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Abstract

A Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles,
and a Gallai k-coloring is a Gallai coloring that uses at most k£ colors. Given an integer £ > 1
and graphs Hy, ..., Hy, the Gallai-Ramsey number GR(Hy, ..., Hy) is the least integer n such
that every Gallai k-coloring of the complete graph K, contains a monochromatic copy of H;
in color ¢ for some i € {1,...,k}. When H = H; = --- = Hy, we simply write GRy(H). We
continue to study Gallai-Ramsey numbers of even cycles and paths. For alln > 3 and k£ > 1, let
G; = Ps; 13 be a path on 2i+3 vertices for all i € {0,1,...,n—2} and G,,—1 € {Capn, Pan+1}. Let
i €40,1,...,n—1}forall j € {1,...,k} with 4, > iy > --- > 4. Song recently conjectured that
GR(G;,,...,G;,) = |Gy | + Z§:2 i;. This conjecture has been verified to be true for n € {3, 4}
and all £ > 1. In this paper, we prove that the aforementioned conjecture holds for n € {5,6}
and all £ > 1. Our result implies that for all £ > 1, GRy(C2,) = GRi(Pan) =(n—1)k+n+1
for n € {5,6} and GR(Pant1) = (n — Dk+n+2for 1 <n <6.
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1 Introduction

In this paper we consider graphs that are finite, simple and undirected. Given a graph G and a set
A CV(G), we use |G| to denote the number of vertices of G, and G[A] to denote the subgraph of
G obtained from G by deleting all vertices in V(G)\A. A graph H is an induced subgraph of G
if H = G[A] for some A C V(G). We use P,, C,, and K, to denote the path, cycle and complete
graph on n vertices, respectively. For any positive integer k, we write [k] for the set {1,...,k}.
Given an integer k > 1 and graphs Hi, ..., Hy, the classical Ramsey number R(Hy,..., Hy)
is the least integer m such that every k-coloring of the edges of K, contains a monochromatic
copy of H; in color i for some i € [k]. Ramsey numbers are notoriously difficult to compute in
general. In this paper, we study Ramsey numbers of graphs in Gallai colorings, where a Gallai

coloring is a coloring of the edges of a complete graph without rainbow triangles (that is, a triangle
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with all its edges colored differently). Gallai colorings naturally arise in several areas including:
information theory [17]; the study of partially ordered sets, as in Gallai’s original paper [12] (his
result was restated in [15] in the terminology of graphs); and the study of perfect graphs [5]. There
are now a variety of papers which consider Ramsey-type problems in Gallai colorings (see, e.g.,
[2, 3, 4, 6, 10, 13, 14, 16, 20, 24]). These works mainly focus on finding various monochromatic
subgraphs in such colorings. More information on this topic can be found in [9, 11].

A Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer k > 1
and graphs Hy, ..., Hy, the Gallai-Ramsey number GR(H1, ..., Hy) is the least integer n such that
every Gallai k-coloring of K, contains a monochromatic copy of H; in color i for some i € [k].
When H = H; = --- = Hy, we simply write GRi(H) and Ry(H). Clearly, GRi(H) < Ry(H) for
all k > 1 and GR(H,, Hs) = R(Hy, Hz). In 2010, Gyérfds, Sarkozy, Sebé and Selkow [14] proved
the general behavior of GRy(H).

Theorem 1.1 ([14]) Let H be a fized graph with no isolated vertices and let k > 1 be an integer.
Then GRy(H) is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star,

and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when H = C3), GR(H) behaves nicely, while the
order of magnitude of Ry (H) seems hopelessly difficult to determine. It is worth noting that finding
exact values of GRy(H) is far from trivial, even when |H| is small. We will utilize the following

important structural result of Gallai [12] on Gallai colorings of complete graphs.

Theorem 1.2 ([12]) For any Gallai coloring ¢ of a complete graph G with |G| > 2, V(G) can be
partitioned into nonempty sets Vi,...,V, with p > 2 so that at most two colors are used on the
edges in E(G)\(E(G[V1]) U --- U E(G[V,])) and only one color is used on the edges between any
fized pair (V;, V) under c.

The partition given in Theorem 1.2 is a Gallai-partition of the complete graph G under c¢. Given
a Gallai-partition Vi,...,V, of the complete graph G under ¢, let v; € V; for all i € [p] and let
R := G[{v1,...,vp}]. Then R is the reduced graph of G corresponding to the given Gallai-partition
under c. Clearly, R is isomorphic to K. By Theorem 1.2, all edges in R are colored by at most two
colors under c. One can see that any monochromatic H in ‘R under ¢ will result in a monochromatic
H in G under c. It is not surprising that Gallai-Ramsey numbers G Ry (H) are closely related to
the classical Ramsey numbers Ry(H). Recently, Fox, Grinshpun and Pach posed the following
conjecture on GRy(H) when H is a complete graph.

Conjecture 1.3 ([9]) For all integers k > 1 and t > 3,

(Ro(K;) — 1)¥/2 41 if k is even

GRL(K;) = {(t — 1)(Ra(K) — 1)(k—1)/2 +1 if k is odd.



The first case of Conjecture 1.3 follows from a result of Chung and Graham [6] from 1983.
A simpler proof of this case can be found in [14]. The case when t = 4 was recently settled
in [18]. Conjecture 1.3 remains open for all ¢ > 5. The next open case, when ¢ = 5, involves
Ry(K5). Angeltveit and McKay [1] recently proved that Ro(K5) < 48. It is widely believed
that Ro(K5) = 43 (see [1]). It is worth noting that Schiermeyer [19] recently observed that if
Ry (K5) = 43, then Conjecture 1.3 fails for K5 when k = 3. More recently, Gallai-Ramsey numbers
of odd cycles on at most 15 vertices have been completely settled by Fujita and Magnant [10] for
C5, Bruce and Song [4] for C7, Bosse and Song [2] for Cy and Cy1, and Bosse, Song and Zhang [3]
for C13 and C15. Very recently, the exact values of GRy(Coypy1) for n > 8 has been solved by

Zhang, Song and Chen [23]. We summarize these results below.

Theorem 1.4 ([2, 3, 4, ?]) For alln >3 and k > 1, GRy(Cops1) =n-2F +1.

In this paper, we continue to study Gallai-Ramsey numbers of even cycles and paths. For
all n > 3 and k > 1, let Gp—1 € {Con, Pont1}, Gi := Paiqs for all i € {0,1,...,n — 2}, and
ij €{0,1,...,n — 1} for all j € [k]. We want to determine the exact values of GR(G;,,...,Gj,).
By reordering colors if necessary, we assume that i; > -+ > 4. Song and Zhang [21] recently

proved that

Proposition 1.5 ([21]) For alln >3 and k > 1,
k
GR(Giy, ..., Gi) = |Gy | +> iy
j=2

In the same paper, Song [21] further made the following conjecture.

Conjecture 1.6 ([21]) Foralln >3 and k > 1,
k
G’.R(Gi17 ey le) = |G“’ + ZZ]
j=2

To completely solve Conjecture 1.6, one only needs to consider the case G,,—1 = Cay,.

Proposition 1.7 ([21]) For alln >3 and k > 1, if Conjecture 1.6 holds for Gy_1 = Cay, then it
also holds for Gp—1 = Popy1.

Let M,, denote a matching of size n on 2n vertices. As observed in [21], the truth of Conjec-
ture 1.6 implies that GRy(Ca,) = GRi(Pon) = GRr(M,) = (n — 1)k +n+ 1 for all n > 3 and
k> 1, and GRy(Papt+1) = (n —1)k+n+2 for alln > 1 and k > 1. It is worth noting that Dzido,
Nowik and Szuca [7] proved that R3(C2,) > 4n for all n > 3. The truth of Conjecture 1.6 implies
that GR3(Cay) = 4n — 2 < R3(Cyy,) for all n > 3. Conjecture 1.6 has recently been verified to be
true for n € {3,4} and all k£ > 1.



