C(w,C) = {c(wsi) | si ∈ V (s1
−→
C s1+df,g)}. Since c(ws1) = c(ws1+da,b), d

c(w) ≤
1 + df,g − 1 < n+1

2
. Thus, {(si, si+da,b), 1 < i < q} = Iw.

Let V1 = V (sq+da,b

−→
C s`) and V2 = V (C) \ V1. Since V1 × V1 ∩ Iw = ∅, V1 has the DPw.

Thus, there is a vertex s ∈ V1 such that dcV1
(s) ≤ |V1|+1

2
=

n−q−da,b+1

2
. Since (s, V2) ∩ Iw =

∅, c(ssi) ∈ {c(ws), c(wsi)} for si ∈ V2. Thus, C(s, V2) ⊆ C(w, V2) ∪ {c(ws)}. Hence,

dc(s) ≤ n−q−da,b+1

2
+ da,b. Apparently, q < da,b. Now we give a coloring orientation for

(G− w, c). Apparently, the edge set which is oriented arbitrarily is {sisi+da,b , 2 ≤ i ≤ q}.
Thus, D(G− w) has at most (n−1)(n−2)

2
+ q − 1 arcs. Therefore,

dc(G− w) ≤ d−(D(G− w)) + 1

≤ n− 2

2
+
q − 1

n− 1
+ 1

<
n

2
+
da,b − 1

n− 1

<
n+ 1

2
.

There exists a vertex with color degree less than n+1
2

.

Note that there is a special class of vertices wi in W3(C) such that |P 1
C(wi)| = |P 2

C(wi)| =
1. By repeating the proof procedure of Proposition 3.1, we can get Proposition 3.2.

Proposition 3.2. Let (G, c) be an edge-colored complete graph on n ≥ 3 vertices and

with no joint monochromatic triangles such that δc(G) ≥ n+1
2

. If there exist such vertices

wi ∈ W3(C) that |P 1
C(wi)| = |P 2

C(wi)| = 1 , then (G, c) is properly vertex-pancyclic.

Hence, in the following we suppose that either |P 1
C(w)| or |P 2

C(w)| is larger than 1 for

each w ∈ W3.

Lemma 3.4. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c). If

|W2(C)| ≤ 1, then |C(w,C)| ≥ 3 for w ∈ W3(C).

Proof. The result follows when |W3(C)| = 1. Suppose now |W3(C)| ≥ 2. If W2 6= ∅, then

from Lemma 3.3, we know that C is an even cycle with two colors appearing alternatively

on C. Let w1 ∈ W2 and w2 ∈ W3. Without loss of generality, assume that w1 follows

the colors of C increasingly. Then, we assert c(w1w2) ∈ C(w2, C). If u1 6= v1, then to

avoid ulw1w2u2
−→
Cu1 being a requested cycle, we have c(w1w2) ∈ {c(w2u2), c(w1u1)} ⊆

C(w2, C). If u1 = v1, then to avoid w1u4u3u5
−→
Cu1w2w1 being a requested cycle, we have

c(w1w2) ∈ {c(w2u4), c(w1u1)} ⊆ C(w2, C). Thus, dc(w) ≤ |C(w,C)|+ |W3(C)| − 1. Then,

|C(w,C)| ≥ 3.
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In the following we prove some lemmas to make the coloring structure of (G[V (C) ∪
{w}], c) clear for w ∈ W3(C).

Lemma 3.5. Suppose there is no proper cycle of length `+ 1 containing v1 in (G, c). For

w ∈ W3(C), if |P 3
C(w)| ≥ 2, then RC(w) = P 1

C(w) and QC(w) = P 2
C(w).

Proof. We prove Lemma 3.5 by contradiction. Assume that there is a vertex ui ∈ RC(w)

such that c(wus) = c(wui). Then, (us, ui) ∈ Iw. From Proposition 2.3, we have c(wus−1) =

c(wui−1). Since |P 3
C(w)| ≥ 2, c(wus−2) = c(wui−1) 6= c(wui−2). Thus, c(us−1ui−1) ∈

{c(usus−1), c(ui−1ui)}; otherwise, wui−2
←−
Cus−1ui−1

−→
Cus−2w is a requested cycle. Then,

c(us−1ui−1) 6= c(us−2us−1). Therefore, wui−2
←−
Cusui

−→
Cus−1ui−1w is a requested cycle, a

contradiction.

Now we define a cycle Cui
= ui−1wui+1

−→
Cui+1 where ui ∈ {u1, u2}. Taking an example

of which Cu1 is proper, we can get a conclusion. Suppose there is no proper cycle of

length ` + 1 containing v1 in (G, c). If there is a vertex ui such that c(u1ui) 6= c(uiui+1),

then c(u1ui−1) ∈ {c(u1ui), c(ui−1ui−2)}. Otherwise, wu2
−→
Cui−1u1ui

−→
Cu`w is a requested

cycle. Thus, c(u1ui−1) 6= c(uiui−1). By repeating this proof procedure, we can get that

c(u1uk) ∈ {c(u1uk+1), c(uk−1uk)} and c(u1uk) 6= c(ukuk+1) for uk ∈ V (ui−1
←−
Cu2). Notice

that if c(u1uj) = c(u1ui), then c(u1uj−1) = c(u1ui), and once there is a vertex uj such

that c(u1uj) = c(ujuj−1), then c(u1uk) = c(ukuk−1) for uk ∈ V (uj
←−
Cu2). Consequently,

c(u1uk) ∈ {c(u1ui), c(ukuk−1)} for uk ∈ V (ui−1
←−
Cu2). In a similar way, if there is a

vertex ui such that c(u1ui) 6= c(uiui−1), then c(u1uk) ∈ {c(u1ui), c(ukuk+1)} for uk ∈
V (ui+1

−→
Cu`).

Lemma 3.6. Suppose there is no proper cycle of length `+ 1 containing v1 in (G, c). For

w ∈ W3(C), we have

(1) RC(w) \ {ua} and QC(w) \ {ub} has the DPw;

(2) (RC(w) \ {ua}, QC(w) \ {ub}) ⊆ Dw;

(3) if neither P 1
C(w) \ RC(w) nor P 2

C(w) \ QC(w) is empty, and then (ua, QC(w) \
{u2}) ∪ (RC(w) \ {u1}, ub) ⊆ Dw.

Proof. (1) Suppose, to the contrary, that there exist two vertices ui and uj in RC(w)\{ua}
that have no DPw (we might as well assume that ui is in front of uj). Then, according to

Proposition 2.3, we have c(wui−1) = c(wuj−1), a contradiction.

