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Abstract

A Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles,
and a Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer k ≥ 1
and graphs H1, . . . ,Hk, the Gallai-Ramsey number GR(H1, . . . ,Hk) is the least integer n such
that every Gallai k-coloring of the complete graph Kn contains a monochromatic copy of Hi

in color i for some i ∈ {1, . . . , k}. When H = H1 = · · · = Hk, we simply write GRk(H). We
continue to study Gallai-Ramsey numbers of even cycles and paths. For all n ≥ 3 and k ≥ 1, let
Gi = P2i+3 be a path on 2i+3 vertices for all i ∈ {0, 1, . . . , n−2} and Gn−1 ∈ {C2n, P2n+1}. Let
ij ∈ {0, 1, . . . , n−1} for all j ∈ {1, . . . , k} with i1 ≥ i2 ≥ · · · ≥ ik. Song recently conjectured that

GR(Gi1 , . . . , Gik) = |Gi1 |+
∑k

j=2 ij . This conjecture has been verified to be true for n ∈ {3, 4}
and all k ≥ 1. In this paper, we prove that the aforementioned conjecture holds for n ∈ {5, 6}
and all k ≥ 1. Our result implies that for all k ≥ 1, GRk(C2n) = GRk(P2n) = (n− 1)k + n+ 1
for n ∈ {5, 6} and GRk(P2n+1) = (n− 1)k + n+ 2 for 1 ≤ n ≤ 6.
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1 Introduction

In this paper we consider graphs that are finite, simple and undirected. Given a graph G and a set

A ⊆ V (G), we use |G| to denote the number of vertices of G, and G[A] to denote the subgraph of

G obtained from G by deleting all vertices in V (G)\A. A graph H is an induced subgraph of G

if H = G[A] for some A ⊆ V (G). We use Pn, Cn and Kn to denote the path, cycle and complete

graph on n vertices, respectively. For any positive integer k, we write [k] for the set {1, . . . , k}.
Given an integer k ≥ 1 and graphs H1, . . . ,Hk, the classical Ramsey number R(H1, . . . ,Hk)

is the least integer n such that every k-coloring of the edges of Kn contains a monochromatic

copy of Hi in color i for some i ∈ [k]. Ramsey numbers are notoriously difficult to compute in

general. In this paper, we study Ramsey numbers of graphs in Gallai colorings, where a Gallai

coloring is a coloring of the edges of a complete graph without rainbow triangles (that is, a triangle

∗Corresponding author. E-mail address: jmzhang@knights.ucf.edu. Current address: The High School affiliated
to the Southern University of Science and Technology, Shenzhen, Guangdong 518133, China.
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with all its edges colored differently). Gallai colorings naturally arise in several areas including:

information theory [17]; the study of partially ordered sets, as in Gallai’s original paper [12] (his

result was restated in [15] in the terminology of graphs); and the study of perfect graphs [5]. There

are now a variety of papers which consider Ramsey-type problems in Gallai colorings (see, e.g.,

[2, 3, 4, 6, 10, 13, 14, 16, 20, 24]). These works mainly focus on finding various monochromatic

subgraphs in such colorings. More information on this topic can be found in [9, 11].

A Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer k ≥ 1

and graphs H1, . . . ,Hk, the Gallai-Ramsey number GR(H1, . . . ,Hk) is the least integer n such that

every Gallai k-coloring of Kn contains a monochromatic copy of Hi in color i for some i ∈ [k].

When H = H1 = · · · = Hk, we simply write GRk(H) and Rk(H). Clearly, GRk(H) ≤ Rk(H) for

all k ≥ 1 and GR(H1, H2) = R(H1, H2). In 2010, Gyárfás, Sárközy, Sebő and Selkow [14] proved

the general behavior of GRk(H).

Theorem 1.1 ([14]) Let H be a fixed graph with no isolated vertices and let k ≥ 1 be an integer.

Then GRk(H) is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star,

and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when H = C3), GRk(H) behaves nicely, while the

order of magnitude of Rk(H) seems hopelessly difficult to determine. It is worth noting that finding

exact values of GRk(H) is far from trivial, even when |H| is small. We will utilize the following

important structural result of Gallai [12] on Gallai colorings of complete graphs.

Theorem 1.2 ([12]) For any Gallai coloring c of a complete graph G with |G| ≥ 2, V (G) can be

partitioned into nonempty sets V1, . . . , Vp with p ≥ 2 so that at most two colors are used on the

edges in E(G)\(E(G[V1]) ∪ · · · ∪ E(G[Vp])) and only one color is used on the edges between any

fixed pair (Vi, Vj) under c.

The partition given in Theorem 1.2 is a Gallai-partition of the complete graph G under c. Given

a Gallai-partition V1, . . . , Vp of the complete graph G under c, let vi ∈ Vi for all i ∈ [p] and let

R := G[{v1, . . . , vp}]. Then R is the reduced graph of G corresponding to the given Gallai-partition

under c. Clearly, R is isomorphic to Kp. By Theorem 1.2, all edges in R are colored by at most two

colors under c. One can see that any monochromatic H in R under c will result in a monochromatic

H in G under c. It is not surprising that Gallai-Ramsey numbers GRk(H) are closely related to

the classical Ramsey numbers R2(H). Recently, Fox, Grinshpun and Pach posed the following

conjecture on GRk(H) when H is a complete graph.

Conjecture 1.3 ([9]) For all integers k ≥ 1 and t ≥ 3,

GRk(Kt) =

{
(R2(Kt)− 1)k/2 + 1 if k is even

(t− 1)(R2(Kt)− 1)(k−1)/2 + 1 if k is odd.
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The first case of Conjecture 1.3 follows from a result of Chung and Graham [6] from 1983.

A simpler proof of this case can be found in [14]. The case when t = 4 was recently settled

in [18]. Conjecture 1.3 remains open for all t ≥ 5. The next open case, when t = 5, involves

R2(K5). Angeltveit and McKay [1] recently proved that R2(K5) ≤ 48. It is widely believed

that R2(K5) = 43 (see [1]). It is worth noting that Schiermeyer [19] recently observed that if

R2(K5) = 43, then Conjecture 1.3 fails for K5 when k = 3. More recently, Gallai-Ramsey numbers

of odd cycles on at most 15 vertices have been completely settled by Fujita and Magnant [10] for

C5, Bruce and Song [4] for C7, Bosse and Song [2] for C9 and C11, and Bosse, Song and Zhang [3]

for C13 and C15. Very recently, the exact values of GRk(C2n+1) for n ≥ 8 has been solved by

Zhang, Song and Chen [23]. We summarize these results below.

Theorem 1.4 ([2, 3, 4, ?]) For all n ≥ 3 and k ≥ 1, GRk(C2n+1) = n · 2k + 1.

In this paper, we continue to study Gallai-Ramsey numbers of even cycles and paths. For

all n ≥ 3 and k ≥ 1, let Gn−1 ∈ {C2n, P2n+1}, Gi := P2i+3 for all i ∈ {0, 1, . . . , n − 2}, and

ij ∈ {0, 1, . . . , n − 1} for all j ∈ [k]. We want to determine the exact values of GR(Gi1 , . . . , Gik).

By reordering colors if necessary, we assume that i1 ≥ · · · ≥ ik. Song and Zhang [21] recently

proved that

Proposition 1.5 ([21]) For all n ≥ 3 and k ≥ 1,

GR(Gi1 , . . . , Gik) ≥ |Gi1 |+
k∑
j=2

ij .

In the same paper, Song [21] further made the following conjecture.

Conjecture 1.6 ([21]) For all n ≥ 3 and k ≥ 1,

GR(Gi1 , . . . , Gik) = |Gi1 |+
k∑
j=2

ij .

To completely solve Conjecture 1.6, one only needs to consider the case Gn−1 = C2n.

Proposition 1.7 ([21]) For all n ≥ 3 and k ≥ 1, if Conjecture 1.6 holds for Gn−1 = C2n, then it

also holds for Gn−1 = P2n+1.

Let Mn denote a matching of size n on 2n vertices. As observed in [21], the truth of Conjec-

ture 1.6 implies that GRk(C2n) = GRk(P2n) = GRk(Mn) = (n − 1)k + n + 1 for all n ≥ 3 and

k ≥ 1, and GRk(P2n+1) = (n− 1)k + n+ 2 for all n ≥ 1 and k ≥ 1. It is worth noting that Dzido,

Nowik and Szuca [7] proved that R3(C2n) ≥ 4n for all n ≥ 3. The truth of Conjecture 1.6 implies

that GR3(C2n) = 4n − 2 < R3(C2n) for all n ≥ 3. Conjecture 1.6 has recently been verified to be

true for n ∈ {3, 4} and all k ≥ 1.
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Theorem 1.8 ([21]) For n ∈ {3, 4} and all k ≥ 1, let Gi = P2i+3 for all i ∈ {0, 1, . . . , n − 2},
Gn−1 = C2n, and ij ∈ {0, 1, . . . , n− 1} for all j ∈ [k] with i1 ≥ · · · ≥ ik. Then

GR(Gi1 , . . . , Gik) = |Gi1 |+
k∑
j=2

ij .

In this paper, we continue to establish more evidence for Conjecture 1.6. We prove that Con-

jecture 1.6 holds for n ∈ {5, 6} and all k ≥ 1.

