Representation of zero-sum invariants by sets of zero-sum sequences over a finite abelian group

Weidong Gao ${ }^{1} \cdot$ Siao Hong ${ }^{1} \cdot$ Wanzhen Hui ${ }^{1} \cdot$ Xue Li ${ }^{1} \cdot$ Qiuyu Yin ${ }^{1} \cdot$ Pingping Zhao ${ }^{2}$

Abstract

Let G be an additive finite abelian group. For a sequence T over G and $g \in G$, let $\mathrm{v}_{g}(T)$ denote the multiplicity of g in T. Let $\mathcal{B}(G)$ denote the set of all zero-sum sequences over G. For $\Omega \subset \mathcal{B}(G)$, let $\mathrm{d}_{\Omega}(G)$ be the smallest integer t such that every sequence S over G of length $|S| \geq t$ has a subsequence in Ω. The invariant $\mathrm{d}_{\Omega}(G)$ was formulated recently in [3] to take a unified look at zero-sum invariants, it led to the first results there, and some open problems were formulated as well. In this paper, we make some further study on $\mathrm{d}_{\Omega}(G)$. Let $\mathrm{q}^{\prime}(G)$ be the smallest integer t such that every sequence S over G of length $|S| \geq t$ has two nonempty zero-sum subsequences, say T_{1} and T_{2}, having different forms, i.e., $\mathrm{v}_{g}\left(T_{1}\right) \neq \mathrm{v}_{g}\left(T_{2}\right)$ for some $g \in G$. Let $\mathrm{q}(G)$ be the smallest integer t such that

$$
\bigcap_{\mathrm{d}_{\Omega}(G)=t} \Omega=\emptyset .
$$

The invariants $\mathrm{q}(G)$ and $\mathrm{q}^{\prime}(G)$ were also introduced in [3]. We prove, among other results, that $\mathrm{q}(G)=\mathrm{q}^{\prime}(G)$ in fact.

Keywords Zero-sum sequence • Zero-sum invariant • Abelian group

Weidong Gao
wdgao@nankai.edu.cn
Siao Hong
sahongnk@gmail.com
Wanzhen Hui
huiwanzhen@163.com
Xue Li
lixue931006@163.com
Qiuyu Yin
yinqiuyu26@126.com
Pingping Zhao
ppz1989@126.com
1 Center for Combinatorics, LPMC-TJKLC Nankai University, Tianjin 300071, People's Republic of China
2 School of Science, Tianjin Chengjian University, Tianjin 300384, People's Republic of China

Mathematics Subject Classification 11B30 • 11B13 • 11B50 • 11P70 • 20K01

1 Introduction

Zero-sum theory on abelian groups can be traced back to the 1960s and has been developed rapidly in the last three decades (see [1,6,7]). Many invariants have been formulated and we list some of these invariants, which will be used in this section. Let G be an additive finite abelian group. By the Fundamental Theorem of Finite Abelian Groups, $|G|=1$, or $G \cong C_{n_{1}} \oplus \cdots \oplus C_{n_{r}}$ with $1<n_{1}|\cdots| n_{r}$, where $r=r(G)$ is the rank of G and $n_{r}=\exp (G)$ is the exponent of G. Set

$$
\mathrm{D}^{*}(G)=1+\sum_{i=1}^{r}\left(n_{i}-1\right)
$$

A starting point of zero-sum theory involves the Davenport constant $\mathrm{D}(G)$, which is defined as the smallest integer t such that every sequence S over G of length $|S| \geq t$ has a nonempty zero-sum subsequence.

Let $\mathrm{Ol}(G)$ denote the smallest integer t such that every squarefree sequence S over G of length $|S| \geq t$ has a nonempty zero-sum subsequence. The invariant $\mathrm{Ol}(G)$ is called the Olson constant of G. Let ol (G) denote the maximal length of a squarefree zero-sum free sequence S over G. Clearly, $\mathrm{Ol}(G)=\mathrm{ol}(G)+1$.

In 2012, Girard [8] posed the problem of determining the smallest positive integer t, denoted by $\operatorname{disc}(G)$, such that every sequence S over G of length $|S| \geq t$ has two nonempty zero-sum subsequences of distinct lengths. The invariant $\operatorname{disc}(G)$ has been studied recently by Gao et al. in [2,4,5]. Related to disc (G), Gao, Li, Peng and Wang [3] defined $\mathrm{q}^{\prime}(G)$ to be the smallest integer t such that every sequence S over G of length $|S| \geq t$ has two nonempty zero-sum subsequences, say T_{1} and T_{2}, with $\mathrm{v}_{g}\left(T_{1}\right) \neq \mathrm{v}_{g}\left(T_{2}\right)$ for some $g \in G$. That is to say, T_{1} and T_{2} have different forms. Clearly,

$$
\mathrm{q}^{\prime}(G) \leq \operatorname{disc}(G)
$$

for every finite abelian group G.
In order to describe zero-sum invariants uniformly, Gao et al. [3] provided a unified way to formulate zero-sum invariants.

Let G_{0} be a nonempty subset of G. Let $\mathcal{B}\left(G_{0}\right)$ denote the monoid of all zero-sum sequences over G_{0}, and denote by $\mathbb{1}$ the identity element of the monoid $\mathcal{B}\left(G_{0}\right)$, i.e., the empty sequence over G_{0}. For $\Omega \subset \mathcal{B}(G)$, let $\mathrm{d}_{\Omega}(G)$ be the smallest integer t such that every sequence S over G of length $|S| \geq t$ has a subsequence in Ω. If such a t does not exist, then let $\mathrm{d}_{\Omega}(G)=\infty$. Observe that $\mathrm{d}_{\Omega}(G)=0$ if $\mathbb{1} \in \Omega$. So we only need to consider the case of $\Omega \subset \mathcal{B}(G) \backslash\{\mathbb{1}\}$ in what follows. Then $\mathrm{d}_{\Omega}(G) \geq \mathrm{D}(G)$.

Let $G^{*}=G \backslash\{0\}$. For each integer $t \geq \mathrm{D}(G)$, let $\Omega=\left(\mathcal{B}\left(G^{*}\right) \backslash\{\mathbb{1}\}\right) \cup\left\{0^{t-\mathrm{D}(G)+1}\right\}$. It is easy to see that $\mathrm{d}_{\Omega}(G)=t$. Therefore, for every positive integer $t \geq \mathrm{D}(G)$, there is an $\Omega \subset \mathcal{B}(G)$ such that $t=\mathrm{d}_{\Omega}(G)$. But this does not give us much information on the invariant t. For some classical invariants t, finding some special $\Omega \subset \mathcal{B}(G)$ with $\mathrm{d}_{\Omega}(G)=t$ can help us understand t better. Thus, Gao et al. [3] introduced the following concepts. A sequence S over G is a weak-regular sequence if $\mathrm{v}_{g}(S) \leq \operatorname{ord}(g)$ for every $g \in G$ and $\Omega \subset \mathcal{B}(G)$ is weak-regular if every sequence $S \in \Omega$ is weak-regular. Let $\mathcal{B}_{w r}(G)$ denote the set of all nonempty weak-regular zero-sum sequences over G. Let $\operatorname{Vol}(G)$ be the set of all positive integers $t \in\left[\mathrm{D}(G), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right]$ such that $t=\mathrm{d}_{\Omega}(G)$ for some
$\Omega \subset \mathcal{B}_{w r}(G)$. If $\Omega \subset \mathcal{B}(G)$, a sequence S over G is Ω-free if S has no subsequence in Ω. Related to $\mathrm{d}_{\Omega}(G)$, Gao et al. [3] introduced that a zero-sum sequence S is essential with respect to some $t \geq \mathrm{D}(G)$ if every $\Omega \subset \mathcal{B}(G)$ with $\mathrm{d}_{\Omega}(G)=t$ contains S. Thus, a natural research problem is to determine the smallest integer t such that there is no essential zero-sum sequence with respect to t; denote this by $\mathrm{q}(G)$.

For every positive integer $t \geq \mathrm{D}(G)$, let

$$
\mathrm{Q}_{t}(G)=\bigcap_{\Omega \subset \mathcal{B}(G), \mathrm{d}_{\Omega}(G)=t} \Omega
$$

Clearly, $S \in \mathrm{Q}_{t}(G)$ if and only if S is essential with respect to t, and $\mathrm{q}(G)$ is the smallest integer t with $\mathrm{Q}_{t}(G)=\emptyset$.

To study $\operatorname{Vol}(G)$ we introduce the following invariant. Let $\mathrm{N}(G)$ denote the smallest integer t such that every weak-regular sequence S over G of length $|S| \geq t$ has a nonempty zero-sum subsequence T of S satisfying $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)$ for some $g \mid S$ or, equivalently, $\operatorname{supp}\left(S T^{-1}\right) \neq \operatorname{supp}(S)$.

In this paper, we make some further study on $\mathrm{d}_{\Omega}(G), \mathrm{q}(G), \mathrm{q}^{\prime}(G)$ and $\mathrm{N}(G)$ for finite abelian groups. Our main results are as follows.

Theorem 1.1 If p is a prime and G is a finite abelian group, then the following hold:
(1) $N(G) \leq 1+o l(G)(\exp (G)-1)$.
(2) If $G=C_{p}$ then $N(G)=2 p-\lfloor 2 \sqrt{p}\rfloor$.

Theorem 1.2 If G is a finite abelian group, then the following hold:
(1) $\left[1+\operatorname{ol}(G)(\exp (G)-1), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right] \subset \operatorname{Vol}(G)$.
(2) If $D(G)=D^{*}(G)$ then

$$
\operatorname{Vol}(G)=\left[D(G), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right] .
$$

Theorem 1.3 If m, n are positive integers, p is a prime, and G is a finite abelian group, then $\operatorname{Vol}(G)=\left[D(G), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right]$ if G is one of the following groups:
(1) $r(G) \leq 2$.
(2) G is a p-group.
(3) $G=C_{m p^{n}} \oplus H$, where H is a p-group with $D^{*}(H) \leq p^{n}$.

