Gallai-Ramsey numbers of C_{10} and C_{12}

Hui Lei¹, Yongtang Shi², Zi-Xia Song³ and Jingmei Zhang^{3,*}

¹School of Statistics & Data Science, LPMC & KLMDASR, Nankai University, Tianjin 300071, China

² Center for Combinatorics & LPMC, Nankai University, Tianjin 300071, China

³Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA

Abstract

A Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles, and a Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer $k \ge 1$ and graphs H_1, \ldots, H_k , the Gallai-Ramsey number $GR(H_1, \ldots, H_k)$ is the least integer n such that every Gallai k-coloring of the complete graph K_n contains a monochromatic copy of H_i in color i for some $i \in \{1, \ldots, k\}$. When $H = H_1 = \cdots = H_k$, we simply write $GR_k(H)$. We continue to study Gallai-Ramsey numbers of even cycles and paths. For all $n \ge 3$ and $k \ge 1$, let $G_i = P_{2i+3}$ be a path on 2i+3 vertices for all $i \in \{0, 1, \ldots, n-2\}$ and $G_{n-1} \in \{C_{2n}, P_{2n+1}\}$. Let $i_j \in \{0, 1, \ldots, n-1\}$ for all $j \in \{1, \ldots, k\}$ with $i_1 \ge i_2 \ge \cdots \ge i_k$. Song recently conjectured that $GR(G_{i_1}, \ldots, G_{i_k}) = |G_{i_1}| + \sum_{j=2}^k i_j$. This conjecture has been verified to be true for $n \in \{3, 4\}$ and all $k \ge 1$. In this paper, we prove that the aforementioned conjecture holds for $n \in \{5, 6\}$ and $GR_k(P_{2n+1}) = (n-1)k + n + 2$ for $1 \le n \le 6$.

Keywords: Gallai coloring; Gallai-Ramsey number; Rainbow triangle 2010 Mathematics Subject Classification: 05C55; 05D10; 05C15

1 Introduction

In this paper we consider graphs that are finite, simple and undirected. Given a graph G and a set $A \subseteq V(G)$, we use |G| to denote the number of vertices of G, and G[A] to denote the subgraph of G obtained from G by deleting all vertices in $V(G) \setminus A$. A graph H is an *induced subgraph* of G if H = G[A] for some $A \subseteq V(G)$. We use P_n , C_n and K_n to denote the path, cycle and complete graph on n vertices, respectively. For any positive integer k, we write [k] for the set $\{1, \ldots, k\}$.

Given an integer $k \ge 1$ and graphs H_1, \ldots, H_k , the classical Ramsey number $R(H_1, \ldots, H_k)$ is the least integer n such that every k-coloring of the edges of K_n contains a monochromatic copy of H_i in color i for some $i \in [k]$. Ramsey numbers are notoriously difficult to compute in general. In this paper, we study Ramsey numbers of graphs in Gallai colorings, where a Gallai coloring is a coloring of the edges of a complete graph without rainbow triangles (that is, a triangle

^{*}Corresponding author. E-mail address: jmzhang@knights.ucf.edu. Current address: The High School affiliated to the Southern University of Science and Technology, Shenzhen, Guangdong 518133, China.

with all its edges colored differently). Gallai colorings naturally arise in several areas including: information theory [17]; the study of partially ordered sets, as in Gallai's original paper [12] (his result was restated in [15] in the terminology of graphs); and the study of perfect graphs [5]. There are now a variety of papers which consider Ramsey-type problems in Gallai colorings (see, e.g., [2, 3, 4, 6, 10, 13, 14, 16, 20, 24]). These works mainly focus on finding various monochromatic subgraphs in such colorings. More information on this topic can be found in [9, 11].

A Gallai k-coloring is a Gallai coloring that uses at most k colors. Given an integer $k \ge 1$ and graphs H_1, \ldots, H_k , the Gallai-Ramsey number $GR(H_1, \ldots, H_k)$ is the least integer n such that every Gallai k-coloring of K_n contains a monochromatic copy of H_i in color i for some $i \in [k]$. When $H = H_1 = \cdots = H_k$, we simply write $GR_k(H)$ and $R_k(H)$. Clearly, $GR_k(H) \le R_k(H)$ for all $k \ge 1$ and $GR(H_1, H_2) = R(H_1, H_2)$. In 2010, Gyárfás, Sárközy, Sebő and Selkow [14] proved the general behavior of $GR_k(H)$.

Theorem 1.1 ([14]) Let H be a fixed graph with no isolated vertices and let $k \ge 1$ be an integer. Then $GR_k(H)$ is exponential in k if H is not bipartite, linear in k if H is bipartite but not a star, and constant (does not depend on k) when H is a star.

It turns out that for some graphs H (e.g., when $H = C_3$), $GR_k(H)$ behaves nicely, while the order of magnitude of $R_k(H)$ seems hopelessly difficult to determine. It is worth noting that finding exact values of $GR_k(H)$ is far from trivial, even when |H| is small. We will utilize the following important structural result of Gallai [12] on Gallai colorings of complete graphs.

Theorem 1.2 ([12]) For any Gallai coloring c of a complete graph G with $|G| \ge 2$, V(G) can be partitioned into nonempty sets V_1, \ldots, V_p with $p \ge 2$ so that at most two colors are used on the edges in $E(G) \setminus (E(G[V_1]) \cup \cdots \cup E(G[V_p]))$ and only one color is used on the edges between any fixed pair (V_i, V_j) under c.

The partition given in Theorem 1.2 is a Gallai-partition of the complete graph G under c. Given a Gallai-partition V_1, \ldots, V_p of the complete graph G under c, let $v_i \in V_i$ for all $i \in [p]$ and let $\mathcal{R} := G[\{v_1, \ldots, v_p\}]$. Then \mathcal{R} is the reduced graph of G corresponding to the given Gallai-partition under c. Clearly, \mathcal{R} is isomorphic to K_p . By Theorem 1.2, all edges in \mathcal{R} are colored by at most two colors under c. One can see that any monochromatic H in \mathcal{R} under c will result in a monochromatic H in G under c. It is not surprising that Gallai-Ramsey numbers $GR_k(H)$ are closely related to the classical Ramsey numbers $R_2(H)$. Recently, Fox, Grinshpun and Pach posed the following conjecture on $GR_k(H)$ when H is a complete graph.

Conjecture 1.3 ([9]) For all integers $k \ge 1$ and $t \ge 3$,

$$GR_k(K_t) = \begin{cases} (R_2(K_t) - 1)^{k/2} + 1 & \text{if } k \text{ is even} \\ (t - 1)(R_2(K_t) - 1)^{(k-1)/2} + 1 & \text{if } k \text{ is odd.} \end{cases}$$

The first case of Conjecture 1.3 follows from a result of Chung and Graham [6] from 1983. A simpler proof of this case can be found in [14]. The case when t = 4 was recently settled in [18]. Conjecture 1.3 remains open for all $t \ge 5$. The next open case, when t = 5, involves $R_2(K_5)$. Angeltveit and McKay [1] recently proved that $R_2(K_5) \le 48$. It is widely believed that $R_2(K_5) = 43$ (see [1]). It is worth noting that Schiermeyer [19] recently observed that if $R_2(K_5) = 43$, then Conjecture 1.3 fails for K_5 when k = 3. More recently, Gallai-Ramsey numbers of odd cycles on at most 15 vertices have been completely settled by Fujita and Magnant [10] for C_5 , Bruce and Song [4] for C_7 , Bosse and Song [2] for C_9 and C_{11} , and Bosse, Song and Zhang [3] for C_{13} and C_{15} . Very recently, the exact values of $GR_k(C_{2n+1})$ for $n \ge 8$ has been solved by Zhang, Song and Chen [23]. We summarize these results below.

Theorem 1.4 ([2, 3, 4, ?]) For all $n \ge 3$ and $k \ge 1$, $GR_k(C_{2n+1}) = n \cdot 2^k + 1$.

In this paper, we continue to study Gallai-Ramsey numbers of even cycles and paths. For all $n \geq 3$ and $k \geq 1$, let $G_{n-1} \in \{C_{2n}, P_{2n+1}\}$, $G_i := P_{2i+3}$ for all $i \in \{0, 1, \ldots, n-2\}$, and $i_j \in \{0, 1, \ldots, n-1\}$ for all $j \in [k]$. We want to determine the exact values of $GR(G_{i_1}, \ldots, G_{i_k})$. By reordering colors if necessary, we assume that $i_1 \geq \cdots \geq i_k$. Song and Zhang [21] recently proved that

Proposition 1.5 ([21]) For all $n \ge 3$ and $k \ge 1$,

$$GR(G_{i_1}, \dots, G_{i_k}) \ge |G_{i_1}| + \sum_{j=2}^k i_j.$$

In the same paper, Song [21] further made the following conjecture.