Theorem 1.9 For n ∈ {5, 6} and all k ≥ 1, let Gi = P2i+3 for all i ∈ {0, 1, . . . , n−2}, Gn−1 = C2n,

and ij ∈ {0, 1, . . . , n− 1} for all j ∈ [k] with i1 ≥ · · · ≥ ik. Then

GR(Gi1 , . . . , Gik) = |Gi1 |+
k∑
j=2

ij .

We prove Theorem 1.9 in Section 2. Applying Theorem 1.9 and Proposition 1.7, we obtain the

following.

Corollary 1.10 Let Gi = P2i+3 for all i ∈ {0, 1, 2, 3, 4, 5}. For every integer k ≥ 1, let ij ∈
{0, 1, 2, 3, 4, 5} for all j ∈ [k] with i1 ≥ · · · ≥ ik. Then

GR(Gi1 , . . . , Gik) = |Gi1 |+
k∑
j=2

ij .

Corollary 1.11 For all k ≥ 1,

(a) GRk(P2n+1) = (n− 1)k + n+ 2 for all n ∈ [6].

(b) GRk(C2n) = GRk(P2n) = (n− 1)k + n+ 1 for n ∈ {5, 6}.

Finally, we shall make use of the following results on 2-colored Ramsey numbers of cycles and

paths in the proof of Theorem 1.9.

Theorem 1.12 ([22]) For all n ≥ 3, R2(C2n) = 3n− 1.

Theorem 1.13 ([8]) For all integers n,m satisfying 2n ≥ m ≥ 3, R(Pm, C2n) = 2n+ bm2 c − 1.

2 Proof of Theorem 1.9

We are ready to prove Theorem 1.9. Let n ∈ {5, 6}. By Proposition 1.5, it suffices to show that

GR(Gi1 , . . . , Gik) ≤ |Gi1 |+
∑k

j=2 ij .

By Theorem 1.8 and Proposition 1.7, we may assume that i1 = n − 1. Then |Gi1 | = 2n. By

Theorem 1.12 and Theorem 1.13, we have GR(Gi1 , Gi2) = R(Gi1 , Gi2) = 2n + i2. So we may
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assume k ≥ 3. Let N := |Gi1 |+
∑k

j=2 ij . Then N ≥ 2n. Let G be a complete graph on N vertices

and let c : E(G) → [k] be any Gallai coloring of G using at least three colors. We next show

that G contains a monochromatic copy of Gij in color j for some j ∈ [k]. Suppose G contains no

monochromatic copy of Gij in color j for any j ∈ [k] under c. Such a Gallai k-coloring c is called

a bad coloring. Among all complete graphs on N vertices with a bad coloring, we choose G with

N minimum, taken over all n− 1 ≥ i1 ≥ · · · ≥ ik ≥ 0.

By Theorem 1.2, we may consider a Gallai-partition of G with parts A1, . . . , Ap, where p ≥ 2.

We may assume that |A1| ≥ · · · ≥ |Ap| ≥ 1. Let R be the reduced graph of G with vertices

a1, . . . , ap, where ai ∈ Ai for all i ∈ [p]. By Theorem 1.2, assume that the edges of R are colored

either red or blue. Since c uses at least three colors, we see that R 6= G and so |A1| ≥ 2. By

abusing the notation, we use ib to denote ij when the color j is blue. Similarly, we use ir (resp. ig)

to denote ij when the color j is red (resp. green). Let

Ab := {ai ∈ {a2, . . . , ap} | aia1 is colored blue in R},

Ar := {aj ∈ {a2, . . . , ap} | aja1 is colored red in R}.

Then |Ab| + |Ar| = p − 1. Let B :=
⋃
ai∈Ab

Ai and R :=
⋃
aj∈Ar

Aj . Then |A1| + |R| + |B| = N

and max{|B|, |R|} 6= 0 because p ≥ 2. Thus G contains a blue P3 between B and A1, or a red P3

between R and A1, and so max{ib, ir} ≥ 1. We next prove several claims.

Claim 1. Let r ∈ [k] and let s1, . . . , sr be nonnegative integers with s1 + · · · + sr ≥ 1. If

ij1 ≥ s1, . . . , ijr ≥ sr for colors j1, . . . , jr ∈ [k], then for any S ⊆ V (G) with |S| ≥ |G|−(s1+· · ·+sr),
G[S] must contain a monochromatic copy of Gi∗jq in color jq for some jq ∈ {j1, . . . , jr}, where

i∗jq = ijq − sq.

Proof. Let i∗j1 := ij1 − s1, . . . , i
∗
jr

:= ijr − sr, and i∗j := ij for all j ∈ [k]\{j1, . . . , jr}. Let

i∗` := max{i∗j | j ∈ [k]}. Then i∗` ≤ i1. Let N∗ := |Gi∗` | + [(
∑k

j=1 i
∗
j ) − i∗` ]. Then N∗ ≥ 3 and

N∗ ≤ N − (s1 + · · · + sr) < N because s1 + · · · + sr ≥ 1. Since |S| ≥ N − (s1 + · · · + sr) ≥ N∗

and G[S] does not have a monochromatic copy of Gij in color j for all j ∈ [k]\{j1, . . . , jr} under

c, by minimality of N , G[S] must contain a monochromatic copy of Gi∗jq in color jq for some

jq ∈ {j1, . . . , jr}.

Claim 2. |A1| ≤ n−1, and so G does not contain a monochromatic copy of a graph on |A1|+1 ≤ n
vertices in color m, where m ∈ [k] is a color that is neither red nor blue.

Proof. Suppose |A1| ≥ n. We first claim that ib ≥ |B| and ir ≥ |R|. Suppose ib ≤ |B| − 1 or

ir ≤ |R| − 1. Then we obtain a blue Gib using the edges between B and A1, or a red Gir using the

edges between R and A1, a contradiction. Thus ib ≥ |B| and ir ≥ |R|, as claimed. Let i∗b := ib−|B|
and i∗r := ir − |R|. Since |A1| = N − |B| − |R|, by Claim 1 applied to ib ≥ |B|, ir ≥ |R| and A1,

G[A1] must have a blue Gi∗b or a red Gi∗r , say the latter. Then ir > i∗r . Thus |R| > 0 and Gi∗r is a
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red path on 2i∗r + 3 vertices. Note that

|A1| = |Gi1 |+
k∑
j=2

ij − |B| − |R|

≥

{
|Gir |+ ib − |B| − |R| if ir ≥ ib
|Gib |+ ir − |B| − |R| if ir < ib,

≥

{
|Gir |+ i∗b − |R| if ir ≥ ib
2ib + 2 + ir − |B| − |R| ≥ i∗b + (2ir + 3)− |R| if ir < ib,

≥ |Gir | − |R|.

Then

|A1| − |Gi∗r | ≥ |Gir | − |Gi∗r | − |R|

=

{
(3 + 2ir)− (3 + 2i∗r)− |R| = |R| if ir ≤ n− 2

(2 + 2ir)− (3 + 2i∗r)− |R| = |R| − 1 if ir = n− 1.

But then G[A1∪R] contains a red Gir using the edges of the Gi∗r and the edges between A1\V (Gi∗r )

and R, a contradiction. This proves that |A1| ≤ n−1. Next, let m ∈ [k] be any color that is neither

red nor blue. Suppose G contains a monochromatic copy of a graph, say J , on |A1|+ 1 vertices in

color m. Then V (J) ⊆ A` for some ` ∈ [p]. But then |A`| ≥ |A1|+ 1, contrary to |A1| ≥ |A`|.

For two disjoint sets U,W ⊆ V (G), we say U is blue-complete (resp. red-complete) to W if all

the edges between U and W are colored blue (resp. red) under c. For convenience, we say u is

blue-complete (resp. red-complete) to W when U = {u}.

Claim 3. min{|B|, |R|} ≥ 1, p ≥ 3, and B is neither red- nor blue-complete to R under c.

Proof. Suppose B = ∅ or R = ∅. By symmetry, we may assume that R = ∅. Then B 6= ∅ and

so ib ≥ 1. By Claim 2, |A1| ≤ n − 1 ≤ 5 because n ∈ {5, 6}. Then |A1| ≤ ib + 4. If ib ≤ |A1| − 1,

then ib ≤ n − 2 by Claim 2. But then we obtain a blue Gib using the edges between B and A1.

Thus ib ≥ |A1|. Let i∗b = ib − |A1|. By Claim 1 applied to ib ≥ |A1| and B, G[B] must have a blue

Gi∗b . Since |B| ≥ n+ 1 + i∗b , we see that G contains a blue Gib , a contradiction. Hence R 6= ∅, and

similarly B 6= ∅, and so p ≥ 3 for any Gallai-partition of G. It follows that B is neither red- nor

blue-complete to R, otherwise {B ∪A1, R} or {B,R ∪A1} yields a Gallai-partition of G with only

two parts.

Claim 4. Let m ∈ [k] be a color that is neither red nor blue. Then im ≤ n − 4. In particular, if

im ≥ 1, then G contains a monochromatic copy of P2im+1 in color m under c.

Proof. Note that im ≤ n − 4 is is trivially true when im = 0 because n ∈ {5, 6} and n − 4 ≥ 1.

Suppose im ≥ 1. By Claim 2, |A1| ≤ n − 1 and G contains no monochromatic copy of P|A1|+1
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in color m under c. Let i∗m := im − 1. By Claim 1 applied to im ≥ 1 and V (G), G must have a

monochromatic copy of Gi∗m in color m under c. Since n ∈ {5, 6}, |A1| ≤ n − 1 and G contains

no monochromatic copy of P|A1|+1 in color m, we see that i∗m ≤ n − 5. Thus im ≤ n − 4 and G

contains a monochromatic copy of P2im+1 in color m under c if im ≥ 1.