Theorem 1.4 If G is a finite abelian group, then the following hold:
(1) $D^{*}(G)+\exp (G) \leq q^{\prime}(G) \leq D(G)+\exp (G)$.
(2) $q^{\prime}(G)=q(G)$.
(3) If $D(G)=D^{*}(G)$, then $q^{\prime}(G)=q(G)=D(G)+\exp (G)$.

The paper is organized as follows. Section 2 provides some notations and concepts which will be used in the sequel. In Sect. 3, we prove Theorem 1.1. In Sect. 4, we investigate Vol (G) for finite abelian groups and prove Theorems 1.2 and 1.3. In Sect. 5, we prove Theorem 1.4.

2 Preliminaries

Throughout this paper, our notations and terminology are consistent with [1,3,7] and we briefly present some key concepts. Let \mathbb{Z} denote the set of integers, and let \mathbb{N} denote the set of
positive integers, $\mathbb{N}_{0}=\mathbb{N} \cup\{0\}$. For real numbers $a \leq b$, we set $[a, b]=\{x \in \mathbb{Z} \mid a \leq x \leq b\}$, $\lfloor a\rfloor=\max \{x \in \mathbb{Z} \mid x \leq a\}$ and $\lceil a\rceil=\min \{x \in \mathbb{Z} \mid x \geq a\}$.

Throughout, let G be an additive finite abelian group. We denote by C_{n} the cyclic group of n elements and denote by C_{n}^{r} the direct sum of r copies of C_{n}. An r-tuple $\left(e_{1}, e_{2}, \ldots, e_{r}\right)$ in $G \backslash\{0\}$ is called a basis of G if $G=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle \oplus \cdots \oplus\left\langle e_{r}\right\rangle$.

Let G_{0} be a nonempty subset of G. In Additive Combinatorics, a sequence (over G_{0}) means a finite unordered sequence of terms from G_{0} where repetition is allowed, and (as usual) we consider sequences as elements of the free abelian monoid $\mathcal{F}\left(G_{0}\right)$ with basis G_{0}.

Let

$$
S=g_{1} \cdots g_{l}=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)} \in \mathcal{F}\left(G_{0}\right)
$$

be a sequence over G_{0}. We call

- $\mathrm{v}_{g}(S)$ the multiplicity of g in S,
- $\mathrm{h}(S)=\max \left\{\mathrm{v}_{g}(S) \mid g \in G_{0}\right\}$ the height of S,
- $\operatorname{supp}(S)=\left\{g \in G_{0} \mid \mathrm{v}_{g}(S)>0\right\}$ the support of S,
- $|S|=l=\sum_{g \in G_{0}} \mathrm{v}_{g}(S) \in \mathbb{N}_{0}$ the length of S,
- $\sigma(S)=\sum_{i=1}^{l} g_{i}=\sum_{g \in G_{0}} \mathrm{v}_{g}(S) g \in G_{0}$ the sum of S,
- S a zero-sum sequence if $\sigma(S)=0$,
- S a squarefree sequence if $\mathrm{v}_{g}(S) \leq 1$ for all $g \in G_{0}$,
- T a subsequence of S if $\mathrm{v}_{g}(T) \leq \mathrm{v}_{g}(S)$ for all $g \in G_{0}$, denote by $T \mid S$,
- $S T^{-1}=\prod_{g \in G_{0}} g^{\mathrm{v}_{g}(S)-\mathrm{v}_{g}(T)}$ the subsequence obtained from S by deleting T,
- S a minimal zero-sum sequence if it is a nonempty zero-sum sequence and has no proper zero-sum subsequence,
- S a zero-sum free sequence if S has no nonempty zero-sum subsequence,
- two subsequences T_{1} and T_{2} of S disjoint if $T_{1} \mid S T_{2}^{-1}$,
- $\Sigma(S)=\{\sigma(T)|T| S, T \neq \mathbb{1}\}$ the set of subsums of S.

Let $\mathcal{A}\left(G_{0}\right)$ denote the set of all minimal zero-sum sequences over G_{0}. By the definition of minimal zero-sum sequences, the empty sequence $\mathbb{1}$ is not a minimal zero-sum sequence and therefore $\mathcal{A}\left(G_{0}\right) \subset \mathcal{B}\left(G_{0}\right) \backslash\{\mathbb{1}\}$. Let $\eta(G)$ be the smallest integer t such that every sequence S over G of length $|S| \geq t$ has a zero-sum subsequence of length in $[1, \exp (G)]$. Let $\mathrm{D}_{2}(G)$ denote the smallest integer t such that every sequence over G of length $|S| \geq t$ has two disjoint nonempty zero-sum subsequences. The invariant $\mathrm{D}_{2}(G)$ was first introduced by Halter-Koch [9] and was studied recently by Plagne and Schmid [13].

3 On N(G)

In this section we shall prove Theorem 1.1 and we need some preliminary results beginning with the following well-known Cauchy-Davenport theorem.

Lemma 3.1 [10] If $h \geq 2$, p is a prime number, and A_{1}, \ldots, A_{h} are nonempty subsets of C_{p}, then

$$
\left|A_{1}+\cdots+A_{h}\right| \geq \min \left(p, \Sigma_{i=1}^{h}\left|A_{i}\right|-h+1\right) .
$$

Lemma 3.2 If S is a sequence over $C_{p} \backslash\{0\}$ with length $|S|=p-1$, then

$$
\Sigma(S) \backslash\{0\}=C_{p} \backslash\{0\} .
$$

Proof Let $S=g_{1} \ldots g_{p-1}$ and $A_{i}=\left\{0, g_{i}\right\}$ for each $i \in[1, p-1]$. By Lemma 3.1,

$$
\begin{aligned}
|\Sigma(S) \backslash\{0\}| & =\left|\left(A_{1}+\cdots+A_{p-1}\right) \backslash\{0\}\right| \\
& \geq \min \left(p, \Sigma_{i=1}^{p-1}\left|A_{i}\right|-(p-1)+1\right)-1 \\
& =p-1 .
\end{aligned}
$$

Since $|\Sigma(S) \backslash\{0\}| \leq p-1$, we deduce $|\Sigma(S) \backslash\{0\}|=p-1$, therefore $\Sigma(S) \backslash\{0\}=C_{p} \backslash\{0\}$.

Lemma 3.3 Let k be a positive integer. Define $A_{k}:=\min \{a+b \mid a b \geq k, a, b \in \mathbb{N}\}$. Then $A_{k}=\lceil 2 \sqrt{k}\rceil$.

Proof Let $a, b \in \mathbb{N}$, and $a b \geq k$. For $k=1,2,3$, letting $a=1$ and $b=k$ we get $A_{k}=1+k=\lceil 2 \sqrt{k}\rceil$. For $k=4$, letting $a=b=2$ we get $A_{k}=\lceil 2 \sqrt{k}\rceil$. From now on we assume that

$$
k \geq 5 .
$$

If k is not a square, there is a unique positive integer c such that

$$
c^{2}<k<(c+1)^{2} .
$$

We distinguish two cases:
Case 1. $c(c+1)<k$. Then

$$
k \geq c(c+1)+1=\left(c+\frac{1}{2}\right)^{2}+\frac{3}{4} .
$$

Therefore, $c+\frac{1}{2}<\sqrt{k}<c+1$. Thus, $2 c+1<2 \sqrt{k}<2 c+2$. Hence,

$$
\lceil 2 \sqrt{k}\rceil=2 c+2 .
$$

From $a b \geq k \geq c(c+1)+1$ we deduce that $(a+b)^{2}=4 a b+(a-b)^{2} \geq 4 c(c+1)+$ $4+(a-b)^{2}=(2 c+1)^{2}+3+(a-b)^{2}$. Therefore,

$$
a+b \geq 2 c+2
$$

Letting $a=b=c+1$ we get $A_{k}=2 c+2=\lceil 2 \sqrt{k}\rceil$.
Case 2. $k \leq c(c+1)$. Then $c^{2}<k \leq\left(c+\frac{1}{2}\right)^{2}-\frac{1}{4}$. Therefore, $c<\sqrt{k}<c+\frac{1}{2}$. Thus, $2 c<2 \sqrt{k}<2 c+1$. Hence,

$$
\lceil 2 \sqrt{k}\rceil=2 c+1
$$

Since $a b \geq k>c^{2}$, we have $(a+b)^{2}=4 a b+(a-b)^{2}>4 c^{2}$. Therefore, $a+b \geq 2 c+1$. Letting $a=c, b=c+1$ we get $A_{k}=2 c+1=\lceil 2 \sqrt{k}\rceil$.

Now it remains to consider the case that k is a square. Let $k=m^{2}$ with $m \geq 3$ since $k \geq 5$. From $a b \geq k=m^{2}$ we deduce that $(a+b)^{2}=(a-b)^{2}+4 a b \geq 4 m^{2}$ with equality holding if and only if $a=b=m$. Letting $a=b=m$ we get

$$
A_{k}=2 m
$$

as desired.

Proof of Theorem 1.1. (1) Let S be a weak-regular sequence over G of length $|S| \geq 1+$ ol $(G)(\exp (G)-1)$. We need to show that there exists a zero-sum subsequence T of S such that $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)$ for some $g \mid S$. If there exists $g \in G$ such that $\mathrm{v}_{g}(S)=\operatorname{ord}(g)$, then $T=g^{\operatorname{ord}(g)}$ is a zero-sum subsequence of S and $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)=\operatorname{ord}(g) \geq 1$. Next we assume that

$$
\mathrm{v}_{g}(S) \leq \operatorname{ord}(g)-1 \leq \exp (G)-1
$$

for every $g \in G$.
Let

$$
\operatorname{supp}(S)=\left\{g_{1}, \ldots, g_{l}\right\}
$$

Since $|S| \geq 1+\mathrm{ol}(G)(\exp (G)-1)$, we infer that $l \geq \frac{|S|}{\mathrm{h}(S)} \geq \frac{|S|}{\exp (G)-1}>\mathrm{ol}(G)$. Therefore, $l \geq \mathrm{ol}(G)+1=\mathrm{Ol}(G)$. Hence, $0 \in \Sigma\left(g_{1} \ldots g_{l}\right)$, i.e., there is a nonempty subset $I \subset[1, l]$ such that $\sum_{i \in I} g_{i}=0$. Take $j \in I$ with $\mathrm{v}_{g_{j}}(S)=\min \left\{\mathrm{v}_{g_{i}}(S) \mid i \in I\right\}$. Then

$$
T=\left(\prod_{i \in I} g_{i}\right)^{\mathrm{v}_{g_{j}}(S)}
$$

is a zero-sum subsequence of S with $\mathrm{v}_{g_{j}}(T)=\mathrm{v}_{g_{j}}(S)$.
(2) Let $G=C_{p}$. It is easy to verify that $\mathrm{N}\left(C_{2}\right)=2, \mathrm{~N}\left(C_{3}\right)=3$. Now we assume that $p \geq 5$.