(2) Suppose, to the contrary, that (ui, uj) ∈ Iw, where ui ∈ RC(w) \ {ua} and uj ∈
QC(w) \ {ub}. Let C ′ = wu2

−→
Cujui

−→
Cu1ui−1

←−
Cuj+1w be a cycle of length `+ 1 containing
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v1. If ui−1 6= ua, then according to (1) we have c(u1ui−1) ∈ {c(wu1), c(wui−1)}. Thus,

c(u1ui−1) /∈ {c(u1u2), c(ui−1ui−2)}. Since c(wu1) 6= c(wuj+1), C
′ is proper, a contradiction.

If ui−1 = ua, then we can get that c(u1ua) ∈ {c(u1ul), c(uaua−1)}. Otherwise, C ′ is

proper. Thus, c(u1ua) 6= c(vava+1). Hence, c(u1uk) ∈ {c(u1uk+1), c(ukuk−1)} for uk ∈
V (ua−1

−→
Cu2). Then, c(u1uj+1) 6= c(uj+1uj+2). Therefore, wu2

−→
Cujui

−→
Cu1uj+1

−→
Cui−1w or

wu`
←−
Cuiuj

←−
Cu1uj+1

−→
Cui−1w is a requested cycle, a contradiction.

(3) We prove this statement by classified discussion. If c(wua−1) = cw, then c(u1ua−1) 6=
c(ua−1ua). Since Cu1 is proper, c(u1uk) ∈ {c(u1ua−1), c(ukuk−1)} for uk ∈ V (ua−2

←−
Cu2).

Therefore, c(u1uk) /∈ {cw, c(ukuk+1)} for uk ∈ P 2
C(w). Assume that there exist two

vertices ui ∈ RC(w) \ {u1} and uj ∈ QC(w) \ {u2} such that (ui, uj) ∈ Iw. Then,

c(uiuj) /∈ {c(uiui+1), c(ujuj−1)}. Since c(u1uj+1) /∈ {cw, c(uj+1uj+2)} and c(wui−1) 6=
c(wul), wul

←−
Cuiuj

←−
Cu1uj+1

−→
Cui−1w is a requested cycle, a contradiction. Symmetrically,

the result holds if c(wub+1) = cw. Now suppose cw /∈ {c(wua−1), c(wub+1)}. By repeating

the proof procedure of (2), we know that (ua, QC(w) \ {ub}) ∪ (RC(w) \ {ua}, ub) ⊆ Dw.

Hence, for ui, uj ∈ RC(w) ∪ QC(w) \ {u1, ua, ub} we have c(wui) 6= c(wuj). We prove

(ua, ub) ∈ Dw in the following cases by contradiction.

If c(wua−1) = c(wu`), then c(u1ua−1) ∈ {c(ua−1ua−2), c(u1u`)}; otherwise, wu2
−→
Cubua

−→
C

u1ua−1
←−
Cub+1w is a requested cycle. When c(u1ua−1) = c(ua−1ua−2), we have c(u1uk) =

c(ukuk−1) for uk ∈ V (ua−1
←−
Cu2). Hence, c(u1ub+1) = c(ubub+1) /∈ {c(u1u`), c(ub+1ub+2)}.

Then, wu2
−→
Cubua

−→
Cu1ub+1

−→
Cua−1w is a requested cycle, a contradiction. When c(u1ua−1) =

c(u1u`), we have c(u1ua−1) /∈ {c(ua−1ua−2), cw}. Then, wu`
←−
Cuaub

←−
Cu1ua−1

−→
Cub+1w is a

requested cycle, a contradiction. Symmetrically, the result holds if c(wub+1) = c(wu3).

The last case is that c(wua−1) 6= c(wu`). According to Proposition 2.1, we know that

there is a vertex ui ∈ RC(w) such that c(wus) = c(wui). Since c(wu1) /∈ {c(wub+2),

c(wui−1)}, c(u1ub+1) ∈ {c(ub+1ub), c(u1u`)}; otherwise, one of wu2
−→
Cub+1u1

←−
Cub+2w and

wu2
−→
Cub+1u1

←−
Cuius

−→
Cui−1w is a requested cycle. At the same time we have c(u1ub+1) ∈

{c(ub+1ub+2), c(u1u2)}; otherwise, wu`
←−
Cuaub

←−
Cu1ub+1

−→
Cua−1w is a requested cycle. There-

fore, c(u1ub+1) = c(u1u`) = c(ub+1ub+2). Thus, we can get c(u1uk) = c(ukuk+1) for uk ∈
V (ub+1

−→
Cu`), Hence, c(u1ua−1) = c(ua−1ua) /∈ {c(u1u`), c(ua−2ua−1)}. Then, wu2

−→
Cubua−→

Cu1ua−1
←−
Cub+1w is a requested cycle, a contradiction. So far, we have completed the

proof of (3).

Lemma 3.6 (1) and (2) claim that for ui, uj ∈ RC(w) ∪ QC(w) \ {u1, ua, ub}, we have

c(wui) 6= c(wuj). Lemma 3.6 (3) claims that if neither P 1
C(w)\RC(w) nor P 2

C(w)\QC(w)

is empty, then for ui, uj ∈ RC(w) ∪QC(w) \ {u1}, we have c(wui) 6= c(wuj). Then, from
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Lemmas 3.5 and 3.6, we can get the following result.

Proposition 3.3. Let (G, c) be an edge-colored complete graph on n ≥ 3 vertices such that

δc(G) ≥ n+1
2

, and not contain any joint monochromatic triangles. For any w ∈ W3(C),

if neither P 1
C(w) \ RC(w) nor P 2

C(w) \ QC(w) is empty, then (G, c) is properly vertex-

pancyclic.

Proof. Suppose, to the contrary, that there exists a vertex v which is contained in a proper

`-cycle C in (G, c) for some ` with 4 ≤ ` ≤ n−1, but no proper cycle of length `+1 in (G, c)

contains vertex v. According to Lemma 3.5, we can get |P 3
C(w)| ≤ 1. If P 3

C(w) = ∅, then

c(wua−1) = c(wub+1) = cw; otherwise, (G, c) has a requested cycle. Thus, c(u2ub+2) 6=
c(ub+2ub+3). Then, wu3

−→
Cub+1u1u2ub+2

−→
Cu`w or wu1ub+1

←−
Cu2ub+2

−→
Cu`w is a requested

cycle, a contradiction. If |P 3
C(w)| = 1, then c(w,P 3

C(w)) = c(wua−1) = c(wub+1) = cw.

Thus, c(u1ut+1) = c(ut+1us). Since Cu1 is proper, we have c(u1uk) = c(ukuk+1) for

uk ∈ P 1
C(w). Hence, wu1ua−1 is monochromatic, a contradiction.