Theorem 1.8 ([21]) For n € {3,4} and all k > 1, let G; = Paiys for all i € {0,1,...,n — 2},
Gn-1=Cay, and i; € {0,1,...,n — 1} for all j € [k] with iy > -+ > iy. Then

k
GR(Giy, ..., Gi) = |Gy | + > ij.
j=2
In this paper, we continue to establish more evidence for Conjecture 1.6. We prove that Con-
jecture 1.6 holds for n € {5,6} and all £ > 1.
Theorem 1.9 Forn € {5,6} and allk > 1, let G; = Pajy3 foralli € {0,1,...,n—2}, Gp—1 = Cay,
and ij € {0,1,...,n — 1} for all j € [k] with iy > --- > i. Then
k
GR(Gyy, .. ., le) = |Gy | + ZZ]
j=2
We prove Theorem 1.9 in Section 2. Applying Theorem 1.9 and Proposition 1.7, we obtain the
following.
Corollary 1.10 Let G; = Pay3 for all i € {0,1,2,3,4,5}. For every integer k > 1, let i; €
{0,1,2,3,4,5} for all j € [k] with iy > --- > i,. Then

k
GR(Giy, ..., Gi) = |Gy | + > ij.
j=2

Corollary 1.11 For allk > 1,
() GR(Pan+1) = (n — 1)k +n+2 for all n € [6].
(b) GRr(C2p) = GR(Poyp) = (n—1)k+n+1 forn € {5,6}.

Finally, we shall make use of the following results on 2-colored Ramsey numbers of cycles and

paths in the proof of Theorem 1.9.
Theorem 1.12 ([22]) For alln > 3, Ra(Cyy,) = 3n — 1.

Theorem 1.13 ([8]) For all integers n,m satisfying 2n > m > 3, R(Py,Coy) = 2n+ [ 5] — 1.

2 Proof of Theorem 1.9

We are ready to prove Theorem 1.9. Let n € {5,6}. By Proposition 1.5, it suffices to show that
GR(Giy,...,Gi,) < |Gi | + X5y i

By Theorem 1.8 and Proposition 1.7, we may assume that i; = n — 1. Then |G;,| = 2n. By
Theorem 1.12 and Theorem 1.13, we have GR(Gi,,Gi,) = R(Gi,,Gi,) = 2n + 2. So we may



assume k > 3. Let N := |Gy, | + 227:2 ij. Then N > 2n. Let G be a complete graph on IV vertices
and let ¢ : E(G) — [k] be any Gallai coloring of G using at least three colors. We next show
that G contains a monochromatic copy of G;; in color j for some j € [k]. Suppose G contains no
monochromatic copy of G, in color j for any j € [k] under c¢. Such a Gallai k-coloring c is called
a bad coloring. Among all complete graphs on N vertices with a bad coloring, we choose G with

N minimum, taken over alln —1 > 147 > --- >4, > 0.

By Theorem 1.2, we may consider a Gallai-partition of G' with parts Ay, ..., A,, where p > 2.
We may assume that [A;] > --- > |4,] > 1. Let R be the reduced graph of G with vertices
ai,...,ap, where a; € A; for all ¢ € [p]. By Theorem 1.2, assume that the edges of R are colored
either red or blue. Since ¢ uses at least three colors, we see that R # G and so |A;| > 2. By
abusing the notation, we use i, to denote i; when the color j is blue. Similarly, we use i, (resp. i,)

to denote i; when the color j is red (resp. green). Let

Ay :={a; € {az,...,ap} | a;ay is colored blue in R},

A, :={a; € {a,...,a,} | aja; is colored red in R}.

Then |Ap| + |A;| = p—1. Let B := U, e, 4i and R := UajGAr Aj;. Then [A1]|+ |R|+|B| =N
and max{|B|,|R|} # 0 because p > 2. Thus G contains a blue P; between B and A, or a red P;

between R and Aj, and so max{i, i, } > 1. We next prove several claims.

Claim 1. Let r € [k] and let s1,...,s, be nonnegative integers with s; + --- + s, > 1. If

ij, > S1,...,15, > sy for colors ji, ..., jr € [k], then for any S C V(G) with |S| > |G|—(s1+- - +sr),

G[S] must contain a monochromatic copy of Gi; in color j, for some j, € {ji1,...,jr}, where
q

.
ij, =Yg — Sq-

Proof. Let i} := ij, — s1,...,i] = ij, — s, and i} := i; for all j € [k]\{j1,...,j-}. Let
it := max{i} | j € [k]}. Then i} < ir. Let N* := |G;:|+ [(X5_,i%) —i7]. Then N* > 3 and
N*<N—(sg+--+8y) < N because s; + -+ + s, > 1. Since |[S|> N — (s +---+s,) > N*
and G[S] does not have a monochromatic copy of G;; in color j for all j € [k]\{j1,...,j-} under

¢, by minimality of N, G[S] must contain a monochromatic copy of Gi;q in color j, for some

jqe{j17-~~7j7‘}' | |

Claim 2. |[A;| < n—1, and so G does not contain a monochromatic copy of a graph on |4;|+1 <n

vertices in color m, where m € [k] is a color that is neither red nor blue.

Proof. Suppose |A;| > n. We first claim that i, > |B| and 4, > |R|. Suppose i, < |B| —1 or
iy <|R| — 1. Then we obtain a blue G;, using the edges between B and A, or a red G;, using the
edges between R and Ajp, a contradiction. Thus i, > |B| and i, > |R|, as claimed. Let i} := i, — |B)|
and iy := i, — |R|. Since |A1]| = N — |B| — |R|, by Claim 1 applied to i, > |B|, i, > |R| and Ay,
G[A;] must have a blue G;¢ or a red Gix, say the latter. Then i, > iy. Thus [R| > 0 and Gjx is a



red path on 2¢} + 3 vertices. Note that

k
| Al =G| +>_i; — Bl - |R
j=2

1G4 a = B IR i i 2
B |Gib|+i7”_|B’_|R| if i, <ip,

S |G, | +1i; — |R| if i, >4
|2y +2+ i, — |B| — |R| >4} + (26, + 3) — |R| i dp <y,
> |Gy, | — |R].

Then

[A1| = 1Giz| 2 1Gi,| — |Giz| = |R|
(3 +2i,) — (3+2i%) — |R| = |R] if i, <n—2
(242i,) — (3+2i*)— |R|=|R| -1 ifi,=n—1.

But then G[A; UR] contains a red G, using the edges of the G;x and the edges between A;\V (G;x)
and R, a contradiction. This proves that |A;| < n—1. Next, let m € [k] be any color that is neither
red nor blue. Suppose G contains a monochromatic copy of a graph, say J, on |A;| + 1 vertices in
color m. Then V(J) C Ay for some ¢ € [p]. But then |Ay| > |A;| + 1, contrary to |A1]| > |A¢]. m

For two disjoint sets U, W C V(G), we say U is blue-complete (resp. red-complete) to W if all
the edges between U and W are colored blue (resp. red) under ¢. For convenience, we say u is

blue-complete (resp. red-complete) to W when U = {u}.

Claim 3. min{|B|,|R|} > 1, p > 3, and B is neither red- nor blue-complete to R under c.

Proof. Suppose B = () or R = (). By symmetry, we may assume that R = (). Then B # () and
so i > 1. By Claim 2, |A;| <n —1 <5 because n € {5,6}. Then |A;| < iy +4. If i <|A;| -1,
then 4, < n — 2 by Claim 2. But then we obtain a blue G;, using the edges between B and A;.
Thus i, > |Aq]. Let if =14, — |A1|. By Claim 1 applied to i, > |A;| and B, G[B] must have a blue
Gir. Since |B| > n+1+1}, we see that G contains a blue Gj,, a contradiction. Hence R # (), and
similarly B # (), and so p > 3 for any Gallai-partition of G. It follows that B is neither red- nor
blue-complete to R, otherwise {BU A, R} or {B, RU A;} yields a Gallai-partition of G with only

two parts. =

Claim 4. Let m € [k] be a color that is neither red nor blue. Then i, < n — 4. In particular, if

im > 1, then GG contains a monochromatic copy of Py;, +1 in color m under c.

Proof. Note that i, < n — 4 is is trivially true when i,, = 0 because n € {5,6} and n —4 > 1.
Suppose iy, > 1. By Claim 2, |A;] < n — 1 and G contains no monochromatic copy of P41

6



in color m under c. Let i}, := i, — 1. By Claim 1 applied to i,, > 1 and V(G), G must have a
monochromatic copy of G in color m under c. Since n € {5,6}, [A1| < n — 1 and G contains
no monochromatic copy of P 4,1 in color m, we see that i, < n —5. Thus i, <n —4and G

contains a monochromatic copy of P;, +1 in color m under c if 4,,, > 1. -

By Claim 3 and the fact that |A;] > 2, G has a red P; and a blue P;. Thus min{ip, i} > 1.
By Claim 4, max{i, i} =4 =n — 1. Then |G| = |G;,| + Z;?:Q i; > 2n + 1. For the remainder of

the proof of Theorem 1.9, we choose p > 3 to be as large as possible.