Let $k \geq 5$ be a positive integer. By Lemma 3.3,

$$
A_{k}=\min \{a+b \mid a b \geq k, a, b \in \mathbb{N}\}=\lceil 2 \sqrt{k}\rceil .
$$

If $a \geq k-1$ or $b \geq k-1$, then $a, b \in \mathbb{N}$ and $a b \geq k$ imply that $a+b \geq k+1>$ $2 \sqrt{k}+1 \geq\lceil 2 \sqrt{k}\rceil$. Therefore, for $k \geq 5$ we have

$$
\begin{equation*}
A_{k}=\min \{a+b \mid a b \geq k, a, b \in \mathbb{N}, 2 \leq a, b \leq k-2\}=\lceil 2 \sqrt{k}\rceil . \tag{3.1}
\end{equation*}
$$

Since $p \geq 5$ is a prime, from $a, b \geq 2, a, b \in \mathbb{N}$ we infer that $a b \geq p$ if and only if $a b \geq p+1$. Therefore, $A_{p}=A_{p+1}=\lceil 2 \sqrt{p}\rceil$ by (3.1). So we need to show

$$
\mathrm{N}\left(C_{p}\right)=2 p-\lfloor 2 \sqrt{p}\rfloor=2 p-A_{p+1}+1 .
$$

First we want to prove

$$
\mathrm{N}\left(C_{p}\right) \leq 2 p-A_{p+1}+1 .
$$

Let S be a weak-regular sequence over C_{p} of length $|S| \geq 2 p-A_{p+1}+1=2 p-\lfloor 2 \sqrt{p}\rfloor$. We need to show that there exists a zero-sum subsequence T of S such that $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)$ for some $g \mid S$.

Since S is weak-regular, $\mathrm{v}_{g}(S) \leq \operatorname{ord}(g)$ for every $g \in G$ by the definition. If $\mathrm{v}_{g}(S)=$ $\operatorname{ord}(g)$ for some $g \in G$, then $T=g^{\operatorname{ord}(g)}$ is a zero-sum subsequence of S with $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)$ and we are done. So we may assume that $\mathrm{v}_{g}(S) \leq \operatorname{ord}(g)-1$ for every $g \in G$. It follows that

$$
0 \nmid S,
$$

and

$$
\mathrm{v}_{g}(S) \leq p-1
$$

for every $g \mid S$.

If there exists $g_{0} \mid S$ such that $\mathrm{v}_{g_{0}}(S) \leq p-\lfloor 2 \sqrt{p}\rfloor+1$, then $\left|S\left(g_{0}^{\mathrm{v}_{g_{0}}(S)}\right)^{-1}\right| \geq p-1$, by Lemma 3.2, there exists a subsequence $T \mid S\left(g_{0}^{\mathrm{v}_{g_{0}}(S)}\right)^{-1}$ such that $\sigma(T)=-\mathrm{v}_{g_{0}}(S) g_{0}$, so $T g_{0}^{\mathrm{v}_{g_{0}}(S)}$ is a zero-sum subsequence of S satisfying $\mathrm{v}_{g_{0}}\left(T g_{0}^{\mathrm{v}_{g_{0}}(S)}\right)=\mathrm{v}_{g_{0}}(S)$. So we may assume

$$
\mathrm{v}_{g}(S) \geq p-\lfloor 2 \sqrt{p}\rfloor+2
$$

for every $g \mid S$.
If $|\operatorname{supp}(S)| \geq 3$, then we fix a $h \mid S$ for which $\mathrm{v}_{h}(S)$ is the smallest possible. Consider $U=S\left(h^{\mathrm{v} h}(S)\right)^{-1}$. If $|U| \geq p-1$, then by Lemma 3.2 there is a $V \mid U$ such that $\sigma(V) \equiv$ $-\mathrm{v}_{h}(S) h(\bmod p)$, and then $T=V h^{\mathrm{v}_{h}(S)}$ will be a zero-sum subsequence of S with $\mathrm{v}_{h}(T)=$ $\mathrm{v}_{h}(S)$ as desired. If $\mathrm{v}_{h}(S) \geq p-2$, then $|S| \geq|\operatorname{supp}(S)| \mathrm{v}_{h}(S) \geq 3 p-6$, therefore $|U| \geq 2 p-5>p-1$, and we are done. And if $\mathrm{v}_{h}(S) \leq p-3$, then we refer to $|S| \geq|\operatorname{supp}(S)| \mathrm{v}_{h}(S) \geq 3 p-3\lfloor 2 \sqrt{p}\rfloor+6>3 p-6 \sqrt{p}+6$, so in this case $|U| \geq$ $|S|-(p-3)>2 p-6 \sqrt{p}+9=p+(\sqrt{p}-3)^{2}>p-1$, and we are done in this case, too.

From the fact that S is weak-regular, we get

$$
|\operatorname{supp}(S)|=2
$$

Multiplying every term of S with an integer in [1, $p-1]$ we may assume

$$
S=1^{p-a} x^{p-b}
$$

with $0 \leq a, b \leq p-1$ and $x \in[2, p-1]$.
If $\min \{a, b\} \leq 1$ or $\max \{a, b\}=p-1$, then it is easy to see that S has a zero-sum subsequence T such that $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)$ for some $g \mid S$. So we may assume

$$
2 \leq a, b \leq p-2
$$

Assume to the contrary that S has no zero-sum subsequence T such that $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)$ for some $g \mid S$.

Let m and c be integers with $m, c \in[1, p-1]$ such that

$$
m x \equiv p-a \quad(\bmod p) \text { and }(p-b) x \equiv c \quad(\bmod p)
$$

Then we deduce

$$
(p-a)(p-b) \equiv m x(p-b) \equiv m c \quad(\bmod p)
$$

which implies

$$
p \mid(a b-m c) .
$$

If $m \geq b$ or $c \geq a$, then $1^{p-a} x^{p-m}$ or $1^{p-c} x^{p-b}$ is a zero-sum subsequence of S respectively, a contradiction. So

$$
1 \leq m \leq b-1,1 \leq c \leq a-1
$$

Now $p \mid(a b-m c)$ implies $p \leq a b-m c \leq a b-1$. Therefore, $a b \geq p+1$. By the definition of A_{p+1} we infer

$$
a+b \geq A_{p+1}
$$

On the other hand, since $|S| \geq 2 p-A_{p+1}+1$ and $|S|=2 p-a-b$, one has $a+b \leq$ $A_{p+1}-1$, a contradiction. This proves

$$
\mathrm{N}\left(C_{p}\right) \leq 2 p-A_{p+1}+1 .
$$

So it remains to show

$$
\mathrm{N}\left(C_{p}\right) \geq 2 p-A_{p+1}+1
$$

Let a_{0} and b_{0} be integers such that $2 \leq a_{0}, b_{0} \leq p-1, a_{0} b_{0} \geq p+1$ and $a_{0}+b_{0}=A_{p+1}$. Let

$$
S=1^{p-a_{0}}\left(p-a_{0}\right)^{p-b_{0}} .
$$

Then

$$
|S|=2 p-A_{p+1}
$$

We claim that S has no zero-sum subsequence T such that $\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)$ for some $g \mid S$.
Let T be a nonempty zero-sum subsequence of S. Assume to the contrary

$$
\mathrm{v}_{g}(T)=\mathrm{v}_{g}(S)
$$

for some $g \in \operatorname{supp}(S)=\left\{1, p-a_{0}\right\}$.
Notice that for any integer t with $0 \leq t \leq p-b_{0} \leq p-2$, one has $\sigma\left(1^{p-a_{0}}\left(p-a_{0}\right)^{t}\right)=$ $(t+1)\left(p-a_{0}\right) \neq 0$. Therefore, $g \neq 1$. So,

$$
g=p-a_{0}
$$

and therefore

$$
T=1^{p-d}\left(p-a_{0}\right)^{p-b_{0}}
$$

for some $d \in\left[a_{0}, p-1\right]$.
From $\sigma(T)=0$ we deduce $\left(p-b_{0}\right)\left(p-a_{0}\right) \equiv d(\bmod p)$, i.e.,

$$
\begin{equation*}
a_{0} b_{0} \equiv d \quad(\bmod p) \tag{3.2}
\end{equation*}
$$

Moreover, $a_{0} \leq d<a_{0} b_{0}$ since $a_{0} b_{0} \geq p+1$. Let $d=q a_{0}+r$ where q, r are integers such that $0 \leq r \leq a_{0}-1$. Then

$$
1 \leq q<b_{0}
$$

since $a_{0} \leq d<a_{0} b_{0}$. It follows from (3.2) that

$$
\begin{equation*}
a_{0}\left(b_{0}-q\right) \equiv r \quad(\bmod p) . \tag{3.3}
\end{equation*}
$$

If $b_{0}=2$, then $q=1$. But (3.3) yields $a_{0} \equiv r(\bmod p)$, which is impossible since $0 \leq r \leq a_{0}-1<p$. Hence $b_{0} \geq 3$. If $r=0$, then (3.3) implies $p \mid a_{0}\left(b_{0}-q\right)$, which is a contradiction to $0<a_{0}, b_{0}-q \leq p-1$. Hence $r \geq 1$.