By Claim 3 and the fact that |A1| ≥ 2, G has a red P3 and a blue P3. Thus min{ib, ir} ≥ 1.

By Claim 4, max{ib, ir} = i1 = n− 1. Then |G| = |Gi1 |+
∑k

j=2 ij ≥ 2n+ 1. For the remainder of

the proof of Theorem 1.9, we choose p ≥ 3 to be as large as possible.

Claim 5. min{|B|, |R|} ≤ n− 1 if |A1| ≥ n− 3.

Proof. Suppose |A1| ≥ n − 3 but min{|B|, |R|} ≥ n. By symmetry, we may assume that |B| ≥
|R| ≥ n. Let B := {x1, x2, . . . , x|B|} and R := {y1, y2, . . . , y|R|}. Let H := (B,R) be the complete

bipartite graph obtained from G[B ∪ R] by deleting all the edges with both ends in B or in R.

Then H has no blue P7 with both ends in B and no red P7 with both ends in R, else we obtain a

blue C2n or a red C2n because |A1| ≥ n− 3. We next show that H has no red K3,3.

Suppose H has a red K3,3. We may assume that H[{x1, x2, x3, y1, y2, y3}] is a red K3,3 under c.

Since H has no red P7 with both ends in R, {y4, . . . , y|R|} must be blue-complete to {x1, x2, x3}.
Thus H[{x1, x2, x3, y4, y5}] has a blue P5 with both ends in {x1, x2, x3} and H[{x1, x2, x3, y1, y2, y3}]
has a red P5 with both ends in {y1, y2, y3}. If |A1| ≥ n− 2 or min{ib, ir} ≤ n− 2, then we obtain

a blue Gib or a red Gir , a contradiction. It follows that |A1| = n − 3 and ib = ir = n − 1.

Then |G| = |Gi1 | +
∑k

j=2 ij ≥ 2n + (n − 1) = 3n − 1. Thus |B ∪ R| = |G| − |A1| ≥ 2n + 2. If

|R| ≥ 6, then {y4, y5, y6} must be red-complete to {x4, x5, x6}, else H has a blue P7 with both

ends in B. But then we obtain a red C2n in G. Thus |R| = 5, n = 5, and so |B| ≥ 7. Let

A1 = {a1, a∗1}. For each j ∈ {4, 5, 6, 7} and every W ⊆ {x1, x2, x3} with |W | = 2, no xj is red-

complete to W under c, else, say, x4 is red-complete to {x1, x2}, then we obtain a red C10 with

vertices a1, y1, x1, x4, x2, y2, x3, y3, a
∗
1, y4 in order, a contradiction. We may assume that x4x1, x5x2

are colored blue. But then we obtain a blue C10 with vertices a1, x4, x1, y4, x3, y5, x2, x5, a
∗
1, x6 in

order, a contradiction. This proves that H has no red K3,3.

Let X := {x1, x2, . . . , x5} and Y := {y1, y2, . . . , y5}. Let Hb and Hr be the spanning subgraphs

of H[X ∪ Y ] induced by all the blue edges and red edges of H[X ∪ Y ] under c, respectively. By

the Pigeonhole Principle, there exist at least three vertices, say x1, x2, x3, in X such that either

dHb
(xi) ≥ 3 for all i ∈ [3] or dHr(xi) ≥ 3 for all i ∈ [3]. Suppose dHr(xi) ≥ 3 for all i ∈ [3]. We may

assume that x1 is red-complete to {y1, y2, y3}. Since |Y | = 5 and H has no red P7 with both ends

in R, we see that NHr(x1) = NHr(x2) = NHr(x3) = {y1, y2, y3}. But then H[{x1, x2, x3, y1, y2, y3}]
is a red K3,3, contrary to H has no red K3,3. Thus dHb

(xi) ≥ 3 for all i ∈ [3]. Since |Y | = 5, we see

that any two of x1, x2, x3 have a common neighbor in Hb. Furthermore, two of x1, x2, x3, say x1, x2,

have at least two common neighbors in Hb. It can be easily checked that H has a blue P5 with

ends in {x1, x2, x3}, and there exist three vertices, say y1, y2, y3, in Y such that yixi is blue for all
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i ∈ [3] and {x4, . . . , x|B|} is red-complete to {y1, y2, y3}. Then H has a blue P5 with both ends in

{x1, x2, x3} and a red P5 with both ends in {y1, y2, y3}. If |A1| ≥ n− 2 or min{ib, ir} ≤ n− 2, then

we obtain a blue Gib or a red Gir , a contradiction. It follows that |A1| = n− 3 and ib = ir = n− 1.

Thus |B ∪R| ≥ 1 + n+ ib + ir − |A1| = 2n+ 2. Then |B| ≥ n+ 1 and so H[{x4, x5, x6, y1, y2, y3}]
is a red K3,3, contrary to the fact that H has no red K3,3.

Claim 6. |A1| ≥ 3.

Proof. Suppose |A1| = 2. ThenG has no monochromatic copy of P3 in color j for any j ∈ {3, . . . , k}
under c. By Claim 4, i3 = · · · = ik = 0 and so N = 1 + n + ib + ir. We may assume that

|A1| = · · · = |At| = 2 and |At+1| = · · · = |Ap| = 1 for some integer t satisfying p ≥ t ≥ 1. Let

Ai = {ai, bi} for all i ∈ [t]. By reordering if necessary, each of A1, . . . , At can be chosen as the

largest part in the Gallai-partition A1, A2, . . . , Ap of G. For all i ∈ [t], let

Aib := {aj ∈ V (R) | ajai is colored blue in R},

Air := {aj ∈ V (R) | ajai is colored red in R}.

Let Bi :=
⋃
aj∈Ai

b
Aj and Ri :=

⋃
aj∈Ai

r
Aj . Then |Bi|+ |Ri| = 2n−2 + min{ib, ir} = n−1 + ib+ ir.

Let

EB := {aibi | i ∈ [t] and |Ri| < |Bi|},

ER := {aibi | i ∈ [t] and |Bi| < |Ri|},

EQ := {aibi | i ∈ [t] and |Bi| = |Ri|}.

Let c∗ be obtained from c by recoloring all the edges in EB blue, all the edges in ER red, and

all the edges in EQ either red or blue. Then all the edges of G are colored red or blue under c∗.

Note that |G| = n+ 1 + ib + ir = R(Gib , Gir). By Theorem 1.12 and Theorem 1.13, we see that G

must contain a blue Gib or a red Gir under c∗. By symmetry, we may assume that G has a blue

H := Gib under c∗. Then H contains no edges of ER but must contain at least one edge of EB∪EQ,

else we obtain a blue H in G under c. We choose H so that |E(H) ∩ (EB ∪ EQ)| is minimal. We

may further assume that a1b1 ∈ E(H) ∩ (EB ∪ EQ), so that |B1| ≥ |R1|. Since |B1| + |R1| =

2n− 2 + min{ib, ir} ≥ 2n− 2 + 1, we see that |B1| ≥ n ≥ 5 and |R1| ≤ n− 1 + bmin{ib,ir}
2 c ≤ 7. So

ib ≥ 2. By Claim 5, |R1| ≤ 4 when n = 5. Let W := V (G)\V (H).

We next claim that ib = n− 1. Suppose ib ≤ n− 2. Then H = P2ib+3, ir = n− 1, |G| = 2n+ ib

and |W | = 2n−3− ib ≥ n−1. Let x1, x2, . . . , x2ib+3 be the vertices of H in order. We may assume

that x`x`+1 = a1b1 for some ` ∈ [2ib + 2]. If a vertex w ∈ W is blue-complete to {a1, b1}, then

we obtain a blue H ′ := Gib under c∗ with vertices x1, . . . , x`, w, x`+1, . . . , x2ib+2 in order (when

` 6= 2ib + 2) or x1, x2, . . . , x2ib+2, w in order (when ` = 2ib + 2) such that |E(H ′) ∩ (EB ∪ EQ)| <
|E(H)∩ (EB ∪EQ)|, contrary to the choice of H. Thus no vertex in W is blue-complete to {a1, b1}
under c and so W must be red-complete to {a1, b1} under c. This proves that W ⊆ R1. We

next claim that ` = 1 or ` = 2ib + 2. Suppose ` ∈ {2, . . . , 2ib + 1}. Then {x1, x2ib+3} must be
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red-complete to {a1, b1}, else, we obtain a blue H ′ := Gib with vertices x`, . . . , x1, x`+1, . . . , x2ib+3

or x1, . . . , x`, x2ib+3, x`+1, . . . , x2ib+2 in order under c∗ such that |E(H ′) ∩ (EB ∪ EQ)| < |E(H) ∩
(EB ∪ EQ)|. Thus {x1, x2ib+3} ⊆ R1 and so W ∪ {x1, x2ib+3} is red-complete to {a1, b1}. If

n = 5, then 4 ≥ |R1| ≥ |W ∪ {x1, x2ib+3}| ≥ 6, a contradiction. Thus n = 6 and 7 ≥ |R1| ≥
|W ∪ {x1, x2ib+3}| ≥ 7. It follows that R1 ∩ V (H) = {x1, x2ib+3} and thus either {x`−2, x`−1}
or {x`+2, x`+3} is blue-complete to {a1, b1}. In either case, we obtain a blue H ′ := Gib under c∗

such that |E(H ′) ∩ (EB ∪ EQ)| < |E(H) ∩ (EB ∪ EQ)|, a contradiction. This proves that ` = 1

or ` = 2ib + 2. By symmetry, we may assume that ` = 1. Then x1x3 is colored blue under

c because A1 = {a1, b1}. Similarly, for all j ∈ {3, . . . , 2ib + 2}, {xj , xj+1} is not blue-complete

to {a1, b1}, else we obtain a blue H ′ := Gib with vertices x1, xj , . . . , x2, xj+1, . . . , x2ib+3 in order

under c∗ such that |E(H ′) ∩ (EB ∪ EQ)| < |E(H) ∩ (EB ∪ EQ)|. It follows that x4 ∈ R1 and so

|R1 ∩ {x4, . . . , x2ib+3}| ≥ ib. Then |R1| ≥ |W | + |R1 ∩ {x4, . . . , x2ib+3}| ≥ 2n − 3, so 4 ≥ |R1| ≥ 7

(when n = 5) or 7 ≥ |R1| ≥ 9 (when n = 6), a contradiction. This proves that ib = n− 1.