Conjecture 1.6 ([21]) For all $n \ge 3$ and $k \ge 1$,

$$GR(G_{i_1},\ldots,G_{i_k}) = |G_{i_1}| + \sum_{j=2}^k i_j.$$

To completely solve Conjecture 1.6, one only needs to consider the case $G_{n-1} = C_{2n}$.

Proposition 1.7 ([21]) For all $n \ge 3$ and $k \ge 1$, if Conjecture 1.6 holds for $G_{n-1} = C_{2n}$, then it also holds for $G_{n-1} = P_{2n+1}$.

Let M_n denote a matching of size n on 2n vertices. As observed in [21], the truth of Conjecture 1.6 implies that $GR_k(C_{2n}) = GR_k(P_{2n}) = GR_k(M_n) = (n-1)k + n + 1$ for all $n \ge 3$ and $k \ge 1$, and $GR_k(P_{2n+1}) = (n-1)k + n + 2$ for all $n \ge 1$ and $k \ge 1$. It is worth noting that Dzido, Nowik and Szuca [7] proved that $R_3(C_{2n}) \ge 4n$ for all $n \ge 3$. The truth of Conjecture 1.6 implies that $GR_3(C_{2n}) = 4n - 2 < R_3(C_{2n})$ for all $n \ge 3$. Conjecture 1.6 has recently been verified to be true for $n \in \{3, 4\}$ and all $k \ge 1$.

Theorem 1.8 ([21]) For $n \in \{3,4\}$ and all $k \ge 1$, let $G_i = P_{2i+3}$ for all $i \in \{0,1,\ldots,n-2\}$, $G_{n-1} = C_{2n}$, and $i_j \in \{0,1,\ldots,n-1\}$ for all $j \in [k]$ with $i_1 \ge \cdots \ge i_k$. Then

$$GR(G_{i_1}, \dots, G_{i_k}) = |G_{i_1}| + \sum_{j=2}^k i_j$$

In this paper, we continue to establish more evidence for Conjecture 1.6. We prove that Conjecture 1.6 holds for $n \in \{5, 6\}$ and all $k \ge 1$.

Theorem 1.9 For $n \in \{5, 6\}$ and all $k \ge 1$, let $G_i = P_{2i+3}$ for all $i \in \{0, 1, ..., n-2\}$, $G_{n-1} = C_{2n}$, and $i_j \in \{0, 1, ..., n-1\}$ for all $j \in [k]$ with $i_1 \ge \cdots \ge i_k$. Then

$$GR(G_{i_1}, \dots, G_{i_k}) = |G_{i_1}| + \sum_{j=2}^k i_j.$$

We prove Theorem 1.9 in Section 2. Applying Theorem 1.9 and Proposition 1.7, we obtain the following.

Corollary 1.10 Let $G_i = P_{2i+3}$ for all $i \in \{0, 1, 2, 3, 4, 5\}$. For every integer $k \ge 1$, let $i_j \in \{0, 1, 2, 3, 4, 5\}$ for all $j \in [k]$ with $i_1 \ge \cdots \ge i_k$. Then

$$GR(G_{i_1}, \dots, G_{i_k}) = |G_{i_1}| + \sum_{j=2}^k i_j.$$

Corollary 1.11 For all $k \geq 1$,

- (a) $GR_k(P_{2n+1}) = (n-1)k + n + 2$ for all $n \in [6]$.
- (b) $GR_k(C_{2n}) = GR_k(P_{2n}) = (n-1)k + n + 1$ for $n \in \{5, 6\}$.

Finally, we shall make use of the following results on 2-colored Ramsey numbers of cycles and paths in the proof of Theorem 1.9.

Theorem 1.12 ([22]) For all $n \ge 3$, $R_2(C_{2n}) = 3n - 1$.

Theorem 1.13 ([8]) For all integers n, m satisfying $2n \ge m \ge 3$, $R(P_m, C_{2n}) = 2n + \lfloor \frac{m}{2} \rfloor - 1$.

2 Proof of Theorem 1.9

We are ready to prove Theorem 1.9. Let $n \in \{5, 6\}$. By Proposition 1.5, it suffices to show that $GR(G_{i_1}, \ldots, G_{i_k}) \leq |G_{i_1}| + \sum_{j=2}^k i_j$.

By Theorem 1.8 and Proposition 1.7, we may assume that $i_1 = n - 1$. Then $|G_{i_1}| = 2n$. By Theorem 1.12 and Theorem 1.13, we have $GR(G_{i_1}, G_{i_2}) = R(G_{i_1}, G_{i_2}) = 2n + i_2$. So we may

assume $k \ge 3$. Let $N := |G_{i_1}| + \sum_{j=2}^k i_j$. Then $N \ge 2n$. Let G be a complete graph on N vertices and let $c : E(G) \to [k]$ be any Gallai coloring of G using at least three colors. We next show that G contains a monochromatic copy of G_{i_j} in color j for some $j \in [k]$. Suppose G contains no monochromatic copy of G_{i_j} in color j for any $j \in [k]$ under c. Such a Gallai k-coloring c is called a bad coloring. Among all complete graphs on N vertices with a bad coloring, we choose G with N minimum, taken over all $n - 1 \ge i_1 \ge \cdots \ge i_k \ge 0$.

By Theorem 1.2, we may consider a Gallai-partition of G with parts A_1, \ldots, A_p , where $p \ge 2$. We may assume that $|A_1| \ge \cdots \ge |A_p| \ge 1$. Let \mathcal{R} be the reduced graph of G with vertices a_1, \ldots, a_p , where $a_i \in A_i$ for all $i \in [p]$. By Theorem 1.2, assume that the edges of \mathcal{R} are colored either red or blue. Since c uses at least three colors, we see that $\mathcal{R} \neq G$ and so $|A_1| \ge 2$. By abusing the notation, we use i_b to denote i_j when the color j is blue. Similarly, we use i_r (resp. i_g) to denote i_j when the color j is red (resp. green). Let

 $A_b := \{a_i \in \{a_2, \dots, a_p\} \mid a_i a_1 \text{ is colored blue in } \mathcal{R}\},\$ $A_r := \{a_j \in \{a_2, \dots, a_p\} \mid a_j a_1 \text{ is colored red in } \mathcal{R}\}.$

Then $|A_b| + |A_r| = p - 1$. Let $B := \bigcup_{a_i \in A_b} A_i$ and $R := \bigcup_{a_j \in A_r} A_j$. Then $|A_1| + |R| + |B| = N$ and $\max\{|B|, |R|\} \neq 0$ because $p \geq 2$. Thus G contains a blue P_3 between B and A_1 , or a red P_3 between R and A_1 , and so $\max\{i_b, i_r\} \geq 1$. We next prove several claims.

Claim 1. Let $r \in [k]$ and let s_1, \ldots, s_r be nonnegative integers with $s_1 + \cdots + s_r \ge 1$. If $i_{j_1} \ge s_1, \ldots, i_{j_r} \ge s_r$ for colors $j_1, \ldots, j_r \in [k]$, then for any $S \subseteq V(G)$ with $|S| \ge |G| - (s_1 + \cdots + s_r)$, G[S] must contain a monochromatic copy of $G_{i_{j_q}^*}$ in color j_q for some $j_q \in \{j_1, \ldots, j_r\}$, where $i_{j_q}^* = i_{j_q} - s_q$.

Proof. Let $i_{j_1}^* := i_{j_1} - s_1, \ldots, i_{j_r}^* := i_{j_r} - s_r$, and $i_j^* := i_j$ for all $j \in [k] \setminus \{j_1, \ldots, j_r\}$. Let $i_{\ell}^* := \max\{i_j^* \mid j \in [k]\}$. Then $i_{\ell}^* \leq i_1$. Let $N^* := |G_{i_{\ell}^*}| + [(\sum_{j=1}^k i_j^*) - i_{\ell}^*]$. Then $N^* \geq 3$ and $N^* \leq N - (s_1 + \cdots + s_r) < N$ because $s_1 + \cdots + s_r \geq 1$. Since $|S| \geq N - (s_1 + \cdots + s_r) \geq N^*$ and G[S] does not have a monochromatic copy of G_{i_j} in color j for all $j \in [k] \setminus \{j_1, \ldots, j_r\}$ under c, by minimality of N, G[S] must contain a monochromatic copy of $G_{i_{j_q}^*}$ in color j_q for some $j_q \in \{j_1, \ldots, j_r\}$.