Furthermore, if $q=b_{0}-1$, by (3.3), we get $a_{0} \equiv r(\bmod p)$, a contradiction since $r<a_{0} \leq p-1$. So $1 \leq q \leq b_{0}-2$. This implies $2 \leq b_{0}-q \leq p-1$. Now, using (3.3) again, we deduce $p \mid a_{0}\left(b_{0}-q\right)-r$. It follows that $p \leq a_{0}\left(b_{0}-q\right)-r \leq a_{0}\left(b_{0}-q\right)-1$. That is, $a_{0}\left(b_{0}-q\right) \geq p+1$. But $a_{0}+\left(b_{0}-q\right)<a_{0}+b_{0}$ since $q \geq 1$, which contradicts the minimality of $a_{0}+b_{0}$. This proves $\mathrm{N}\left(C_{p}\right) \geq 2 p-A_{p+1}+1$, completing the proof.

$4 \operatorname{Vol}(G)$ on finite abelian groups

In this section, we investigate $\operatorname{Vol}(G)$ for finite abelian groups and prove Theorems 1.2 and 1.3 .

Lemma $4.1[1,11,12,14]$ Suppose p is a prime and m, n are positive integers. Then $D(G)=$ $D^{*}(G)$ if G is one of the following groups:
(1) $r(G) \leq 2$.
(2) G is a finite abelian p-group.
(3) $G=C_{m p^{n}} \oplus H$ where H is a finite abelian p-group and $p^{n} \geq D^{*}(H)$.

Lemma 4.2 [3, Proposition 3.1] Suppose $\Omega \subset \mathcal{B}(G) \backslash\{\mathbb{1}\}$. Then $d_{\Omega}(G)<\infty$ if and only if, for every $g \in G$, $g^{k \operatorname{ord}(g)} \in \Omega$ for some positive integer $k=k(g)$.

Lemma 4.3 If G is a finite abelian group, then $1+\sum_{g \in G}(\operatorname{ord}(g)-1) \in \operatorname{Vol}(G)$.
Proof Let

$$
\Omega=\left\{g^{\operatorname{ord}(g)} \mid g \in G\right\} .
$$

We want to show

$$
\mathrm{d}_{\Omega}(G)=1+\sum_{g \in G}(\operatorname{ord}(g)-1) .
$$

Let

$$
T=\prod_{g \in G} g^{\operatorname{ord}(g)-1}
$$

It is obvious that T is Ω-free. Therefore,

$$
\mathrm{d}_{\Omega}(G) \geq|T|+1=1+\sum_{g \in G}(\operatorname{ord}(g)-1) .
$$

It remains to show

$$
\mathrm{d}_{\Omega}(G) \leq 1+\sum_{g \in G}(\operatorname{ord}(g)-1) .
$$

Let S be any sequence over G of length $1+\sum_{g \in G}(\operatorname{ord}(g)-1)$. We need to show that S has a zero-sum subsequence in Ω. Assume to the contrary that S is Ω-free. Then $g^{\operatorname{ord}(g)} \nmid S$ for every $g \in G$. Hence, $\mathrm{v}_{g}(S) \leq \operatorname{ord}(g)-1$ for every $g \in G$. It follows that

$$
|S|=\sum_{g \in G} \mathrm{v}_{g}(S) \leq \sum_{g \in G}(\operatorname{ord}(g)-1)<|S|,
$$

which is a contradiction. This proves $\mathrm{d}_{\Omega}(G)=1+\sum_{g \in G}(\operatorname{ord}(g)-1)$. Therefore, $1+$ $\sum_{g \in G}(\operatorname{ord}(g)-1) \in \operatorname{Vol}(G)$ follows from $\Omega \subset \mathcal{B}_{w r}(G)$.

Proof of Theorem 1.2. For $|G|=1$, it is trivial. So we may assume

$$
|G| \geq 2 .
$$

(1) We need to show that for every $l \in\left[1+\operatorname{ol}(G)(\exp (G)-1), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right]$, there exists a weak-regular Ω such that

$$
\mathrm{d}_{\Omega}(G)=l .
$$

We proceed by induction on l. By Lemma 4.3, $1+\sum_{g \in G}(\operatorname{ord}(g)-1) \in \operatorname{Vol}(G)$. Now suppose $l \in \operatorname{Vol}(G)$, where $l \in\left[2+\operatorname{ol}(G)(\exp (G)-1), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right]$. We want to prove

$$
l-1 \in \operatorname{Vol}(G) .
$$

By the induction hypothesis, there exists an $\Omega \subset \mathcal{B}_{w r}(G)$ such that $\mathrm{d}_{\Omega}(G)=l$. By Lemma 4.2, $\left\{g^{\operatorname{ord}(g)} \mid g \in G\right\} \subset \Omega$. Choose a sequence S over G of length $|S|=l-1$ such that S is Ω-free. Then

$$
\mathrm{v}_{g}(S) \leq \operatorname{ord}(g)-1
$$

for every $g \in G$. Therefore, S is weak-regular. Since $|S|=l-1 \geq 1+\mathrm{ol}(G)(\exp (G)-1)$, by Theorem 1.1 (1), there exists a zero-sum subsequence W of S such that $\mathrm{v}_{g}(W)=\mathrm{v}_{g}(S) \geq 1$ for some $g \in G$. Let

$$
\Omega_{1}=\Omega \cup\{W\} \subset \mathcal{B}_{w r}(G) .
$$

It is clear that $g^{-1} S$ is Ω_{1}-free. Hence,

$$
l-1=\left|g^{-1} S\right|+1 \leq \mathrm{d}_{\Omega_{1}}(G) \leq \mathrm{d}_{\Omega}(G)=l .
$$

So $\mathrm{d}_{\Omega_{1}}(G)=l-1$ or l, and $\Omega \subsetneq \Omega_{1} \subset \mathcal{B}_{w r}(G)$. If $\mathrm{d}_{\Omega_{1}}(G)=l-1$, then $l-1 \in \operatorname{Vol}(G)$ and we are done. If $\mathrm{d}_{\Omega_{1}}(G)=l$, repeat the above steps, then we can find $\Omega_{2} \subset \mathcal{B}_{w r}(G)$ such that $\mathrm{d}_{\Omega_{2}}(G)=l-1$ or l, and $\Omega \subsetneq \Omega_{1} \subsetneq \Omega_{2} \subset \mathcal{B}_{w r}(G)$. Note that $\mathcal{B}_{w r}(G)$ is finite, we finally get an integer $m<\left|\mathcal{B}_{w r}(G)\right|$, and m subsets $\Omega_{1}, \Omega_{2}, \ldots, \Omega_{m}$ of $\mathcal{B}_{w r}(G)$ such that $\Omega \subsetneq \Omega_{1} \subsetneq$ $\Omega_{2} \subsetneq \cdots \subsetneq \Omega_{m} \subset \mathcal{B}_{w r}(G), \mathrm{d}_{\Omega_{i}}(G)=l$ for every $i \in[1, m-1]$ and $\mathrm{d}_{\Omega_{m}}(G)=l-1$. This proves $l-1 \in \operatorname{Vol}(G)$. Therefore, $\left[1+\mathrm{ol}(G)(\exp (G)-1), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right] \subset \operatorname{Vol}(G)$.
(2) By the definition of $\operatorname{Vol}(G)$ we know

$$
\operatorname{Vol}(G) \subset\left[\mathrm{D}(G), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right]
$$

So we need to show

$$
\left[\mathrm{D}(G), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right] \subset \operatorname{Vol}(G)
$$

By Lemma 4.3, $1+\sum_{g \in G}(\operatorname{ord}(g)-1) \in \operatorname{Vol}(G)$. So it suffices to prove

$$
\begin{equation*}
\left[\mathrm{D}(G), \sum_{g \in G}(\operatorname{ord}(g)-1)\right] \subset \operatorname{Vol}(G) \tag{4.1}
\end{equation*}
$$

Let

$$
G=C_{n_{1}} \oplus C_{n_{2}} \oplus \cdots \oplus C_{n_{r}}
$$

with $1<n_{1}\left|n_{2}\right| \cdots \mid n_{r}$.
Let G_{2} be the maximal elementary 2-subgroup of G. Then $G_{2}=\{0\}$ if $|G|$ is odd. When $|G|$ is even, let $r^{\prime}=\left|\left\{i \in[1, r]|2| n_{i}\right\}\right|$. Then, $G_{2}=C_{2}^{r^{\prime}}$. So we always have $2 \mid\left(|G|-\left|G_{2}\right|\right)$. Let

$$
m=\frac{|G|-\left|G_{2}\right|}{2} .
$$

If $G=C_{2}^{r}$ then $\operatorname{ol}(G)=\mathrm{D}(G)-1=r$ and $\exp (G)=2$. It follows from (1) that $\left[\mathrm{D}(G), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right]=\operatorname{Vol}(G)$. From now on we assume

$$
G \neq C_{2}^{r} .
$$

Next we want to show that there are two intervals I_{1} and I_{2} such that

$$
\begin{equation*}
I_{1} \cup I_{2}=\left[\mathrm{D}(G), \sum_{g \in G}(\operatorname{ord}(g)-1)\right] \text { and } I_{j} \subset \operatorname{Vol}(G) \text { for } j=1,2, \tag{4.2}
\end{equation*}
$$

and then (4.1) follows.
Now we want to construct I_{1}. Let $j \in[1, m]$, and let $\left\{g_{1}, \ldots, g_{j}\right\} \subset G \backslash G_{2}$ with

$$
\left\{g_{1}, \ldots, g_{j}\right\} \cap\left\{-g_{1}, \ldots,-g_{j}\right\}=\emptyset .
$$

Let $k_{i} \in\left[1, \operatorname{ord}\left(g_{i}\right)-1\right]$ for each $i \in[1, j]$, and let

$$
\Omega_{j, k_{1}, \ldots, k_{j}}=\left\{g^{\operatorname{ord}(g)} \mid g \in G\right\} \cup\left\{g_{1}^{k_{1}}\left(-g_{1}\right)^{k_{1}}, \ldots, g_{j}^{k_{j}}\left(-g_{j}\right)^{k_{j}}\right\} .
$$

Put

$$
\Omega=\Omega_{j, k_{1}, \ldots, k_{j}} .
$$

We now show

$$
\mathrm{d}_{\Omega}(G)=\sum_{g \in G}(\operatorname{ord}(g)-1)-\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-k_{i}\right)+1 .
$$

Let

$$
T_{j}=g_{1}^{k_{1}-1} \ldots g_{j}^{k_{j}-1} \prod_{g \in G \backslash\left\{0, g_{1}, \ldots, g_{j}\right\}} g^{\operatorname{ord}(g)-1}
$$

It is easy to see that T_{j} is an Ω-free sequence of length $\left|T_{j}\right|=\sum_{g \in G}(\operatorname{ord}(g)-1)-$ $\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-k_{i}\right)$. Therefore,

$$
\mathrm{d}_{\Omega}(G) \geq\left|T_{j}\right|+1=\sum_{g \in G}(\operatorname{ord}(g)-1)-\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-k_{i}\right)+1 .
$$

So it remains to show

$$
\mathrm{d}_{\Omega}(G) \leq \sum_{g \in G}(\operatorname{ord}(g)-1)-\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-k_{i}\right)+1 .
$$

Let S_{j} be any sequence over G with

$$
\left|S_{j}\right|=\sum_{g \in G}(\operatorname{ord}(g)-1)-\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-k_{i}\right)+1 .
$$

We only need to show that there is a zero-sum subsequence of S_{j} in Ω. If there exists $g \in G$ such that $\mathrm{v}_{g}\left(S_{j}\right) \geq \operatorname{ord}(g)$, then $g^{\operatorname{ord}(g)} \in \Omega$, and we are done. Hence, we next assume

$$
\mathrm{v}_{g}\left(S_{j}\right) \leq \operatorname{ord}(g)-1
$$

for every $g \in G$.