Since ib = n − 1, we see that H = C2n. Then |G| = 2n + ir and so |W | = ir. Let

a1, x1, . . . , x2n−2, b1 be the vertices of H in order and let W := {w1, . . . , wir}. Then x1b1 and

a1x2n−2 are colored blue under c because A1 = {a1, b1}. Suppose {xj , xj+1} is blue-complete to

{a1, b1} for some j ∈ [2n − 3]. We then obtain a blue H ′ := C2n with vertices a1, x1, . . . , xj , b1,

x2n−2, . . . , xj+1 in order under c∗ such that |E(H ′)∩(EB∪EQ)| < |E(H)∩(EB∪EQ)|, contrary to the

choice of H. Thus, for all j ∈ [2n−3], {xj , xj+1} is not blue-complete to {a1, b1}. Since {x1, x2n−2}
is blue-complete to {a1, b1} under c, we see that x2, x2n−3 ∈ R1, and so 4 ≥ |R1| ≥ |R1∩V (H)| ≥ 4

(when n = 5) and 7 ≥ 5 + b ir2 c ≥ |R
1| ≥ |R1 ∩ V (H)| ≥ 5 (when n = 6). Thus, when n = 5, the

distinct cases are R1 = {x2, x4, x5, x7} or R1 = {x2, x4, x6, x7}, as depicted in Figure 1(a) and Fig-

ure 1(b); when n = 6, we have R1 ∩ V (H) = {x2, x9} ∪ {xj | j ∈ J}, where J ∈ {{4, 6, 8}, {4, 6, 7},
{3, 4, 6, 7}, {3, 5, 6, 7}, {4, 5, 6, 7}, {4, 6, 7, 8}, {3, 5, 7, 8}, {3, 5, 6, 8}, {3, 4, 5, 6, 7}, {3, 4, 5, 6, 8},
{3, 4, 5, 7, 8}}.

(a) (b)

Figure 1: Two cases of R1 when ib = 4 and n = 5.

Since |R1| ≥ n − 1 and R1 is red-complete to {a1, b1} under c, we see that ir ≥ 2. Let

W ′ := W\R1. Then W ′ ⊆ B1. Since |B1| ≥ |R1|, it follows that |W ′| ≥ d ir2 e ≥ 1. We may assume
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W ′ = {w1, . . . , w|W ′|}. We claim that E(H) ∩ (EB ∪ EQ) = {a1b1}. Suppose, say a2b2 ∈ E(H) ∩
(EB∪EQ). Since {x1, x2} 6= Ai and {x2n−3, x2n−2} 6= Ai for all i ∈ [t], we may assume that a2 = xj

and b2 = xj+1 for some j ∈ {2, . . . , 2n − 4}. Then xj−1xj+1 and xjxj+2 are colored blue under c.

But then we obtain a blue H ′ := C2n under c∗ with vertices a1, x1, . . . , xj−1, xj+1, . . . , x2n−2, b1, w1

in order such that |E(H ′) ∩ (EB ∪EQ)| < |E(H) ∩ (EB ∪EQ)|, contrary to the choice of H. Thus

E(H) ∩ (EB ∪ EQ) = {a1b1}, as claimed.

(∗) Let w ∈ W ′. For j ∈ {1, 2n − 2}, if {xj , w} 6= Ai for all i ∈ [t], then xjw is colored red. For

j ∈ {2, . . . , 2n− 3}, if {xj , w} 6= Ai for all i ∈ [t] and xj−2 or xj+2 ∈ B1, then xjw is colored red.

Proof. Suppose there is some j ∈ [2n − 2] such that {xj , w} 6= Ai for all i ∈ [t], and xj−2 or

xj+2 ∈ B1 if j ∈ {2, . . . , 2n − 3}, but xjw is colored blue. Then we obtain a blue C2n under

c with vertices a1, w, x1, . . . , x2n−2 (when j = 1) or a1, x1, . . . , x2n−2, w (when j = 2n − 2) in

order if j ∈ {1, 2n−2}, and with vertices b1, x2n−2, x2n−3, . . . , xj+2, a1, w, xj , . . . , x1 in order (when

xj+2 ∈ B1) or a1, x1, . . . , xj−2, b1, w, xj , . . . , x2n−2 in order (when xj−2 ∈ B1) if j ∈ {2, . . . , 2n− 3},
a contradiction.

(∗∗) For j ∈ [2n− 4], xjxj+2 is colored red if {xj , xj+2} 6= Ai for all i ∈ [t].

Proof. Suppose xjxj+2 is colored blue for some j ∈ [2n− 4]. Then we obtain a blue C2n under c

with vertices a1, x1, . . . , xj , xj+2, . . . , x2n−2, b1, w1 in order, a contradiction.

We claim that n = 6. Suppose n = 5. Then R1 = {x2, x4, xα, xβ}, where (α, β) ∈ {(5, 7), (7, 6)}.
Thus W ′ = W and xα+1, xα−2 ∈ B1. Since {xα−1, wj} 6= Ai and {xα, wj} 6= Ai for all wj ∈ W
and i ∈ [t], it follows from (∗) that {xα−1, xα} must be red-complete to W under c. Then for

any wj ∈ W , {xα−2, wj} 6= Ai and {xα+1, wj} 6= Ai for all i ∈ [t] since xα−1xα−2 and xαxα+1 are

colored blue under c. Thus {xα−2, xα+1} is red-complete to W by (∗). So {xα−2, xα−1, xα, xα+1}
is red-complete to W under c. But then we obtain a red P9 under c (when ir ≤ 3) with vertices

x2, a1, xα−1, b1, xα, w1, xα−2, w2, xα+1 in order, or a red C10 under c (when ir = 4) with vertices

a1, x2, b1, xα−1, w1, xα−2, w2, xα+1, w3, xα in order, a contradiction. This proves that n = 6, as

claimed. By (∗), we may assume x1 is red-complete to W ′\w1 and x10 is red-complete to W ′\w|W ′|
because |A1| = 2. Recall that 5 ≤ |R1 ∩ V (H)| ≤ 7 when n = 6. We next consider three cases

based on the value of |R1 ∩ V (H)|.

Case 1. |R1 ∩ V (H)| = 5. Then R1 ∩ V (H) = {x2, x4, x6, xα, xβ}, where (α, β) ∈ {(9, 8), (7, 9)}.
Then xα+1, xα−2 ∈ B1. Since {xα−1, wj} 6= Ai and {xα, wj} 6= Ai for all wj ∈ W ′ and i ∈ [t],

{xα−1, xα} must be red-complete to W ′ under c by (∗). Then for any wj ∈ W ′, {xα−2, wj} 6= Ai

and {xα+1, wj} 6= Ai for all i ∈ [t] since xα−1xα−2 and xαxα+1 are colored blue under c. Thus

{xα−2, xα+1} is red-complete to W ′ by (∗). So {xα−2, xα−1, xα, xα+1} is red-complete to W ′ under c.

We see that G has a red P7 with vertices xα−1, w1, xα, a1, x2, b1, x4 in order, and so ir ≥ 3 and |W ′| ≥
d ir2 e ≥ 2. Moreover, xα−1xα+1 and xα−2xα are colored red by (∗∗). Then G has a red P11 with

vertices x1, w2, xα−1, xα+1, w1, xα−2, xα, a1, x2, b1, x4 in order under c. Thus ir = 5 and so |W ′| ≥
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d ir2 e ≥ 3. Since |A1| = 2 and xα−6 ∈ B1, by (∗), we may assume xα−4 is red-complete to W ′\w2.

But then we obtain a red C12 with vertices a1, xα, xα−2, w1, xα−4, w3, x1, w2, xα+1, xα−1, b1, x2 in

order under c, a contradiction.