Thus, if there is no proper cycle of length `+ 1 containing v1 in (G, c) and W3(C) 6= ∅,
then for any w ∈ W3(C), either P 1

C(w) \ RC(w) or P 2
C(w) \ QC(w) is empty. Hence, we

might as well suppose that P 2
C(w) \QC(w) = ∅, that is QC(w) = P 2

C(w).

Proposition 3.4. Let (G, c) be an edge-colored complete graph on n ≥ 3 vertices such

that δc(G) ≥ n+1
2

, and not contain any joint monochromatic triangles. If for any w ∈ W3,

P 1
C(w) = V (u3

−→
Cu2) and P 1

Cu1
(u1) = V (u3

−→
Cu1u2), and u4

−→
Cu2 is a rainbow path, then

(G, c) is properly vertex-pancyclic.

Proof. Suppose, to the contrary, that there exists a vertex v which is contained in a proper

`-cycle C in (G, c) for some ` with 4 ≤ ` ≤ n − 1, but no proper cycle of length ` + 1

in (G, c) contains vertex v. Since wuk−1
←−
Cu2uk

−→
Cu1w is of length ` + 1 and contains v1,

we have c(u2uk) ∈ {c(u2u3), c(ukuk+1)} for uk ∈ V (u3
−→
Cu1). According to Lemma 3.6, we

have V (u5
−→
Cu`) has the DPw. Then, there is a vertex up such that dc

V (u5
−→
Cu`)

(up) ≤ `−3
2

.

If c(u2up) = c(upup+1), then dc(up) ≤ `+1
2

< n+1
2

, a contradiction. Thus, c(u2up) =

c(u2u3) 6= c(upup+1). Then, to avoid wu2up
−→
Cu1ui

←−
Cu3ui+1

−→
Cup−1w for ui ∈ V (u5

−→
Cup−1)

and wui−1
←−
Cupu2

←−
Cuiu3

−→
Cup−1w for ui ∈ V (up+1

−→
Cu`) being requested cycles, we have

c(u3ui) ∈ {c(wu3), c(wui)} for ui ∈ V (u5
−→
Cu1) \ {up}. Note that if there is another

vertex u such that c(uu2) = c(u2u3) 6= c(wu), we have (u3, V (u4
−→
Cup−1)) ⊆ DPw. Then,

u3 ∈ RC(w); otherwise, (G, c) has joint monochromatic triangles. Thus, there is a vertex

in V (u3
−→
Cu`) whose color degree is less than n+1

2
, a contradiction. Hence, up is the unique

vertex such that c(u2up) = c(u2u3) 6= c(upup+1). If n ≤ 7, we can easily find a vertex

14



of dc(u) < n+1
2

. If n > 8, we give (G[V (u5
−→
Cu`)], c) a coloring orientation. If there is a

distinct vertex u such that d+D(u) ≥ `−5
2

, then dc(u) ≤ `+1
2
< n+1

2
, a contradiction. Thus,

d+D(up) ≥ (`−4)(`−5)
2

− (`−5)(`−6)
2

= `− 5. Then dc(up) ≤ 4, a contradiction.

Lemma 3.7. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c).

Then for w ∈ W3(C) with P 3
C(w) 6= ∅, we have

(1) (RC(w) \ {u1, ua}, ub) ∪ (ua, QC(w) \ {u2, ub}) ⊆ Dw.

(2) if all of |P 1
C(w)|, |P 2

C(w)| and |P 3
C(w)| are larger than 1, then (ua, ub) ∈ Dw.

Proof. (1) The proof method is the same as that of Lemma 3.6 (2) and (3).

(2) From (1) and Lemma 3.6 (2) , we can get (RC(w)\{u1}, QC(w)\{u2})\{(ua, ub)} ⊆
Dw. If c(wul) = c(wu3), we have a = ` and b = 3. Thus, c(w,P 3

C(w)) 6= c(wu3); otherwise,

dc(w) = 2 < n+1
2

, a contradiction. Thus, c(w,P 3
C(w)) 6= c(wu`) or c(w,P 3

C(w)) 6= c(wu3)

holds. Without loss of generality, suppose c(w,P 3
C(w)) 6= c(wu3).

Suppose, to the contrary, that c(uaub) /∈ {c(uaua+1), c(ubub−1)}. Since |P 3
C(w)| ≥ 2,

we have ua = us and ub = ut. Since c(wut+2) 6= c(wu3), we can get c(u2ut+1) ∈
{cw, c(ut+1ut)}. If c(u2ut+1) = cw, then c(w,P 3

C(w)) 6= cw. To avoid wu1
←−
Cusut

←−
Cu2ut+1

−→
C

us−1w being a requested cycle, we have c(u2ut+1) = c(ut+1ut+2). Hence, c(u2us−1) =

c(usus−1). Then, wu3
−→
Cutus

−→
Cu2us−1

←−
Cut+1w or wu1

←−
Cusut

←−
Cu2us−1

←−
Cut+1w is a request-

ed cycle, a contradiction. If c(u2ut+1) = c(utut+1) 6= cw, then c(u2ut+1) 6= c(ut+2ut+1).

Hence, wu3
−→
Cutus

−→
Cu2ut+1

←−
Cus−1w is a proper cycle of length ` containing v1, a contra-

diction.

Lemmas 3.6 (2) and 3.7 claim that if all of |P 1
C(w)|, |P 2

C(w)| and |P 3
C(w)| are larger

than 1, then for ui, uj ∈ RC(w) ∪QC(w) \ {u1}, we have c(wui) 6= c(wuj).

Lemma 3.8. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c).

If |W3(C)| ≥ 2, then for each vertex w ∈ W3(C) such that neither wv1vl nor wv1v2 is

monochromatic, we have that both Cu1 and Cu2 are proper cycles of length ` containing

v1.

Proof. Let w be a vertex such that wv1vi is not monochromatic for i = 2, `, and w′ be a

distinct vertex. We again relabel the vertices of C depending on w′ ∈ W3(C) by u′1u
′
2 · · ·u′`

in a clockwise direction such that u1 = vy(w′), ub = vq(w′), ut = vz(w′), us = vx(w′) and

ua = vr(w′). Without loss of generality, suppose |P 1
C(w)| ≥ 2. Then, assume, to the

contrary, that Cu2 is not proper, that is, |P 2
C(w)| = 1 and c(w,P 3

C(w)) = cw if P 3
C(w) 6= ∅.

Then, u1, w
′ ∈ W3(Cu1) and Cu1 is a proper cycle containing v1.
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In the first case we assume that Cu′
2

is proper. Then, the coloring of ∂(u′2, Cu′
2
) follows

the statement in Lemma 3.1. If c(wu′2) = cw, then from Lemma 3.4 we have |RCu′2
(w)| ≥ 4.

