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Abstract
Let G be an additive finite abelian group. For a sequence T over G and g ∈ G, let vg(T )

denote the multiplicity of g in T . Let B(G) denote the set of all zero-sum sequences over G.
For� ⊂ B(G), letd�(G) be the smallest integer t such that every sequence S overG of length
|S| ≥ t has a subsequence in �. The invariant d�(G) was formulated recently in [3] to take
a unified look at zero-sum invariants, it led to the first results there, and some open problems
were formulated as well. In this paper, we make some further study on d�(G). Let q′(G) be
the smallest integer t such that every sequence S over G of length |S| ≥ t has two nonempty
zero-sum subsequences, say T1 and T2, having different forms, i.e., vg(T1) �= vg(T2) for
some g ∈ G. Let q(G) be the smallest integer t such that

⋂

d�(G)=t

� = ∅.

The invariants q(G) and q′(G) were also introduced in [3]. We prove, among other results,
that q(G) = q′(G) in fact.
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1 Introduction

Zero-sum theory on abelian groups can be traced back to the 1960s and has been developed
rapidly in the last three decades (see [1,6,7]). Many invariants have been formulated and
we list some of these invariants, which will be used in this section. Let G be an additive
finite abelian group. By the Fundamental Theorem of Finite Abelian Groups, |G| = 1, or
G ∼= Cn1 ⊕ · · · ⊕ Cnr with 1 < n1 | · · · | nr , where r = r(G) is the rank of G and
nr = exp(G) is the exponent of G. Set

D∗(G) = 1 +
r∑

i=1

(ni − 1).

A starting point of zero-sum theory involves the Davenport constant D(G), which is defined
as the smallest integer t such that every sequence S over G of length |S| ≥ t has a nonempty
zero-sum subsequence.

Let Ol(G) denote the smallest integer t such that every squarefree sequence S over G
of length |S| ≥ t has a nonempty zero-sum subsequence. The invariant Ol(G) is called the
Olson constant of G. Let ol(G) denote the maximal length of a squarefree zero-sum free
sequence S over G. Clearly, Ol(G) = ol(G) + 1.

In 2012, Girard [8] posed the problem of determining the smallest positive integer t ,
denoted by disc(G), such that every sequence S over G of length |S| ≥ t has two nonempty
zero-sum subsequences of distinct lengths. The invariant disc(G) has been studied recently
by Gao et al. in [2,4,5]. Related to disc(G), Gao, Li, Peng and Wang [3] defined q′(G) to be
the smallest integer t such that every sequence S over G of length |S| ≥ t has two nonempty
zero-sum subsequences, say T1 and T2, with vg(T1) �= vg(T2) for some g ∈ G. That is to
say, T1 and T2 have different forms. Clearly,

q′(G) ≤ disc(G)

for every finite abelian group G.
In order to describe zero-sum invariants uniformly, Gao et al. [3] provided a unified way

to formulate zero-sum invariants.
LetG0 be a nonempty subset ofG. LetB(G0) denote themonoid of all zero-sum sequences

over G0, and denote by 1 the identity element of the monoid B(G0), i.e., the empty sequence
over G0. For � ⊂ B(G), let d�(G) be the smallest integer t such that every sequence S over
G of length |S| ≥ t has a subsequence in �. If such a t does not exist, then let d�(G) = ∞.
Observe that d�(G) = 0 if 1 ∈ �. So we only need to consider the case of � ⊂ B(G)\{1}
in what follows. Then d�(G) ≥ D(G).

Let G∗ = G \ {0}. For each integer t ≥ D(G), let � = (B(G∗)\{1}) ∪ {0t−D(G)+1}.
It is easy to see that d�(G) = t . Therefore, for every positive integer t ≥ D(G), there is
an � ⊂ B(G) such that t = d�(G). But this does not give us much information on the
invariant t . For some classical invariants t , finding some special � ⊂ B(G) with d�(G) = t
can help us understand t better. Thus, Gao et al. [3] introduced the following concepts. A
sequence S over G is a weak-regular sequence if vg(S) ≤ ord(g) for every g ∈ G and
� ⊂ B(G) is weak-regular if every sequence S ∈ � is weak-regular. Let Bwr (G) denote
the set of all nonempty weak-regular zero-sum sequences over G. Let Vol(G) be the set of
all positive integers t ∈ [D(G), 1 + ∑

g∈G(ord(g) − 1)] such that t = d�(G) for some
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� ⊂ Bwr (G). If � ⊂ B(G), a sequence S over G is �-free if S has no subsequence in �.
Related to d�(G), Gao et al. [3] introduced that a zero-sum sequence S is essential with
respect to some t ≥ D(G) if every � ⊂ B(G) with d�(G) = t contains S. Thus, a natural
research problem is to determine the smallest integer t such that there is no essential zero-sum
sequence with respect to t ; denote this by q(G).

For every positive integer t ≥ D(G), let

Qt (G) =
⋂

�⊂B(G),d�(G)=t

�.

Clearly, S ∈ Qt (G) if and only if S is essential with respect to t , and q(G) is the smallest
integer t with Qt (G) = ∅.

To study Vol(G) we introduce the following invariant. Let N(G) denote the smallest
integer t such that every weak-regular sequence S over G of length |S| ≥ t has a nonempty
zero-sum subsequence T of S satisfying vg(T ) = vg(S) for some g | S or, equivalently,
supp(ST−1) �= supp(S).

In this paper, we make some further study on d�(G), q(G), q′(G) and N(G) for finite
abelian groups. Our main results are as follows.

Theorem 1.1 If p is a prime and G is a finite abelian group, then the following hold:

(1) N(G) ≤ 1 + ol(G)(exp(G) − 1).
(2) If G = Cp then N(G) = 2p − �2√p�.
Theorem 1.2 If G is a finite abelian group, then the following hold:

(1) [1 + ol(G)(exp(G) − 1), 1 + ∑
g∈G(ord(g) − 1)] ⊂ Vol(G).

(2) If D(G) = D∗(G) then

Vol(G) = [D(G), 1 +
∑

g∈G
(ord(g) − 1)].

Theorem 1.3 If m, n are positive integers, p is a prime, and G is a finite abelian group, then
Vol(G) = [D(G), 1 + ∑

g∈G(ord(g) − 1)] if G is one of the following groups:

(1) r(G) ≤ 2.
(2) G is a p-group.
(3) G = Cmpn ⊕ H, where H is a p-group with D∗(H) ≤ pn.