Claim 2. $|A_1| \le n-1$, and so G does not contain a monochromatic copy of a graph on $|A_1|+1 \le n$ vertices in color m, where $m \in [k]$ is a color that is neither red nor blue.

Proof. Suppose $|A_1| \ge n$. We first claim that $i_b \ge |B|$ and $i_r \ge |R|$. Suppose $i_b \le |B| - 1$ or $i_r \le |R| - 1$. Then we obtain a blue G_{i_b} using the edges between B and A_1 , or a red G_{i_r} using the edges between R and A_1 , a contradiction. Thus $i_b \ge |B|$ and $i_r \ge |R|$, as claimed. Let $i_b^* := i_b - |B|$ and $i_r^* := i_r - |R|$. Since $|A_1| = N - |B| - |R|$, by Claim 1 applied to $i_b \ge |B|$, $i_r \ge |R|$ and A_1 , $G[A_1]$ must have a blue $G_{i_b^*}$ or a red $G_{i_r^*}$, say the latter. Then $i_r > i_r^*$. Thus |R| > 0 and $G_{i_r^*}$ is a

red path on $2i_r^* + 3$ vertices. Note that

$$\begin{split} |A_1| &= |G_{i_1}| + \sum_{j=2}^k i_j - |B| - |R| \\ &\geq \begin{cases} |G_{i_r}| + i_b - |B| - |R| & \text{if } i_r \ge i_b \\ |G_{i_b}| + i_r - |B| - |R| & \text{if } i_r < i_b, \end{cases} \\ &\geq \begin{cases} |G_{i_r}| + i_b^* - |R| & \text{if } i_r \ge i_b \\ 2i_b + 2 + i_r - |B| - |R| \ge i_b^* + (2i_r + 3) - |R| & \text{if } i_r < i_b \\ &\ge |G_{i_r}| - |R|. \end{cases} \end{split}$$

Then

$$\begin{aligned} |A_1| - |G_{i_r^*}| &\ge |G_{i_r}| - |G_{i_r^*}| - |R| \\ &= \begin{cases} (3+2i_r) - (3+2i_r^*) - |R| = |R| & \text{if } i_r \le n-2\\ (2+2i_r) - (3+2i_r^*) - |R| = |R| - 1 & \text{if } i_r = n-1. \end{cases} \end{aligned}$$

But then $G[A_1 \cup R]$ contains a red G_{i_r} using the edges of the $G_{i_r^*}$ and the edges between $A_1 \setminus V(G_{i_r^*})$ and R, a contradiction. This proves that $|A_1| \leq n-1$. Next, let $m \in [k]$ be any color that is neither red nor blue. Suppose G contains a monochromatic copy of a graph, say J, on $|A_1| + 1$ vertices in color m. Then $V(J) \subseteq A_\ell$ for some $\ell \in [p]$. But then $|A_\ell| \geq |A_1| + 1$, contrary to $|A_1| \geq |A_\ell|$.

For two disjoint sets $U, W \subseteq V(G)$, we say U is blue-complete (resp. red-complete) to W if all the edges between U and W are colored blue (resp. red) under c. For convenience, we say u is blue-complete (resp. red-complete) to W when $U = \{u\}$.

Claim 3. $\min\{|B|, |R|\} \ge 1, p \ge 3$, and B is neither red- nor blue-complete to R under c.

Proof. Suppose $B = \emptyset$ or $R = \emptyset$. By symmetry, we may assume that $R = \emptyset$. Then $B \neq \emptyset$ and so $i_b \ge 1$. By Claim 2, $|A_1| \le n - 1 \le 5$ because $n \in \{5, 6\}$. Then $|A_1| \le i_b + 4$. If $i_b \le |A_1| - 1$, then $i_b \le n - 2$ by Claim 2. But then we obtain a blue G_{i_b} using the edges between B and A_1 . Thus $i_b \ge |A_1|$. Let $i_b^* = i_b - |A_1|$. By Claim 1 applied to $i_b \ge |A_1|$ and B, G[B] must have a blue $G_{i_b^*}$. Since $|B| \ge n + 1 + i_b^*$, we see that G contains a blue G_{i_b} , a contradiction. Hence $R \ne \emptyset$, and similarly $B \ne \emptyset$, and so $p \ge 3$ for any Gallai-partition of G. It follows that B is neither red- nor blue-complete to R, otherwise $\{B \cup A_1, R\}$ or $\{B, R \cup A_1\}$ yields a Gallai-partition of G with only two parts.

Claim 4. Let $m \in [k]$ be a color that is neither red nor blue. Then $i_m \leq n-4$. In particular, if $i_m \geq 1$, then G contains a monochromatic copy of P_{2i_m+1} in color m under c.

Proof. Note that $i_m \leq n-4$ is is trivially true when $i_m = 0$ because $n \in \{5, 6\}$ and $n-4 \geq 1$. Suppose $i_m \geq 1$. By Claim 2, $|A_1| \leq n-1$ and G contains no monochromatic copy of $P_{|A_1|+1}$ in color m under c. Let $i_m^* := i_m - 1$. By Claim 1 applied to $i_m \ge 1$ and V(G), G must have a monochromatic copy of $G_{i_m^*}$ in color m under c. Since $n \in \{5, 6\}$, $|A_1| \le n - 1$ and G contains no monochromatic copy of $P_{|A_1|+1}$ in color m, we see that $i_m^* \le n - 5$. Thus $i_m \le n - 4$ and G contains a monochromatic copy of P_{2i_m+1} in color m under c if $i_m \ge 1$.

By Claim 3 and the fact that $|A_1| \ge 2$, G has a red P_3 and a blue P_3 . Thus $\min\{i_b, i_r\} \ge 1$. By Claim 4, $\max\{i_b, i_r\} = i_1 = n - 1$. Then $|G| = |G_{i_1}| + \sum_{j=2}^k i_j \ge 2n + 1$. For the remainder of the proof of Theorem 1.9, we choose $p \ge 3$ to be as large as possible.

Claim 5. $\min\{|B|, |R|\} \le n-1$ if $|A_1| \ge n-3$.

Proof. Suppose $|A_1| \ge n-3$ but $\min\{|B|, |R|\} \ge n$. By symmetry, we may assume that $|B| \ge |R| \ge n$. Let $B := \{x_1, x_2, \ldots, x_{|B|}\}$ and $R := \{y_1, y_2, \ldots, y_{|R|}\}$. Let H := (B, R) be the complete bipartite graph obtained from $G[B \cup R]$ by deleting all the edges with both ends in B or in R. Then H has no blue P_7 with both ends in B and no red P_7 with both ends in R, else we obtain a blue C_{2n} or a red C_{2n} because $|A_1| \ge n-3$. We next show that H has no red $K_{3,3}$.

Suppose *H* has a red $K_{3,3}$. We may assume that $H[\{x_1, x_2, x_3, y_1, y_2, y_3\}]$ is a red $K_{3,3}$ under *c*. Since *H* has no red P_7 with both ends in R, $\{y_4, \ldots, y_{|R|}\}$ must be blue-complete to $\{x_1, x_2, x_3\}$. Thus $H[\{x_1, x_2, x_3, y_4, y_5\}]$ has a blue P_5 with both ends in $\{x_1, x_2, x_3\}$ and $H[\{x_1, x_2, x_3, y_1, y_2, y_3\}]$ has a red P_5 with both ends in $\{y_1, y_2, y_3\}$. If $|A_1| \ge n-2$ or $\min\{i_b, i_r\} \le n-2$, then we obtain a blue G_{i_b} or a red G_{i_r} , a contradiction. It follows that $|A_1| = n-3$ and $i_b = i_r = n-1$. Then $|G| = |G_{i_1}| + \sum_{j=2}^k i_j \ge 2n + (n-1) = 3n-1$. Thus $|B \cup R| = |G| - |A_1| \ge 2n+2$. If $|R| \ge 6$, then $\{y_4, y_5, y_6\}$ must be red-complete to $\{x_4, x_5, x_6\}$, else *H* has a blue P_7 with both ends in *B*. But then we obtain a red C_{2n} in *G*. Thus |R| = 5, n = 5, and so $|B| \ge 7$. Let $A_1 = \{a_1, a_1^*\}$. For each $j \in \{4, 5, 6, 7\}$ and every $W \subseteq \{x_1, x_2, x_3\}$ with |W| = 2, no x_j is redcomplete to *W* under *c*, else, say, x_4 is red-complete to $\{x_1, x_2, x_3\}$ with |W| = 2, no x_j is redcomplete to *W* under *c*, else, say, x_4 is red-complete to $\{x_1, x_2, x_3\}$ with |W| = 2, no x_j is redcomplete to *W* under *c*, else, say, x_4 is red-complete to $\{x_1, x_2, x_3\}$ with |W| = 2, no x_j is redcomplete to *W* under *c*, else, say, x_4 is red-complete to $\{x_1, x_2, x_3\}$ with |W| = 2, no x_j is redcomplete to *W* under *c*, else, say, x_4 is red-complete to $\{x_1, x_2\}$, then we obtain a red C_{10} with vertices $a_1, y_1, x_1, x_4, x_2, y_2, x_3, y_3, a_1^*, y_4$ in order, a contradiction. We may assume that x_4x_1, x_5x_2 are colored blue. But then we obtain a blue C_{10} with vertices $a_1, x_4, x_1, y_4, x_3, y_5, x_2, x_5, a_1^*, x_6$ in order, a contradiction. This proves that *H* has no red $K_{3,3}$.