Apparently, u1 /∈ P 1
Cu′1

(u′2), and then u1, ul ∈ P 2
Cu′1

(u′2)∪P 3
Cu′1

(u′2). Thus, u`−1wu
′
2u1
−→
Cu`−1

or u`−2wu
′
2u`
−→
Cu`−2 is a requested cycle, a contradiction. If c(wu′2) 6= cw, then u′2 ∈ P 1

C(w)

and c(wu′2) = c(u′2u
′
3). When c(wu′2) = c(wu`), we have w ∈ P 2

Cu1
(u′2). Thus, c(u′3u

′
4) =

cw. Then, u′4u
′
2u
′
3wu

′
1

←−
Cu′4 is a requested cycle, a contradiction. When c(wu′2) 6= c(wu`),

we have w ∈ P 3
Cu1

(u′2). Note that c(wu′`) 6= c(wu′2); otherwise, wu′2u
′
` is monochromatic.

Since u′`wu
′
2u
′
1

−→
Cu′` is a proper cycle of length `+1, we have u′1 = v1. Then, u′1ww

′u′2u
′
4

−→
Cu′1

or u′1wu
′
3u
′
2u
′
4

−→
Cu′1 is a requested cycle, a contradiction.

In the second case we assume that Cu′
1

is proper. Then, the coloring of ∂(u′1, Cu′
1
)

follows the statement in Lemma 3.1. If c(wu′1) = cw, then it is easy to verify that

there is a requested cycle in (G, c), a contradiction. If c(wu′1) 6= cw, then u′1 ∈ P 1
C(w)

and c(wu′1) = c(u′1u
′
2). When c(wu′1) = c(wu`), we have V (w

←−
Cu1u

′
2) ⊆ P 2

Cu1
(u′1). Since

w′wu′1u
′
3

−→
Cw′ is a proper cycle of length `, we have u′2 = v1. To avoid w′wu′2u

′
1u
′
4

−→
Cw′ being

a requested cycle, we have c(u′1u
′
4) = c(u′1u

′
2). Then, |C(w,C)| < 4, a contradiction. When

c(wu′1) 6= c(wu`), furthermore if c(ww′) = c(u′1u
′
2), then ww′u′1 is monochromatic. Thus,

c(ww′) = cw, it is easy to verify that there is a requested cycle in (G, c), a contradiction.

In the following we prove an important lemma which can transform a cycle C at w ∈
W3(C) with |P 3

C(w)| ≥ 3 into a new cycle Cui
at ui ∈ W3(Cui

) with |P 3
Cui

(ui)| ≤ 1, i = 1, 2

under the condition that there is no proper cycle of length `+ 1 containing v1 in (G, c).

Lemma 3.9. Suppose there is no proper cycle of length `+1 containing v1 in (G, c). Then

for w ∈ W3(C), if |P 3
C(w)| ≥ 3 then u1 ∈ W3(Cu1) with |P 3

Cu1
(u1)| ≤ 1 or u2 ∈ W3(Cu2)

with |P 3
Cu2

(u2)| ≤ 1.

Proof. In the first case we assume that both |P 1
C(w)| and |P 2

C(w)| are larger than 1.

Then, according to Lemmas 3.6 (2) and 3.7, we have c(wul) 6= c(wu3). Apparently,

cw /∈ {c(wu`, c(wu3))}, and then Cu1 and Cu2 are proper. Since |P 3
C(w)| ≥ 3, there is a

vertex up ∈ P 3
C(w) such that up−1, up+1 ∈ P 3

C(w); see Figure 2.

If c(w,P 3
C(w)) = cw, then c(uiuk) 6= cw for uk ∈ P 3

C(w) and i = 1, 2. It is simple to

verify c(u1up) = c(up+1up) and c(u2up) = c(up−1up). Thus, c(u2up) /∈ {c(upup+1), cw} and

c(u1up) /∈ {c(upup−1), cw}. Then, to avoid wu3
−→
Cup−1u1u2up

−→
Cu`w and wu3

−→
Cupu1u2up+1−→

Cu`w being requested cycles, we have c(u1up−1) = c(up−1up−2) and c(u2up+1) = c(up+1up+2).

Hence, u1 ∈ W3(Cu1) with P 3
Cu1

(u1) = ∅ and u2 ∈ W3(Cu2) with P 3
Cu2

(u2) = ∅.
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w

u1u2

u3
uℓ

upup−1 up+1

Figure 2: G[V (C) ∪ {w}] used in the proof of Lemma 3.9.

If c(w,P 3
C(w)) = c(wu3), then c(w,P 3

C(w)) 6= c(wu`). It is simple to verify c(u1up) ∈
{c(up−1up), c(u1u`)} ∩ {c(up+1up), cw} and c(u2up) ∈ {c(up+1up), c(u2u3)}. If c(u1up) =

c(upup−1) = cw, then c(u2up) 6= cw. Since Cu1 is proper, we have c(u1uk) = c(ukuk−1)

for uk ∈ V (up
←−
Cu2). Then, c(u1u3) = c(u3u2) /∈ {c(u3u4), c(u1u`)}. Thus, wu2up

←−
Cu3u1←−

Cup+1w is a requested cycle, a contradiction. Hence, c(u1up) = c(u1u`) = c(upup+1).

Then, c(u1up) /∈ {cw, c(upup−1)}. Furthermore, if c(u2up) = c(upup+1), then since Cu2 is

proper, we have c(u2uk) = c(ukuk+1) for uk ∈ V (up
−→
Cu`). Then, c(u2u`) = c(u`u1) /∈

{c(u2u3), c(u`u`−1)}. Thus, wu1up
←−
Cu2u`

←−
Cup+1w is a requested cycle. Hence, c(u2up) =

c(u2u3) 6= c(upup+1). Then, to avoid wu3
−→
Cup−1u1u2up

−→
Cu`w being a requested cycle, we

have c(u1up−1) ∈ {cw, c(up−1up−2)}. Since c(wup) 6= cw, it is simple to verify c(u1up−1) ∈
{c(up−1up−2), c(u`u`−1)}. Thus, c(u1up−1) = c(up−1up−2). Therefore, u1 ∈ W3(Cu1) with

P 3
Cu1

(u1) = ∅. Symmetrically, if c(w,P 3
C(w)) = c(wu`), we can get u2 ∈ W3(Cu2) with

P 3
Cu2

(u2) = ∅.
If c(w,P 3

C(w)) /∈ {cw, c(wu`), c(wu3)}, then it is simple to verify c(u1up) ∈ {c(up−1up),
c(u1u`)}∩{cw, c(up+1up)} and c(u2up) ∈ {c(up−1up), cw)}∩{c(up+1up), c(u2u3)}. If c(u1up)

= c(up−1up) = cw, then c(u2up) = cw. Hence, (G, c) has joint monochromatic triangles, a

contradiction. Thus, c(u1up) = c(u1u`) = c(up+1up) and c(u2up) = c(up−1up) = c(u2u3).