If there exists $i \in[1, j]$ such that $\mathrm{v}_{g_{i}}\left(S_{j}\right) \geq k_{i}$ and $\mathrm{v}_{-g_{i}}\left(S_{j}\right) \geq k_{i}$, then $g_{i}^{k_{i}}\left(-g_{i}\right)^{k_{i}} \in \Omega$. So we assume that, for every $i \in[1, j]$, there exists $g_{i}^{\prime} \in\left\{g_{i},-g_{i}\right\}$ such that $\mathrm{v}_{g_{i}^{\prime}}\left(S_{j}\right) \leq k_{i}-1$. Since

$$
\left|S_{j}\right|=\sum_{g \in G \backslash\{0\}} \mathrm{v}_{g}\left(S_{j}\right) \leq \sum_{g \in G}(\operatorname{ord}(g)-1)-\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-k_{i}\right)<\left|S_{j}\right|,
$$

we get a contradiction. Therefore

$$
\mathrm{d}_{\Omega}(G)=\sum_{g \in G}(\operatorname{ord}(g)-1)-\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-k_{i}\right)+1 \in \operatorname{Vol}(G)
$$

follows from the fact that Ω is weak-regular.
Let

$$
f\left(j, k_{1}, \ldots, k_{j}\right)=\sum_{g \in G}(\operatorname{ord}(g)-1)-\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-k_{i}\right)+1 .
$$

When j runs over $[1, m]$ and k_{i} runs over $\left[1, \operatorname{ord}\left(g_{i}\right)-1\right]$ for every $i \in[1, j]$, $f\left(j, k_{1}, \ldots, k_{j}\right)$ takes its maximal value $\sum_{g \in G}(\operatorname{ord}(g)-1)$ when $j=1$ and $k_{1}=$ $\operatorname{ord}\left(g_{1}\right)-1$, and $f\left(j, k_{1}, \ldots, k_{j}\right)$ takes its minimal value

$$
\frac{\sum_{g \in G}(\operatorname{ord}(g)-1)-2^{r^{\prime}}+1}{2}+2^{r^{\prime}}
$$

when $j=m$ and $k_{i}=1$ for every $i \in[1, m]$. It is easy to see that $f\left(j, k_{1}, \ldots, k_{j}\right)$ can take any integer in between the minimal value and the maximal value. So

$$
\begin{equation*}
I_{1}=\left[\frac{\sum_{g \in G}(\operatorname{ord}(g)-1)-2^{r^{\prime}}+1}{2}+2^{r^{\prime}}, \sum_{g \in G}(\operatorname{ord}(g)-1)\right] \subset \operatorname{Vol}(G) . \tag{4.3}
\end{equation*}
$$

Next we construct I_{2}. Let $r_{0} \in[0, r-1]$ be the smallest integer such that

$$
n_{r_{0}+1}>2 .
$$

Let $\left(e_{1}, \ldots, e_{r}\right)$ be a basis of G with $\operatorname{ord}\left(e_{i}\right)=n_{i}$ and $g_{i}=e_{i}$ for every $i \in[1, r]$. Let $j \in\left[r, m+r_{0}\right]$ and $\left\{g_{r+1}, \ldots, g_{j}\right\} \subset G \backslash G_{2}$ with $\left\{g_{r_{0}+1}, \ldots, g_{j}\right\} \cap\left\{-g_{r_{0}+1}, \ldots,-g_{j}\right\}=\emptyset$. Let $k_{i} \in\left[1, \operatorname{ord}\left(g_{i}\right)-1\right]$ for every $i \in\left[r_{0}+1, j\right]$,

$$
\begin{aligned}
A_{j, k_{1}, \ldots, k_{j}}= & \left\{S \in \mathcal{A}(G) \mid \operatorname{supp}(S) \not \subset\left\{g_{1}, \ldots, g_{j},\left(-g_{r_{0}+1}\right), \ldots,\left(-g_{j}\right)\right\}\right\} \\
& \cup\left\{g_{r_{0}+1}^{k_{r_{0}+1}}\left(-g_{r_{0}+1}\right)^{k_{r_{0}+1}}, \ldots, g_{j}^{k_{j}}\left(-g_{j}\right)^{k_{j}}\right\},
\end{aligned}
$$

and

$$
\Omega^{\prime}=\left\{g^{\operatorname{ord}(g)} \mid g \in G\right\} \cup A_{j, k_{1}, \ldots, k_{j}} .
$$

We now show

$$
\mathrm{d}_{\Omega^{\prime}}(G)=\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-1\right)+\sum_{i=r_{0}+1}^{j}\left(k_{i}-1\right)+1 .
$$

Let

$$
T_{j}^{\prime}=g_{1}^{\operatorname{ord}\left(g_{1}\right)-1} \cdots g_{j}^{\operatorname{ord}\left(g_{j}\right)-1}\left(-g_{r_{0}+1}\right)^{k_{r_{0}+1}-1} \cdots\left(-g_{j}\right)^{k_{j}-1} .
$$

It is easy to see that T_{j}^{\prime} is an Ω^{\prime}-free sequence of length $\left|T_{j}^{\prime}\right|=\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-1\right)+$ $\sum_{i=r_{0}+1}^{j}\left(k_{i}-1\right)$. Therefore,

$$
\mathrm{d}_{\Omega^{\prime}}(G) \geq\left|T_{j}^{\prime}\right|+1=\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-1\right)+\sum_{i=r_{0}+1}^{j}\left(k_{i}-1\right)+1 .
$$

So it remains to show

$$
\mathrm{d}_{\Omega^{\prime}}(G) \leq \sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-1\right)+\sum_{i=r_{0}+1}^{j}\left(k_{i}-1\right)+1 .
$$

Let S_{j}^{\prime} be any sequence over G with $\left|S_{j}^{\prime}\right|=\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-1\right)+\sum_{i=r_{0}+1}^{j}\left(k_{i}-1\right)+1$. We only need to show that there is a zero-sum subsequence of S_{j}^{\prime} in Ω^{\prime}. If there exists $g \in G$ such that $\mathrm{v}_{g}\left(S_{j}^{\prime}\right) \geq \operatorname{ord}(g)$, then $g^{\operatorname{ord}(g)} \in \Omega^{\prime}$, and we are done. Hence, we next assume

$$
\mathrm{v}_{g}\left(S_{j}^{\prime}\right) \leq \operatorname{ord}(g)-1
$$

for every $g \in G$.
If there exists $i \in\left[r_{0}+1, j\right]$ such that $\mathrm{v}_{g_{i}}\left(S_{j}^{\prime}\right) \geq k_{i}$ and $\mathrm{v}_{-g_{i}}\left(S_{j}^{\prime}\right) \geq k_{i}$, then $g_{i}^{k_{i}}\left(-g_{i}\right)^{k_{i}} \in$ Ω^{\prime}. So we assume that, for every $i \in\left[r_{0}+1, j\right]$, there exists $g_{i}^{\prime \prime} \in\left\{g_{i},-g_{i}\right\}$ such that $\mathrm{v}_{g_{i}^{\prime \prime}}\left(S_{j}^{\prime}\right) \leq k_{i}-1$. By renumbering, we may assume

$$
\mathrm{v}_{-g_{i}}\left(S_{j}^{\prime}\right) \leq k_{i}-1
$$

for every $i \in\left[r_{0}+1, j\right]$. Let

$$
T=g_{r+1}^{\mathrm{v}_{g_{r+1}}\left(S_{j}^{\prime}\right)} \cdots g_{j}^{\mathrm{v}_{g_{j}}\left(S_{j}^{\prime}\right)}\left(-g_{r_{0}+1}\right)^{\mathrm{v}-g_{r_{0}+1}\left(S_{j}^{\prime}\right)} \cdots\left(-g_{j}\right)^{\mathrm{v}^{2}-g_{j}\left(S_{j}^{\prime}\right)} .
$$