Let $X := \{x_1, x_2, \ldots, x_5\}$ and $Y := \{y_1, y_2, \ldots, y_5\}$. Let H_b and H_r be the spanning subgraphs of $H[X \cup Y]$ induced by all the blue edges and red edges of $H[X \cup Y]$ under c, respectively. By the Pigeonhole Principle, there exist at least three vertices, say x_1, x_2, x_3 , in X such that either $d_{H_b}(x_i) \ge 3$ for all $i \in [3]$ or $d_{H_r}(x_i) \ge 3$ for all $i \in [3]$. Suppose $d_{H_r}(x_i) \ge 3$ for all $i \in [3]$. We may assume that x_1 is red-complete to $\{y_1, y_2, y_3\}$. Since |Y| = 5 and H has no red P_7 with both ends in R, we see that $N_{H_r}(x_1) = N_{H_r}(x_2) = N_{H_r}(x_3) = \{y_1, y_2, y_3\}$. But then $H[\{x_1, x_2, x_3, y_1, y_2, y_3\}]$ is a red $K_{3,3}$, contrary to H has no red $K_{3,3}$. Thus $d_{H_b}(x_i) \ge 3$ for all $i \in [3]$. Since |Y| = 5, we see that any two of x_1, x_2, x_3 have a common neighbor in H_b . Furthermore, two of x_1, x_2, x_3 , say x_1, x_2 , have at least two common neighbors in H_b . It can be easily checked that H has a blue P_5 with ends in $\{x_1, x_2, x_3\}$, and there exist three vertices, say y_1, y_2, y_3 , in Y such that $y_i x_i$ is blue for all $i \in [3]$ and $\{x_4, \ldots, x_{|B|}\}$ is red-complete to $\{y_1, y_2, y_3\}$. Then H has a blue P_5 with both ends in $\{x_1, x_2, x_3\}$ and a red P_5 with both ends in $\{y_1, y_2, y_3\}$. If $|A_1| \ge n-2$ or $\min\{i_b, i_r\} \le n-2$, then we obtain a blue G_{i_b} or a red G_{i_r} , a contradiction. It follows that $|A_1| = n-3$ and $i_b = i_r = n-1$. Thus $|B \cup R| \ge 1 + n + i_b + i_r - |A_1| = 2n + 2$. Then $|B| \ge n+1$ and so $H[\{x_4, x_5, x_6, y_1, y_2, y_3\}]$ is a red $K_{3,3}$, contrary to the fact that H has no red $K_{3,3}$.

Claim 6. $|A_1| \ge 3$.

Proof. Suppose $|A_1| = 2$. Then G has no monochromatic copy of P_3 in color j for any $j \in \{3, \ldots, k\}$ under c. By Claim 4, $i_3 = \cdots = i_k = 0$ and so $N = 1 + n + i_b + i_r$. We may assume that $|A_1| = \cdots = |A_t| = 2$ and $|A_{t+1}| = \cdots = |A_p| = 1$ for some integer t satisfying $p \ge t \ge 1$. Let $A_i = \{a_i, b_i\}$ for all $i \in [t]$. By reordering if necessary, each of A_1, \ldots, A_t can be chosen as the largest part in the Gallai-partition A_1, A_2, \ldots, A_p of G. For all $i \in [t]$, let

 $A_b^i := \{ a_j \in V(\mathcal{R}) \mid a_j a_i \text{ is colored blue in } \mathcal{R} \},\$ $A_r^i := \{ a_j \in V(\mathcal{R}) \mid a_j a_i \text{ is colored red in } \mathcal{R} \}.$

Let $B^i := \bigcup_{a_j \in A_b^i} A_j$ and $R^i := \bigcup_{a_j \in A_r^i} A_j$. Then $|B^i| + |R^i| = 2n - 2 + \min\{i_b, i_r\} = n - 1 + i_b + i_r$. Let

 $E_B := \{a_i b_i \mid i \in [t] \text{ and } |R^i| < |B^i|\},\$ $E_R := \{a_i b_i \mid i \in [t] \text{ and } |B^i| < |R^i|\},\$ $E_Q := \{a_i b_i \mid i \in [t] \text{ and } |B^i| = |R^i|\}.$

Let c^* be obtained from c by recoloring all the edges in E_B blue, all the edges in E_R red, and all the edges in E_Q either red or blue. Then all the edges of G are colored red or blue under c^* . Note that $|G| = n + 1 + i_b + i_r = R(G_{i_b}, G_{i_r})$. By Theorem 1.12 and Theorem 1.13, we see that Gmust contain a blue G_{i_b} or a red G_{i_r} under c^* . By symmetry, we may assume that G has a blue $H := G_{i_b}$ under c^* . Then H contains no edges of E_R but must contain at least one edge of $E_B \cup E_Q$, else we obtain a blue H in G under c. We choose H so that $|E(H) \cap (E_B \cup E_Q)|$ is minimal. We may further assume that $a_1b_1 \in E(H) \cap (E_B \cup E_Q)$, so that $|B^1| \ge |R^1|$. Since $|B^1| + |R^1| =$ $2n - 2 + \min\{i_b, i_r\} \ge 2n - 2 + 1$, we see that $|B^1| \ge n \ge 5$ and $|R^1| \le n - 1 + \lfloor \frac{\min\{i_b, i_r\}}{2} \rfloor \le 7$. So $i_b \ge 2$. By Claim 5, $|R^1| \le 4$ when n = 5. Let $W := V(G) \setminus V(H)$.

We next claim that $i_b = n - 1$. Suppose $i_b \leq n - 2$. Then $H = P_{2i_b+3}$, $i_r = n - 1$, $|G| = 2n + i_b$ and $|W| = 2n - 3 - i_b \geq n - 1$. Let $x_1, x_2, \ldots, x_{2i_b+3}$ be the vertices of H in order. We may assume that $x_\ell x_{\ell+1} = a_1 b_1$ for some $\ell \in [2i_b + 2]$. If a vertex $w \in W$ is blue-complete to $\{a_1, b_1\}$, then we obtain a blue $H' := G_{i_b}$ under c^* with vertices $x_1, \ldots, x_\ell, w, x_{\ell+1}, \ldots, x_{2i_b+2}$ in order (when $\ell \neq 2i_b + 2$) or $x_1, x_2, \ldots, x_{2i_b+2}, w$ in order (when $\ell = 2i_b + 2$) such that $|E(H') \cap (E_B \cup E_Q)| <$ $|E(H) \cap (E_B \cup E_Q)|$, contrary to the choice of H. Thus no vertex in W is blue-complete to $\{a_1, b_1\}$ under c and so W must be red-complete to $\{a_1, b_1\}$ under c. This proves that $W \subseteq R^1$. We next claim that $\ell = 1$ or $\ell = 2i_b + 2$. Suppose $\ell \in \{2, \ldots, 2i_b + 1\}$. Then $\{x_1, x_{2i_b+3}\}$ must be red-complete to $\{a_1, b_1\}$, else, we obtain a blue $H' := G_{i_b}$ with vertices $x_\ell, \ldots, x_1, x_{\ell+1}, \ldots, x_{2i_b+3}$ or $x_1, \ldots, x_\ell, x_{2i_b+3}, x_{\ell+1}, \ldots, x_{2i_b+2}$ in order under c^* such that $|E(H') \cap (E_B \cup E_Q)| < |E(H) \cap (E_B \cup E_Q)|$. Thus $\{x_1, x_{2i_b+3}\} \subseteq R^1$ and so $W \cup \{x_1, x_{2i_b+3}\}$ is red-complete to $\{a_1, b_1\}$. If n = 5, then $4 \ge |R^1| \ge |W \cup \{x_1, x_{2i_b+3}\}| \ge 6$, a contradiction. Thus n = 6 and $7 \ge |R^1| \ge |W \cup \{x_1, x_{2i_b+3}\}| \ge 7$. It follows that $R^1 \cap V(H) = \{x_1, x_{2i_b+3}\}$ and thus either $\{x_{\ell-2}, x_{\ell-1}\}$ or $\{x_{\ell+2}, x_{\ell+3}\}$ is blue-complete to $\{a_1, b_1\}$. In either case, we obtain a blue $H' := G_{i_b}$ under c^* such that $|E(H') \cap (E_B \cup E_Q)| < |E(H) \cap (E_B \cup E_Q)|$, a contradiction. This proves that $\ell = 1$ or $\ell = 2i_b + 2$. By symmetry, we may assume that $\ell = 1$. Then x_1x_3 is colored blue under c because $A_1 = \{a_1, b_1\}$. Similarly, for all $j \in \{3, \ldots, 2i_b + 2\}$, $\{x_j, x_{j+1}\}$ is not blue-complete to $\{a_1, b_1\}$, else we obtain a blue $H' := G_{i_b}$ with vertices $x_1, x_j, \ldots, x_2, x_{j+1}, \ldots, x_{2i_b+3}$ in order under c^* such that $|E(H') \cap (E_B \cup E_Q)| < |E(H) \cap (E_B \cup E_Q)|$. It follows that $x_4 \in R^1$ and so $|R^1 \cap \{x_4, \ldots, x_{2i_b+3}\}| \ge i_b$. Then $|R^1| \ge |W| + |R^1 \cap \{x_4, \ldots, x_{2i_b+3}\}| \ge 2n - 3$, so $4 \ge |R^1| \ge 7$ (when n = 5) or $7 \ge |R^1| \ge 9$ (when n = 6), a contradiction. This proves that $i_b = n - 1$.