Then, c(u1up) /∈ {c(up−1up), cw}. Thus, we have c(u2up+1) ∈ {cw, c(up+1up+2)}; otherwise,

wu3
−→
Cupu1u2up+1

−→
Cu`w is a requested cycle. Since c(wup) 6= cw, it is simple to verify

c(u2up+1) ∈ {c(up+1up+2), c(u2u3)}. Thus, c(u2up+1) = c(up+1up+2). Symmetrically, we

have c(u1up−1) = c(up−1up−2). Since both Cu1 and Cu2 are proper, we have u1 ∈ W3(Cu1)

with P 3
Cu1

(u1) = ∅ and u2 ∈ W3(Cu2) with P 3
Cu2

(u2) = ∅.
Thus the cycle C with a vertex w ∈ W3(C) which is of |P 2

C(w)| ≥ 2 and |P 3
C(w)| ≥ 3

can be changed into another cycle Cui
with ui ∈ W3(Cui

) and P 3
Cui

(ui) = ∅, i = 1 or 2;

see Figures 2 and 3.

In the second case we assume that either |P 1
C(w)| or |P 2

C(w)| is 1. Without loss of

generality, suppose |P 2
C(w)| = 1. Then, Cu1 is proper. Since |P 3

C(w)| ≥ 3, u3, u4, u5 ∈
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u1

u2

u3
w

uℓ

up up+1

or

uℓ

w

u1

u2

u3

up up−1

P 2
Cu1

(u1) P 1
Cu1

(u1)
P 2
Cu2

(u2) P 1
Cu2

(u2)

Figure 3: G[V (Cui ) ∪ {ui}] used in the proof of Lemma 3.9.

P 3
C(w). If c(wu3) /∈ {cw, c(wu`)}, we can get u1 ∈ W3(Cu1) with P 3

Cu1
(u1) = ∅. If

c(wu3) = cw, then it is simple to verify c(u1u4) = c(u4u5). Thus, u1 ∈ W3(u1) with

P 3
Cu1
⊆ {u3}. If c(wu3) = c(wu`), then Cu2 is proper. To avoid wu3u2u4

←−
Cu1w being a

requested cycle, we have c(u2u4) ∈ {c(u3u2), c(u4u5)}. Once c(u2u4) = c(u4u5), we get

u2 ∈ W3(Cu2) with P 3
Cu2
⊆ {u3}. Once c(u2u4) = c(u3u2) 6= c(u4u5), then u3 ∈ P 3

Cu2
(u2).

Thus, u` ∈ P 1
Cu2

(u2). It is easy to verify c(u2u3) /∈ {cw, c(u2u`)}. Then, we can get

u1 ∈ W3(Cu1) with P 3
Cu1

(u1) = ∅.
Thus the cycle C with a vertex w ∈ W3(C) which is of |P 2

C(w)| = 1 and |P 3
C(w)| ≥ 3

can be changed into another cycle Cui
with ui ∈ W3(Cui

) and |P 3
Cui

(ui)| ≤ 1, i = 1 or 2;

see Figures 4 and 5.

w

uℓu1u2
u3

u4

u5

P 3
C(w)

Figure 4: G[V (C) ∪ {u}] used in the proof of Lemma 3.9.

wu2
u3

u4

u1

uℓ

u1

uℓ

w

u2

u3

u4

or

P 1
Cu1

(u1) P 1
Cu2

(u2)

Figure 5: G[V (Cui ) ∪ {ui}] used in the proof of Lemma 3.9.

18



From Lemmas 3.8 and 3.9, we get the following important corollary.

Corollary 3.1. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c).

Then, |W3(C)| ≤ 3.

Proof. First, we prove a claim: For a vertex w in W3(C) such that wv1vi is not monochro-

matic for i = 2, `, we have u1 /∈ P 1
C(w′) and u2 /∈ P 2

C(w′) for any distinct w′ ∈ W3(C).

According to Lemma 3.8, we know that Cu1 and Cu2 are proper cycles of length ` contain-

ing v1. If u1 ∈ P 1
C(w′), then u3 ∈ P 1

C(w′). Thus, c(ww′) = c(wu3). According to Lemma

3.8 again, we know that c(u1u3) /∈ {c(wu1), c(u3u4)}. Thus, ww′u1u3
−→
Cw is proper cycle

of length ` + 1 containing v1, a contradiction. Thus, u1 /∈ P 1
C(w′). In a similar way, we

can get u2 /∈ P 2
C(w′).

Suppose, to the contrary, that |W3(C)| ≥ 4. Since (G, c) has no joint monochromatic

triangles, there exists a vertex w ∈ W3(C) with |P 3
C(w)| ≥ 4 such that wv1vi, i = 2, `, is

not monochromatic; see Figure 6.

w

w2
w1 w3

vy(w1)

vy(w2)

vy(w3)

vy(w)

P 3
C(w)

Figure 6: A cycle C with |W3(C)| ≥ 4 used in the proof of Corollary 3.1.

According to Lemma 3.9, without loss of generality, suppose u1 ∈ W3(Cu1) with

|P 3
Cu1

(u1)| ≤ 1. Then, |W3(Cu1)| ≤ 3. Since V (Cu1) ∩ V (C) = V (u2
−→
Cu`), we have

W3(Cu1) = W3(C) ∪ {u1} \ {w}, that is, |W3(Cu1)| ≥ 4, a contradiction.

Lemma 3.10. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c).

Then for w ∈ W3(C) with |P 3
C(w)| ≤ 2, if both |P 1

C(w)| and |P 2
C(w)| are larger than 1,

there is a vertex set V1 of size `− 4 such that c(wu) = c(uu1) = c(uu2) for u ∈ V1.

Proof. In the first case suppose c(wu`) = c(wu3). When ` = 5, the result follows appar-

ently. In the following assume ` ≥ 6. From Lemmas 3.4 and 3.7, we get P 3
C(w) = ∅.

Let C1 = wu`u3
←−
Cu1u4

−→
Cu`−1w, C2 = wu2u3u`u1u4

−→
Cu`−1w, C3 = wu3u`

←−
Cu2u4

−→
Cu`−1w

and C4wu1u`u3u2u4
−→
Cu`−1w be cycles of length ` + 1 containing v1. We might as well

suppose ub = u3. (Note that when RC(w) ( P 1
C(w), we have ua = u`; otherwise, C1
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is proper.) Then, |RC(w)| ≥ 3. To avoid C1 and C2 being proper, we have c(u1u4) ∈
{cw, c(u4u5)} ∩ {c(u1u`−1), c(u4u5)}. Then, c(u1u4) = c(u4u5). Since Cu1 is proper, we

have c(u1uk) = c(ukuk+1) for uk ∈ V (u4
−→
Cu`). Then, c(wuk) 6= c(wu1) for uk ∈ V (u4

−→
Cu`).