Theorem 1.4 If G is a finite abelian group, then the following hold:

(1) D∗(G) + exp(G) ≤ q′(G) ≤ D(G) + exp(G).

(2) q′(G) = q(G).

(3) If D(G) = D∗(G), then q′(G) = q(G) = D(G) + exp(G).

The paper is organized as follows. Section 2 provides some notations and concepts which
will be used in the sequel. In Sect. 3, we prove Theorem 1.1. In Sect. 4, we investigate Vol(G)

for finite abelian groups and prove Theorems 1.2 and 1.3. In Sect. 5, we prove Theorem 1.4.

2 Preliminaries

Throughout this paper, our notations and terminology are consistent with [1,3,7] and we
briefly present some key concepts. LetZ denote the set of integers, and letN denote the set of
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positive integers,N0 = N∪{0}. For real numbersa ≤ b, we set [a, b] = {x ∈ Z | a ≤ x ≤ b},
�a� = max{x ∈ Z | x ≤ a} and �a� = min{x ∈ Z | x ≥ a}.

Throughout, let G be an additive finite abelian group. We denote by Cn the cyclic group
of n elements and denote by Cr

n the direct sum of r copies of Cn . An r -tuple (e1, e2, . . . , er )
in G \ {0} is called a basis of G if G = 〈e1〉 ⊕ 〈e2〉 ⊕ · · · ⊕ 〈er 〉.

Let G0 be a nonempty subset of G. In Additive Combinatorics, a sequence (over G0)
means a finite unordered sequence of terms from G0 where repetition is allowed, and (as
usual) we consider sequences as elements of the free abelian monoid F(G0) with basis G0.

Let

S = g1 · · · gl =
∏

g∈G0

gvg(S) ∈ F(G0)

be a sequence over G0. We call

• vg(S) the multiplicity of g in S,
• h(S) = max{vg(S) | g ∈ G0} the height of S,
• supp(S) = {g ∈ G0 | vg(S) > 0} the support of S,
• |S| = l = ∑

g∈G0
vg(S) ∈ N0 the length of S,

• σ(S) = ∑l
i=1 gi = ∑

g∈G0
vg(S)g ∈ G0 the sum of S,

• S a zero-sum sequence if σ(S) = 0,
• S a squarefree sequence if vg(S) ≤ 1 for all g ∈ G0,
• T a subsequence of S if vg(T ) ≤ vg(S) for all g ∈ G0, denote by T |S,
• ST−1 = ∏

g∈G0
gvg(S)−vg(T ) the subsequence obtained from S by deleting T ,

• S a minimal zero-sum sequence if it is a nonempty zero-sum sequence and has no proper
zero-sum subsequence,

• S a zero-sum free sequence if S has no nonempty zero-sum subsequence,
• two subsequences T1 and T2 of S disjoint if T1 | ST−1

2 ,
• �(S) = {σ(T ) | T |S, T �= 1} the set of subsums of S.

LetA(G0) denote the set of all minimal zero-sum sequences over G0. By the definition of
minimal zero-sum sequences, the empty sequence 1 is not a minimal zero-sum sequence and
therefore A(G0) ⊂ B(G0)\{1}. Let η(G) be the smallest integer t such that every sequence
S over G of length |S| ≥ t has a zero-sum subsequence of length in [1, exp(G)]. Let D2(G)

denote the smallest integer t such that every sequence overG of length |S| ≥ t has two disjoint
nonempty zero-sum subsequences. The invariant D2(G) was first introduced by Halter-Koch
[9] and was studied recently by Plagne and Schmid [13].

3 On N(G)

In this section we shall prove Theorem 1.1 and we need some preliminary results beginning
with the following well-known Cauchy–Davenport theorem.

Lemma 3.1 [10] If h ≥ 2, p is a prime number, and A1, . . . , Ah are nonempty subsets of
Cp, then

|A1 + · · · + Ah | ≥ min(p, �h
i=1|Ai | − h + 1).

Lemma 3.2 If S is a sequence over Cp \ {0} with length |S| = p − 1, then

�(S) \ {0} = Cp \ {0}.
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Proof Let S = g1 . . . gp−1 and Ai = {0, gi } for each i ∈ [1, p − 1]. By Lemma 3.1,

|�(S) \ {0}| = |(A1 + · · · + Ap−1) \ {0}|
≥ min(p, � p−1

i=1 |Ai | − (p − 1) + 1) − 1

= p − 1.

Since |�(S)\{0}| ≤ p−1, we deduce |�(S)\{0}| = p−1, therefore�(S)\{0} = Cp \{0}.
��

Lemma 3.3 Let k be a positive integer. Define Ak := min{a + b | ab ≥ k, a, b ∈ N}. Then
Ak = �2√k�.

Proof Let a, b ∈ N, and ab ≥ k. For k = 1, 2, 3, letting a = 1 and b = k we get
Ak = 1 + k = �2√k�. For k = 4, letting a = b = 2 we get Ak = �2√k�. From now on we
assume that

k ≥ 5.

If k is not a square, there is a unique positive integer c such that

c2 < k < (c + 1)2.

We distinguish two cases:
Case 1. c(c + 1) < k. Then

k ≥ c(c + 1) + 1 =
(
c + 1

2

)2

+ 3

4
.

Therefore, c + 1
2 <

√
k < c + 1. Thus, 2c + 1 < 2

√
k < 2c + 2. Hence,

�2√k� = 2c + 2.

From ab ≥ k ≥ c(c + 1) + 1 we deduce that (a + b)2 = 4ab + (a − b)2 ≥ 4c(c + 1) +
4 + (a − b)2 = (2c + 1)2 + 3 + (a − b)2. Therefore,

a + b ≥ 2c + 2.

Letting a = b = c + 1 we get Ak = 2c + 2 = �2√k�.
Case 2. k ≤ c(c + 1). Then c2 < k ≤ (c + 1

2 )
2 − 1

4 . Therefore, c <
√
k < c + 1

2 . Thus,
2c < 2

√
k < 2c + 1. Hence,

�2√k� = 2c + 1.

Since ab ≥ k > c2, we have (a + b)2 = 4ab + (a − b)2 > 4c2. Therefore, a + b ≥ 2c + 1.
Letting a = c, b = c + 1 we get Ak = 2c + 1 = �2√k�.