Claim 5. min{|B|,|R|} <n —1if |[A1]| >n—3.

Proof. Suppose |[A1| > n — 3 but min{|B|, |R|} > n. By symmetry, we may assume that |B| >
|R| > n. Let B := {z1,72,...,7 5/} and R := {y1,y2,...,Y g} Let H := (B, R) be the complete
bipartite graph obtained from G[B U R] by deleting all the edges with both ends in B or in R.
Then H has no blue P; with both ends in B and no red P; with both ends in R, else we obtain a
blue Cy, or a red Cy, because |A;| > n — 3. We next show that H has no red K3z 3.

Suppose H has a red K3 3. We may assume that H[{z1, 22,23, Y1, ¥y2,y3}] is a red K33 under c.
Since H has no red P; with both ends in R, {y4,...,y g/} must be blue-complete to {1, 72,73}
Thus H[{x1, %2, x3, Y4, y5}] has a blue P; with both ends in {z1, x9, 23} and H[{x1, 2, 23, Y1, Y2, Y3}
has a red P; with both ends in {y1,y2,y3}. If |A1] > n — 2 or min{ip, i} < n — 2, then we obtain
a blue G;, or a red G;,, a contradiction. It follows that |[A;] = n — 3 and ¢ = i, = n — L.
Then |G| = |Gi,| + Y f_yi; > 2n+ (n—1) = 3n—1. Thus [BUR| = |G| — |A1| > 2n+2. If
|R| > 6, then {y4,ys5,y6} must be red-complete to {x4, x5, 26}, else H has a blue P; with both
ends in B. But then we obtain a red Cy, in G. Thus |R| = 5, n = 5, and so |B] > 7. Let
Ay = {a1,a}}. For each j € {4,5,6,7} and every W C {x1, 29,23} with |W| = 2, no z; is red-
complete to W under ¢, else, say, x4 is red-complete to {z1,x2}, then we obtain a red Cyg with
vertices a1, Y1, %1, T4, T2, Y2, T3, Y3, a], ya in order, a contradiction. We may assume that z4z1, z522
are colored blue. But then we obtain a blue Cjo with vertices a1, x4, x1,y4, 3,Ys5, T2, x5, a], Te in

order, a contradiction. This proves that H has no red K3 3.

Let X :={z1,22,...,25} and Y := {y1,v2,...,ys5}. Let Hy and H, be the spanning subgraphs
of H(X UY] induced by all the blue edges and red edges of H[X UY] under ¢, respectively. By
the Pigeonhole Principle, there exist at least three vertices, say 1,2, x3, in X such that either
dm,(z;) > 3 for all i € [3] or dy, (x;) > 3 for all i € [3]. Suppose dp, (z;) > 3 for all i € [3]. We may
assume that x; is red-complete to {y1,y2,y3}. Since |Y| =5 and H has no red P; with both ends
in R, we see that Ny, (z1) = Np,(z2) = N, (x3) = {y1, y2,y3}. But then H[{x1,z2, 3, y1,Y2,¥3}]
is a red K33, contrary to H has no red K3 3. Thus dp,(z;) > 3 for all i € [3]. Since |Y| =5, we see
that any two of x1, z9, 3 have a common neighbor in H,. Furthermore, two of x1, xo, x3, say 1, T2,
have at least two common neighbors in Hp. It can be easily checked that H has a blue Ps with

ends in {x1,z9, 3}, and there exist three vertices, say yi1,y2,ys3, in Y such that y;z; is blue for all



i € [3] and {z4,...,7p|} is red-complete to {y1,y2,y3}. Then H has a blue P5 with both ends in
{1, 22,23} and a red P5 with both ends in {y1,y2,y3}. If |A1| > n — 2 or min{ip, i, } < n—2, then
we obtain a blue G;, or a red G;,, a contradiction. It follows that |A;| =n—3 and i =i, =n— 1.
Thus [BUR| > 1+4+n+i,+ i, — |A1]| =2n + 2. Then |B| > n+ 1 and so H[{x4, x5, T6, Y1, Y2, Y3}
is a red K33, contrary to the fact that A has no red K3 3. -

Claim 6. |A;| > 3.

Proof. Suppose |A;| = 2. Then G has no monochromatic copy of Ps in color j for any j € {3,...,k}

under ¢. By Claim 4, i3 = --- = 4 = 0 and so N = 14+ n + i, + i-. We may assume that
|Ai| = -+ = |A = 2 and |Aypq| = -+ = |4,| = 1 for some integer t satisfying p > ¢ > 1. Let
A; = {a;,b;} for all i € [t]. By reordering if necessary, each of Ay,..., A; can be chosen as the

largest part in the Gallai-partition A;, Ay, ..., A, of G. For all i € [t], let

i :={a; € V(R) | aja; is colored blue in R},
Al :={a; € V(R) | aja; is colored red in R}.

Let B! := UajeAg Ajand R := Ua,cai 4j- Then |BY| + |RY| = 2n—2+min{iy, i, } = n—1+ip+i,.
Let

Ep :={ab; | i € [t] and |R'| < |B"|},
Eg :={asb; | i € [t] and |B’| < |R'[},
Eq :={aib; | i € [t] and | B'| = |R'[}.

Let ¢* be obtained from ¢ by recoloring all the edges in E'g blue, all the edges in Er red, and
all the edges in Eg either red or blue. Then all the edges of GG are colored red or blue under c*.
Note that |G| =n+1+1, + i, = R(Gj,,G;,.). By Theorem 1.12 and Theorem 1.13, we see that G
must contain a blue G;, or a red G;,. under c¢*. By symmetry, we may assume that G has a blue
H := G, under c¢*. Then H contains no edges of EFr but must contain at least one edge of EgpUEq,
else we obtain a blue H in G under c¢. We choose H so that |E(H) N (Ep U Eg)| is minimal. We
may further assume that a1by € E(H) N (Ep U Eg), so that |B!| > |R!|. Since |B!| + |R!| =
2n — 2 + min{iy, i, } > 2n — 2+ 1, we see that |B| >n >5and |[R|<n—1+ L%J <7.So
ip > 2. By Claim 5, |R'| <4 when n =5. Let W := V(G)\V (H).

We next claim that i, = n — 1. Suppose iy, < n—2. Then H = P, 43, i =n—1, |G| = 2n+1
and |W|=2n—-3—1i, >n—1. Let z1,29,...,22,+3 be the vertices of H in order. We may assume
that zyxp41 = a1by for some ¢ € [2i, + 2]. If a vertex w € W is blue-complete to {a, b1}, then
we obtain a blue H' := G;, under ¢* with vertices z1,...,zs, w,Tp41,...,22,+2 in order (when
0 % 20y + 2) or x1,22,...,%2,+2, w in order (when ¢ = 24, + 2) such that |[E(H') N (Ep U Eq)| <
|E(H)N (EpU EQ)|, contrary to the choice of H. Thus no vertex in W is blue-complete to {a1, b1}
under ¢ and so W must be red-complete to {aj,b;} under c. This proves that W C R!. We
next claim that ¢ = 1 or £ = 2i;, + 2. Suppose ¢ € {2,...,2i, +1}. Then {x1, 22,43} must be



red-complete to {a1, b1}, else, we obtain a blue H' := G, with vertices xy, ..., z1,Zs41,- .., T2i,+3
OF T1,...,T¢, X243, Titl,- - -, L2i,+2 in order under ¢* such that |E(H') N (Ep U Eg)| < |E(H) N
(Ep U Eg)|. Thus {z1,z2,+3} C R and so W U {z1, 72,43} is red-complete to {ay,b1}. If
n = 5, then 4 > |RY| > |W U {1, 72,43} > 6, a contradiction. Thus n = 6 and 7 > |R!| >
(W U {x1, 29,43} > 7. It follows that R' N V(H) = {z1,72;,+3} and thus either {x; 9,2, 1}
or {Zy42,2¢4+3} is blue-complete to {a1,b1}. In either case, we obtain a blue H' := G;, under ¢*
such that |[E(H') N (Ep U Eg)| < |[E(H) N (Ep U Eg)|, a contradiction. This proves that ¢ = 1
or { = 2i, + 2. By symmetry, we may assume that ¢ = 1. Then z;x3 is colored blue under
¢ because Ay = {a1,b1}. Similarly, for all j € {3,...,2i, + 2}, {z;,2;41} is not blue-complete
to {a1,b1}, else we obtain a blue H' := G, with vertices z1,xj,...,%2,Zj41,...,T2,+3 in order
under ¢* such that |[E(H') N (Eg U Eg)| < |[E(H) N (Ep U Eg)|. It follows that 24 € R! and so
|IR' N {24, ..., 72,43} >dp. Then |RY > |[W|+ |R* N {z4,..., 29,43} >2n—3,s04 > |R| >7
(when n = 5) or 7 > |R'| > 9 (when n = 6), a contradiction. This proves that i, = n — 1.