To avoid C3 being proper, we have c(u2u4) ∈ {cw, c(u4u5)}. Thus, c(u2u4) = c(u4u5); oth-

erwise, C4 is proper. Since Cu2 is proper, we have c(u2uk) = c(ukuk+1) for uk ∈ V (u4
−→
Cu`).

The result follows as V1 = V (u4
−→
Cu`).

In the second case suppose c(wu`) 6= c(wu3). First, we prove a claim: There is a vertex

set V1 of size ` − 4 such that c(uiu2) 6= cw for ui ∈ P 1
C(w) ∩ V1 and c(uju1) 6= cw for

uj ∈ P 2
C(w) ∩ V1. Apparently, the claim holds for u ∈ RC(w) ∪ QC(w) \ {ua, ub, u1, u2}.

Let V0 = RC(w)∪QC(w)\{u1, u2}. If RC(w) = P 1
C(w), then the claim follows apparently

when P 3
C(w) = ∅ or c(w,P 3

C(w)) 6= c(wu1). While when |P 3
C(w)| = 1 and c(w,P 3

C(w)) =

c(wu1), suppose, to the contrary, that c(usu2) = c(utu1) = cw. Then, c(u2ut+1) 6= cw.

Thus, wut+1u2us
−→
Cu1ut

←−
Cu3w is a requested cycle, a contradiction. Hence, at least one

of c(u2us) and c(u1ut) is not cw. Therefore, the claim follows as V1 = V0 \ {us} or

V1 = V0 \ {ut}. When |P 3
C(w)| = 2 and c(w,P 3

C(w)) = cw, since c(wu3) 6= c(wut+2), we

have c(u2ut+1) ∈ {c2, c(utut+1)}. Thus, c(u2ut+1) 6= c(ut+1ut+2). Then, c(utu1) 6= cw;

otherwise, wu2ut+1

−→
Cu1ut

−→
Cu3w is a requested cycle. Therefore, the claim follows as

V1 = V0. If RC(w)  P 1
C(w), according to Lemma 3.5 we know |P 3

C(w)| ≤ 1. When

c(wua−1) 6= c(wu1), the claim follows as V1 = V0\{us, us−1}. When c(wua−1) = c(wu1), we

can get an assertion that to avoid wu2ua−1
−→
Cu1ua−2

←−
Cu3w and wul

←−
Cua−1u2u1ua−2

←−
Cu3w

being requested cycles, we have c(u1ua−2) ∈ {cw, c(ua−2ua−3)} ∩ {c(u1ul), c(ua−2ua−3)}.
In the following we prove the assertion that |P 1

C(w) ∪ P 3
C(w) \ RC(w)| ≤ 1. If not, since

c(wua−2) = c(wu`), we have c(u1u`) 6= c(ua−2ua−3). Thus, c(u1ua−2) = c(ua−2ua−3). Since

Cu1 is proper, we have c(u1uk) = c(ukuk−1) for uk ∈ V (ua−2
←−
Cu2). Then, c(u1u3) =

c(u2u3) /∈ {c(u3u4), c(u1u`)}. Thus, wu`
←−
Cua−1u2u1u3

−→
Cua−2w is a requested cycle, a

contradiction. The assertion thus follows. Since RC(w)  P 1
C(w), we have P 3

C(w) = ∅.
Thus, c(wus) = cw. Then, c(u1ut) 6= cw; otherwise, wu`

←−
Cusu2u1ut

←−
Cu3w is a requested

cycle. Hence, the claim follows as V1 = V0 \ {us, ut}.
Next suppose, to the contrary, that there exists a vertex ui ∈ P 1

Cw ∩ V1 such that

c(uiu2) 6= c(wui). Since c(uiu2) 6= cw, to avoid wu2ua−1
−→
Cu1ua−2

←−
Cu3w and wu`

←−
Cua−1u2u1

ua−2
←−
Cu3w being requested cycles, we have c(u1ui−1) = c(ui−1ui−2). Since Cu1 is prop-

er, we have c(u1uk) = c(ukuk−1) for uk ∈ V (ui−1
←−
Cu2). In a similar way, we can get

c(u1uj) = c(wuj) for uj ∈ P 2
C(w) ∩ V1. Then, u2u1u3

−→
Culu2 is a proper cycle of length

` containing v1. Then, by repeating this as above, we can get that c(uiu1) = c(wui) for

ui ∈ P 1
C(w) ∩ V1 and c(u2uj) = c(wuj) for uj ∈ P 2

C(w) ∩ V1. The result thus follows.
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Lemma 3.11. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c).

For w ∈ W3(C) with |P 2
C(w)| = 1 and |P 3

C(w)| ≥ 3, if both c(w,P 3
C(w)) = cw and

c(u1u3) 6= c(u2u3), then c(u2uk) = c(u3uk) = c(ukuk+1) for uk ∈ V (u5
−→
Cu`).

Proof. Since c(wu3) 6= c(wu`), we have c(u1u4) = c(u4u5). From 3.4 we know that

Cu1 is proper. Thus, c(u1uk) = c(ukuk+1) for uk ∈ V (u4
−→
Cu`). Hence, c(u1uk) /∈

{c(ukuk−1), cw} for uk ∈ V (u4
−→
Cu`). Since for uk ∈ V (u5

−→
Cu`), wu1uk−1

←−
Cu2uk

−→
Cu`w,

wu3
−→
Cuk−1u1u2uk

−→
Cu`w and wu4

−→
Cuk−1u1

−→
Cu3uk

−→
Cu`w are of length `+ 1 and contain v1,

we have c(u2uk) ∈ {c(u2u3), c(ukuk+1)}∩{cw, c(ukuk+1)} and c(u3uk) ∈ {c(u2u3), c(ukuk+1)}.
Thus, apparently we have c(u2uk) = c(ukuk+1) for uk ∈ V (u5

−→
Cu`). While if c(u3uk) =

c(u2u3) 6= c(ukuk+1), then c(u1u3) /∈ {cw, c(u3uk)}. Thus, wu`
←−
Cuku3u1u2uk−1

←−
Cu4w is a

requested cycle, a contradiction. The result thus follows.