Now it remains to consider the case that k is a square. Let k = m2 with m ≥ 3 since
k ≥ 5. From ab ≥ k = m2 we deduce that (a + b)2 = (a − b)2 + 4ab ≥ 4m2 with equality
holding if and only if a = b = m. Letting a = b = m we get

Ak = 2m

as desired. ��
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Proof of Theorem 1.1. (1) Let S be a weak-regular sequence over G of length |S| ≥ 1 +
ol(G)(exp(G) − 1). We need to show that there exists a zero-sum subsequence T of S such
that vg(T ) = vg(S) for some g | S. If there exists g ∈ G such that vg(S) = ord(g), then
T = gord(g) is a zero-sum subsequence of S and vg(T ) = vg(S) = ord(g) ≥ 1. Next we
assume that

vg(S) ≤ ord(g) − 1 ≤ exp(G) − 1

for every g ∈ G.
Let

supp(S) = {g1, . . . , gl}.
Since |S| ≥ 1+ ol(G)(exp(G) − 1), we infer that l ≥ |S|

h(S)
≥ |S|

exp(G)−1 > ol(G). Therefore,
l ≥ ol(G) + 1 = Ol(G). Hence, 0 ∈ �(g1 . . . gl), i.e., there is a nonempty subset I ⊂ [1, l]
such that

∑
i∈I gi = 0. Take j ∈ I with vg j (S) = min{vgi (S) | i ∈ I }. Then

T =
(

∏

i∈I
gi

)vg j (S)

is a zero-sum subsequence of S with vg j (T ) = vg j (S).
(2) Let G = Cp . It is easy to verify that N(C2) = 2, N(C3) = 3. Now we assume that

p ≥ 5.
Let k ≥ 5 be a positive integer. By Lemma 3.3,

Ak = min{a + b | ab ≥ k, a, b ∈ N} = �2√k�.
If a ≥ k − 1 or b ≥ k − 1, then a, b ∈ N and ab ≥ k imply that a + b ≥ k + 1 >

2
√
k + 1 ≥ �2√k�. Therefore, for k ≥ 5 we have

Ak = min{a + b | ab ≥ k, a, b ∈ N, 2 ≤ a, b ≤ k − 2} = �2√k�. (3.1)

Since p ≥ 5 is a prime, from a, b ≥ 2, a, b ∈ N we infer that ab ≥ p if and only if
ab ≥ p + 1. Therefore, Ap = Ap+1 = �2√p� by (3.1). So we need to show

N(Cp) = 2p − �2√p� = 2p − Ap+1 + 1.

First we want to prove

N(Cp) ≤ 2p − Ap+1 + 1.

Let S be a weak-regular sequence over Cp of length |S| ≥ 2p − Ap+1 + 1 = 2p − �2√p�.
We need to show that there exists a zero-sum subsequence T of S such that vg(T ) = vg(S)

for some g | S.
Since S is weak-regular, vg(S) ≤ ord(g) for every g ∈ G by the definition. If vg(S) =

ord(g) for some g ∈ G, then T = gord(g) is a zero-sum subsequence of Swith vg(T ) = vg(S)

and we are done. So we may assume that vg(S) ≤ ord(g) − 1 for every g ∈ G. It follows
that

0 � S,

and

vg(S) ≤ p − 1

for every g | S.
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If there exists g0 | S such that vg0(S) ≤ p − �2√p� + 1, then |S(g
vg0 (S)

0 )−1| ≥ p − 1,

by Lemma 3.2, there exists a subsequence T | S(g
vg0 (S)

0 )−1 such that σ(T ) = −vg0(S)g0,

so Tg
vg0 (S)

0 is a zero-sum subsequence of S satisfying vg0(Tg
vg0 (S)

0 ) = vg0(S). So we may
assume

vg(S) ≥ p − �2√p� + 2

for every g | S.
If |supp(S)| ≥ 3, then we fix a h | S for which vh(S) is the smallest possible. Consider

U = S(hvh(S))−1. If |U | ≥ p − 1, then by Lemma 3.2 there is a V | U such that σ(V ) ≡
−vh(S)h (mod p), and then T = Vhvh(S) will be a zero-sum subsequence of Swith vh(T ) =
vh(S) as desired. If vh(S) ≥ p − 2, then |S| ≥ |supp(S)|vh(S) ≥ 3p − 6, therefore
|U | ≥ 2p − 5 > p − 1, and we are done. And if vh(S) ≤ p − 3, then we refer to
|S| ≥ |supp(S)|vh(S) ≥ 3p − 3�2√p� + 6 > 3p − 6

√
p + 6, so in this case |U | ≥

|S| − (p − 3) > 2p − 6
√
p + 9 = p + (

√
p − 3)2 > p − 1, and we are done in this case,

too.
From the fact that S is weak-regular, we get

|supp(S)| = 2.

Multiplying every term of S with an integer in [1, p − 1] we may assume

S = 1p−ax p−b

with 0 ≤ a, b ≤ p − 1 and x ∈ [2, p − 1].
If min{a, b} ≤ 1 or max{a, b} = p − 1, then it is easy to see that S has a zero-sum

subsequence T such that vg(T ) = vg(S) for some g | S. So we may assume

2 ≤ a, b ≤ p − 2.

Assume to the contrary that S has no zero-sum subsequence T such that vg(T ) = vg(S) for
some g | S.

Let m and c be integers with m, c ∈ [1, p − 1] such that

mx ≡ p − a (mod p) and (p − b)x ≡ c (mod p).

Then we deduce

(p − a)(p − b) ≡ mx(p − b) ≡ mc (mod p),

which implies

p | (ab − mc).

If m ≥ b or c ≥ a, then 1p−ax p−m or 1p−cx p−b is a zero-sum subsequence of S
respectively, a contradiction. So

1 ≤ m ≤ b − 1, 1 ≤ c ≤ a − 1.

Now p | (ab−mc) implies p ≤ ab−mc ≤ ab−1. Therefore, ab ≥ p+1.By the definition
of Ap+1 we infer

a + b ≥ Ap+1.
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On the other hand, since |S| ≥ 2p − Ap+1 + 1 and |S| = 2p − a − b, one has a + b ≤
Ap+1 − 1, a contradiction. This proves

N(Cp) ≤ 2p − Ap+1 + 1.

So it remains to show

N(Cp) ≥ 2p − Ap+1 + 1.

Let a0 and b0 be integers such that 2 ≤ a0, b0 ≤ p−1, a0b0 ≥ p+1 and a0+b0 = Ap+1.
Let

S = 1p−a0(p − a0)
p−b0 .

Then

|S| = 2p − Ap+1.

We claim that S has no zero-sum subsequence T such that vg(T ) = vg(S) for some g | S.