Since i, = n — 1, we see that H = Cy,. Then |G| = 2n + i, and so |W| = 4,. Let
a1, x1,...,Ton—2,b1 be the vertices of H in order and let W := {w,...,w;. }. Then z1b; and
a1Z2,—2 are colored blue under ¢ because A; = {a1,b1}. Suppose {z;,x 41} is blue-complete to
{a1,b1} for some j € [2n — 3]. We then obtain a blue H' := Cj, with vertices a1, z1,...,x;j, b1,
Zon—2, ..., T 41 in order under ¢* such that |E(H')N(EBUEQ)| < |E(H)N(EBUEQ)|, contrary to the
choice of H. Thus, for all j € [2n—3], {z;, 241} is not blue-complete to {a1, b1 }. Since {z1,z2,-2}
is blue-complete to {ay,b; } under ¢, we see that xo, 9,3 € R, and so 4 > |R!| > |[R' NV (H)| > 4
(when n =5) and 7> 5+ [%| > |[R'| > |[R" N V(H)| > 5 (when n = 6). Thus, when n = 5, the
distinct cases are R' = {x9, x4, 25,27} or R' = {29, 24, 26, 77}, as depicted in Figure 1(a) and Fig-
ure 1(b); when n = 6, we have R' NV (H) = {x2, 79} U {x; | j € J}, where J € {{4,6,8}, {4,6,7},
(3,4,6,7}, {3,5,6,7}, {4,5,6,7}, {4,6,7,8}, {3,5,7,8}, {3.5,6,8}, {3,4,5,6,7}, {3,4,5,6,8},
(3,4,5,7,8}).

ar by ar b
X1 s ) xrg
D) X7 Z2 L7
T3 Te T3 L6
X4 Ts L4 L5

(a) (b)
Figure 1: Two cases of R! when i, = 4 and n = 5.

Since |R!| > n — 1 and R' is red-complete to {ai,b;} under ¢, we see that i, > 2. Let
W’ := W\R!. Then W' C B!. Since |B'| > |R!|, it follows that [W’| > [2] > 1. We may assume
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W' = {ws,...,wy}. We claim that E(H) N (Ep U Eq) = {a1b1}. Suppose, say azby € E(H) N
(EpUEQ). Since {z1,z2} # A; and {x2,—3,z2n—2} # A; for all ¢ € [t], we may assume that ay = z;
and by = x4 for some j € {2,...,2n — 4}. Then zj_17j4+1 and ;7,42 are colored blue under c.
But then we obtain a blue H' := Cy,, under ¢* with vertices a1, z1,...,2j-1,Zj41,...,Tan—2,b1, w1
in order such that |[E(H') N (EgUEQ)| < |E(H) N (EpU Eq)|, contrary to the choice of H. Thus
E(H)N (EpUEQ) = {a1b1}, as claimed.

(x) Let w € W'. For j € {1,2n — 2}, if {z;,w} # A; for all i € [t], then x;w is colored red. For
j€{2,...,2n— 3}, if {zj,w} # A; for all i € [t] and x;_2 or ;42 € B!, then z;w is colored red.

Proof. Suppose there is some j € [2n — 2] such that {z;,w} # A; for all i € [t|, and z;_o or
Tjp2 € BYif j € {2,...,2n — 3}, but zjw is colored blue. Then we obtain a blue Cy, under

¢ with vertices a1, w,z1,...,Ton—2 (when j = 1) or ay,x1,...,22,—2,w (when j = 2n — 2) in
order if j € {1,2n —2}, and with vertices by, x2p—2, Ton—3, . .., Tj4+2, a1, W, Tj,. ..,z in order (when
Tjyo € BYoray,zy,... ,&j_2,b1,w,Tj,...,To,—2 in order (when z;_o € BYifje{2,...,2n—3},
a contradiction. -

(xx) For j € [2n — 4], zjxj42 is colored red if {z;, x40} # A; for all ¢ € [t].

Proof. Suppose xjz;;2 is colored blue for some j € [2n — 4]. Then we obtain a blue Cy, under ¢

with vertices a1, 21,...,2,Zj42,...,T2n—2,b1, w1 in order, a contradiction. -

We claim that n = 6. Suppose n = 5. Then R! = {z2, 4, o, x5}, where (o, B) € {(5,7),(7,6)}.
Thus W' = W and 441,702 € B!. Since {Za—1,w;} # A; and {zq,w;} # A; for all w; € W
and i € [t], it follows from (%) that {x,—1,24} must be red-complete to W under ¢. Then for
any wj € W, {xq—2,w;} # A; and {xap1,w;} # A; for all i € [t] since £o—1Zq—2 and TaZa41 are
colored blue under c¢. Thus {z4—2,Za+1} is red-complete to W by (). So {xq—2,Ta—1,Ta,Ta+1}
is red-complete to W under c¢. But then we obtain a red Py under ¢ (when i, < 3) with vertices
X2,a1, Ta—1,b1, Ta, W1, Ta—2, W2, Tay1 in order, or a red Cio under ¢ (when i, = 4) with vertices
a1,T2,b1,Ta—1, W1, Ta—2, W2, Tat1,Ws, Lo in order, a contradiction. This proves that n = 6, as
claimed. By (x), we may assume z is red-complete to W/\w; and 1 is red-complete to W’ \wp|
because |A;| = 2. Recall that 5 < |[R' N V(H)| < 7 when n = 6. We next consider three cases
based on the value of |R! NV (H)|.

Case 1. |R'NV(H)| =5. Then R' NV (H) = {x2, 24,76, Ta, s}, where (a,8) € {(9,8),(7,9)}.
Then Zo+41,ZTa—2 € Bl. Since {za—1,w;} # A; and {z4,w;} # A; for all w; € W’ and i € [t],
{za—1,24} must be red-complete to W’ under ¢ by (x). Then for any w; € W/, {zq—2,w;} # A;
and {zq41,w;} # A; for all ¢ € [t] since zq—124—2 and x4xq41 are colored blue under c¢. Thus
{Za—2,Ta+1} is red-complete to W’ by (). So {zq—2, Ta—1, Ta, Ta+1} is red-complete to W’ under c.
We see that G has a red P; with vertices 241, w1, Zq, a1, x2, b1, 24 in order, and so 4, > 3 and |W’| >
[%] > 2. Moreover, Zo—1Zq+1 and x,—ox, are colored red by (#x). Then G has a red P;; with

vertices 1, W2, Lo—1, Tat+1, W1, Ta—2, Lo, A1, T2, b1, 24 in order under c¢. Thus i, = 5 and so |[W'| >
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[%2] > 3. Since |Ai| = 2 and 24— € B!, by (x), we may assume 44 is red-complete to W'\w,.
But then we obtain a red C}o with vertices a1, Zq, Ta—2, W1, La—a, W3, L1, W2, Tat1, La—1,01, T2 in

order under ¢, a contradiction.