Case 2. |R1 ∩ V (H)| = 6. We claim that ir ≥ 3. Suppose ir = 2. Then |B1| = |R1| = 6 and

G[B1 ∪ R1] contains no red P3 with at least one end in R1, else we obtain a red P7. By Claim 3,

B1 is not blue-complete to R1. Let x ∈ B1 and y ∈ R1 such that xy is colored red. Then x is

blue-complete to R1\y and there exists at most one vertex w ∈ B1 such that x is blue-complete to

B1\{x,w} because G[B1 ∪R1] contains no red P3 with at least one end in R1. Let i∗b := 1, i∗r := 0,

i∗j := 0 for all colors j other than red and blue. Let N∗ := |Gi∗b | + [(
∑k

j=1 i
∗
j ) − i∗b ] = 5. Observe

that |R1\y| = 5 = N∗, by minimality of N , G[R1\y] contains a blue P5. Let y1, y2, . . . , y5 be the

vertices of the P5 in order. Then y is blue-complete to {yj , yj+1} for some j ∈ [4] and x1 ∈ B1\x
is not red-complete to {y1, y5} because G[B1 ∪R1] contains no red P3 with at least one end in R1

and |A1| = 2. So we may assume x1y1 is colored blue. But then we obtain a blue C12 under c

with vertices a1, x1, y1, . . . , yj , y, yj+1, . . . , y5, x, x2, b1, x3 in order, where x2, x3 ∈ B1\{x, x1, w}, a

contradiction. Thus ir ≥ 3, as claimed. Note that |B1 ∩ V (H)| = 4, so |W ′| ≥ 3. We may further

assume that {x1, w2} 6= Ai and {x1, w3} 6= Ai for all i ∈ [t]; and {x10, w1} 6= Ai and {x10, w2} 6= Ai

for all i ∈ [t]. By (∗), x1 is red-complete to {w2, w3} under c; and x10 is red-complete to {w1, w2}
under c. Let (α, β, γ) ∈ {(5, 2, 4), (4, 7, 5)}. Suppose R1 ∩ V (H) = {x2, x3, xα, x6, x7, x9}. Since

{xβ, wj} 6= Ai, {x3, wj} 6= Ai and {x6, wj} 6= Ai for all wj ∈ W ′ and i ∈ [t], by (∗), {xβ, x3, x6}
must be red-complete to W ′ under c. By (∗∗), xγ is red-complete to {xγ−2, xγ+2}. But then we

obtain a red C12 under c with vertices a1, x2, x4, x6, w1, x10, w2, x1, w3, x3, b1, x5 (when α = 5) or

a1, x3, x5, x7, w1, x10, w2, x1, w3, x6, b1, x4 (when α = 4) in order, a contradiction. Let (α, β, γ, δ) ∈
{(3, 8, 5, 6), (3, 5, 7, 8), (4, 6, 8, 2)}. Suppose R1 ∩ V (H) = V (H)\{a1, b1, x1, x10, xα, xβ}. Since

{xγ , wj} 6= Ai and {xδ, wj} 6= Ai for all wj ∈ W ′ and i ∈ [t], {xγ , xδ} must be red-complete to

W ′ under c by (∗). Moreover, xγxγ−2 and xδxδ+2 are colored red by (∗∗). Since |A1| = 2, at least

one of x1, x10, xα, xβ is red-complete to {w1, w2, w3} by (∗). So we may assume xα is red-complete

to W ′\w2 and xβ is red-complete to {w1, w2, w3}. But then we obtain a red C12 with vertices

a1, xγ , xγ−2, w1, x10, w2, x1, w3, xδ+2, xδ, b1, x7 in order if (α, β, γ, δ) ∈ {(3, 8, 5, 6), (4, 6, 8, 2)} and

a1, x7, x5, w1, x3, w3, x1, w2, x10, x8, b1, x6 in order if (α, β, γ, δ) = (3, 5, 7, 8), a contradiction. Fi-

nally if R1 ∩ V (H) = {x2, x3, x5, x6, x8, x9}. By (∗), R1 ∩ V (H) is red-complete to W ′. Then

G has a red P11 with vertices x2, a1, x3, b1, x5, w1, x6, w2, x8, w3, x9 in order. Thus ir = 5 and so

|W ′| ≥ 4. But then we obtain a red C12 with vertices a1, x2, w1, x3, w2, x5, w3, x6, w4, x8, b1, x9 in

order, a contradiction.

Case 3. R1 = |R1∩V (H)| = 7, then ir ≥ 4 and |W ′| = |W | = ir. Let (α, β) ∈ {(6, 5), (7, 4)}. Sup-

pose R1={x2, x3, x4, x5, xα, x8, x9}. Since {x3, wj} 6= Ai, {xβ, wj} 6= Ai and {x8, wj} 6= Ai for all

i ∈ [t] and any wj ∈W ′, {x3, xβ, x8}must be red-complete to W ′ under c by (∗). But then we obtain

a red C12 with vertices a1, x3, w1, x10, w2, x1, w3, xβ, w4, x8, b1, x2 in order, a contradiction. Finally

if R1 = {x2, x3, x4, x5, x6, x7, x9}. Since {x3, wj} 6= Ai and {x6, wj} 6= Ai for all i ∈ [t] and any
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wj ∈W ′, {x3, x6}must be red-complete to W ′ under c by (∗). We may assume x8 is red-complete to

W ′\w2 by (∗). But then we obtain a red C12 with vertices a1, x3, w1, x10, w2, x1, w3, x8, w4, x6, b1, x2

in order, a contradiction. This proves that |A1| ≥ 3.

Claim 7. For any Ai with 3 ≤ |Ai| ≤ 4, G[Ai] has a monochromatic copy of P3 in some color

m ∈ [k] other than red and blue.

Proof. Suppose there exists a part Ai with 3 ≤ |Ai| ≤ 4 but G[Ai] has no monochromatic copy

of P3 in any color m ∈ [k] other than red and blue. We may assume i = 1. Since GRk(P3) = 3,

we see that G[A1] must contain a red or blue P3, say blue. We may assume a1, b1, c1 are the

vertices of the blue P3 in order. Then |A1| = 4, else {b1}, {a1, c1}, A2, . . . , Ap is a Gallai partition

of G with p + 1 parts. Let z1 ∈ A1\{a1, b1, c1}. Then z1 is not blue-complete to {a1, c1}, else

{a1, c1}, {b1, z1}, A2, . . . , Ap is a Gallai partition of G with p + 1 parts. Moreover, b1z1 is not

colored blue, else {b1}, {a1, c1, z1}, A2, . . . , Ap is a Gallai partition of G with p+ 1 parts. If b1z1 is

colored red, then a1z1 and c1z1 are colored either red or blue because G has no rainbow triangle.

Similarly, z1 is not red-complete to {a1, c1}, else {z1}, {a1, b1, c1}, A2, . . . , Ap is a Gallai partition

of G with p + 1 parts. Thus, by symmetry, we may assume a1z1 is colored blue and c1z1 is

colored red, and so a1c1 is colored blue or red because G has no rainbow triangle. But then

{a1}, {b1}, {c1}, {z1}, A2, . . . , Ap is a Gallai partition of G with p+ 3 parts, a contradiction. Thus

b1z1 is colored neither red nor blue. But then a1z1 and c1z1 must be colored blue because G[A1]

has neither rainbow triangle nor monochromatic P3 in any color m ∈ [k] other than red and blue,

a contradiction.

For the remainder of the proof of Theorem 1.9, we assume that |B| ≥ |R| . By Claim 5,

|R| ≤ n − 1. Let {ai, bi, ci} ⊆ Ai if |Ai| ≥ 3 for any i ∈ [p]. Let B := {x1, . . . , x|B|} and

R := {y1, . . . , y|R|}. We next show that

Claim 8. ir ≥ |R|.

Proof. Suppose ir ≤ |R| − 1 ≤ n− 2. Then ib = n− 1, ir ≥ 3, |A1| ≤ 4, else we obtain a red Gir
because R is not blue-complete to B and |A1| ≥ 3. By Claim 7, G[A1] has a monochromatic, say

green, copy of P3. By Claim 4, ig = 1. We have |G| ≥ n+1+ ib+ ir+ ig ≥ 2n+4. This implies that

there exist two independent edges between B and R, say x1y1, x2y2, that are colored red, else we

obtain a blue C2n. Then G[A1∪R∪{x1, x2}] has a red P9, it follows that n = 6, ir = 4 and |R| = 5.

Then |A1 ∪B| = |G| − |R| ≥ 7 + ib + ir + ig − |R| = 12, and so G[B] has no blue Gib−|A1|, else we

obtain a blue C12. Let i∗b := ib−|A1| ≤ 2, i∗r := ir−|R|+2 = 1, i∗j := ij ≤ 2 for all color j ∈ [k] other

than red and blue. Let i∗` := max{i∗j | j ∈ [k]}. Then i∗` ≤ i1. Let N∗ := |Gi∗` | + [(
∑k

j=1 i
∗
j ) − i∗` ].

Observe that |B| ≥ N∗. By minimality of N , G[B] has a red Gi∗r = P5 with vertices, say x1, . . . , x5,

in order. Because there is a red P7 with both ends in R by using edges between A1 and R, we

see that R is blue-complete to {x1, x2, x4, x5}, else G[A1 ∪ R ∪ {x1, . . . , x5}] has a red P11. But
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then we obtain a blue C12 under c with vertices a1, x1, y1, x2, y2, x4, y3, x5, b1, x3, c1, x6 in order, a

contradiction.

Claim 9. ib > |A1| and so |A1| ≤ n− 2.