Since $i_b = n - 1$, we see that $H = C_{2n}$. Then $|G| = 2n + i_r$ and so $|W| = i_r$. Let $a_1, x_1, \ldots, x_{2n-2}, b_1$ be the vertices of H in order and let $W := \{w_1, \ldots, w_{i_r}\}$. Then x_1b_1 and a_1x_{2n-2} are colored blue under c because $A_1 = \{a_1, b_1\}$. Suppose $\{x_j, x_{j+1}\}$ is blue-complete to $\{a_1, b_1\}$ for some $j \in [2n - 3]$. We then obtain a blue $H' := C_{2n}$ with vertices $a_1, x_1, \ldots, x_j, b_1, x_{2n-2}, \ldots, x_{j+1}$ in order under c^* such that $|E(H') \cap (E_B \cup E_Q)| < |E(H) \cap (E_B \cup E_Q)|$, contrary to the choice of H. Thus, for all $j \in [2n - 3], \{x_j, x_{j+1}\}$ is not blue-complete to $\{a_1, b_1\}$. Since $\{x_1, x_{2n-2}\}$ is blue-complete to $\{a_1, b_1\}$ under c, we see that $x_2, x_{2n-3} \in R^1$, and so $4 \ge |R^1| \ge |R^1 \cap V(H)| \ge 4$ (when n = 5) and $7 \ge 5 + \lfloor \frac{i_r}{2} \rfloor \ge |R^1| \ge |R^1 \cap V(H)| \ge 5$ (when n = 6). Thus, when n = 5, the distinct cases are $R^1 = \{x_2, x_4, x_5, x_7\}$ or $R^1 = \{x_2, x_4, x_6, x_7\}$, as depicted in Figure 1(a) and Figure 1(b); when n = 6, we have $R^1 \cap V(H) = \{x_2, x_9\} \cup \{x_j \mid j \in J\}$, where $J \in \{\{4, 6, 8\}, \{4, 6, 7\}, \{3, 4, 5, 7, 8\}$.

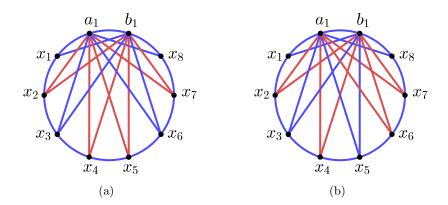


Figure 1: Two cases of R^1 when $i_b = 4$ and n = 5.

Since $|R^1| \ge n-1$ and R^1 is red-complete to $\{a_1, b_1\}$ under c, we see that $i_r \ge 2$. Let $W' := W \setminus R^1$. Then $W' \subseteq B^1$. Since $|B^1| \ge |R^1|$, it follows that $|W'| \ge \lceil \frac{i_r}{2} \rceil \ge 1$. We may assume

 $W' = \{w_1, \ldots, w_{|W'|}\}$. We claim that $E(H) \cap (E_B \cup E_Q) = \{a_1b_1\}$. Suppose, say $a_2b_2 \in E(H) \cap (E_B \cup E_Q)$. Since $\{x_1, x_2\} \neq A_i$ and $\{x_{2n-3}, x_{2n-2}\} \neq A_i$ for all $i \in [t]$, we may assume that $a_2 = x_j$ and $b_2 = x_{j+1}$ for some $j \in \{2, \ldots, 2n-4\}$. Then $x_{j-1}x_{j+1}$ and x_jx_{j+2} are colored blue under c. But then we obtain a blue $H' := C_{2n}$ under c^* with vertices $a_1, x_1, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{2n-2}, b_1, w_1$ in order such that $|E(H') \cap (E_B \cup E_Q)| < |E(H) \cap (E_B \cup E_Q)|$, contrary to the choice of H. Thus $E(H) \cap (E_B \cup E_Q) = \{a_1b_1\}$, as claimed.

(*) Let $w \in W'$. For $j \in \{1, 2n - 2\}$, if $\{x_j, w\} \neq A_i$ for all $i \in [t]$, then $x_j w$ is colored red. For $j \in \{2, \ldots, 2n - 3\}$, if $\{x_j, w\} \neq A_i$ for all $i \in [t]$ and x_{j-2} or $x_{j+2} \in B^1$, then $x_j w$ is colored red.

Proof. Suppose there is some $j \in [2n-2]$ such that $\{x_j, w\} \neq A_i$ for all $i \in [t]$, and x_{j-2} or $x_{j+2} \in B^1$ if $j \in \{2, \ldots, 2n-3\}$, but $x_j w$ is colored blue. Then we obtain a blue C_{2n} under c with vertices $a_1, w, x_1, \ldots, x_{2n-2}$ (when j = 1) or $a_1, x_1, \ldots, x_{2n-2}, w$ (when j = 2n-2) in order if $j \in \{1, 2n-2\}$, and with vertices $b_1, x_{2n-2}, x_{2n-3}, \ldots, x_{j+2}, a_1, w, x_j, \ldots, x_1$ in order (when $x_{j+2} \in B^1$) or $a_1, x_1, \ldots, x_{j-2}, b_1, w, x_j, \ldots, x_{2n-2}$ in order (when $x_{j-2} \in B^1$) if $j \in \{2, \ldots, 2n-3\}$, a contradiction.

(**) For $j \in [2n-4]$, $x_j x_{j+2}$ is colored red if $\{x_j, x_{j+2}\} \neq A_i$ for all $i \in [t]$.

Proof. Suppose $x_j x_{j+2}$ is colored blue for some $j \in [2n-4]$. Then we obtain a blue C_{2n} under c with vertices $a_1, x_1, \ldots, x_j, x_{j+2}, \ldots, x_{2n-2}, b_1, w_1$ in order, a contradiction.

We claim that n = 6. Suppose n = 5. Then $R^1 = \{x_2, x_4, x_\alpha, x_\beta\}$, where $(\alpha, \beta) \in \{(5,7), (7,6)\}$. Thus W' = W and $x_{\alpha+1}, x_{\alpha-2} \in B^1$. Since $\{x_{\alpha-1}, w_j\} \neq A_i$ and $\{x_\alpha, w_j\} \neq A_i$ for all $w_j \in W$ and $i \in [t]$, it follows from (*) that $\{x_{\alpha-1}, x_\alpha\}$ must be red-complete to W under c. Then for any $w_j \in W$, $\{x_{\alpha-2}, w_j\} \neq A_i$ and $\{x_{\alpha+1}, w_j\} \neq A_i$ for all $i \in [t]$ since $x_{\alpha-1}x_{\alpha-2}$ and $x_\alpha x_{\alpha+1}$ are colored blue under c. Thus $\{x_{\alpha-2}, x_{\alpha+1}\}$ is red-complete to W by (*). So $\{x_{\alpha-2}, x_{\alpha-1}, x_\alpha, x_{\alpha+1}\}$ is red-complete to W under c. But then we obtain a red P_9 under c (when $i_r \leq 3$) with vertices $x_2, a_1, x_{\alpha-1}, b_1, x_\alpha, w_1, x_{\alpha-2}, w_2, x_{\alpha+1}$ in order, or a red C_{10} under c (when $i_r = 4$) with vertices $a_1, x_2, b_1, x_{\alpha-1}, w_1, x_{\alpha-2}, w_2, x_{\alpha+1}, w_3, x_\alpha$ in order, a contradiction. This proves that n = 6, as claimed. By (*), we may assume x_1 is red-complete to $W' \setminus w_1$ and x_{10} is red-complete to $W' \setminus w_{|W'|}$ because $|A_1| = 2$. Recall that $5 \leq |R^1 \cap V(H)| \leq 7$ when n = 6. We next consider three cases based on the value of $|R^1 \cap V(H)|$.