Then

$$
S_{j}^{\prime} T^{-1}=g_{1}^{\mathrm{v}_{g_{1}}\left(S_{j}^{\prime}\right)} \cdots g_{r}^{\mathrm{v}_{g r}\left(S_{j}^{\prime}\right)} T_{1}
$$

with $\operatorname{supp}\left(T_{1}\right) \cap\left\{g_{1}, \ldots, g_{j},-g_{r_{0}+1}, \ldots,-g_{j}\right\}=\emptyset$.
Since

$$
\left|S_{j}^{\prime} T^{-1}\right| \geq \mathrm{D}^{*}(G)=\mathrm{D}(G),
$$

$S_{j}^{\prime} T^{-1}$ contains a minimal zero-sum subsequence W (say). Because $g_{1}=e_{1}, \ldots, g_{r}=e_{r}$ is a basis of G, we infer that $g_{1}^{\mathrm{v}_{g_{1}}\left(S_{j}^{\prime}\right)} \cdots g_{r}^{\mathrm{v}_{g_{r}}\left(S_{j}^{\prime}\right)}$ is zero-sum free. This implies $\operatorname{supp}(W) \cap$ $\operatorname{supp}\left(T_{1}\right) \neq \emptyset$. Now $W \in \Omega^{\prime}$ follows from $\operatorname{supp}\left(T_{1}\right) \cap\left\{g_{1}, \ldots, g_{j},-g_{r_{0}+1}, \ldots,-g_{j}\right\}=\emptyset$ and the definition of Ω^{\prime}. Therefore

$$
\mathrm{d}_{\Omega^{\prime}}(G)=\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-1\right)+\sum_{i=r_{0}+1}^{j}\left(k_{i}-1\right)+1 \in \operatorname{Vol}(G)
$$

follows from the fact that Ω^{\prime} is weak-regular.
Let

$$
g\left(j, k_{1}, \ldots, k_{j}\right)=\sum_{i=1}^{j}\left(\operatorname{ord}\left(g_{i}\right)-1\right)+\sum_{i=r_{0}+1}^{j}\left(k_{i}-1\right)+1 .
$$

Note that $g_{1}=e_{1}, \ldots, g_{r}=e_{r}$. When j runs over $\left[r, m+r_{0}\right]$ and k_{i} runs over $\left[1, \operatorname{ord}\left(g_{i}\right)-\right.$ 1] for every $i \in\left[r_{0}+1, j\right], g\left(j, k_{1}, \ldots, k_{j}\right)$ takes its maximal value $\sum_{g \in G}(\operatorname{ord}(g)-1)-$ $2^{r^{\prime}}+2-m+r_{0}$ when $j=m+r_{0}$ and $k_{i}=\operatorname{ord}\left(g_{i}\right)-1$ for every $i \in\left[r_{0}+1, m+r_{0}\right]$, and $g\left(j, k_{1}, \ldots, k_{j}\right)$ takes its minimal value $1+\sum_{i=1}^{r}\left(n_{i}-1\right)$ when $j=r$ and $k_{i}=1$ for every $i \in\left[r_{0}+1, r\right]$. It is easy to see that $g\left(j, k_{1}, \ldots, k_{j}\right)$ can take any integer in between the minimal value and the maximal value. So

$$
\begin{equation*}
I_{2}=\left[1+\sum_{i=1}^{r}\left(n_{i}-1\right), \sum_{g \in G}(\operatorname{ord}(g)-1)-2^{r^{\prime}}+2-m+r_{0}\right] \subset \operatorname{Vol}(G) \tag{4.4}
\end{equation*}
$$

Let

$$
A=\sum_{g \in G}(\operatorname{ord}(g)-1) .
$$

Now it remains to show

$$
I_{1} \cup I_{2}=\left[\mathrm{D}(G), \sum_{g \in G}(\operatorname{ord}(g)-1)\right] .
$$

This is equivalent to the inequality

$$
A-2^{r^{\prime}}+2-m+r_{0} \geq \frac{A-2^{r^{\prime}}+1}{2}+2^{r^{\prime}}
$$

Next we show the following stronger inequality:

$$
\begin{equation*}
A-2^{r^{\prime}}+2-m \geq \frac{A-2^{r^{\prime}}+1}{2}+2^{r^{\prime}} \tag{4.5}
\end{equation*}
$$

Note that $2 m=|G|-\left|G_{2}\right|$ and $\left|G_{2}\right|=2^{r^{\prime}}$. We obtain that the inequality of (4.5) is equivalent to $A-|G| \geq 2^{r^{\prime}+1}-3$. Since $|G|=\sum_{g \in G} 1, A-|G| \geq 2^{r^{\prime}+1}-3$ is equivalent to

$$
\sum_{g \in G}(\operatorname{ord}(g)-2) \geq 2^{r^{\prime}+1}-3
$$

and this is equivalent to

$$
\sum_{g \in G \backslash G_{2}}(\operatorname{ord}(g)-2) \geq 2^{r^{\prime}+1}-2 .
$$

So we only need to prove the above inequality.
If $r^{\prime}=0$, then it is obvious. Next we suppose that $r^{\prime} \geq 1$. Take $h \in C_{n_{r}}$ with ord $(h)=n_{r}$. Note that $n_{r} \geq 4$ since $G \neq C_{2}^{r}$ and $r^{\prime} \geq 1$. It follows that

$$
\begin{aligned}
\sum_{g \in G \backslash G_{2}}(\operatorname{ord}(g)-2) & \geq \sum_{g \in C_{n_{1}} \oplus \cdots \oplus C_{n_{r-1}} \oplus\{h,-h\}}(\operatorname{ord}(g)-2) \\
& =\sum_{g \in C_{n_{1}} \oplus \cdots \oplus C_{n_{r-1}} \oplus\{h,-h\}}\left(n_{r}-2\right) \\
& =2 n_{1} \ldots n_{r-1}\left(n_{r}-2\right) \geq 2^{r+1} \\
& \geq 2^{r^{\prime}+1}>2^{r^{\prime}+1}-2 .
\end{aligned}
$$

This proves the inequality of (4.5), completing the proof.

Proof of Theorem 1.3. Now the result follows from Lemma 4.1 and Theorem 1.2 (2).

5 Proof of Theorem 1.4

In this section we will derive some properties on $\mathrm{Q}_{t}(G)$ and prove Theorem 1.4. We need the following lemmas.

Lemma 5.1 If G is a finite abelian group with $r(G) \leq 2$, then $D_{2}(G)=D(G)+\exp (G)$.
Proof The result follows from [5, Lemma 3.2] and [7, Theorem 5.8.3].
Lemma 5.2 Let G be a finite abelian group. For any positive integer $t \geq D_{2}(G)$, we have $Q_{t}(G)=\emptyset$.

Proof Let $G^{*}=G \backslash\{0\}$, and $t \geq \mathrm{D}_{2}(G)$ be an integer. Let

$$
\Omega=\left\{0^{t-D(G)+1}\right\} \cup \mathcal{A}\left(G^{*}\right)
$$

and

$$
\Omega^{\prime}=\left\{0^{t-D_{2}(G)+1}\right\} \cup\left(\mathcal{B}\left(G^{*}\right) \backslash \mathcal{A}\left(G^{*}\right)\right) .
$$

It is easy to see that $\mathrm{d}_{\Omega}(G)=t=\mathrm{d}_{\Omega^{\prime}}(G)$. On the other hand, note that a minimal zero-sum sequence over G of length $\mathrm{D}(G)$ has no two disjoint nonempty zero-sum subsequences, so we deduce that $\mathrm{D}_{2}(G)>\mathrm{D}(G)$. Therefore,

$$
\Omega \cap \Omega^{\prime}=\emptyset
$$

Hence, $\mathrm{Q}_{t}(G)=\cap_{\Omega \subset \mathcal{B}(G), \mathrm{d}_{\Omega}(G)=t} \Omega=\emptyset$.
Lemma 5.3 Let $\Omega \subset \mathcal{B}(G) \backslash\{\mathbb{1}\}$ and $S_{1}, S_{2} \in \Omega$ with $S_{1} \neq S_{2}$. If $S_{1} \mid S_{2}$, then $d_{\Omega}(G)=$ $d_{\Omega \backslash\left\{S_{2}\right\}}(G)$.

Proof It is clear that $\mathrm{d}_{\Omega}(G) \leq \mathrm{d}_{\Omega \backslash\left\{S_{2}\right\}}(G)$. We next show $\mathrm{d}_{\Omega \backslash\left\{S_{2}\right\}}(G) \leq \mathrm{d}_{\Omega}(G)$. Let U be a sequence over G with $|U|=\mathrm{d}_{\Omega}(G)$. We only need to show that there is a nonempty zero-sum subsequence in $\Omega \backslash\left\{S_{2}\right\}$. Since $|U|=\mathrm{d}_{\Omega}(G)$, there exists a nonempty zero-sum subsequence S in Ω. If $S \neq S_{2}$, then $S \in \Omega \backslash\left\{S_{2}\right\}$, and we are done. Otherwise $S=S_{2}$. Then $S_{2} \mid U$. It follows that $S_{1}\left|S_{2}\right| U$. Therefore, $S_{1} \in \Omega$. Thus, $S_{1} \in \Omega \backslash\left\{S_{2}\right\}$ since $S_{1} \neq S_{2}$, completing the proof.

Lemma 5.4 Let G be a finite abelian group with $|G| \geq 4$. If S is an essential zero-sum sequence over G with respect to some integer $t \geq D(G)+1$, then $S \neq 0$ is a minimal zero-sum sequence.