Proof. Suppose ib ≤ |A1|. If ib ≤ |A1| − 1, then ib ≤ n − 2 by Claim 2 and so ir = n − 1. Thus

|B| ≥ 2 + ib because |B|+ |R| = |G| − |A1| ≥ n+ 1 + ib + (ir − |A1|) ≥ 3 + 2ib. But then G has a

blue Gib using edges between A1 and B, a contradiction. Thus ib = |A1|. By Claim 5 and Claim

8, |R| ≤ n − 1 and ir ≥ |R|. Observe that |B| ≥ 1 + n + ir − |R| ≥ 1 + n. Then G[B ∪ R] has no

blue P3 with both ends in B, else we obtain a blue Gib in G. Let i∗b := ib− |A1| = 0, i∗r := ir − |R|,
and i∗j := ij ≤ n − 4 for all colors j ∈ [k] other than blue and red. Let i∗` := max{i∗j | j ∈ [k]}.
Then i∗` ≤ i1. Let N∗ := |Gi∗` | + [(

∑k
j=1 i

∗
j ) − i∗` ]. Then 3 < N∗ < N . Suppose first that |R| ≥ 2.

Since B is not red-complete to R, we may assume that y1x is colored blue for some x ∈ B. Note

that i∗r ≤ n − 3 and |B\x| = N − |A1| − |R| − 1 ≥ N∗. By minimality of N , G[B\x] must have a

red Gi∗r = P2i∗r+3 with vertices, say x1, . . . , xq, in order, where q = 2i∗r + 3. Since G[B ∪R] contains

no blue P3 with both ends in B and xy1 is colored blue, we see that y1 must be red-complete to

B\x and y2 is not blue-complete to {x1, xq}. We may assume that xqy2 is colored red in G. Then

n = 6, ir = |R| = 5 and ib = |A1| = 3, else we obtain a red Gir using vertices in V (P2i∗r+3)∪R∪A1.

Let x′ ∈ B\{x, x1, x2, x3}. Then {x, x′} * Ai and {x, x1} * Ai for all i ∈ [p] because y1x is colored

blue and y1x
′, y1x1 are colored red, and so xx′ and xx1 are colored red, else G[A1 ∪B ∪{y1}] has a

blue P9. But then we obtain a red C12 with vertices a1, y1, x
′, x, x1, x2, x3, y2, b1, y3, c1, y4 in order,

a contradiction. Thus |R| = 1. By Claim 1 applied to ib = |A1|, ir ≥ |R| and B, G[B] must have a

red P2ir+1 with vertices, say x1, x2, . . . , x2ir+1, in order. Since G[B ∪ R] contains no blue P3 with

both ends in B, we may assume that y1x1 is colored red under c. Then ir = n− 1, else we obtain a

red Gir , a contradiction. Moreover, y1x2n−1 must be colored blue, else G has a red C2n with vertices

y1, x1, . . . , x2n−1 in order. Thus y1 is red-complete to {x1, . . . , x2n−2}, and so {xj , x2n−1} * Ai for

all i ∈ [p] and j ∈ [2n − 2]. So x2n−1xi must be colored red for some i ∈ [2n − 3] because G[B]

has no blue P3. But then we obtain a red C2n with vertices y1, x1, . . . , xi, x2n−1, x2n−2, . . . , xi+1 in

order, a contradiction. This proves that ib > |A1|, and so |A1| ≤ n− 2.

By Claim 6 and Claim 9, we have 3 ≤ |A1| ≤ n− 2. By Claim 7, G[A1] has a monochromatic,

say green, copy of P3. By Claim 4, ig = 1.

Claim 10. If |A1| = 3, then |A2| = 3, |A3| ≤ 2, and ij = 0 for all colors j ∈ [k] other than red,

blue and green.

Proof. We may assume that the first three colors in [k] are red, blue, and green. Assume |A1| = 3.

To prove |A2| = 3, we show that G[B ∪ R] has a green P3. Suppose G[B ∪ R] has no green P3.

By Claim 9, ib ≥ |A1| + 1 = 4. Let i∗g := 0 and i∗j := ij for all j ∈ [k] other than green. Let

i∗` := max{i∗j | j ∈ [k]} and N∗ := |Gi∗` |+ [(
∑k

j=1 i
∗
j )− i∗` ]. Then N∗ = N −1 and |G\a1| = N −1 =
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N∗. But then G\a1 has no monochromatic copy of Gi∗j in color j for all j ∈ [k], contrary to the

minimality of N . Thus G[B ∪R] has a green P3 and so |A2| = 3. For the rest of the proof of Claim

10, we do not use the condition |B| ≥ |R| because we make no use of Claim 8 and Claim 9.

Suppose |A3| = 3. For all i ∈ [3], let

Aib := {aj ∈ V (R) | ajai is colored blue in R},

Air := {aj ∈ V (R) | ajai is colored red in R}.

Let Bi :=
⋃
aj∈Ai

b
Aj and Ri :=

⋃
aj∈Ai

r
Aj . Since each of A1, A2, A3 can be chosen as the largest

part in the Gallai-partition A1, A2, . . . , Ap of G, by Claim 5, either |Bi| ≤ 5 or |Ri| ≤ 5 for

all i ∈ [3]. Without loss of generality, we may assume that A2 is blue-complete to A1 ∪ A3.

Let X := V (G)\(A1 ∪ A2 ∪ A3) = {v1, . . . , v|X|}. Then |X| ≥ 1 + n + ib + ir + ig − 9 =

2n − 8 + min{ib, ir}. Suppose |X ∩ B1| ≥ 2. We may assume v1, v2 ∈ X ∩ B1. Then

G has a blue C10 with vertices a1, v1, b1, v2, c1, a2, a3, b2, b3, c2 in order and a blue P11 with

vertices a1, v1, b1, v2, c1, a2, a3, b2, b3, c2, c3 in order, and so n = 6 and ib = 5. Moreover,

X\{v1, v2} ⊆ R3, else, say v3 is blue-complete to A3, then we obtain a blue C12 under c

with vertices a1, v1, b1, v2, c1, a2, a3, v3, b3, b2, c3, c2 in order. Thus |R3| ≥ |X\{v1, v2}| ≥ 2 + ir,

and so ir ≥ 3, else G has a red Gir using the edges between A3 and R3. Then there ex-

ist at least two vertices in X\{v1, v2}, say v3, v4, such that {v3, v4} is blue-complete to A1,

else G[A1 ∪ A3 ∪ (X\{v1, v2})] contains a red Gir . Thus |B1| ≥ |A2 ∪ {v1, . . . , v4}| = 7 and

so |R1| ≤ 5. Moreover, {v1, v2} ⊂ R3, else, say v1 is blue-complete to A3, we then obtain a

blue C12 under c with vertices a1, v3, b1, v4, c1, a2, a3, v1, b3, b2, c3, c2 in order. Then X ⊆ R3 and

|R3| ≥ |X| ≥ 4 + ir ≥ 7, and so |B3| ≤ 5 and A1 is red-complete to A3. Furthermore, G[B1\A2]

has no blue P3, else, say v1, v2, v3 is such a blue P3 in order, we obtain a blue C12 with vertices

a1, v1, v2, v3, b1, v4, c1, a2, a3, b2, b3, c2 in order. Therefore for any U ⊆ B1\A2 with |U | ≥ 4, G[U ]

contains a red P3 because |A1| = 3 and GRk(P3) = 3. Since |R1| ≤ 5 and A3 ⊆ R1, we may assume

v1, . . . , v|X|−2 ∈ B1\A2. Then G[{v1, . . . , v4}] must contain a red P3 with vertices, say v1, v2, v3, in

order. We claim that X ⊂ B1. Suppose v|X| ∈ R1. Then v|X| is red-complete to A1 and so G has

a red P11 with vertices c1, v|X|, a1, a3, b1, b3, v1, v2, v3, c3, v4 in order, it follows that ir = 5. Thus

|X| ≥ 9, and G[{v4, . . . , v7}] has a red P3 with vertices, say v4, v5, v6, in order. But then we ob-

tain a red C12 with vertices a1, v|X|, b1, a3, v1, v2, v3, b3, v4, v5, v6, c3 in order, a contradiction. Thus

X ⊂ B1 as claimed. Since |X| ≥ 7, G[{v4, . . . , v7}] contains a red P3 with vertices, say v4, v5, v6, in

order. Then G has a red P11 with vertices a1, a3, b1, b3, v1, v2, v3, c3, v4, v5, v6 in order, and so ir = 5,

|X| ≥ 9. Suppose G[{v4, . . . , v9}] has no red P5. Then G[{v4, . . . , v9}] contains at most one part of

the Gallai-partition with order three, say A4, and we may assume G[A4] has a monochromatic P3

in some color m other than red and blue if |A4| = 3 by Claim 7. Let i∗r := 1, i∗m := 1, i∗j := 0 for all

color j ∈ [k]\{m} other than red. Let N∗ := |Gi∗r |+[(
∑k

j=1 i
∗
j )− i∗r ] = 6 < N . Then G[{v4, . . . , v9}]

has no monochromatic copy of Gi∗j in any color j ∈ [k], which contradicts to the minimality of N .

Thus G[{v4, . . . , v9}] has a red P5 with vertices, say v4, . . . , v8, in order. But then we obtain a red

C12 with vertices a3, v1, v2, v3, b3, v4, . . . , v8, c3, v9 in order, a contradiction. Therefore, |X∩B1| ≤ 1.
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By symmetry, |X ∩B3| ≤ 1. Let w ∈ X ∩B1 when X ∩B1 6= ∅ and w′ ∈ X ∩B3 when X ∩B3 6= ∅.
Then A1∪A3 is red-complete to X\{w,w′}. It follows that n = 5 and |X∩B1| = |X∩B3| = 1, else

G[A1 ∪ A3 ∪ (X\{w,w′})] has a red Gir because |X| ≥ 2n − 8 + min{ib, ir}, a contradiction. But

then we obtain a blue C10 with vertices a2, a1, w, b1, b2, a3, w
′, b3, c2, c3 in order, a contradiction.