Case 1. $|R^1 \cap V(H)| = 5$. Then $R^1 \cap V(H) = \{x_2, x_4, x_6, x_\alpha, x_\beta\}$, where $(\alpha, \beta) \in \{(9, 8), (7, 9)\}$. Then $x_{\alpha+1}, x_{\alpha-2} \in B^1$. Since $\{x_{\alpha-1}, w_j\} \neq A_i$ and $\{x_\alpha, w_j\} \neq A_i$ for all $w_j \in W'$ and $i \in [t]$, $\{x_{\alpha-1}, x_\alpha\}$ must be red-complete to W' under c by (*). Then for any $w_j \in W'$, $\{x_{\alpha-2}, w_j\} \neq A_i$ and $\{x_{\alpha+1}, w_j\} \neq A_i$ for all $i \in [t]$ since $x_{\alpha-1}x_{\alpha-2}$ and $x_\alpha x_{\alpha+1}$ are colored blue under c. Thus $\{x_{\alpha-2}, x_{\alpha+1}\}$ is red-complete to W' by (*). So $\{x_{\alpha-2}, x_{\alpha-1}, x_\alpha, x_{\alpha+1}\}$ is red-complete to W' under c. We see that G has a red P_7 with vertices $x_{\alpha-1}, w_1, x_\alpha, a_1, x_2, b_1, x_4$ in order, and so $i_r \geq 3$ and $|W'| \geq \lfloor \frac{i_r}{2} \rfloor \geq 2$. Moreover, $x_{\alpha-1}x_{\alpha+1}$ and $x_{\alpha-2}x_\alpha$ are colored red by (**). Then G has a red P_{11} with vertices $x_1, w_2, x_{\alpha-1}, x_{\alpha+1}, w_1, x_{\alpha-2}, x_\alpha, a_1, x_2, b_1, x_4$ in order under c. Thus $i_r = 5$ and so $|W'| \geq$ $\lceil \frac{i_r}{2} \rceil \ge 3$. Since $|A_1| = 2$ and $x_{\alpha-6} \in B^1$, by (*), we may assume $x_{\alpha-4}$ is red-complete to $W' \setminus w_2$. But then we obtain a red C_{12} with vertices $a_1, x_{\alpha}, x_{\alpha-2}, w_1, x_{\alpha-4}, w_3, x_1, w_2, x_{\alpha+1}, x_{\alpha-1}, b_1, x_2$ in order under c, a contradiction.

Case 2. $|R^1 \cap V(H)| = 6$. We claim that $i_r \ge 3$. Suppose $i_r = 2$. Then $|B^1| = |R^1| = 6$ and $G[B^1 \cup R^1]$ contains no red P_3 with at least one end in R^1 , else we obtain a red P_7 . By Claim 3, B^1 is not blue-complete to R^1 . Let $x \in B^1$ and $y \in R^1$ such that xy is colored red. Then x is blue-complete to $R^1 \setminus y$ and there exists at most one vertex $w \in B^1$ such that x is blue-complete to $B^1 \setminus \{x, w\}$ because $G[B^1 \cup R^1]$ contains no red P_3 with at least one end in R^1 . Let $i_b^* := 1, i_r^* := 0$, $i_j^* := 0$ for all colors j other than red and blue. Let $N^* := |G_{i_b^*}| + [(\sum_{j=1}^k i_j^*) - i_b^*] = 5$. Observe that $|R^1 \setminus y| = 5 = N^*$, by minimality of N, $G[R^1 \setminus y]$ contains a blue P_5 . Let y_1, y_2, \ldots, y_5 be the vertices of the P_5 in order. Then y is blue-complete to $\{y_i, y_{i+1}\}$ for some $j \in [4]$ and $x_1 \in B^1 \setminus x$ is not red-complete to $\{y_1, y_5\}$ because $G[B^1 \cup R^1]$ contains no red P_3 with at least one end in R^1 and $|A_1| = 2$. So we may assume x_1y_1 is colored blue. But then we obtain a blue C_{12} under c with vertices $a_1, x_1, y_1, \ldots, y_j, y, y_{j+1}, \ldots, y_5, x, x_2, b_1, x_3$ in order, where $x_2, x_3 \in B^1 \setminus \{x, x_1, w\}$, a contradiction. Thus $i_r \geq 3$, as claimed. Note that $|B^1 \cap V(H)| = 4$, so $|W'| \geq 3$. We may further assume that $\{x_1, w_2\} \neq A_i$ and $\{x_1, w_3\} \neq A_i$ for all $i \in [t]$; and $\{x_{10}, w_1\} \neq A_i$ and $\{x_{10}, w_2\} \neq A_i$ for all $i \in [t]$. By (*), x_1 is red-complete to $\{w_2, w_3\}$ under c; and x_{10} is red-complete to $\{w_1, w_2\}$ under c. Let $(\alpha, \beta, \gamma) \in \{(5, 2, 4), (4, 7, 5)\}$. Suppose $R^1 \cap V(H) = \{x_2, x_3, x_\alpha, x_6, x_7, x_9\}$. Since $\{x_{\beta}, w_{i}\} \neq A_{i}, \{x_{3}, w_{i}\} \neq A_{i} \text{ and } \{x_{6}, w_{i}\} \neq A_{i} \text{ for all } w_{i} \in W' \text{ and } i \in [t], \text{ by } (*), \{x_{\beta}, x_{3}, x_{6}\}$ must be red-complete to W' under c. By (**), x_{γ} is red-complete to $\{x_{\gamma-2}, x_{\gamma+2}\}$. But then we obtain a red C_{12} under c with vertices $a_1, x_2, x_4, x_6, w_1, x_{10}, w_2, x_1, w_3, x_3, b_1, x_5$ (when $\alpha = 5$) or $a_1, x_3, x_5, x_7, w_1, x_{10}, w_2, x_1, w_3, x_6, b_1, x_4$ (when $\alpha = 4$) in order, a contradiction. Let $(\alpha, \beta, \gamma, \delta) \in$ $\{(3, 8, 5, 6), (3, 5, 7, 8), (4, 6, 8, 2)\}$. Suppose $R^1 \cap V(H) = V(H) \setminus \{a_1, b_1, x_1, x_{10}, x_{\alpha}, x_{\beta}\}$. Since $\{x_{\gamma}, w_{j}\} \neq A_{i}$ and $\{x_{\delta}, w_{j}\} \neq A_{i}$ for all $w_{j} \in W'$ and $i \in [t], \{x_{\gamma}, x_{\delta}\}$ must be red-complete to W' under c by (*). Moreover, $x_{\gamma}x_{\gamma-2}$ and $x_{\delta}x_{\delta+2}$ are colored red by (**). Since $|A_1| = 2$, at least one of $x_1, x_{10}, x_{\alpha}, x_{\beta}$ is red-complete to $\{w_1, w_2, w_3\}$ by (*). So we may assume x_{α} is red-complete to $W' \setminus w_2$ and x_β is red-complete to $\{w_1, w_2, w_3\}$. But then we obtain a red C_{12} with vertices $a_1, x_{\gamma}, x_{\gamma-2}, w_1, x_{10}, w_2, x_1, w_3, x_{\delta+2}, x_{\delta}, b_1, x_7$ in order if $(\alpha, \beta, \gamma, \delta) \in \{(3, 8, 5, 6), (4, 6, 8, 2)\}$ and $a_1, x_7, x_5, w_1, x_3, w_3, x_1, w_2, x_{10}, x_8, b_1, x_6$ in order if $(\alpha, \beta, \gamma, \delta) = (3, 5, 7, 8)$, a contradiction. Finally if $R^1 \cap V(H) = \{x_2, x_3, x_5, x_6, x_8, x_9\}$. By $(*), R^1 \cap V(H)$ is red-complete to W'. Then G has a red P_{11} with vertices $x_2, a_1, x_3, b_1, x_5, w_1, x_6, w_2, x_8, w_3, x_9$ in order. Thus $i_r = 5$ and so $|W'| \ge 4$. But then we obtain a red C_{12} with vertices $a_1, x_2, w_1, x_3, w_2, x_5, w_3, x_6, w_4, x_8, b_1, x_9$ in order, a contradiction.