Let T be a nonempty zero-sum subsequence of S. Assume to the contrary

vg(T ) = vg(S)

for some g ∈ supp(S) = {1, p − a0}.
Notice that for any integer t with 0 ≤ t ≤ p− b0 ≤ p− 2, one has σ(1p−a0(p− a0)t ) =

(t + 1)(p − a0) �= 0. Therefore, g �= 1. So,

g = p − a0

and therefore

T = 1p−d(p − a0)
p−b0

for some d ∈ [a0, p − 1].
From σ(T ) = 0 we deduce (p − b0)(p − a0) ≡ d (mod p), i.e.,

a0b0 ≡ d (mod p). (3.2)

Moreover, a0 ≤ d < a0b0 since a0b0 ≥ p + 1. Let d = qa0 + r where q, r are integers
such that 0 ≤ r ≤ a0 − 1. Then

1 ≤ q < b0

since a0 ≤ d < a0b0. It follows from (3.2) that

a0(b0 − q) ≡ r (mod p). (3.3)

If b0 = 2, then q = 1. But (3.3) yields a0 ≡ r (mod p), which is impossible since
0 ≤ r ≤ a0 − 1 < p. Hence b0 ≥ 3. If r = 0, then (3.3) implies p | a0(b0 − q), which is a
contradiction to 0 < a0, b0 − q ≤ p − 1. Hence r ≥ 1.

Furthermore, if q = b0 − 1, by (3.3), we get a0 ≡ r (mod p), a contradiction since
r < a0 ≤ p − 1. So 1 ≤ q ≤ b0 − 2. This implies 2 ≤ b0 − q ≤ p − 1. Now, using (3.3)
again, we deduce p | a0(b0 − q) − r . It follows that p ≤ a0(b0 − q) − r ≤ a0(b0 − q) − 1.
That is, a0(b0 − q) ≥ p + 1. But a0 + (b0 − q) < a0 + b0 since q ≥ 1, which contradicts
the minimality of a0 + b0. This proves N(Cp) ≥ 2p − Ap+1 + 1, completing the proof. ��
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4 Vol(G) on finite abelian groups

In this section, we investigate Vol(G) for finite abelian groups and prove Theorems 1.2
and 1.3.

Lemma 4.1 [1,11,12,14] Suppose p is a prime and m, n are positive integers. Then D(G) =
D∗(G) if G is one of the following groups:

(1) r(G) ≤ 2.
(2) G is a finite abelian p-group.
(3) G = Cmpn ⊕ H where H is a finite abelian p-group and pn ≥ D∗(H).

Lemma 4.2 [3, Proposition 3.1] Suppose � ⊂ B(G)\{1}. Then d�(G) < ∞ if and only if,
for every g ∈ G, gk ord(g) ∈ � for some positive integer k = k(g).

Lemma 4.3 If G is a finite abelian group, then 1 + ∑
g∈G(ord(g) − 1) ∈ Vol(G).

Proof Let

� = {gord(g) | g ∈ G}.
We want to show

d�(G) = 1 +
∑

g∈G
(ord(g) − 1).

Let

T =
∏

g∈G
gord(g)−1.

It is obvious that T is �-free. Therefore,

d�(G) ≥ |T | + 1 = 1 +
∑

g∈G
(ord(g) − 1).

It remains to show

d�(G) ≤ 1 +
∑

g∈G
(ord(g) − 1).

Let S be any sequence over G of length 1 + ∑
g∈G(ord(g) − 1). We need to show that S

has a zero-sum subsequence in �. Assume to the contrary that S is �-free. Then gord(g) � S
for every g ∈ G. Hence, vg(S) ≤ ord(g) − 1 for every g ∈ G. It follows that

|S| =
∑

g∈G
vg(S) ≤

∑

g∈G
(ord(g) − 1) < |S|,

which is a contradiction. This proves d�(G) = 1 + ∑
g∈G(ord(g) − 1). Therefore, 1 +∑

g∈G(ord(g) − 1) ∈ Vol(G) follows from � ⊂ Bwr (G). ��
Proof of Theorem 1.2. For |G| = 1, it is trivial. So we may assume

|G| ≥ 2.
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(1) We need to show that for every l ∈ [1+ ol(G)(exp(G) − 1), 1+ ∑
g∈G(ord(g) − 1)],

there exists a weak-regular � such that

d�(G) = l.

We proceed by induction on l. By Lemma 4.3, 1 + ∑
g∈G(ord(g) − 1) ∈ Vol(G). Now

suppose l ∈ Vol(G), where l ∈ [2 + ol(G)(exp(G) − 1), 1+ ∑
g∈G(ord(g) − 1)]. We want

to prove

l − 1 ∈ Vol(G).

By the induction hypothesis, there exists an � ⊂ Bwr (G) such that d�(G) = l. By
Lemma 4.2, {gord(g) | g ∈ G} ⊂ �. Choose a sequence S over G of length |S| = l − 1 such
that S is �-free. Then

vg(S) ≤ ord(g) − 1

for every g ∈ G. Therefore, S is weak-regular. Since |S| = l−1 ≥ 1+ol(G)(exp(G)−1), by
Theorem 1.1 (1), there exists a zero-sum subsequenceW of S such that vg(W ) = vg(S) ≥ 1
for some g ∈ G. Let

�1 = � ∪ {W } ⊂ Bwr (G).

It is clear that g−1S is �1-free. Hence,

l − 1 = |g−1S| + 1 ≤ d�1(G) ≤ d�(G) = l.

So d�1(G) = l−1 or l, and� � �1 ⊂ Bwr (G). If d�1(G) = l−1, then l−1 ∈ Vol(G) and
we are done. If d�1(G) = l, repeat the above steps, then we can find�2 ⊂ Bwr (G) such that
d�2(G) = l−1 or l, and� � �1 � �2 ⊂ Bwr (G).Note thatBwr (G) is finite, we finally get
an integer m < |Bwr (G)|, and m subsets �1,�2, . . . , �m of Bwr (G) such that � � �1 �

�2 � · · · � �m ⊂ Bwr (G), d�i (G) = l for every i ∈ [1,m − 1] and d�m (G) = l − 1. This
proves l−1 ∈ Vol(G). Therefore, [1+ol(G)(exp(G)−1), 1+∑

g∈G(ord(g)−1)] ⊂ Vol(G).
(2) By the definition of Vol(G) we know

Vol(G) ⊂ [D(G), 1 +
∑

g∈G
(ord(g) − 1)].

So we need to show

[D(G), 1 +
∑

g∈G
(ord(g) − 1)] ⊂ Vol(G).