This proves that |A3| ≤ 2 and so G[Ai] has no monochromatic copy of P3 for all i ∈ [p] with i ≥ 3.

Since G[R ∪ B] has a green P3, it follows that G[A2] has a green P3, so ij = 0 for all color j ∈ [k]

other than red, blue and green by Claim 4.

Claim 11. If ib = |A1|+ 1, then |R| ≤ 2.

Proof. Suppose ib = |A1|+ 1 but |R| ≥ 3. By Claim 8, ir ≥ |R|, it follows that |B| ≥ 1 + n+ ib +

ir + ig − |A1| − |R| ≥ 3 + n. Thus G[B ∪ R] has no blue P5 with both ends in B, else we obtain

a blue Gib . Let i∗b := ib − |A1| = 1, i∗r := ir − |R| + 1 (when n = 5) or i∗r := max{ir − |R| + 1, 2}
(when n = 6), i∗j := ij for all j ∈ [k] other than red and blue. Let i∗` := max{i∗j | j ∈ [k]} and

N∗ := |Gi∗` | + [(
∑k

j=1 i
∗
j ) − i∗` ]. Then 3 < N∗ < N . Observe that |B| ≥ N∗. By minimality of

N , G[B] has a red Gi∗r = P2i∗r+3 with vertices, say x1, . . . , xq, in order, where q = 2i∗r + 3. If R is

blue-complete to {x1, xq}, then R is red-complete to B\{x1, xq} because G[B ∪R] has no blue P5

with both ends in B. But then G[A1 ∪ R ∪ {x2, . . . , xq−1}] has a red Gir , a contradiction. Thus

R is not blue-complete to {x1, xq}, and so we may assume y1x1 is colored red. Then ir = n − 1

and R\{y1} is blue-complete to {xq−2, xq}, else G[A1 ∪R∪ {x1, . . . , xq}] has a red Gir . So R\{y1}
is red-complete to B\{xq−2, xq} because G[B ∪ R] has no blue P5 with both ends in B. But then

G[A1 ∪R ∪ {x2, . . . , xq−1}] has a red Gir = C2n, a contradiction.

Claim 12. ib = n− 1.

Proof. Suppose ib ≤ n−2. By Claim 6 and Claim 9, |A1| ≥ 3 and ib > |A1|, it follows that n = 6,

ir = n−1 = 5, ib = 4, and |A1| = 3. By Claim 10, |A2| = 3, |A3| ≤ 2, ij = 0 for all colors j ∈ [k]\[3].

By Claim 11, |R| ≤ 2 and so A2 ⊂ B. It follows that |B| = 7+ ib+ ir+ ig−|A1∪R| = 14−|R| ≥ 12.

Then G[B ∪R] has no blue P5 with both ends in B, else G has a blue P11 because |A1| = 3. Thus

there exists a set W such that (B ∪ R)\(A2 ∪W ) is red-complete to A2, where W ⊂ (B ∪ R)\A2

with |W | ≤ 1. Let i∗b := ib − |A1| = 1, i∗r := 2, i∗j := 0 for all j ∈ [k] other than red and blue. Let

N∗ := |Gi∗r |+[(
∑k

j=1 i
∗
j )− i∗r ] = 8. Then N∗ < N . Observe that |B\(A2∪W )| = |B|− |A2|− |W | ≥

8 = N∗. By minimality of N , G[B\(A2∪W )] must contain a red Gi∗r = P7. But then G[(B∪R)\W ]

has a red C12, a contradiction. Thus ib = n− 1.

Claim 13. |A1| = n− 2.

Proof. By Claim 9, |A1| ≤ n − 2. Suppose |A1| ≤ n − 3. By Claim 6, n = 6 and |A1| = 3. By

Claim 12, ib = 5. By Claim 10, |A2| = 3, |A3| ≤ 2 and ij = 0 for all colors j ∈ [k]\[3]. By Claim 8,

ir ≥ |R|. Then |B| = 7 + ib + ir + ig − |A1| − |R| ≥ 10, and so G[B ∪ R] has neither blue P7 nor

blue P5 ∪ P3 with all ends in B else we obtain a blue C12.
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Suppose |R| ≤ 2. ThenA2 ⊂ B and there exists a setW ⊂ (B∪R)\A2 with |W | ≤ 3 such thatW

is blue-complete to A2 and (B∪R)\(A2∪W ) is red-complete to A2. Since |B\(A2∪W )| ≥ 4, we see

that there is a red P7 using edges between A2 and B\(A2∪W ), so ir ≥ 3 and ir−|R| ≥ 1. Let i∗b := 2

(when |B ∩W | ≤ 1) or i∗b := 0 (when |B ∩W | ≥ 2), i∗r := min{ir − |R| − 1, 2}, i∗j := 0 for all colors

j ∈ [k] other than red and blue. Let i∗` := max{i∗j | j ∈ [k]} and N∗ := |Gi∗` | + [(
∑k

j=1 i
∗
j ) − i∗` ] =

3 + max{i∗b , i∗r}+ i∗b + i∗r . Observe that |B\(A2 ∪W )| = 7 + ir − |R ∪W | ≥ N∗. By minimality of

N , G[B\(A2 ∪W )] has a red Gi∗r = P2i∗r+3 because G[B] has neither blue P7 nor blue P5 ∪ P3 and

|A3| ≤ 2. But then G[(B ∪ R)\W ] has a red Gir because |(B ∪ R)\W | ≥ 7 + ir ≥ |Gir | and A2 is

red-complete to (B ∪R)\(A2 ∪W ), a contradiction. Therefore, 3 ≤ |R| ≤ 5 and so ir ≥ 3.

We claim that ir = 5. Suppose 3 ≤ ir ≤ 4. Let i∗b := 2, i∗r := 2, i∗j := ij for all colors j ∈ [k]

other than red and blue, and N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j ) − i∗r ] = 10. Observe that |B| ≥ 10 = N∗.

Since G[B] has no blue P7, by minimality of N , G[B] has a red P7 with vertices, say x1, . . . , x7,

in order. Then R is blue-complete to {x1, . . . , x7}\x4, else G[A1 ∪ R ∪ {x1, . . . , x7}] has a red

Gir = P2ir+3. But then G[B ∪ R] has a blue P7 with vertices x1, y1, x2, y2, x3, y3, x5 in order, a

contradiction. Thus ir = 5 and so |G| = 18, |B| = 15− |R|.

We next consider the case |R| = 3. Suppose first A2 = R. Since R is not red-complete to B,

we may assume that A2 is blue-complete to x1. Let i∗b := 2, i∗r := 3, i∗j := 0 for all colors j ∈ [k]

other than red and blue, and N∗ := |Gi∗r |+ [(
∑k

j=1 i
∗
j )− i∗r ] = 11. Observe that |B\x1| = 11 = N∗.

By minimality of N , G[B\x1] has a red P9 with vertices, say x2, . . . , x10, in order. We claim that

A2 is blue-complete to {x2, x10}, else, say x2 is red-complete to A2. Then A2 is blue-complete to

{x8, x10}, else G[A1∪A2∪{x2, . . . , x10}] has a red C12. Thus A2 is red-complete to B\{x1, x8, x10}
because G[B ∪R] has no blue P7 with both ends in B. But then we obtain a red C12 with vertices

a1, a2, x3, . . . , x9, b2, b1, c2 in order, a contradiction. Thus, A2 is blue-complete to {x1, x2, x10}, and

so A2 is red-complete to B\{x1, x2, x10} because G[B∪R] has no blue P7 with both ends in B. But

then we obtain a red C12 with vertices a1, a2, x3, . . . , x9, b2, b1, c2 in order, a contradiction. This

proves that A2 ⊂ B. Then there exists a set W ⊂ (B ∪ R)\A2 with |W ∩ B| ≤ 3 such that W is

blue-complete to A2 and (B ∪R)\(A2 ∪W ) is red-complete to A2. Then |W | ≤ 3 and |W ∩B| ≤ 3

or |W | = 4 and |W ∩B| = 1 because G[B ∪R] has no blue P7 with both ends in B. Let

i∗b := 2− |W |, i∗r := 2 when |W | ∈ {0, 1},

i∗b := 0, i∗r := 2 when |W | ≥ 2 and |W ∩B| ≤ 2,

i∗b := 0, i∗r := 1 when |W | = |W ∩B| = 3,

i∗j := 0 for all colors j ∈ [k] other than red and blue, and N∗ := |Gi∗r |+[(
∑k

j=1 i
∗
j )−i∗r ] = 3+2i∗r+i∗b .

Observe that |B\(A2 ∪W )| ≥ N∗. By minimality of N , G[B\(A2 ∪W )] has a red Gi∗r = P2i∗r+3

because G[B ∪ R] has neither blue P7 nor blue P5 ∪ P3 with all ends in B and |A3| ≤ 2. If

|W | ≤ 3 and |W ∩ B| ≤ 2, then G[(B ∪ R)\W ] has a red C12 because |(B ∪ R)\W | ≥ 12 and A2

is red-complete to (B ∪ R)\(A2 ∪W ). Thus |W | = |W ∩ B| = 3 or |W | = 4 and |W ∩ B| = 1.