Case 3. $R^1 = |R^1 \cap V(H)| = 7$, then $i_r \ge 4$ and $|W'| = |W| = i_r$. Let $(\alpha, \beta) \in \{(6, 5), (7, 4)\}$. Suppose $R^1 = \{x_2, x_3, x_4, x_5, x_\alpha, x_8, x_9\}$. Since $\{x_3, w_j\} \ne A_i$, $\{x_\beta, w_j\} \ne A_i$ and $\{x_8, w_j\} \ne A_i$ for all $i \in [t]$ and any $w_j \in W'$, $\{x_3, x_\beta, x_8\}$ must be red-complete to W' under c by (*). But then we obtain a red C_{12} with vertices $a_1, x_3, w_1, x_{10}, w_2, x_1, w_3, x_\beta, w_4, x_8, b_1, x_2$ in order, a contradiction. Finally if $R^1 = \{x_2, x_3, x_4, x_5, x_6, x_7, x_9\}$. Since $\{x_3, w_j\} \ne A_i$ and $\{x_6, w_j\} \ne A_i$ for all $i \in [t]$ and any

 $w_j \in W', \{x_3, x_6\}$ must be red-complete to W' under c by (*). We may assume x_8 is red-complete to $W' \setminus w_2$ by (*). But then we obtain a red C_{12} with vertices $a_1, x_3, w_1, x_{10}, w_2, x_1, w_3, x_8, w_4, x_6, b_1, x_2$ in order, a contradiction. This proves that $|A_1| \geq 3$.

Claim 7. For any A_i with $3 \le |A_i| \le 4$, $G[A_i]$ has a monochromatic copy of P_3 in some color $m \in [k]$ other than red and blue.

Proof. Suppose there exists a part A_i with $3 \leq |A_i| \leq 4$ but $G[A_i]$ has no monochromatic copy of P_3 in any color $m \in [k]$ other than red and blue. We may assume i = 1. Since $GR_k(P_3) = 3$, we see that $G[A_1]$ must contain a red or blue P_3 , say blue. We may assume a_1, b_1, c_1 are the vertices of the blue P_3 in order. Then $|A_1| = 4$, else $\{b_1\}, \{a_1, c_1\}, A_2, \ldots, A_p$ is a Gallai partition of G with p + 1 parts. Let $z_1 \in A_1 \setminus \{a_1, b_1, c_1\}$. Then z_1 is not blue-complete to $\{a_1, c_1\}$, else $\{a_1, c_1\}, \{b_1, z_1\}, A_2, \ldots, A_p$ is a Gallai partition of G with p + 1 parts. Moreover, b_1z_1 is not colored blue, else $\{b_1\}, \{a_1, c_1, z_1\}, A_2, \ldots, A_p$ is a Gallai partition of G with p + 1 parts. If b_1z_1 is colored red, then a_1z_1 and c_1z_1 are colored either red or blue because G has no rainbow triangle. Similarly, z_1 is not red-complete to $\{a_1, c_1\}$, else $\{z_1\}, \{a_1, b_1, c_1\}, A_2, \ldots, A_p$ is a Gallai partition of G with p + 1 parts. Thus, by symmetry, we may assume a_1z_1 is colored blue and c_1z_1 is colored red, and so a_1c_1 is colored blue or red because G has no rainbow triangle. But then $\{a_1\}, \{b_1\}, \{c_1\}, \{z_1\}, A_2, \ldots, A_p$ is a Gallai partition of G with p + 3 parts, a contradiction. Thus b_1z_1 is colored neither red nor blue. But then a_1z_1 and c_1z_1 must be colored blue because $G[A_1]$ has neither rainbow triangle nor monochromatic P_3 in any color $m \in [k]$ other than red and blue, a contradiction.

For the remainder of the proof of Theorem 1.9, we assume that $|B| \ge |R|$. By Claim 5, $|R| \le n-1$. Let $\{a_i, b_i, c_i\} \subseteq A_i$ if $|A_i| \ge 3$ for any $i \in [p]$. Let $B := \{x_1, \ldots, x_{|B|}\}$ and $R := \{y_1, \ldots, y_{|R|}\}$. We next show that

Claim 8. $i_r \geq |R|$.

Proof. Suppose $i_r \leq |R| - 1 \leq n - 2$. Then $i_b = n - 1$, $i_r \geq 3$, $|A_1| \leq 4$, else we obtain a red G_{i_r} because R is not blue-complete to B and $|A_1| \geq 3$. By Claim 7, $G[A_1]$ has a monochromatic, say green, copy of P_3 . By Claim 4, $i_g = 1$. We have $|G| \geq n + 1 + i_b + i_r + i_g \geq 2n + 4$. This implies that there exist two independent edges between B and R, say x_1y_1, x_2y_2 , that are colored red, else we obtain a blue C_{2n} . Then $G[A_1 \cup R \cup \{x_1, x_2\}]$ has a red P_9 , it follows that n = 6, $i_r = 4$ and |R| = 5. Then $|A_1 \cup B| = |G| - |R| \geq 7 + i_b + i_r + i_g - |R| = 12$, and so G[B] has no blue $G_{i_b-|A_1|}$, else we obtain a blue C_{12} . Let $i_b^* := i_b - |A_1| \leq 2$, $i_r^* := i_r - |R| + 2 = 1$, $i_j^* := i_j \leq 2$ for all color $j \in [k]$ other than red and blue. Let $i_\ell^* := \max\{i_j^* \mid j \in [k]\}$. Then $i_\ell^* \leq i_1$. Let $N^* := |G_{i_\ell^*}| + [(\sum_{j=1}^k i_j^*) - i_\ell^*]$. Observe that $|B| \geq N^*$. By minimality of N, G[B] has a red $G_{i_r^*} = P_5$ with vertices, say x_1, \ldots, x_5 , in order. Because there is a red P_7 with both ends in R by using edges between A_1 and R, we see that R is blue-complete to $\{x_1, x_2, x_4, x_5\}$, else $G[A_1 \cup R \cup \{x_1, \ldots, x_5\}]$ has a red P_{11} . But

then we obtain a blue C_{12} under c with vertices $a_1, x_1, y_1, x_2, y_2, x_4, y_3, x_5, b_1, x_3, c_1, x_6$ in order, a contradiction.

Claim 9. $i_b > |A_1|$ and so $|A_1| \le n - 2$.