By Lemma 4.3, 1 + ∑
g∈G(ord(g) − 1) ∈ Vol(G). So it suffices to prove

[D(G),
∑

g∈G
(ord(g) − 1)] ⊂ Vol(G). (4.1)

Let

G = Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr

with 1 < n1|n2| · · · |nr .
Let G2 be the maximal elementary 2-subgroup of G. Then G2 = {0} if |G| is odd. When

|G| is even, let r ′ = |{i ∈ [1, r ] | 2|ni }|. Then,G2 = Cr ′
2 . Sowe always have 2 | (|G|−|G2|).

Let

m = |G| − |G2|
2

.
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If G = Cr
2 then ol(G) = D(G) − 1 = r and exp(G) = 2. It follows from (1) that

[D(G), 1 + ∑
g∈G(ord(g) − 1)] = Vol(G). From now on we assume

G �= Cr
2 .

Next we want to show that there are two intervals I1 and I2 such that

I1 ∪ I2 = [D(G),
∑

g∈G
(ord(g) − 1)] and I j ⊂ Vol(G) for j = 1, 2, (4.2)

and then (4.1) follows.
Now we want to construct I1. Let j ∈ [1,m], and let {g1, . . . , g j } ⊂ G \ G2 with

{g1, . . . , g j } ∩ {−g1, . . . , −g j } = ∅.

Let ki ∈ [1, ord(gi ) − 1] for each i ∈ [1, j], and let
� j,k1,...,k j = {gord(g) | g ∈ G} ∪ {gk11 (−g1)

k1 , . . . , g
k j
j (−g j )

k j }.
Put

� = � j,k1,...,k j .

We now show

d�(G) =
∑

g∈G
(ord(g) − 1) −

j∑

i=1

(ord(gi ) − ki ) + 1.

Let

Tj = gk1−1
1 . . . g

k j−1
j

∏

g∈G\{0,g1,...,g j }
gord(g)−1.

It is easy to see that Tj is an �-free sequence of length |Tj | = ∑
g∈G(ord(g) − 1) −

∑ j
i=1(ord(gi ) − ki ). Therefore,

d�(G) ≥ |Tj | + 1 =
∑

g∈G
(ord(g) − 1) −

j∑

i=1

(ord(gi ) − ki ) + 1.

So it remains to show

d�(G) ≤
∑

g∈G
(ord(g) − 1) −

j∑

i=1

(ord(gi ) − ki ) + 1.

Let S j be any sequence over G with

|S j | =
∑

g∈G
(ord(g) − 1) −

j∑

i=1

(ord(gi ) − ki ) + 1.

We only need to show that there is a zero-sum subsequence of S j in �. If there exists g ∈ G
such that vg(S j ) ≥ ord(g), then gord(g) ∈ �, and we are done. Hence, we next assume

vg(S j ) ≤ ord(g) − 1

for every g ∈ G.
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If there exists i ∈ [1, j] such that vgi (S j ) ≥ ki and v−gi (S j ) ≥ ki , then gkii (−gi )ki ∈ �.
So we assume that, for every i ∈ [1, j], there exists g′

i ∈ {gi ,−gi } such that vg′
i
(S j ) ≤ ki −1.

Since

|S j | =
∑

g∈G\{0}
vg(S j ) ≤

∑

g∈G
(ord(g) − 1) −

j∑

i=1

(ord(gi ) − ki ) < |S j |,

we get a contradiction. Therefore

d�(G) =
∑

g∈G
(ord(g) − 1) −

j∑

i=1

(ord(gi ) − ki ) + 1 ∈ Vol(G)

follows from the fact that � is weak-regular.
Let

f ( j, k1, . . . , k j ) =
∑

g∈G
(ord(g) − 1) −

j∑

i=1

(ord(gi ) − ki ) + 1.

When j runs over [1,m] and ki runs over [1, ord(gi ) − 1] for every i ∈ [1, j],
f ( j, k1, . . . , k j ) takes its maximal value

∑
g∈G(ord(g) − 1) when j = 1 and k1 =

ord(g1) − 1, and f ( j, k1, . . . , k j ) takes its minimal value
∑

g∈G(ord(g) − 1) − 2r
′ + 1

2
+ 2r

′

when j = m and ki = 1 for every i ∈ [1,m]. It is easy to see that f ( j, k1, . . . , k j ) can take
any integer in between the minimal value and the maximal value. So

I1 = [
∑

g∈G(ord(g) − 1) − 2r
′ + 1

2
+ 2r

′
,
∑

g∈G
(ord(g) − 1)] ⊂ Vol(G). (4.3)

Next we construct I2. Let r0 ∈ [0, r − 1] be the smallest integer such that

nr0+1 > 2.

Let (e1, . . . , er ) be a basis of G with ord(ei ) = ni and gi = ei for every i ∈ [1, r ]. Let
j ∈ [r ,m+r0] and {gr+1, . . . , g j } ⊂ G\G2 with {gr0+1, . . . , g j }∩{−gr0+1, . . . ,−g j } = ∅.

Let ki ∈ [1, ord(gi ) − 1] for every i ∈ [r0 + 1, j],
A j,k1,...,k j ={S ∈ A(G) | supp(S) �⊂ {g1, . . . , g j , (−gr0+1), . . . , (−g j )}}

∪ {gkr0+1

r0+1 (−gr0+1)
kr0+1 , . . . , g

k j
j (−g j )

k j },
and

�′ = {gord(g) | g ∈ G} ∪ A j,k1,...,k j .

We now show

d�′(G) =
j∑

i=1

(ord(gi ) − 1) +
j∑

i=r0+1

(ki − 1) + 1.

Let

T ′
j = gord(g1)−1

1 · · · gord(g j )−1
j (−gr0+1)

kr0+1−1 · · · (−g j )
k j−1.
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It is easy to see that T ′
j is an �′-free sequence of length |T ′

j | = ∑ j
i=1(ord(gi ) − 1) +

∑ j
i=r0+1(ki − 1). Therefore,

d�′(G) ≥ |T ′
j | + 1 =

j∑

i=1

(ord(gi ) − 1) +
j∑

i=r0+1

(ki − 1) + 1.

So it remains to show

d�′(G) ≤
j∑

i=1

(ord(gi ) − 1) +
j∑

i=r0+1

(ki − 1) + 1.