Proof Let $G^{*}=G \backslash\{0\}$ and

$$
\Omega=\mathcal{A}\left(G^{*}\right) \cup\left\{0^{t-D(G)+1}\right\} .
$$

It is easy to see that

$$
\mathrm{d}_{\Omega}(G)=t .
$$

We next distinguish two cases.
Case 1. $G=C_{n}$, where $n \geq 4$. Take an element $g \in G$ with $\operatorname{ord}(g)=n$. Let

$$
\Omega^{\prime}=\left(\mathcal{A}\left(G^{*}\right) \backslash\left\{g^{n-2}(2 g)\right\}\right) \cup\left\{0^{t-D(G)}\right\} .
$$

We want to show

$$
\mathrm{d}_{\Omega^{\prime}}(G)=t .
$$

Let

$$
U=0^{t-\mathrm{D}(G)-1} g^{n-1}(2 g) .
$$

It is clear that U is Ω^{\prime}-free. Therefore, $\mathrm{d}_{\Omega^{\prime}}(G) \geq|U|+1=t$. So it suffices to show $\mathrm{d}_{\Omega^{\prime}}(G) \leq t$. Let

$$
U_{1}=0^{t-\left|T_{1}\right|} T_{1}
$$

be a sequence over G of length t, where $0 \notin \operatorname{supp}\left(T_{1}\right)$ and $t-\left|T_{1}\right| \geq 0$. We only need to show that there exists a zero-sum subsequence of U_{1} in Ω^{\prime}. If $t-\left|T_{1}\right| \geq t-\mathrm{D}(G)$, then $0^{t-\mathrm{D}(G)}$ is a zero-sum subsequence of U_{1} in Ω^{\prime}, and we are done. Hence, we assume that $t-\left|T_{1}\right| \leq t-\mathrm{D}(G)-1$. Then $\left|T_{1}\right| \geq \mathrm{D}(G)+1=n+1$, and T_{1} has a minimal zero-sum subsequence. If $g^{n-2}(2 g) \nmid T_{1}$, we are done. So we may assume that

$$
T_{1}=g^{n-2}(2 g) T_{2},
$$

where $\left|T_{2}\right| \geq 2$.
If $\mathrm{v}_{g}\left(T_{2}\right) \geq 2$, then g^{n} is a minimal zero-sum subsequence of T_{1} in Ω^{\prime}. If $\mathrm{v}_{2 g}\left(T_{2}\right) \geq 1$, then $g^{n-4}(2 g)^{2}$ is a minimal zero-sum subsequence of T_{1} in Ω^{\prime}. So we may assume that $\mathrm{v}_{g}\left(T_{2}\right) \leq 1$ and $\mathrm{v}_{2 g}\left(T_{2}\right)=0$. Since $\left|T_{2}\right| \geq 2$, we infer that $\mathrm{v}_{m g}\left(T_{2}\right) \geq 1$ for some $m \in[3, n-1]$, then ($m g$) g^{n-m} is a minimal zero-sum subsequence of T_{1} in Ω^{\prime}. This proves that $\mathrm{d}_{\Omega^{\prime}}(G)=t$. Since S is essential with respect to t, we have $S \in \Omega \cap \Omega^{\prime} \subset \mathcal{A}\left(G^{*}\right)$, completing the proof in this case.

Case 2. G is not cyclic. Then $\mathrm{D}(G) \geq \mathrm{D}^{*}(G)>\exp (G) \geq \operatorname{ord}(g)$ for every $g \in G$. Let T be a minimal zero-sum sequence over G of length $|T|=\mathrm{D}(G)$, and let

$$
\Omega^{\prime \prime}=\left(\mathcal{A}\left(G^{*}\right) \backslash\{T\}\right) \cup\left\{0^{t-D(G)}\right\},
$$

We now show $\mathrm{d}_{\Omega^{\prime \prime}}(G)=t$. Let

$$
U=0^{t-D(G)-1} T .
$$

Then U is $\Omega^{\prime \prime}$-free. Therefore, $\mathrm{d}_{\Omega^{\prime \prime}}(G) \geq|U|+1=t$. So it remains to show $\mathrm{d}_{\Omega^{\prime \prime}}(G) \leq t$. Let

$$
U_{1}=0^{t-\left|T_{1}\right|} T_{1}
$$

be a sequence over G of length t, where $0 \notin \operatorname{supp}\left(T_{1}\right)$ and $t-\left|T_{1}\right| \geq 0$. We need to show that there exists a zero-sum subsequence of U_{1} in $\Omega^{\prime \prime}$. If $t-\left|T_{1}\right| \geq t-\mathrm{D}(G)$, then we are done. Hence, we assume that $t-\left|T_{1}\right| \leq t-\mathrm{D}(G)-1$. Then $\left|T_{1}\right| \geq \mathrm{D}(G)+1$. Assume to the contrary that T_{1} is an $\Omega^{\prime \prime}$-free sequence. Let

$$
T_{2}=g_{1} g_{2} \cdots g_{\mathrm{D}(G)+1}
$$

be a subsequence of T_{1} of length $\mathrm{D}(G)+1$. Take an arbitrary subsequence T_{3} of T_{2} with length $\left|T_{3}\right|=\left|T_{2}\right|-1=\mathrm{D}(G)$. Then, T_{3} has a minimal zero-sum subsequence T_{0}. If $\left|T_{0}\right|<\mathrm{D}(G)$,
then $T_{0} \in \Omega^{\prime \prime}$, a contradiction. Therefore, $\left|T_{0}\right|=\mathrm{D}(G)$ and $T_{3}=T_{0}$ follows. This proves that $\sigma\left(T_{3}\right)=0$ for every subsequence T_{3} of T_{2} with length $\left|T_{3}\right|=\left|T_{2}\right|-1$. It follows that

$$
g_{1}=g_{2}=\cdots=g_{\mathrm{D}(G)+1}=g_{0}
$$

Now $g_{0}^{\operatorname{ord}\left(g_{0}\right)}$ is a minimal zero-sum subsequence of U_{1} in $\Omega^{\prime \prime}$, a contradiction. This proves that $\mathrm{d}_{\Omega^{\prime \prime}}(G)=t$. Since S is essential with respect to t, we have $S \in \Omega \cap \Omega^{\prime \prime} \subset \mathcal{A}\left(G^{*}\right)$, completing the proof.

Remark 5.5 It is easy to check that $\mathrm{Q}_{2}\left(C_{2}\right)=\left\{1^{2}, 0\right\}, \mathrm{Q}_{3}\left(C_{2}\right)=\left\{1^{2}, 0^{2}\right\}$. Moreover, by Lemma 4.1, Lemmas 5.1 and 5.2, we obtain $\mathrm{Q}_{t}\left(C_{2}\right)=\emptyset$ when $t \geq 4$. Thus,

$$
\mathrm{Q}_{t+1}\left(C_{2}\right) \subset \mathrm{Q}_{t}\left(C_{2}\right)
$$

for any positive integer $t \geq \mathrm{D}\left(C_{2}\right)+1=3$. Note that $\mathrm{Q}_{3}\left(C_{2}\right) \not \subset \mathrm{Q}_{2}\left(C_{2}\right)$. We will show that this is the only exception that does not satisfy $\mathrm{Q}_{t+1}(G) \subset \mathrm{Q}_{t}(G)$.

Lemma 5.6 Let G be a finite abelian group with $|G| \geq 3$. For any positive integer $t \geq D(G)$, we have $Q_{t+1}(G) \subset Q_{t}(G)$.

Proof If $|G|=3$, then $G=C_{3}$. It is easy to see that

$$
\begin{aligned}
& \mathrm{Q}_{3}(G)=\left\{0,1^{3}, 2^{3}, 12\right\}, \\
& \mathrm{Q}_{4}(G)=\left\{1^{3}, 2^{3}\right\}, \text { and } \\
& \mathrm{Q}_{5}(G)=\left\{1^{3}, 2^{3}\right\},
\end{aligned}
$$

and, by Lemmas 4.1, 5.1 and 5.2, we obtain

$$
\mathrm{Q}_{t}(G)=\emptyset
$$

when $t \geq 6$. Therefore, $\mathrm{Q}_{t+1}(G) \subset \mathrm{Q}_{t}(G)$ follows from $|G|=3$. From now on we assume that

$$
|G| \geq 4 .
$$

Let $S \in \mathrm{Q}_{t+1}(G)$. For every $\Omega \subset \mathcal{B}(G)$ with $\mathrm{d}_{\Omega}(G)=t \geq \mathrm{D}(G)$, define $k=k(\Omega)$ as the smallest positive integer such that $0^{k} \in \Omega$. For any $0 \leq i \leq t-k+1$, define

$$
\Omega^{(i)}=\left(\Omega \backslash\left\{0^{k}, 0^{k+1}, \ldots, 0^{i+k-1}\right\}\right) \cup\left\{0^{i+k}\right\},
$$

where, $\Omega^{(0)}=\Omega$. We next show

$$
\mathrm{d}_{\Omega^{(1)}}(G)=t \text { or } t+1 .
$$

By Lemma 5.3, we have $\mathrm{d}_{\Omega \cup\left\{0^{k+1}\right\}}(G)=\mathrm{d}_{\Omega}(G)=t$. Therefore, $\mathrm{d}_{\Omega^{(1)}}(G) \geq$ $\mathrm{d}_{\Omega \cup\left\{0^{k+1}\right\}}(G)=t$. So it remains to show $\mathrm{d}_{\Omega^{(1)}}(G) \leq t+1$.

Let U be a sequence over G of length $t+1$. We only need to show that there is a nonempty zero-sum subsequence of U in $\Omega^{(1)}$. Since $|U|=t+1>\mathrm{d}_{\Omega}(G)$, there exists a nonempty zero-sum subsequence T in Ω. If $k>t+1$, then $|T| \leq t+1<k$. Hence, $T \neq 0^{k}$ and $T \in \Omega^{(1)}$, we are done. We may assume that $k \leq t+1$. If $T \neq 0^{k}$, then $T \in \Omega^{(1)}$, and we are done. Now we assume that $T=0^{k}$. Let $U=0^{k} U_{1}$. If $0 \in \operatorname{supp}\left(U_{1}\right)$, then $0^{k+1} \in \Omega^{(1)}$, and we are done. Hence we may assume that $0 \notin \operatorname{supp}\left(U_{1}\right)$. Since $\left|0^{k-1} U_{1}\right|=t$, there is a nonempty zero-sum subsequence T_{1} in Ω and $T_{1} \neq 0^{k}$. Therefore, $T_{1} \in \Omega^{(1)}$. This proves that $\mathrm{d}_{\Omega^{(1)}}(G)=t$ or $t+1$.

We argue by induction on i that for each such $i, \mathrm{~d}_{\Omega^{(i)}}(G)$ is either t or $t+1$. Based on the fact that 0^{t} has no nonempty zero-sum subsequence in $\Omega^{(t-k+1)}=\left(\Omega \backslash\left\{0^{k}, 0^{k+1}, \ldots, 0^{t}\right\}\right) \cup$ $\left\{0^{t+1}\right\}$, we have $\mathrm{d}_{\Omega^{(t-k+1)}}(G) \geq t+1$. We conclude that there is an $i \leq t-k$ such that $\mathrm{d}_{\Omega^{(i)}}(G)=t$ and $\mathrm{d}_{\Omega^{(i+1)}}=t+1$. Next we argue that, by Lemma 5.4, $S \neq 0^{k+i+1}$, and therefore $S \in \Omega$. From the arbitrariness of Ω we conclude that $S \in \mathrm{Q}_{t}(G)$.