Lemma 3.12. Suppose there is no proper cycle of length `+1 containing v1 in (G, c). Then

for w ∈ W3(C) with |P 2
C(w)| = 1 and |P 3

C(w)| = 2, we have c(u1uk) = c(u2uk) = c(ukuk+1)

for uk ∈ V (u5
−→
Cu`).

Proof. In the first case suppose c(w,P 3
C(w)) = cw. Then, to avoid wu3

←−
Cu1u4

−→
Cu`w

being a requested cycle, we have c(u1u4) = c(u4u5). Thus, c(u1uk) = c(ukuk+1) for

uk ∈ V (u4
−→
Cu1). Apparently, c(u2uk) ∈ {cw, c(ukuk+1)} for uk ∈ V (u5

−→
Cu1); other-

wise, wu1uk−1
←−
Cu2uk

−→
Cu`w is a requested cycle. If c(u2uk) = c(u2u3) 6= c(ukuk+1), then

c(u2uk) 6= c(u1u2). Thus, wu3
−→
Cuk−1u1u2uk

←−
Cu`w is a requested cycle, a contradiction.

Hence, c(u2uk) = c(ukuk+1) for uk ∈ V (u5
−→
Cu1).

In the second case suppose c(w,P 3
C(w)) 6= cw. Then, to avoid wu4

−→
Cu1u3u2w be-

ing a requested cycle, we have c(u1u3) ∈ {c(u1u`), c(u2u3)}. Hence, c(u1u3) 6= cw. If

c(w,P 3
C(w)) 6= c(wu`), then c(u1u3) 6= c(wu3). Thus, c(u2u4) = c(u4u5); otherwise,

wu3u1u2u4
−→
Cu`w is a requested cycle. Therefore, c(u2uk) = c(ukuk+1) for uk ∈ V (u5

−→
Cu`).

If c(w,P 3
C(w)) = c(wu`), then to avoid wu3u`

−→
Cu2u4

−→
Cu`−1w and wu3u2u4

−→
Cu1w being re-

quested cycles, we have c(u2u4) ∈ {cw, c(u4u5)} ∩ {c(u2u3), c(u4u5)}. Thus, c(u2u4) =

c(u4u5). Since Cu2 is proper, we have c(u2uk) = c(ukuk+1) for uk ∈ V (u4
−→
Cu`). Further-

more, if c(u1u3) = c(u3u4), then since Cu1 is proper, we can get c(u1uk) = c(ukuk+1) for

uk ∈ V (u5
−→
Cu`); if c(u1u3) 6= c(u3u4), then C ′ = u1u3

−→
Cu`u2u1 is proper such that both

|P 1
C′(w)| and |P 2

C′(w)| are larger than 1 or |P 3
C′(w)| = 2. Thus, according to Lemma 3.10

or the proof above, we can get c(u1uk) = c(ukuk+1) for vk ∈ V (u5
−→
Cu`).

Lemma 3.13. Suppose there is no proper cycle of length ` + 1 containing v1 in (G, c).

Then for w ∈ W3(C) with |P 2
C(w)| = 1 and |P 3

C(w)| ≤ 1, we have c(u1uk) = c(wuk) and

c(wuk) ∈ {c(u2uk), c(u3uk)} for uk ∈ V (u5
−→
Cu`).
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Proof. First, we prove the assertion that |P 1
C(w) ∪ P 3

C(w) \ RC(w)| ≤ 2. Suppose, the

contrary holds and let c(wua−1) = c(wup), up ∈ RC(w). If c(wua−3) = c(wu`), then

c(wua−1) = c(wu`) and |RC(w)| = 3. Apparently, dc(w) < n+1
2

if |W2(C)| + |W3(C)| ≤
3. Thus, |W2(C)| + |W3(C)| = 4. From Corollary 3.1 and Proposition 3.1 we know

|W2(C)| = 1 and |W3(C)| = 3. Then, c(wu3) = c(wu5) while c(wu4) 6= c(wu2) or

c(wu2) = c(wu4) while c(wu3) 6= c(wu1), a contradiction. If c(wua−3) 6= c(wu`), then

(u1, ua−2) ∈ DPw. Furthermore, if up 6= u1, then c(u1ua−2) ∈ {c(u1u`), c(ua−2ua−3)};
otherwise, wu2

−→
Cua−2u1

←−
Cupua−1

−→
Cup−1w is a requested cycle. Since c(wua−2) 6= c(wu`),

we have c(u1ua−2) = c(ua−2ua−3) = cw. Thus, |RC(w)| = 2, a contradiction. If up = u1,

then since |RC(w)| ≥ 3, we have (u1, ua−2) ∈ DPw. Since wu2
−→
Cua−2u1ua−1

−→
Cu`w is

of length ` + 1 and contains v1, we have c(u1ua−2) ∈ {c(ua−1u1), c(ua−2ua−3)}. Then,

c(u1ua−2) = c(ua−2ua−1) = c(ua−1u`). Thus, there exist joint monochromatic triangles in

(G, c), a contradiction. Hence, the assertion follows.

Since Cu1 is proper, according to Lemma 3.12, if |P 3
Cu1

(u1)| = 2, the result follows. In

the following suppose |P 3
Cu1

(u1)| 6= 2.

In the first case suppose |P 3
Cu1

(u1)| ≥ 3. Then, |P 2
Cu1

(u1)| = 1; otherwise, c(wu3) =

c(u2u3), a contradiction. If c(u1, P
1
Cu1

(u1)) = cw, then according to Lemma 3.11, the

result follows. If c(u1, P
1
Cu1

(u1)) 6= cw, then c(u1ui) /∈ {cw, c(uiui+1)} for i = 4, 5. Hence,

c(wu4) = c(wu3) = c(wu`), which means |P 3
C(w)| = 2, a contradiction.

In the second case suppose |P 3
C(w)| = 1 and |P 3

Cu1
(u1)| ≤ 1. When c(wu3) 6= cw, Cu2 is

proper. Since wu3u2u4
−→
Cu1w is a cycle of length `+ 1 and contains v1, we have c(u2u4) ∈

{c(u2u3), c(u4u5)}. If c(u2u4) = c(u4u5), then the result holds. If c(u2u4) = c(u2u3) 6=
c(u4u5), then u2 ∈ W3(Cu2) with |P 3

Cu2
(u2)| ≥ 2. Thus, according to Lemmas 3.11 and

3.12, the result follows. When c(wu3) = cw, from our assertion we knowRC(w) = P 1
C(w) =

V (u4
−→
Cu1). Since for uk ∈ V (u5

−→
Cu`), both wu3

−→
Cuk−1u1u2uk

−→
Cu`w and wuk−1

←−
Cu2uk

−→
Cu1

are of length `+ 1 and contain v1, we have c(u2uk) = c(ukuk+1). The result thus follows.