Case 2. |R'NV(H)| = 6. We claim that i, > 3. Suppose i, = 2. Then |B!| = |R!| = 6 and
G[B' U R'] contains no red P with at least one end in R', else we obtain a red P;. By Claim 3,
B! is not blue-complete to R'. Let x € B! and y € R! such that zy is colored red. Then z is
blue-complete to R'\y and there exists at most one vertex w € B such that x is blue-complete to
B\{z,w} because G[B' U R'] contains no red P; with at least one end in R!'. Let i} := 1, i} := 0,
i7 := 0 for all colors j other than red and blue. Let N* := |G| + [(Zle i7) — i3] = 5. Observe
that |[R'\y| = 5 = N*, by minimality of N, G[R'\y] contains a blue Ps. Let y1,%2,...,ys be the
vertices of the Ps in order. Then y is blue-complete to {y;,y;+1} for some j € [4] and z; € BN\z
is not red-complete to {y1,ys} because G[B' U R!] contains no red P3 with at least one end in R!
and |A;| = 2. So we may assume x1y; is colored blue. But then we obtain a blue Cj2 under ¢
with vertices a1, 1,1, -+, Yj, Y, Yjt+1, - - - » Y5, T, T2, b1, o3 in order, where z9, 73 € B\ {z,z1,w}, a
contradiction. Thus i, > 3, as claimed. Note that |[B' NV (H)| = 4, so |W'| > 3. We may further
assume that {z1,wa} # A; and {x1, w3} # A; for all i € [t]; and {10, w1} # A; and {z10, w2} # A;
for all ¢ € [t]. By (%), x1 is red-complete to {ws, w3} under ¢; and x1¢ is red-complete to {wy,ws}
under c. Let (o, 8,7) € {(5,2,4),(4,7,5)}. Suppose R* NV (H) = {x2, 3, Ta, 6,7, T9}. Since
{zg,w;} # Ai, {x3,w;} # A; and {we,w;} # A; for all w; € W and i € [t], by (x), {zg, 23,26}
must be red-complete to W’ under ¢. By (sx), z. is red-complete to {zy—2,Z142}. But then we
obtain a red Cjo under ¢ with vertices ay, x9, x4, x¢, w1, T10, w2, 1, w3, T3,b1, x5 (When a = 5) or
ai, T3, Ts, 7, W1, 10, W2, T1, W3, Te, b1, r4 (when o = 4) in order, a contradiction. Let («, §,7,0) €
{(3,8,5,6),(3,5,7,8),(4,6,8,2)}. Suppose R' N V(H) = V(H)\{a1,b1,21,%10,Ta,rs}. Since
{zy,w;} # A; and {z5,w;} # A; for all w; € W' and i € [t], {x, 25} must be red-complete to
W' under ¢ by (x). Moreover, x,z_2 and x5zs542 are colored red by (*x). Since |A;| = 2, at least
one of 1,10, Zqa, Tg is red-complete to {wy, wa, w3} by (x). So we may assume z,, is red-complete
to W'\wy and xg is red-complete to {w1, w2, w3}. But then we obtain a red Ci2 with vertices
a1, Ty, Ty—2, W1, T10, W2, T1, W3, T54+2, Ts, b1, x7 in order if (o, B,7,0) € {(3,8,5,6),(4,6,8,2)} and
ay, Ty, Ts, W1, T3, W3, T1, W2, T10, L8, b1, r¢ in order if (a, f,7,0) = (3,5,7,8), a contradiction. Fi-
nally if R' NV (H) = {x9, 3,25, 76,78, T9}. By (¥), R NV (H) is red-complete to W’. Then
G has a red P, with vertices s, a1, x3, b1, x5, w1, T, Wa, Tg, W3, Tg in order. Thus i, = 5 and so
|W’| > 4. But then we obtain a red Ci2 with vertices a1, xo, w1, 23, we, T5, w3, Te, W4, Ts, b1, Tg in

order, a contradiction.

Case 3. R' = |[R'NV(H)| =7, then 4, > 4 and |W'| = |W| = 4,. Let (o, 8) € {(6,5), (7,4)}. Sup-
pose R'={xs, 23,24, 75, %0, s, T9}. Since {ws,w;} # A;, {xp,w;} # A; and {zs,w;} # A; for all
i € [t] and any w; € W', {x3, x5, x5} must be red-complete to W’ under ¢ by (*). But then we obtain
a red Ch2 with vertices a1, 23, w1, x10, w2, T1, w3, T3, W4, T, b1, x2 in order, a contradiction. Finally

if R' = {29, 23, 74,25, 76,27, 29}. Since {z3,w;} # A; and {zs,w;} # A; for all ¢ € [t] and any
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wj € W', {x3, z6} must be red-complete to W’ under ¢ by (). We may assume zg is red-complete to
W' \ws by (%). But then we obtain a red C1o with vertices a1, x3, w1, 219, w2, X1, W3, Tg, W4, T¢, b1, T2

in order, a contradiction. This proves that |A4;| > 3. -

Claim 7. For any A; with 3 < |4;| < 4, G[A;] has a monochromatic copy of Ps in some color
m € [k] other than red and blue.

Proof. Suppose there exists a part A; with 3 < |4;| < 4 but G[A;] has no monochromatic copy
of P3 in any color m € [k] other than red and blue. We may assume i = 1. Since GRy(Ps3) = 3,
we see that G[A;] must contain a red or blue P3, say blue. We may assume aj,bj,c; are the
vertices of the blue Ps in order. Then |Ai| = 4, else {b1},{a1,c1}, A2,..., Ap is a Gallai partition
of G with p + 1 parts. Let z; € Aj\{a1,b1,c1}. Then z is not blue-complete to {aj,c1}, else
{a1,e1},{b1, 21}, Aa,..., Ay is a Gallai partition of G with p + 1 parts. Moreover, b1z is not
colored blue, else {b1},{ai,c1,21}, A2,..., Ap is a Gallai partition of G with p + 1 parts. If by 2; is
colored red, then a1z and c12z1 are colored either red or blue because GG has no rainbow triangle.
Similarly, 21 is not red-complete to {a1,c1}, else {z1},{a1,b1,c1}, As,..., A, is a Gallai partition
of G with p + 1 parts. Thus, by symmetry, we may assume ajz; is colored blue and cjz; is
colored red, and so ajc; is colored blue or red because G has no rainbow triangle. But then
{a1}, {01}, {1}, {z1}, A2, ..., Ap is a Gallai partition of G with p + 3 parts, a contradiction. Thus
b1z is colored neither red nor blue. But then ajz; and ¢1z; must be colored blue because G[A;]
has neither rainbow triangle nor monochromatic P3 in any color m € [k]| other than red and blue,

a contradiction. -

For the remainder of the proof of Theorem 1.9, we assume that |B| > |R| . By Claim 5,
IRl < n—1. Let {aj,bj,c;} C A;if |[A;] > 3 for any 7 € [p]. Let B := {z1,...,7p} and
R:={y1,...,y g} We next show that

Claim 8. i, > |R|.

Proof. Suppose i, < |R|—1<n—2. Theni, =n—1, i, > 3, |A1] < 4, else we obtain a red G;,
because R is not blue-complete to B and |A;| > 3. By Claim 7, G[A;] has a monochromatic, say
green, copy of P3. By Claim 4, iy = 1. We have |G| > n+1+1,+1, +i4 > 2n+4. This implies that
there exist two independent edges between B and R, say x1y1, T2y, that are colored red, else we
obtain a blue Cy,. Then G[A; URU{x1, z2}| has a red Py, it follows that n = 6, i, = 4 and |R| = 5.
Then |A; U B| = |G| — |R| > 7 + iy +ir +ig — |R| = 12, and so G[B] has no blue G, _|4,), else we
obtain a blue C1a. Let i} := iy —[A;1] < 2, iy := i, —|R|+2 = 1, i} 1= i; < 2 for all color j € [k] other
than red and blue. Let ¢j := max{s} | j € [k]}. Then ij <iy. Let N* := |G| + [(Zle i7) — ip).
Observe that |B| > N*. By minimality of N, G[B] has a red G;» = Ps with vertices, say z1,...,zs,
in order. Because there is a red P; with both ends in R by using edges between A; and R, we
see that R is blue-complete to {z1,x2,z4, 25}, else G[A; U RU {z1,...,x5}] has a red P;;. But
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then we obtain a blue C12 under ¢ with vertices a1, x1,y1, €2, Y2, T4, Y3, T5, b1, T3, C1, Tg in order, a

contradiction. -

Claim 9. i, > |A;]| and so [A1] <n —2.