Let S′
j be any sequence over G with |S′

j | = ∑ j
i=1(ord(gi ) − 1) + ∑ j

i=r0+1(ki − 1) + 1.
We only need to show that there is a zero-sum subsequence of S′

j in �′. If there exists g ∈ G

such that vg(S′
j ) ≥ ord(g), then gord(g) ∈ �′, and we are done. Hence, we next assume

vg(S
′
j ) ≤ ord(g) − 1

for every g ∈ G.
If there exists i ∈ [r0 +1, j] such that vgi (S′

j ) ≥ ki and v−gi (S
′
j ) ≥ ki , then g

ki
i (−gi )ki ∈

�′. So we assume that, for every i ∈ [r0 + 1, j], there exists g′′
i ∈ {gi ,−gi } such that

vg′′
i
(S′

j ) ≤ ki − 1. By renumbering, we may assume

v−gi (S
′
j ) ≤ ki − 1

for every i ∈ [r0 + 1, j]. Let

T = g
vgr+1 (S′

j )

r+1 · · · gvg j (S
′
j )

j (−gr0+1)
v−gr0+1 (S′

j ) · · · (−g j )
v−g j (S

′
j ).

Then

S′
j T

−1 = g
vg1 (S′

j )

1 · · · gvgr (S′
j )

r T1

with supp(T1) ∩ {g1, . . . , g j ,−gr0+1, . . . , −g j } = ∅.
Since

|S′
j T

−1| ≥ D∗(G) = D(G),

S′
j T

−1 contains a minimal zero-sum subsequence W (say). Because g1 = e1, . . . , gr = er

is a basis of G, we infer that g
vg1 (S′

j )

1 · · · gvgr (S′
j )

r is zero-sum free. This implies supp(W ) ∩
supp(T1) �= ∅. Now W ∈ �′ follows from supp(T1) ∩ {g1, . . . , g j ,−gr0+1, . . . ,−g j } = ∅
and the definition of �′. Therefore

d�′(G) =
j∑

i=1

(ord(gi ) − 1) +
j∑

i=r0+1

(ki − 1) + 1 ∈ Vol(G)

follows from the fact that �′ is weak-regular.
Let

g( j, k1, . . . , k j ) =
j∑

i=1

(ord(gi ) − 1) +
j∑

i=r0+1

(ki − 1) + 1.
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Note that g1 = e1, . . . , gr = er .When j runs over [r ,m+r0] and ki runs over [1, ord(gi )−
1] for every i ∈ [r0 + 1, j], g( j, k1, . . . , k j ) takes its maximal value

∑
g∈G(ord(g) − 1) −

2r
′ + 2 − m + r0 when j = m + r0 and ki = ord(gi ) − 1 for every i ∈ [r0 + 1,m + r0],

and g( j, k1, . . . , k j ) takes its minimal value 1 + ∑r
i=1(ni − 1) when j = r and ki = 1 for

every i ∈ [r0 + 1, r ]. It is easy to see that g( j, k1, . . . , k j ) can take any integer in between
the minimal value and the maximal value. So

I2 = [1 +
r∑

i=1

(ni − 1),
∑

g∈G
(ord(g) − 1) − 2r

′ + 2 − m + r0] ⊂ Vol(G). (4.4)

Let

A =
∑

g∈G
(ord(g) − 1).

Now it remains to show

I1 ∪ I2 = [D(G),
∑

g∈G
(ord(g) − 1)].

This is equivalent to the inequality

A − 2r
′ + 2 − m + r0 ≥ A − 2r

′ + 1

2
+ 2r

′
.

Next we show the following stronger inequality:

A − 2r
′ + 2 − m ≥ A − 2r

′ + 1

2
+ 2r

′
. (4.5)

Note that 2m = |G| − |G2| and |G2| = 2r
′
. We obtain that the inequality of (4.5) is

equivalent to A− |G| ≥ 2r
′+1 − 3. Since |G| = ∑

g∈G 1, A− |G| ≥ 2r
′+1 − 3 is equivalent

to
∑

g∈G
(ord(g) − 2) ≥ 2r

′+1 − 3,

and this is equivalent to

∑

g∈G\G2

(ord(g) − 2) ≥ 2r
′+1 − 2.

So we only need to prove the above inequality.
If r ′ = 0, then it is obvious. Next we suppose that r ′ ≥ 1. Take h ∈ Cnr with ord(h) = nr .

Note that nr ≥ 4 since G �= Cr
2 and r

′ ≥ 1. It follows that
∑

g∈G\G2

(ord(g) − 2) ≥
∑

g∈Cn1⊕···⊕Cnr−1⊕{h,−h}
(ord(g) − 2)

=
∑

g∈Cn1⊕···⊕Cnr−1⊕{h,−h}
(nr − 2)

= 2n1 . . . nr−1(nr − 2) ≥ 2r+1

≥ 2r
′+1 > 2r

′+1 − 2.

This proves the inequality of (4.5), completing the proof. ��
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Proof of Theorem 1.3. Now the result follows from Lemma 4.1 and Theorem 1.2 (2). ��

5 Proof of Theorem 1.4

In this section we will derive some properties on Qt (G) and prove Theorem 1.4. We need
the following lemmas.

Lemma 5.1 If G is a finite abelian group with r(G) ≤ 2, then D2(G) = D(G) + exp(G).

Proof The result follows from [5, Lemma 3.2] and [7, Theorem 5.8.3]. ��
Lemma 5.2 Let G be a finite abelian group. For any positive integer t ≥ D2(G), we have
Qt (G) = ∅.
Proof Let G∗ = G \ {0}, and t ≥ D2(G) be an integer. Let

� = {0t−D(G)+1} ∪ A(G∗)

and

�′ = {0t−D2(G)+1} ∪ (B(G∗) \ A(G∗)).

It is easy to see that d�(G) = t = d�′(G). On the other hand, note that a minimal zero-sum
sequence over G of length D(G) has no two disjoint nonempty zero-sum subsequences, so
we deduce that D2(G) > D(G). Therefore,

� ∩ �′ = ∅.

Hence, Qt (G) = ∩�⊂B(G),d�(G)=t� = ∅. ��
Lemma 5.3 Let � ⊂ B(G) \ {1} and S1, S2 ∈ � with S1 �= S2. If S1 | S2, then d�(G) =
d�\{S2}(G).