In the third case suppose P 3
C(w) = ∅ and |P 3

Cu1
(u1)| ≤ 1. Apparently, if |P 3

Cu1
(u1)| = 1,

the result holds. In the following suppose P 3
Cu1

(u1) = ∅. If u3
−→
Cu2 is rainbow, from

Proposition 3.4, there is a requested cycle in (G, c). If u4 /∈ RC(w), then assuming

c(wu4) = c(uup), we have up ∈ RC(w). Since c(u1uk) = c(wuk), we have c(wuk) 6= cw

for uk ∈ P 1
C(w). Since wu2u3u1

←−
Cupua−1

−→
Cup−1w is of length ` + 1 and contains v1, we

have c(u1u3) = c(u1u`), that is, c(wu3) = c(wu`). Then, u4
−→
Cu1 is rainbow. According to

Proposition 3.4, there is a requested cycle in (G, c).

Proposition 3.5. Let (G, c) be an edge-colored complete graph on n ≥ 3 vertices such

that δc(G) ≥ n+1
2

, and not contain joint monochromatic triangles. For any w ∈ W3(C),
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if QC(w) = P 2
C(w), then (G, c) is properly vertex-pancyclic.

Proof. Suppose, to the contrary, that there exists a vertex v which is contained in a

proper `-cycle C in (G, c) for some ` with 4 ≤ ` ≤ n − 1, but no proper cycle of length

`+ 1 in (G, c) contains vertex v. According to Lemma 3.9, suppose that there is a vertex

w ∈ W3(C) such that |P 3
C(w)| ≤ 2.

According to Lemmas 3.10, 3.11, 3.12 and 3.13, there is a vertex set V1 of size ` − 4

such that |C(u, V (C) \ V1) ∩ C(u, V1)| ≥ 2 for u ∈ V1, and V1 has the DPw. Then, there

is a vertex up ∈ V1 with dcV (C)(up) ≤ `+1
2

. If W3(C) = {w}, dcV (C)(up) ≤ `+1
2

< n+1
2

,

a contradiction. Thus, |W3(C)| ≥ 2. Then, we give (G[V1], c) a coloring orientation.

Assume up is the maximum out-degree in D(G[V1]).

If W3(C) = {w,w′}, then d+D(up) = `−5
2

; otherwise, dc(up) < `−5− `−5
2

+4 = `+3
2
≤ n+1

2
,

a contradiction. Since the average out-degree of D is `−5
2

, we have d+D(u) = `−5
2

for u ∈ V1.
Therefore, V1 ⊆ P 3

C(w′); otherwise, the color of w′u is a used color in C(u, V (C)). Then,

there is a vertex whose color degree less that n+1
2

. Thus, P 3
C(w′) = u5

−→
Cu` or P 3

C(w′) =

u3
−→
Cu`−2; otherwise, according to Lemma 3.1, (G, c) has joint monochromatic triangles.

Then, we might as well suppose P 3
C(w′) = u5

−→
Cu`. Then, w′u3u4 is monochromatic.

According to Lemma 3.9, we have that u3 ∈ W3(Cu3) with |P 3
Cu3

(u3)| ≤ 1 or u4 ∈
W3(Cu4) with |P 3

Cu4
(u4)| ≤ 1. (Note that Cui

= ui−1w
′ui+1
−→
Cui−1, i = 3, 4). Thus,

there is a vertex ui ∈ V1 such that {c(u3ui), c(u4ui)} ∩ {c(uiui+1), c(uiui−1)} 6= ∅. Then,

dc(ui) < `− 5− `−5
2

+ 3 = `+1
2
≤ n+1

2
, a contradiction.

If W3(C) = {w,w′, w′′}, then we can suppose that wv1vi is not monochromatic, i = 2, `.

Then up ∈ P 3
C(w′) ∩ P 3

C(w′′); otherwise, dc(up) ≤ ` − 5 − `−5
2

+ 1 + 3 = `+3
2

< n+1
2

,

a contradiction. Thus, `−5
2
≤ d+D(up) ≤ `−4

2
; otherwise, dc(up) ≤ ` − 5 − `−3

2
+ 5 =

`+3
2

< n+1
2

, a contradiction. When dc(up) = `−5
2

, since the average out-degree of D

is `−5
2

, we have d+D(u) = `−5
2

for u ∈ V1. Therefore, V1 ⊆ P 3
C(w′) ∩ P 3

C(w′′). Thus,

P 3
C(w′) ∩ P 3

C(w′′) = u5
−→
Cu` or P 3

C(w′) ∩ P 3
C(w′′) = u3

−→
Cu`−2. Then, there is a vertex

u ∈ V1 such that dc(u) < n+1
2

, a contradiction. When dc(up) = `−4
2

, there is a distinct

vertex u′ in V1 such that d+(u′) ≥ `−5
2

. Thus, {up, u′} ⊆ P 3
C(w′) ∩ P 3

C(w′′). According

to the claim of Corollary 3.1, we have |P 3
C(w′) ∩ P 3

C(w′′)| ≥ 3. According to Lemma

3.9, we might as well have |P 3
C(w′)| ≤ 1 and w′′v1vi is monochromatic, i = 2, `. Then,

c(w′up) ⊆ {c(upup+1), c(upup−1)}. Thus, dc(up) ≤ ` − 5 − `−4
2

+ 1 + 3 = `+2
2

< n+1
2

, a

contradiction.

Eventually, combining Propositions 3.1 through 3.5, we get the proof of our main result

Theorem 2.2.
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4 Concluding remarks

Many years have passed since Conjecture 2 was proposed by Fujita and Magnant.

However Conjecture 1 has not been solved, yet. Fujita and Magnant proved the existence

of properly colored cycles of lengths 3,4, and at least 5 passing though a given vertex.

Inspired by this idea, Chen et al. in [8] proved that Conjecture 2 is true by adding an extra

condition “without monochromatic triangles” and they used induction and contradiction

technique to prove it. They analysed the relationship between a properly colored cycle

of a fixed length and the vertices that are not on the cycle, and divided this vertices into

two categories. Recently, Li in [19] investigated the existence of properly colored cycles in

edge-colored complete graphs when monochromatic triangles are forbidden, to obtain a

vertex-pancyclic analogous result combined with a characterization of all the exceptions.

Based on Theorem 2.1, we add a looser condition that the edge-colored complete graphs

can have monochromatic triangles but do not have any two joint monochromatic triangles

and show that Conjecture 2 is true under this condition. We show this also using induc-

tion and contradiction technique and some claims proved in [8]. Our results, although

improving the known result Theorem 2.1 and partially solving Conjecture 2, are still far

from a solution for Conjecture 2. Up to now, we have not found any better method to

solve it. Further study is needed.
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