Lemma 5.7 Let G be a finite abelian group with $|G| \geq 3$. A zero-sum sequence S over G is essential with respect to $t \geq D(G)$ if and only if there exists a sequence W with length $|W|=t$ such that every nonempty zero-sum subsequence of W has the same form with S.

Proof Sufficiency. Let W be a sequence with $|W|=t$ such that every nonempty zerosum subsequence of W has the same form with S. Let Ω be any subset of $\mathcal{B}(G)$ such that $\mathrm{d}_{\Omega}(G)=t$. Then we infer that $S \in \Omega$. Therefore, S is essential with respect to t.

Necessity. Assume to the contrary that every sequence W with length $|W|=t$ has a nonempty zero-sum subsequence S_{W} with $\mathrm{v}_{g}(S) \neq \mathrm{v}_{g}\left(S_{W}\right)$ for some $g \in G$. Let

$$
\Omega=\left\{S_{W}| | W \mid=t\right\} .
$$

Then it is clear that $\mathrm{d}_{\Omega}(G) \leq t$ and $S \notin \Omega$. Let $\mathrm{d}_{\Omega}(G)=t_{0}$. Then $S \notin \mathrm{Q}_{t_{0}}(G)$. By Lemma 5.6, we have $S \notin \mathrm{Q}_{t}(G)$. Therefore, S is not essential with respect to t, a contradiction.

Lemma 5.8 [3, Theorem 4.4] If G is a finite abelian group, then $q(G) \leq D_{2}(G)$.
Proposition 5.9 If G is a finite abelian group and H is a proper subgroup of G, then

$$
q^{\prime}(G) \geq q^{\prime}(H)+D(G / H)-1 .
$$

In particular, $q^{\prime}(G)>q^{\prime}(H)$.
Proof Let S be a sequence over H of length $\mathrm{q}^{\prime}(H)-1$ such that every nonempty zero-sum subsequence has the same form. Moreover, let T be a sequence over $G \backslash H$ avoiding a nonempty zero-sum subsequence modulo H with length $|T|=\mathrm{D}(G / H)-1$. Clearly, each nonempty zero-sum subsequence of $S T$ is in fact a subsequence of S, and therefore has the same form. Hence, $\mathrm{q}^{\prime}(G) \geq|S T|+1=|S|+|T|+1=\mathrm{q}^{\prime}(H)+\mathrm{D}(G / H)-1$.

Obviously, $\mathrm{D}(G / H) \geq 2$ since H is a proper subgroup of G. Therefore, $\mathrm{q}^{\prime}(G)>\mathrm{q}^{\prime}(H)$.

Proof of Theorem 1.4. (1) Let

$$
G=C_{n_{1}} \oplus C_{n_{2}} \oplus \cdots \oplus C_{n_{r}}=\left\langle e_{1}\right\rangle \oplus\left\langle e_{2}\right\rangle \oplus \cdots \oplus\left\langle e_{r}\right\rangle
$$

with $1<n_{1}\left|n_{2}\right| \cdots \mid n_{r}$, and $\operatorname{ord}\left(e_{i}\right)=n_{i}$ for each $i \in[1, r]$ and

$$
S=e_{1}^{n_{1}-1} e_{2}^{n_{2}-1} \cdots e_{r-1}^{n_{r-1}-1} e_{r}^{2 n_{r}-1}
$$

It is clear that every nonempty zero-sum subsequence of S has the same form $e_{r}^{n_{r}}$. Therefore, $\mathrm{q}^{\prime}(G) \geq|S|+1=\mathrm{D}^{*}(G)+\exp (G)$. So it remains to show

$$
\mathrm{q}^{\prime}(G) \leq \mathrm{D}(G)+\exp (G)
$$

Let S be a sequence over G of length $\mathrm{D}(G)+\exp (G)$. We need to show that S has two nonempty zero-sum subsequences of different forms. Since $|S|>\mathrm{D}(G)$, there exists a nonempty zero-sum subsequence T of S. We now distinguish two cases.

Case 1. $|T| \leq \exp (G)$. Then $\left|S T^{-1}\right| \geq \mathrm{D}(G)$. Therefore, there is a nonempty zero-sum subsequence T_{1} of $S T^{-1}$. Hence T and $T T_{1}$ are two nonempty zero-sum subsequences of S with different forms.
Case 2. $|T|>\exp (G)$. If there is an element $g \in G$ such that $\mathrm{v}_{g}(T) \geq \exp (G)$, then $g^{\exp (G)}$ and T are two nonempty zero-sum subsequences of S with different forms. If $\mathrm{v}_{g}(T)<\exp (G)$ for every $g \in G$, then let

$$
T=g_{1}^{k_{1}} g_{2}^{k_{2}} \cdots g_{l}^{k_{l}}
$$

where $\exp (G)>k_{1} \geq \cdots \geq k_{l} \geq 1$. Since $\left|S\left(g_{i}^{k_{i}}\right)^{-1}\right|=|S|-k_{i}>\mathrm{D}(G)$ for any $i \in[1, l]$, there exists a nonempty zero-sum subsequence T_{2} of $S\left(g_{i}^{k_{i}}\right)^{-1}$. If T_{2} and T have different forms, we are done. Otherwise, all nonempty zero-sum subsequences of $S\left(g_{i}^{k_{i}}\right)^{-1}$ have the same form with T, then $\mathrm{v}_{g_{i}}(S) \geq 2 \mathrm{v}_{g_{i}}(T)$ for every $i \in[1, l]$. Therefore, there are two nonempty zero-sum subsequences T, T^{2} of S with different forms.
(2) Consider first $G=C_{2}$, then $\mathrm{q}(G)=4$ by Remark 5.5. One readily checks that $\mathrm{q}^{\prime}\left(C_{2}\right)=4$ also holds, so in the sequel $|G| \geq 3$ may be assumed. Then $\mathrm{q}^{\prime}(G) \geq \mathrm{q}(G)$ by Lemma 5.7, so one only has to show the reverse inequality

$$
\mathrm{q}(G) \geq \mathrm{q}^{\prime}(G)
$$

Note that no minimal zero-sum sequence over G of length $\mathrm{D}(G)$ has two nonempty zerosum subsequences with different forms. Thus, the inequality $\mathrm{q}^{\prime}(G) \geq \mathrm{D}(G)+1$ holds. Let S be a sequence with $|S|=\mathrm{q}^{\prime}(G)-1$ such that every nonempty zero-sum subsequence of S has the same form with T. Let $t=|S|$. Then $t \geq \mathrm{D}(G)$. By Lemma 5.7, we obtain that T is essential with respect to t. Therefore, $\mathrm{Q}_{t}(G) \neq \emptyset$. We assert that $\mathrm{Q}_{k}(G) \neq \emptyset$ holds for every $k \in[\mathrm{D}(G), t]$. In fact, if there exists $k \in[\mathrm{D}(G), t-1]$ such that $\mathrm{Q}_{k}(G)=\emptyset$, then by Lemma 5.6, we have $\mathrm{Q}_{t}(G) \subset \mathrm{Q}_{k}(G)=\emptyset$, a contradiction. Hence, $\mathrm{q}(G) \geq t+1=$ $|S|+1=\mathrm{q}^{\prime}(G)$.
(3). The result follows from (1) and (2).

By Theorem 1.4 and [5, Lemma 3.2], we obtain the following result.
Corollary 5.10 If $D(G)=D^{*}(G)$ and $\eta(G) \leq D(G)+\exp (G)$, then

$$
q(G)=q^{\prime}(G)=\operatorname{disc}(G)=D_{2}(G)=D(G)+\exp (G)
$$

We end this section with the following
Conjecture 5.11 For any finite abelian group G,

$$
\operatorname{Vol}(G)=\left[D(G), 1+\sum_{g \in G}(\operatorname{ord}(g)-1)\right] .
$$

Acknowledgements We would like to thank the referee for his/her very useful suggestions. This work has been supported in part by the National Science Foundation of China with Grant No. 11671218.

References

1. W. Gao, A. Geroldinger, Zero-sum problems in finite abelian groups: a survey. Expo. Math. 24, 337-369 (2006)
2. W. Gao, S. Hong, X. Li, Q. Yin, P. Zhao, Long sequences having no two nonempty zero-sum subsequences of distinct lengths. Acta Arith. 196, 329-347 (2020)
3. W. Gao, Y. Li, J. Peng, G. Wang, A unifying look at zero-sum invariants. Int. J. Number Theory 14, 705-711 (2018)
4. W. Gao, Y. Li, P. Zhao, J. Zhuang, On sequences over a finite abelian group with zero-sum subsequences of forbidden lengths. Colloq. Math. 144, 31-44 (2016)
5. W. Gao, P. Zhao, J. Zhuang, Zero-sum subsequences of distinct lengths. Int. J. Number Theory 11, 2141-2150 (2015)
6. A. Geroldinger, Additive group theory and non-unique factorizations, in Combinatorial Number Theory and Additive Group Theory, Advanced Courses in Mathematics, CRM Barcelona. ed. by A. Geroldinger, I. Ruzsa (Birkhäuser, Basel, 2009), pp. 1-86
7. A. Geroldinger, F. Halter-Koch, Non-Unique Factorizations. Algebraic, Combinatorial and Analytic Theory, Pure Applied Mathematics, vol. 278. (Chapman \& Hall/CRC, Boca Raton, 2006)
8. B. Girard, On the existence of zero-sum subsequences of distinct lengths. Rocky Mt. J. Math. 42, 583-596 (2012)
9. F. Halter-Koch, A generalization of Davenport's constant and its arithmetical applications. Colloq. Math. 63, 203-210 (1992)
10. M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, GTM 165 (Springer, Berlin, 1996)
11. J. Olson, A combinatorial problem on finite abelian groups, I. J. Number Theory 1, 8-10 (1969)
12. J. Olson, A combinatorial problem on finite abelian groups, II. J. Number Theory 1, 195-199 (1969)
13. A. Plagne, W. Schmid, An application of coding theory to estimating Davenport constants. Des. Codes Cryptogr. 61, 105-118 (2011)
14. P. van Emde Boas, A combinatorial problem on finite abelian groups II. Reports of the Mathematisch Centrum Amsterdam, ZW-1969C007