Proof It is clear that d�(G) ≤ d�\{S2}(G). We next show d�\{S2}(G) ≤ d�(G). Let U be a
sequence overG with |U | = d�(G).We only need to show that there is a nonempty zero-sum
subsequence in�\{S2}. Since |U | = d�(G), there exists a nonempty zero-sum subsequence
S in �. If S �= S2, then S ∈ �\{S2}, and we are done. Otherwise S = S2. Then S2|U . It
follows that S1|S2|U . Therefore, S1 ∈ �. Thus, S1 ∈ �\{S2} since S1 �= S2, completing the
proof. ��
Lemma 5.4 Let G be a finite abelian group with |G| ≥ 4. If S is an essential zero-sum
sequence over G with respect to some integer t ≥ D(G) + 1, then S �= 0 is a minimal
zero-sum sequence.

Proof Let G∗ = G \ {0} and
� = A(G∗) ∪ {0t−D(G)+1}.

It is easy to see that

d�(G) = t .



W. D. Gao et al.

We next distinguish two cases.
Case 1. G = Cn , where n ≥ 4. Take an element g ∈ G with ord(g) = n. Let

�′ = (A(G∗)\{gn−2(2g)}) ∪ {0t−D(G)}.
We want to show

d�′(G) = t .

Let

U = 0t−D(G)−1gn−1(2g).

It is clear that U is �′-free. Therefore, d�′(G) ≥ |U | + 1 = t . So it suffices to show
d�′(G) ≤ t . Let

U1 = 0t−|T1|T1

be a sequence over G of length t , where 0 /∈ supp(T1) and t − |T1| ≥ 0. We only need to
show that there exists a zero-sum subsequence of U1 in �′. If t − |T1| ≥ t − D(G), then
0t−D(G) is a zero-sum subsequence of U1 in �′, and we are done. Hence, we assume that
t − |T1| ≤ t − D(G) − 1. Then |T1| ≥ D(G) + 1 = n + 1, and T1 has a minimal zero-sum
subsequence. If gn−2(2g) � T1, we are done. So we may assume that

T1 = gn−2(2g)T2,

where |T2| ≥ 2.
If vg(T2) ≥ 2, then gn is aminimal zero-sum subsequence of T1 in�′. If v2g(T2) ≥ 1, then

gn−4(2g)2 is aminimal zero-sum subsequence of T1 in�′. Sowemay assume that vg(T2) ≤ 1
and v2g(T2) = 0. Since |T2| ≥ 2, we infer that vmg(T2) ≥ 1 for some m ∈ [3, n − 1], then
(mg)gn−m is a minimal zero-sum subsequence of T1 in �′. This proves that d�′(G) = t .
Since S is essential with respect to t , we have S ∈ � ∩ �′ ⊂ A(G∗), completing the proof
in this case.

Case 2. G is not cyclic. Then D(G) ≥ D∗(G) > exp(G) ≥ ord(g) for every g ∈ G. Let
T be a minimal zero-sum sequence over G of length |T | = D(G), and let

�′′ = (A(G∗)\{T }) ∪ {0t−D(G)},
We now show d�′′(G) = t . Let

U = 0t−D(G)−1T .

Then U is �′′-free. Therefore, d�′′(G) ≥ |U | + 1 = t . So it remains to show d�′′(G) ≤ t .
Let

U1 = 0t−|T1|T1

be a sequence over G of length t , where 0 /∈ supp(T1) and t − |T1| ≥ 0. We need to show
that there exists a zero-sum subsequence of U1 in �′′. If t − |T1| ≥ t − D(G), then we are
done. Hence, we assume that t − |T1| ≤ t − D(G) − 1. Then |T1| ≥ D(G) + 1. Assume to
the contrary that T1 is an �′′-free sequence. Let

T2 = g1g2 · · · gD(G)+1

be a subsequence of T1 of lengthD(G)+1. Take an arbitrary subsequence T3 of T2 with length
|T3| = |T2| − 1 = D(G). Then, T3 has a minimal zero-sum subsequence T0. If |T0| < D(G),
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then T0 ∈ �′′, a contradiction. Therefore, |T0| = D(G) and T3 = T0 follows. This proves
that σ(T3) = 0 for every subsequence T3 of T2 with length |T3| = |T2| − 1. It follows that

g1 = g2 = · · · = gD(G)+1 = g0.

Now gord(g0)0 is a minimal zero-sum subsequence of U1 in �′′, a contradiction. This proves
that d�′′(G) = t . Since S is essential with respect to t , we have S ∈ � ∩ �′′ ⊂ A(G∗),
completing the proof. ��
Remark 5.5 It is easy to check that Q2(C2) = {12, 0}, Q3(C2) = {12, 02}. Moreover, by
Lemma 4.1, Lemmas 5.1 and 5.2, we obtain Qt (C2) = ∅ when t ≥ 4. Thus,

Qt+1(C2) ⊂ Qt (C2)

for any positive integer t ≥ D(C2) + 1 = 3. Note that Q3(C2) �⊂ Q2(C2). We will show that
this is the only exception that does not satisfy Qt+1(G) ⊂ Qt (G).

Lemma 5.6 Let G be a finite abelian group with |G| ≥ 3. For any positive integer t ≥ D(G),
we have Qt+1(G) ⊂ Qt (G).

Proof If |G| = 3, then G = C3. It is easy to see that

Q3(G) = {0, 13, 23, 12},
Q4(G) = {13, 23}, and
Q5(G) = {13, 23},

and, by Lemmas 4.1, 5.1 and 5.2, we obtain

Qt (G) = ∅
when t ≥ 6. Therefore, Qt+1(G) ⊂ Qt (G) follows from |G| = 3. From now on we assume
that

|G| ≥ 4.

Let S ∈ Qt+1(G). For every � ⊂ B(G) with d�(G) = t ≥ D(G), define k = k(�) as
the smallest positive integer such that 0k ∈ �. For any 0 ≤ i ≤ t − k + 1, define

�(i) = (� \ {0k, 0k+1, . . . , 0i+k−1}) ∪ {0i+k},
where, �(0) = �. We next show

d�(1) (G) = t or t + 1.

By Lemma 5.3, we have d�∪{0k+1}(G) = d�(G) = t . Therefore, d�(1) (G) ≥
d�∪{0k+1}(G) = t . So it remains to show d�(1) (G) ≤ t + 1.

LetU be a sequence overG of length t+1.We only need to show that there is a nonempty
zero-sum subsequence of U in �(1). Since |U | = t + 1 > d�(G), there exists a nonempty
zero-sum subsequence T in �. If k > t + 1, then |T | ≤ t + 1 < k. Hence, T �= 0k and
T ∈ �(1), we are done. We may assume that k ≤ t + 1. If T �= 0k , then T ∈ �(1), and we
are done. Now we assume that T = 0k . Let U = 0kU1. If 0 ∈ supp(U1), then 0k+1 ∈ �(1),
and we are done. Hence we may assume that 0 /∈ supp(U1). Since |0k−1U1| = t , there is a
nonempty zero-sum subsequence T1 in � and T1 �= 0k . Therefore, T1 ∈ �(1). This proves
that d�(1) (G) = t or t + 1.