Proof. Suppose i, < |Ay]. If i < |Ai| — 1, then i, < n — 2 by Claim 2 and so i, = n — 1. Thus
|B| > 2 4 14y because |B| + |R| = |G| — |A1| > n+ 1+ + (ir — |A1|) > 3 + 2ip. But then G has a
blue G;, using edges between A; and B, a contradiction. Thus i, = |4;|. By Claim 5 and Claim
8, |R| <n—1and i, > |R|. Observe that |B| > 1+ n+1i, — |R| > 1+ n. Then G[B U R] has no
blue P with both ends in B, else we obtain a blue G;, in G. Let i} := i, — |A1| = 0, i := i, — |R),
and i} := i; < n — 4 for all colors j € [k] other than blue and red. Let ij := max{s} | j € [k]}.
Then i} < iy. Let N* := |G| + [(3-F_, i) — i}]. Then 3 < N* < N. Suppose first that [R| > 2.
Since B is not red-complete to R, we may assume that y;x is colored blue for some x € B. Note
that if <n—3 and |[B\z| = N — |4;] — |R| — 1 > N*. By minimality of N, G[B\z] must have a
red Gix = Py;x 3 with vertices, say x1,. .., 24, in order, where ¢ = 2iy + 3. Since G[B U R] contains
no blue P3 with both ends in B and xy; is colored blue, we see that y; must be red-complete to
B\z and y3 is not blue-complete to {z1,z,}. We may assume that x4y is colored red in G. Then
n = 6,4, = |R| =5 and i, = |A;| = 3, else we obtain a red G;, using vertices in V' (Pax43) URU Aj.
Let 2/ € B\{z,x1,72,23}. Then {z,2'} € A; and {z,21} € A; for all i € [p] because y;z is colored
blue and yy2’, y1 21 are colored red, and so za’ and xx; are colored red, else G[A;1 U BU {y;}] has a
blue Py. But then we obtain a red Cio with vertices ay,y1, 2, x, x1, 22, 23, Y2, b1, Y3, ¢1, Y4 in order,
a contradiction. Thus |R| = 1. By Claim 1 applied to i, = |A1], i, > |R| and B, G[B] must have a
red Py; 41 with vertices, say x1,x2,...,%2,+1, in order. Since G[B U R] contains no blue P; with
both ends in B, we may assume that y;x; is colored red under c¢. Then i, = n — 1, else we obtain a
red Gj,, a contradiction. Moreover, yjx2,—1 must be colored blue, else G has a red Co,, with vertices
Y1, 21, .., Tap—1 in order. Thus y; is red-complete to {x1,...,zo,—2}, and so {z;,x2,—1} € A; for
all i € [p] and j € [2n — 2]. So x2,—12; must be colored red for some i € [2n — 3] because G|[B]
has no blue Ps;. But then we obtain a red Cy,, with vertices y1,21,..., T, Tan—1,Tan—2, . - ., Ti+1 iN

order, a contradiction. This proves that i, > |A1], and so |A1] < n — 2. -

By Claim 6 and Claim 9, we have 3 < |A;| < n — 2. By Claim 7, G[A;1] has a monochromatic,
say green, copy of P3. By Claim 4, i, = 1.

Claim 10. If |A;] = 3, then |Ay| = 3, |A3| < 2, and i; = 0 for all colors j € [k] other than red,

blue and green.

Proof. We may assume that the first three colors in [k] are red, blue, and green. Assume |A;| = 3.
To prove |Az| = 3, we show that G[B U R] has a green P3;. Suppose G[B U R] has no green Ps.
By Claim 9, 4, > |41 + 1 = 4. Let 7 := 0 and 4} = i; for all j € [k] other than green. Let
i »=max{i’ | j € [k]} and N* := |Gz |+ [(X5_, i%) —i7]. Then N* = N — L and [G\as| = N -1 =
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N*. But then G\a; has no monochromatic copy of Gi;«, in color j for all j € [k], contrary to the
minimality of N. Thus G[BU R] has a green P3 and so |Az| = 3. For the rest of the proof of Claim

10, we do not use the condition |B| > |R| because we make no use of Claim 8 and Claim 9.
Suppose |As| = 3. For all i € [3], let

Al = {a; € V(R) | aja; is colored blue in R},
Al :={a; € V(R) | aja; is colored red in R}.

Let B := UajeAg Aj and R := UajeAi Aj. Since each of Ay, Ay, A3 can be chosen as the largest
part in the Gallai-partition Ay, Ag,..., A, of G, by Claim 5, either |B'| < 5 or |R'| < 5 for
all ¢ € [3]. Without loss of generality, we may assume that Ay is blue-complete to A; U As.
Let X := V(G)\(A1 U A2 U A3) = {v1,...,vx;}. Then [X| > 1+ n+idp+ i +ig — 9 =
2n — 8 + min{iy,i,}. Suppose |X N B!| > 2. We may assume vi,vo € X N B!. Then
G has a blue Cyg with vertices ai,v1,b1,v9,c1,a2,a3,b2,b3,co in order and a blue Py; with
vertices ai,v1,b1,v9,c1,a9,a3,ba,b3,c0,c3 in order, and so n = 6 and i, = 5. Moreover,
X\{v1,v2} € R3, else, say v3 is blue-complete to Az, then we obtain a blue Cj2 under c
with vertices ay,v1,b1,v9,c1,az, as,vs, bs,be, c3,co in order. Thus |R3| > |X\{vi,v2}| > 2 + iy,
and so i, > 3, else G has a red G; using the edges between Az and R3. Then there ex-
ist at least two vertices in X\{vi,ve}, say vs,vs4, such that {vs,vs} is blue-complete to Ay,
else G[A; U A3 U (X\{v1,v2})] contains a red G;.. Thus |B!| > |4 U {v1,...,v4}| = 7 and
so |R'| < 5. Moreover, {v1,v2} C R3, else, say v; is blue-complete to A3, we then obtain a
blue C12 under ¢ with vertices aj, vs, b1, v4, €1, az, ag, v1, b3, ba, c3,¢o in order. Then X C R3 and
|R3| > |X| >4+41i, > 7, and so |B3| <5 and A; is red-complete to As. Furthermore, G[B'\ As]
has no blue Pj, else, say vi, v, vs is such a blue Ps in order, we obtain a blue Cio with vertices
ai,v1,va,v3,b1,v4, C1,az, a3, b, b3, c2 in order. Therefore for any U C B\ Ay with |U| > 4, G[U]
contains a red P3 because |A;| = 3 and GRy(Ps) = 3. Since |R!| < 5 and A3 C R!, we may assume
U1y U x|—2 € B\ Ay. Then G[{vy,...,v4}] must contain a red P3 with vertices, say vy, vo,v3, in
order. We claim that X C B'. Suppose Vx| € R!. Then v|x| is red-complete to A; and so G has
a red Ppp with vertices ¢1, v x|, a1,as, b1, b3, v1,v2,v3,c3,v4 in order, it follows that i, = 5. Thus
| X| > 9, and G[{vy,...,v7}] has a red P3 with vertices, say vy, vs, vg, in order. But then we ob-
tain a red C12 with vertices a1, v|x|, b1, a3, v1,v2,v3, b3, v4, V5, Vg, c3 in order, a contradiction. Thus
X C B! as claimed. Since |X| > 7, G[{vs,...,v7}] contains a red Py with vertices, say v4, vs, vg, in
order. Then G has a red P11 with vertices a1, as, b1, b, v1, v, v3, c3, V4, Us, Vg in order, and so i, = 5,
| X| > 9. Suppose G[{v4,...,v9}] has no red Ps. Then G[{va,...,v9}] contains at most one part of
the Gallai-partition with order three, say A4, and we may assume G[A4] has a monochromatic Ps
in some color m other than red and blue if [A4] = 3 by Claim 7. Let 4 := 1, iy, := 1, 7} := 0 for all
color j € [k]\{m} other than red. Let N* := |G;x| + [(Zle i7)—iy] =6 < N. Then G[{vy, ..., v9}]
has no monochromatic copy of Gi; in any color j € [k], which contradicts to the minimality of N.
Thus G[{vy,...,v9}] has a red P5 with vertices, say vy, ..., vs, in order. But then we obtain a red

C12 with vertices ag, v1,v9,v3, b3, 4, . . ., Vs, €3, Vg in order, a contradiction. Therefore, | X NB| < 1.
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By symmetry, | X N B3| < 1. Let w € X N B! when X N B! # () and w’ € X N B3 when X N B3 # .
Then A; U Aj is red-complete to X\ {w,w'}. It follows that n = 5 and | XNB!| = [X N B3| = 1, else
G[A1 U A3 U (X\{w,w'})] has a red G, because | X| > 2n — 8 + min{iy, i, }, a contradiction. But
then we obtain a blue Cj¢ with vertices ag,ay,w, by, ba, az,w’, b3, co, c3 in order, a contradiction.
This proves that |A3] < 2 and so G[4;] has no monochromatic copy of Ps for all i € [p] with ¢ > 3.
Since G[R U B] has a green P3, it follows that G[As] has a green P3, so i; = 0 for all color j € [k]
other than red, blue and green by Claim 4. =

Claim 11. If i, = |A1] + 1, then |R| < 2.