For the former case, G[B\(A2 ∪ W )] has a red P5 with vertices, say x1, . . . , x5, in order. Let
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W := {w1, w2, w3} ⊂ B. Then A2 is blue-complete to W and red-complete to {x1, . . . , x5}, and so

W is red-complete to {x1, . . . , x5} because G[B] has no blue P7. But then we obtain a red C12 with

vertices a2, x1, w1, x2, w2, x3, w3, x4, b2, x5, c2, x6 in order, where x6 ∈ B\(A2 ∪W ∪ {x1, . . . , x5}),
a contradiction. For the latter case, G[B\(A2 ∪W )] has a red P7 with vertices, say x1, . . . , x7,

in order. Let W ∩ B := {w}. Then w is red-complete to {x1, . . . , x7} because G[B] has no blue

P7. But then we obtain a red C12 with vertices a2, x1, w, x2, . . . , x6, b2, x7, c2, x8 in order, where

x8 ∈ B\(A2 ∪W ∪ {x1, . . . , x7}), a contradiction. This proves that |R| ∈ {4, 5}.

We claim that G[E(B,R)] has no blue P5 with both ends in B. Suppose there is a blue H := P5

with vertices, say x1, y1, x2, y2, x3, in order. Then G[(B ∪ R)\V (H)] has no blue P3 with both

ends in B. Let i∗b := 0, i∗r := ir − |R| + 1 = 6 − |R|, i∗j := ij for all colors j ∈ [k] other than

red and blue, and N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j ) − i∗r ] = 3 + 2(6 − |R|) + 1 = 16 − 2|R|. Observe

that |B\{x1, x2, x3}| = 12 − |R| ≥ N∗ since |R| ∈ {4, 5}. By minimality of N , G[B\{x1, x2, x3}]
has a red Gi∗r with vertices, say x4, . . . , xq, in order, where q = 2i∗r + 6. Then y3 is not blue-

complete to {x4, xq} because G[(B ∪ R)\V (H)] has no blue P3 with both ends in B. We may

assume x4y3 is colored red. Then R\{y1, y2, y3} is blue-complete to x8, else say if x8y4 is colored

red, we obtain a red C12 with vertices a1, y3, x4, . . . , x8, y4, b1, y1, c1, y2 in order, a contradiction.

Since G[(B ∪ R)\V (H)] has no blue P3 with both ends in B, we see that R\{y1, y2, y3} is red-

complete to {x4, . . . , xq}\x8. But then we obtain a red C12 with vertices a1, y3, x4, . . . , x10, y4, b1, y1

(when |R| = 4), or a1, y3, x4, x5, x6, y4, x7, y5, b1, y1, c1, y2 (when |R| = 5) in order, a contradiction.

Thus, G[E(B,R)] has no blue P5 with both ends in B. Let i∗b := 2, i∗r := 2, i∗j := ij for all

colors j ∈ [k] other than red and blue, and N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j ) − i∗r ] = 10. Observe that

|B| ≥ 10 = N∗. By minimality of N , G[B] has a red P7 with vertices, say x1, . . . , x7, in order. We

claim that x1 is blue-complete to R. Suppose x1y1 is colored red. Then R\y1 is blue-complete to

{x5, x7}, else G[A1 ∪ R ∪ {x1, . . . , x7}] has a red C12. Thus R\y1 is red-complete to B\{x5, x7}
because G[E(B,R)] has no blue P5 with both ends in B. But then we obtain a red C12 with

vertices a1, y2, x2, . . . , x6, y3, b1, y4, c1, y1 in order, a contradiction. Therefore, x1 is blue-complete

to R. By symmetry, x7 is blue-complete to R. Then R is red-complete to B\{x1, x7} because

G[E(B,R)] has no blue P5 with both ends in B. But then we obtain a red C12 with vertices

a1, y2, x2, . . . , x6, y3, b1, y4, c1, y1 in order, a contradiction. This proves that |A1| = n− 2.

By Claim 12, Claim 13 and Claim 8, ib = n− 1, |A1| = n− 2, ir ≥ |R|. By Claim 11, |R| ≤ 2.

Then |B| ≥ 3 + n + ir − |R| ≥ 3 + n, and so G[B ∪ R] has no blue P5 with both ends in B, else

there is a blue C2n.

Claim 14. ir = n− 1.

Proof. Suppose ir ≤ n− 2. By Claim 3, B is not blue-complete to R. Let x ∈ B and y ∈ R such

that xy is colored red. Let i∗b := ib − |A1| = 1 and i∗r := ir − |R| ≤ n − 3, i∗j := ij ≤ n − 4 for all

colors j ∈ [k] other than red and blue. Let N∗ := |Gi∗r |+ [(
∑k

j=1 i
∗
j )− i∗r ]. Then 3 < N∗ < N and

|B\x| = N−|A1|−|R|−1 ≥ N∗. By minimality of N , G[B\x] must have a red P2i∗r+3 with vertices,
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say x1, x2, . . . , x2i∗r+3, in order. Then {x1, x2i∗r+3} must be blue-complete to {x, y} and xx2 must

be colored blue under c, else we obtain a red P2ir+3 using vertices in V (P2i∗r+3) ∪ {x, y} ∪A1. But

then G[B ∪R] has a blue P5 with vertices x2, x, x1, y, x2i∗r+3 in order, a contradiction.

Recall that |A1| = n − 2, G[A1] has a green P3, and ig = 1. We next show that |A2| ≥ 3.

Suppose |A2| ≤ 2. Then by Claim 10, |A1| = 4 and so n = 6. Let A1 := {a1, b1, c1, z1}. Let

i∗b := ib − |A1| = 1, i∗r := ir − |R| + 1 = 6 − |R| ≥ 4, i∗g := ig − 1 = 0 and i∗j := ij for all j ∈ [k]

other than red, blue and green. Let i∗` := max{i∗j | j ∈ [k]} and N∗ := |Gi∗` | + [(
∑k

j=1 i
∗
j ) − i∗` ].

Then 3 < N∗ < N and |B| = |G| − |A1| − |R| = N∗. By minimality of N , G[B] must contain a

red Gi∗r . It follows that |R| = 2 and Gi∗r = P11. Let x1, x2, . . . , x11 be the vertices of the red P11 in

order. If R is blue-complete to {x1, x11}, then R is red-complete to B\{x1, x11} because G[B ∪R]

has no blue P5 with both ends in B. But then G has a red C12 with vertices a1, y1, x2, . . . , x10, y2

in order, a contradiction. Thus, R is not blue-complete to {x1, x11} and we may assume x1y1 is

colored red. Then x11y1 and x9y2 are colored blue, else G[{x1, . . . , x11} ∪ R ∪ A1] has a red C12.

If x11y2 is colored red, then x1y2 and x3y1 are colored blue by the same reasoning. But then we

obtain a blue C12 with vertices a1, x1, y2, x9, b1, x3, y1, x11, c1, x2, z1, x4 in order, a contradiction.

Thus x11y2 is colored blue. Then y1 is red-complete to B\{x9, x11}, else, say y1w is colored blue

with w ∈ B\{x9, x11}, then G[B∪R] has a blue P5 with vertices w, y1, x11, y2, x9 in order. It follows

that {x11, w} * Aj for all j ∈ [p], where w ∈ B\{x9, x11}. Moreover, x2y2 is colored blue, else

G has a red C12 with vertices a1, y2, x2, . . . , x10, y1 in order, a contradiction. Thus, G[B\{x2, x9}]
has no blue P3, else G[A1 ∪ B ∪ {y2}] has a blue C12. Therefore, xix11 is colored red for some

i ∈ {3, . . . , 7}. But then we obtain a red C12 with vertices y1, x1, . . . , xi, x11, x10, . . . , xi+1 in order,

a contradiction. Thus 3 ≤ |A2| ≤ n− 2 and A2 ⊂ B because |R| ≤ 2.

Since G[B ∪ R] has no blue P5 with both ends in B, there exists at most one vertex, say

w ∈ (B ∪ R)\A2, such that (B ∪ R)\(A2 ∪ {w}) is red-complete to A2, and w is blue-complete to

A2. Suppose 3 ≤ |A3| ≤ n − 2. Then n = 6 and |A1| = 4 by Claim 10, A3 ⊆ B and A3 must

be red-complete to A2, so w 6∈ A3. Since G[B ∪ R] has no blue P5 with both ends in B, there

exists at most one vertex, say w′ ∈ (B ∪ R)\(A2 ∪ A3), such that (B ∪ R)\(A2 ∪ A3 ∪ {w′}) is

red-complete to A3. Note that we may have w′ = w. Since |(B ∪ R)\{w,w′}| ≥ |G| − |A1| − 2 =

18 − 4 − 2 = 12, we see that G[(B ∪ R)\{w,w′}] has a red C12, a contradiction. Thus |A3| ≤ 2

and so G[B\A2] has no monochromatic copy of P3 in color j for all j ∈ [k] other than red and

blue. Let i∗b := 1, i∗r := n − 1 − |A2|, and i∗j := 0 for all colors j ∈ [k] other than red and

blue. Let N∗ := |Gi∗r | + [(
∑k

j=1 i
∗
j ) − i∗r ] = 2i∗r + 1 = 2n − 1 − 2|A2|. Then 3 < N∗ < N and

|B\(A2 ∪ {w})| ≥ 2n + 1 − |R| − |A2| ≥ N∗. By minimality of N , G[B\(A2 ∪ {w})] has a red

Gi∗r = P2i∗r+3. But then G[(B ∪R)\{w}] has a red C2n, a contradiction.

This completes the proof of Theorem 1.9.
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