W. D. Gao et al.

Weargue by induction on i that for each such i ,d�(i) (G) is either t or t+1.Based on the fact
that 0t has no nonempty zero-sum subsequence in �(t−k+1) = (� \ {0k, 0k+1, . . . , 0t }) ∪
{0t+1}, we have d�(t−k+1) (G) ≥ t + 1. We conclude that there is an i ≤ t − k such that
d�(i) (G) = t and d�(i+1) = t + 1. Next we argue that, by Lemma 5.4, S �= 0k+i+1, and
therefore S ∈ �. From the arbitrariness of � we conclude that S ∈ Qt (G). ��
Lemma 5.7 Let G be a finite abelian group with |G| ≥ 3. A zero-sum sequence S over G
is essential with respect to t ≥ D(G) if and only if there exists a sequence W with length
|W | = t such that every nonempty zero-sum subsequence of W has the same form with S.

Proof Sufficiency. Let W be a sequence with |W | = t such that every nonempty zero-
sum subsequence of W has the same form with S. Let � be any subset of B(G) such that
d�(G) = t . Then we infer that S ∈ �. Therefore, S is essential with respect to t .

Necessity. Assume to the contrary that every sequence W with length |W | = t has a
nonempty zero-sum subsequence SW with vg(S) �= vg(SW ) for some g ∈ G. Let

� = {SW | |W | = t}.
Then it is clear thatd�(G) ≤ t and S /∈ �. Letd�(G) = t0. Then S /∈ Qt0(G). ByLemma5.6,
we have S /∈ Qt (G). Therefore, S is not essential with respect to t , a contradiction. ��
Lemma 5.8 [3, Theorem 4.4] If G is a finite abelian group, then q(G) ≤ D2(G).

Proposition 5.9 If G is a finite abelian group and H is a proper subgroup of G, then

q′(G) ≥ q′(H) + D(G/H) − 1.

In particular, q′(G) > q′(H).

Proof Let S be a sequence over H of length q′(H) − 1 such that every nonempty zero-sum
subsequence has the same form. Moreover, let T be a sequence over G \ H avoiding a
nonempty zero-sum subsequence modulo H with length |T | = D(G/H) − 1. Clearly, each
nonempty zero-sum subsequence of ST is in fact a subsequence of S, and therefore has the
same form. Hence, q′(G) ≥ |ST | + 1 = |S| + |T | + 1 = q′(H) + D(G/H) − 1.

Obviously, D(G/H) ≥ 2 since H is a proper subgroup of G. Therefore, q′(G) > q′(H).
��
Proof of Theorem 1.4. (1) Let

G = Cn1 ⊕ Cn2 ⊕ · · · ⊕ Cnr = 〈e1〉 ⊕ 〈e2〉 ⊕ · · · ⊕ 〈er 〉
with 1 < n1 | n2 | · · · | nr , and ord(ei ) = ni for each i ∈ [1, r ] and

S = en1−1
1 en2−1

2 · · · enr−1−1
r−1 e2nr−1

r .

It is clear that every nonempty zero-sum subsequence of S has the same form enrr . Therefore,
q′(G) ≥ |S| + 1 = D∗(G) + exp(G). So it remains to show

q′(G) ≤ D(G) + exp(G).

Let S be a sequence over G of length D(G) + exp(G). We need to show that S has
two nonempty zero-sum subsequences of different forms. Since |S| > D(G), there exists a
nonempty zero-sum subsequence T of S. We now distinguish two cases.
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Case 1. |T | ≤ exp(G). Then |ST−1| ≥ D(G). Therefore, there is a nonempty zero-sum
subsequence T1 of ST−1. Hence T and T T1 are two nonempty zero-sum subse-
quences of S with different forms.

Case 2. |T | > exp(G). If there is an element g ∈ G such that vg(T ) ≥ exp(G), then
gexp(G) and T are two nonempty zero-sum subsequences of S with different forms.
If vg(T ) < exp(G) for every g ∈ G, then let

T = gk11 gk22 · · · gkll ,

where exp(G) > k1 ≥ · · · ≥ kl ≥ 1. Since |S(gkii )−1| = |S| − ki > D(G) for

any i ∈ [1, l], there exists a nonempty zero-sum subsequence T2 of S(gkii )−1. If
T2 and T have different forms, we are done. Otherwise, all nonempty zero-sum
subsequences of S(gkii )−1 have the same form with T , then vgi (S) ≥ 2vgi (T ) for
every i ∈ [1, l]. Therefore, there are two nonempty zero-sum subsequences T , T 2

of S with different forms.

(2) Consider first G = C2, then q(G) = 4 by Remark 5.5. One readily checks that
q′(C2) = 4 also holds, so in the sequel |G| ≥ 3 may be assumed. Then q′(G) ≥ q(G) by
Lemma 5.7, so one only has to show the reverse inequality

q(G) ≥ q′(G).

Note that no minimal zero-sum sequence over G of length D(G) has two nonempty zero-
sum subsequences with different forms. Thus, the inequality q′(G) ≥ D(G) + 1 holds. Let
S be a sequence with |S| = q′(G) − 1 such that every nonempty zero-sum subsequence of
S has the same form with T . Let t = |S|. Then t ≥ D(G). By Lemma 5.7, we obtain that
T is essential with respect to t . Therefore, Qt (G) �= ∅. We assert that Qk(G) �= ∅ holds for
every k ∈ [D(G), t]. In fact, if there exists k ∈ [D(G), t − 1] such that Qk(G) = ∅, then
by Lemma 5.6, we have Qt (G) ⊂ Qk(G) = ∅, a contradiction. Hence, q(G) ≥ t + 1 =
|S| + 1 = q′(G).

(3). The result follows from (1) and (2). ��
By Theorem 1.4 and [5, Lemma 3.2], we obtain the following result.

Corollary 5.10 If D(G) = D∗(G) and η(G) ≤ D(G) + exp(G), then

q(G) = q′(G) = disc(G) = D2(G) = D(G) + exp(G).

We end this section with the following

Conjecture 5.11 For any finite abelian group G,

Vol(G) = [D(G), 1 +
∑

g∈G
(ord(g) − 1)].
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