Proof. Suppose i, = |A1|+ 1 but |R| > 3. By Claim 8, i, > |R|, it follows that |B| > 1+ n +1i, +
ir +1ig — |A1] — |R| > 3+ n. Thus G[B U R] has no blue P5 with both ends in B, else we obtain
a blue G;,. Let if := i, — |Ai| =1, i} := i, — |R| + 1 (when n = 5) or i} := max{i, — |R| + 1,2}
(when n = 6), 7 := i; for all j € [k] other than red and blue. Let ij := max{i} | j € [k]} and
N* = |G| + [(Zle i;) —i;]. Then 3 < N* < N. Observe that |B| > N*. By minimality of
N, G[B] has a red Gy = Pyjxy3 with vertices, say z1,...,2,, in order, where ¢ = 2iy + 3. If R is
blue-complete to {z1, x4}, then R is red-complete to B\{z1,z4} because G[B U R] has no blue P
with both ends in B. But then G[4; U RU {x2,...,24-1}] has a red Gj,, a contradiction. Thus
R is not blue-complete to {z1, 24}, and so we may assume y;x; is colored red. Then i, =n —1
and R\{y;} is blue-complete to {z4—2, 24}, else G[A1 URU{z1,...,24}] has ared G;.. So R\{y1}
is red-complete to B\{z,_2,z,} because G[B U R] has no blue P5 with both ends in B. But then
G[A1URU{z2,...,24-1}] has ared G;, = Cyy, a contradiction. -

Claim 12. i =n — 1.

Proof. Suppose i, < n—2. By Claim 6 and Claim 9, |A;| > 3 and i, > |A4], it follows that n = 6,
ir =n—1=>5,4 =4, and |A;| = 3. By Claim 10, |As| = 3, |A3]| < 2, 4; = 0 for all colors j € [k]\[3].
By Claim 11, |R| < 2 and so Ay C B. It follows that |B| = 7+, +i, +ig—|A1UR| = 14— |R| > 12.
Then G[B U R] has no blue P5 with both ends in B, else G has a blue P because |A;| = 3. Thus
there exists a set W such that (B U R)\(Az U W) is red-complete to A, where W C (B U R)\ A2
with [W| < 1. Let iy =iy — [A1] = 1, 47 := 2, 4} := 0 for all j € [k] other than red and blue. Let

N* = |G —i—[(Z?zl i) —iy] = 8. Then N* < N. Observe that |B\(A2UW)| = B[ —[As| = |W| >
8 = N*. By minimality of N, G[B\(A2UW)] must contain a red G;x = Pr. But then G[(BUR)\W]

has a red C'19, a contradiction. Thus 7, =n — 1. -
Claim 13. A1 =n —2.

Proof. By Claim 9, |A;] < n — 2. Suppose |4;1] < n —3. By Claim 6, n = 6 and |4;| = 3. By
Claim 12, i, = 5. By Claim 10, |A2| = 3, |A3] < 2 and i; = 0 for all colors j € [k]\[3]. By Claim 8,
iy > |R|. Then |B| =7+ iy + i, +1ig — |A1] — |R| > 10, and so G[B U R] has neither blue P; nor
blue P; U P3 with all ends in B else we obtain a blue Cjs.
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Suppose |R| < 2. Then Ay C B and there exists aset W C (BUR)\ Az with |WW| < 3 such that W
is blue-complete to Az and (BUR)\(A2UW) is red-complete to Ay. Since |B\(A2UW)| > 4, we see
that there is a red Py using edges between Ay and B\(A2UW), so i, > 3 and 4, —|R| > 1. Let i} := 2
(when [BNW|[ < 1) or iy :=0 (when [BNW| > 2), iy := min{i, — |R| — 1,2}, 7 := 0 for all colors
j € [k] other than red and blue. Let ij := max{s} | j € [k]} and N* := [Gj:| + [(Z?Zl i3) —iy) =
3 + max{iy, i } + 4} + ir. Observe that |[B\(Aa UW)| =7+, — |[RUW| > N*. By minimality of
N, G[B\(A2 UW)] has a red G = Py;x13 because G[B] has neither blue P; nor blue Ps U P3 and
|As| < 2. But then G[(B U R)\W] has a red G}, because |(BU R)\W| > 7+ i, > |G;,| and A is

red-complete to (B U R)\(A2 UW), a contradiction. Therefore, 3 < |R| < 5 and so i, > 3.

We claim that i, = 5. Suppose 3 < i, < 4. Let 4} := 2, i := 2, i} := i  for all colors j € (k]
other than red and blue, and N* := |G| + [(Z?Zl i) — iy} = 10. Observe that |B| > 10 = N*.
Since G[B] has no blue P;, by minimality of N, G[B] has a red P; with vertices, say z1,...,z7,
in order. Then R is blue-complete to {z1,...,x7}\z4, else G[A;1 U RU {x1,...,2z7}] has a red
G;, = Py, 13. But then G[B U R] has a blue P; with vertices x1,y1, T2, Y2, 23, ys3, T5 in order, a

contradiction. Thus i, =5 and so |G| =18, |B| =15 — |R|.

We next consider the case |R| = 3. Suppose first A2 = R. Since R is not red-complete to B,
we may assume that As is blue-complete to z1. Let iy := 2, i := 3, i} := 0 for all colors j € [K]
other than red and blue, and N* := |G| + [(Zle i7) —iy] = 11. Observe that [B\z;| = 11 = N*.
By minimality of N, G[B\z1] has a red Py with vertices, say xa, ..., 210, in order. We claim that
Ay is blue-complete to {z2,x10}, else, say xo is red-complete to As. Then As is blue-complete to
{zs,x10}, else G[A1 UAgU{x2,...,210}] has a red C12. Thus Ay is red-complete to B\{x1, zs,z10}
because G[B U R] has no blue P; with both ends in B. But then we obtain a red C12 with vertices
ai,ag,xs,...,x9,ba, by, co in order, a contradiction. Thus, Ag is blue-complete to {z1,x2,z10}, and
so Ag is red-complete to B\{x1,x2,x10} because G[BU R] has no blue P; with both ends in B. But
then we obtain a red Cio with vertices a1, a9, x3,...,T9,bs, b1, co in order, a contradiction. This
proves that Ay C B. Then there exists a set W C (B U R)\ A2 with |W N B| < 3 such that W is
blue-complete to As and (B U R)\(A2 UW) is red-complete to As. Then |W| <3 and [WNB| <3
or |IW| =4 and |W N B| = 1 because G[B U R] has no blue P; with both ends in B. Let

iy :=2—|W|, iy := 2 when |[W| € {0,1},
iy =0, iy :=2 when |[W|>2and [WNB|<2,
v =1 when |W|=|WnNB|=3,

iy =0, iy :

i; := 0 for all colors j € [k] other than red and blue, and N* := |G|+ [(Zle i7) —iy] = 3+2i7 +ij.
Observe that |B\(A UW)| > N*. By minimality of N, G[B\(A2 UW)] has a red Gy = Pajxy3
because G[B U R] has neither blue P; nor blue Ps U P; with all ends in B and |As] < 2. If
|[W| < 3 and |[W N B| <2, then G[(BU R)\W] has a red Cy2 because |(B U R)\W| > 12 and As
is red-complete to (B U R)\(A2 UW). Thus |W| = |WNB|=3or |W|=4and |[WNB|=1.

For the former case, G[B\(A2 U W)| has a red Ps; with vertices, say xi,...,z5, in order. Let
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W := {wy,wa, w3} C B. Then As is blue-complete to W and red-complete to {x1,...,z5}, and so
W is red-complete to {z1, ..., x5} because G[B] has no blue P;. But then we obtain a red C}2 with
vertices ag, T1, w1, T2, Wa, T3, W3, T4, b2, Ts, 2, T in order, where zg € B\(Aa UW U {z1,...,25}),
a contradiction. For the latter case, G|B\(A2 U W)] has a red P; with vertices, say z1,...,z7,
in order. Let W N B := {w}. Then w is red-complete to {x1,...,z7} because G[B] has no blue
P;. But then we obtain a red Cio with vertices ao, x1,w, x2,...,Zq, b2, X7, o, xg in order, where
xg € B\(A2UW U{x1,...,27}), a contradiction. This proves that |R| € {4,5}.

We claim that G[E(B, R)] has no blue P5 with both ends in B. Suppose there is a blue H := P;
with vertices, say x1,y1,2,Yy2, 23, in order. Then G[(B U R)\V(H)] has no blue P3 with both
ends in B. Let iy := 0, iy := i, — [R| + 1 = 6 — |R|, ij := i; for all colors j € [k] other than
red and blue, and N* := |Gj:| + [(Zle i;) —iy] = 3+2(6—|R|)+1 =16 — 2|R[. Observe
that |B\{z1,x2,z3}| = 12 — |R| > N* since |R| € {4,5}. By minimality of N, G[B\{x1,z2,x3}]
has a red G;: with vertices, say xy4,...,24, in order, where ¢ = 2iy + 6. Then y3 is not blue-
complete to {z4,2,} because G[(B U R)\V(H)] has no blue P; with both ends in B. We may
assume x4ys3 is colored red. Then R\{y1,y2,y3} is blue-complete to zs, else say if xgys is colored
red, we obtain a red Cio with vertices ai,¥ys,x4,...,s,y4,b1,y1,c1,y2 in order, a contradiction.
Since G[(B U R)\V(H)] has no blue P3 with both ends in B, we see that R\{y1,y2,ys} is red-
complete to {z4, ..., x4} \zs. But then we obtain a red C2 with vertices a1, ys, 24, . . . , 10, Y4, b1, Y1
(when |R| = 4), or a1,ys, z4, T5, T6, Y4, 7, Y5, b1, Y1, €1, Y2 (when |R| = 5) in order, a contradiction.
Thus, G[E(B, R)| has no blue Ps with both ends in B. Let i} = 2, i} := 2, i = ij for all
colors j € [k] other than red and blue, and N* := |Gj«| + [(Zle i7) —iy] = 10. Observe that
|B| > 10 = N*. By minimality of N, G[B] has a red P; with vertices, say x1,..., 27, in order. We
claim that x; is blue-complete to R. Suppose x1y; is colored red. Then R\y; is blue-complete to
{z5,27}, else G[A;1 URU{z1,...,27}| has a red C12. Thus R\y; is red-complete to B\{xs,z7}
because G[E(B, R)] has no blue P; with both ends in B. But then we obtain a red Cj2 with
vertices ai, Y2, T2, ..., xe, Y3, b1,Y4,C1,y1 in order, a contradiction. Therefore, x; is blue-complete
to R. By symmetry, z7 is blue-complete to R. Then R is red-complete to B\{z1,z7} because
G[E(B, R)] has no blue Ps5 with both ends in B. But then we obtain a red Ci2 with vertices

ai, Y2, T2, .- ., Te, Y3, b1, Y4, c1,y1 in order, a contradiction. This proves that |A;| =n — 2. -

By Claim 12, Claim 13 and Claim 8, iy =n — 1, |A1| = n — 2, i, > |R|. By Claim 11, |R| < 2.
Then |B| > 3+ n+ i, — |R| > 3+ n, and so G[B U R] has no blue Ps with both ends in B, else
there is a blue Csy,,.

Claim 14. i, = n — 1.

Proof. Suppose i, <n —2. By Claim 3, B is not blue-complete to R. Let x € B and y € R such
that xy is colored red. Let ij :=1d, — [A1| = 1 and iy := i, — |R[ < n —3, if :=i; < n —4 for all
colors j € [k] other than red and blue. Let N* := |G| + [(Z?Zl i) —iy]. Then 3 < N* < N and
|B\z| = N —|A;|—|R|—1> N*. By minimality of N, G[B\z] must have a red P;: 3 with vertices,
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say x1,%2,...,%2x43, in order. Then {x1,z2: 3} must be blue-complete to {z,y} and xxs must
be colored blue under c, else we obtain a red Py;, 3 using vertices in V(Py;x43) U {z,y} U A;. But

then G[B U R] has a blue Ps with vertices x2,,21,y, ¥2;:43 in order, a contradiction. =

Recall that |[A;] = n — 2, G[A1] has a green P3, and i; = 1. We next show that |As| > 3.
Suppose |Ag| < 2. Then by Claim 10, |A;| = 4 and so n = 6. Let A; := {a1,b1,c1,21}. Let
iy ==y — [A1] = 1, iy =i, — |R|+1=6— |R| > 4, iy :== i, — 1 =0 and i} := i; for all j € [k]
other than red, blue and green. Let i; := max{i} | j € [k]} and N* := |Gz| + [(Zle i7) — iy
Then 3 < N* < N and |B| = |G| — |41| — |R| = N*. By minimality of N, G[B] must contain a
red Giyx. It follows that |R| = 2 and Gix = P11. Let w1, 29,..., 211 be the vertices of the red Py; in
order. If R is blue-complete to {x1,x11}, then R is red-complete to B\{x1,x11} because G[B U R]
has no blue P5 with both ends in B. But then G has a red C1o with vertices a1, y1,z2,..., %10, Y2
in order, a contradiction. Thus, R is not blue-complete to {z1,z11} and we may assume z1y; is
colored red. Then z11y1 and zgy2 are colored blue, else G[{x1,...,z11} U RU A;] has a red Cia.
If x11y92 is colored red, then x1ys and x3y; are colored blue by the same reasoning. But then we
obtain a blue Ci9 with vertices a1, x1, yo, T9, b1, X3, Y1, T11, C1, T2, 21, T4 in order, a contradiction.
Thus z11y2 is colored blue. Then y; is red-complete to B\{z9,x11}, else, say yjw is colored blue
with w € B\{zg, z11}, then G[BUR)] has a blue P5 with vertices w, y1, Z11, Y2, T9 in order. It follows
that {z11,w} ¢ A; for all j € [p], where w € B\{zg,z11}. Moreover, xays is colored blue, else
G has a red C1o with vertices aj,y2,x2,...,210,y1 in order, a contradiction. Thus, G[B\{x2, x9}]
has no blue Ps, else G[A; U B U {y2}] has a blue Cja. Therefore, z;z1; is colored red for some
i €{3,...,7}. But then we obtain a red C15 with vertices y1, 1, ...,;, 11, Z10,- - . , ;41 in order,
a contradiction. Thus 3 < |Ag| <n —2 and Az C B because |R| < 2.

Since G[B U R] has no blue P; with both ends in B, there exists at most one vertex, say
w € (B U R)\As, such that (B U R)\(A2 U{w}) is red-complete to Ag, and w is blue-complete to
As. Suppose 3 < |A3] < n—2. Then n = 6 and |A1| = 4 by Claim 10, A3 C B and A3 must
be red-complete to Ay, so w ¢ As. Since G[B U R] has no blue P; with both ends in B, there
exists at most one vertex, say w' € (B U R)\(Az U As), such that (B U R)\(42 U A3 U {w'}) is
red-complete to As. Note that we may have v’ = w. Since |(BU R)\{w,w'}| > |G| — |A1| — 2 =
18 —4 — 2 = 12, we see that G[(B U R)\{w,w'}] has a red C}2, a contradiction. Thus |A3| < 2
and so G[B\Az| has no monochromatic copy of P3 in color j for all j € [k] other than red and
blue. Let ij := 1, iy := n — 1 — |Ay], and 4} := 0 for all colors j € [k] other than red and

T

blue. Let N* := |G| + [(Z?Zl i7) —ir] = 2iy +1 =2n—1-2As|. Then 3 < N* < N and
|B\(A2 U{w})| > 2n + 1 — |R| — |A2| > N*. By minimality of N, G[B\(A2 U {w})] has a red

Gix = Py;x13. But then G[(B U R)\{w}] has a red Cy,, a contradiction.

This completes the proof of Theorem 1.9. m
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