Proof. Suppose $i_b \leq |A_1|$. If $i_b \leq |A_1| - 1$, then $i_b \leq n - 2$ by Claim 2 and so $i_r = n - 1$. Thus $|B| \ge 2 + i_b$ because $|B| + |R| = |G| - |A_1| \ge n + 1 + i_b + (i_r - |A_1|) \ge 3 + 2i_b$. But then G has a blue G_{i_b} using edges between A_1 and B, a contradiction. Thus $i_b = |A_1|$. By Claim 5 and Claim 8, $|R| \leq n-1$ and $i_r \geq |R|$. Observe that $|B| \geq 1 + n + i_r - |R| \geq 1 + n$. Then $G[B \cup R]$ has no blue P_3 with both ends in B, else we obtain a blue G_{i_b} in G. Let $i_b^* := i_b - |A_1| = 0$, $i_r^* := i_r - |R|$, and $i_j^* := i_j \leq n - 4$ for all colors $j \in [k]$ other than blue and red. Let $i_\ell^* := \max\{i_j^* \mid j \in [k]\}$. Then $i_{\ell}^* \leq i_1$. Let $N^* := |G_{i_{\ell}^*}| + [(\sum_{j=1}^k i_j^*) - i_{\ell}^*]$. Then $3 < N^* < N$. Suppose first that $|R| \geq 2$. Since B is not red-complete to R, we may assume that y_1x is colored blue for some $x \in B$. Note that $i_r^* \leq n-3$ and $|B \setminus x| = N - |A_1| - |R| - 1 \geq N^*$. By minimality of N, $G[B \setminus x]$ must have a red $G_{i_r^*} = P_{2i_r^*+3}$ with vertices, say x_1, \ldots, x_q , in order, where $q = 2i_r^* + 3$. Since $G[B \cup R]$ contains no blue P_3 with both ends in B and xy_1 is colored blue, we see that y_1 must be red-complete to $B \setminus x$ and y_2 is not blue-complete to $\{x_1, x_q\}$. We may assume that $x_q y_2$ is colored red in G. Then n = 6, $i_r = |R| = 5$ and $i_b = |A_1| = 3$, else we obtain a red G_{i_r} using vertices in $V(P_{2i_r^*+3}) \cup R \cup A_1$. Let $x' \in B \setminus \{x, x_1, x_2, x_3\}$. Then $\{x, x'\} \not\subseteq A_i$ and $\{x, x_1\} \not\subseteq A_i$ for all $i \in [p]$ because $y_1 x$ is colored blue and y_1x', y_1x_1 are colored red, and so xx' and xx_1 are colored red, else $G[A_1 \cup B \cup \{y_1\}]$ has a blue P₉. But then we obtain a red C_{12} with vertices $a_1, y_1, x', x, x_1, x_2, x_3, y_2, b_1, y_3, c_1, y_4$ in order, a contradiction. Thus |R| = 1. By Claim 1 applied to $i_b = |A_1|, i_r \ge |R|$ and B, G[B] must have a red P_{2i_r+1} with vertices, say $x_1, x_2, \ldots, x_{2i_r+1}$, in order. Since $G[B \cup R]$ contains no blue P_3 with both ends in B, we may assume that y_1x_1 is colored red under c. Then $i_r = n - 1$, else we obtain a red G_{i_r} , a contradiction. Moreover, $y_1 x_{2n-1}$ must be colored blue, else G has a red C_{2n} with vertices $y_1, x_1, \ldots, x_{2n-1}$ in order. Thus y_1 is red-complete to $\{x_1, \ldots, x_{2n-2}\}$, and so $\{x_j, x_{2n-1}\} \not\subseteq A_i$ for all $i \in [p]$ and $j \in [2n-2]$. So $x_{2n-1}x_i$ must be colored red for some $i \in [2n-3]$ because G[B]has no blue P_3 . But then we obtain a red C_{2n} with vertices $y_1, x_1, \ldots, x_i, x_{2n-1}, x_{2n-2}, \ldots, x_{i+1}$ in order, a contradiction. This proves that $i_b > |A_1|$, and so $|A_1| \le n-2$.

By Claim 6 and Claim 9, we have $3 \le |A_1| \le n-2$. By Claim 7, $G[A_1]$ has a monochromatic, say green, copy of P_3 . By Claim 4, $i_g = 1$.

Claim 10. If $|A_1| = 3$, then $|A_2| = 3$, $|A_3| \le 2$, and $i_j = 0$ for all colors $j \in [k]$ other than red, blue and green.

Proof. We may assume that the first three colors in [k] are red, blue, and green. Assume $|A_1| = 3$. To prove $|A_2| = 3$, we show that $G[B \cup R]$ has a green P_3 . Suppose $G[B \cup R]$ has no green P_3 . By Claim 9, $i_b \ge |A_1| + 1 = 4$. Let $i_g^* := 0$ and $i_j^* := i_j$ for all $j \in [k]$ other than green. Let $i_\ell^* := \max\{i_j^* \mid j \in [k]\}$ and $N^* := |G_{i_\ell^*}| + [(\sum_{j=1}^k i_j^*) - i_\ell^*]$. Then $N^* = N - 1$ and $|G \setminus a_1| = N - 1 = 1$ N^* . But then $G \setminus a_1$ has no monochromatic copy of $G_{i_j^*}$ in color j for all $j \in [k]$, contrary to the minimality of N. Thus $G[B \cup R]$ has a green P_3 and so $|A_2| = 3$. For the rest of the proof of Claim 10, we do not use the condition $|B| \ge |R|$ because we make no use of Claim 8 and Claim 9.

Suppose $|A_3| = 3$. For all $i \in [3]$, let

$$A_b^i := \{ a_j \in V(\mathcal{R}) \mid a_j a_i \text{ is colored blue in } \mathcal{R} \},\$$
$$A_r^i := \{ a_j \in V(\mathcal{R}) \mid a_j a_i \text{ is colored red in } \mathcal{R} \}.$$

Let $B^i := \bigcup_{a_i \in A_i^i} A_j$ and $R^i := \bigcup_{a_i \in A_r^i} A_j$. Since each of A_1, A_2, A_3 can be chosen as the largest part in the Gallai-partition A_1, A_2, \ldots, A_p of G, by Claim 5, either $|B^i| \leq 5$ or $|R^i| \leq 5$ for all $i \in [3]$. Without loss of generality, we may assume that A_2 is blue-complete to $A_1 \cup A_3$. Let $X := V(G) \setminus (A_1 \cup A_2 \cup A_3) = \{v_1, \dots, v_{|X|}\}$. Then $|X| \ge 1 + n + i_b + i_r + i_g - 9 = 1$ $2n - 8 + \min\{i_b, i_r\}$. Suppose $|X \cap B^1| \geq 2$. We may assume $v_1, v_2 \in X \cap B^1$. Then G has a blue C_{10} with vertices $a_1, v_1, b_1, v_2, c_1, a_2, a_3, b_2, b_3, c_2$ in order and a blue P_{11} with vertices $a_1, v_1, b_1, v_2, c_1, a_2, a_3, b_2, b_3, c_2, c_3$ in order, and so n = 6 and $i_b = 5$. Moreover, $X \setminus \{v_1, v_2\} \subseteq R^3$, else, say v_3 is blue-complete to A_3 , then we obtain a blue C_{12} under c with vertices $a_1, v_1, b_1, v_2, c_1, a_2, a_3, v_3, b_3, b_2, c_3, c_2$ in order. Thus $|R^3| \ge |X \setminus \{v_1, v_2\}| \ge 2 + i_r$, and so $i_r \geq 3$, else G has a red G_{i_r} using the edges between A_3 and R^3 . Then there exist at least two vertices in $X \setminus \{v_1, v_2\}$, say v_3, v_4 , such that $\{v_3, v_4\}$ is blue-complete to A_1 , else $G[A_1 \cup A_3 \cup (X \setminus \{v_1, v_2\})]$ contains a red G_{i_r} . Thus $|B^1| \ge |A_2 \cup \{v_1, \dots, v_4\}| = 7$ and so $|R^1| \leq 5$. Moreover, $\{v_1, v_2\} \subset R^3$, else, say v_1 is blue-complete to A_3 , we then obtain a blue C_{12} under c with vertices $a_1, v_3, b_1, v_4, c_1, a_2, a_3, v_1, b_3, b_2, c_3, c_2$ in order. Then $X \subseteq \mathbb{R}^3$ and $|R^3| \ge |X| \ge 4 + i_r \ge 7$, and so $|B^3| \le 5$ and A_1 is red-complete to A_3 . Furthermore, $G[B^1 \setminus A_2]$ has no blue P_3 , else, say v_1, v_2, v_3 is such a blue P_3 in order, we obtain a blue C_{12} with vertices $a_1, v_1, v_2, v_3, b_1, v_4, c_1, a_2, a_3, b_2, b_3, c_2$ in order. Therefore for any $U \subseteq B^1 \setminus A_2$ with $|U| \ge 4$, G[U]contains a red P_3 because $|A_1| = 3$ and $GR_k(P_3) = 3$. Since $|R^1| \le 5$ and $A_3 \subseteq R^1$, we may assume $v_1, \ldots, v_{|X|-2} \in B^1 \setminus A_2$. Then $G[\{v_1, \ldots, v_4\}]$ must contain a red P_3 with vertices, say v_1, v_2, v_3 , in order. We claim that $X \subset B^1$. Suppose $v_{|X|} \in R^1$. Then $v_{|X|}$ is red-complete to A_1 and so G has a red P_{11} with vertices $c_1, v_{|X|}, a_1, a_3, b_1, b_3, v_1, v_2, v_3, c_3, v_4$ in order, it follows that $i_r = 5$. Thus $|X| \ge 9$, and $G[\{v_4, \ldots, v_7\}]$ has a red P_3 with vertices, say v_4, v_5, v_6 , in order. But then we obtain a red C_{12} with vertices $a_1, v_{|X|}, b_1, a_3, v_1, v_2, v_3, b_3, v_4, v_5, v_6, c_3$ in order, a contradiction. Thus $X \subset B^1$ as claimed. Since $|X| \ge 7$, $G[\{v_4, \ldots, v_7\}]$ contains a red P_3 with vertices, say v_4, v_5, v_6 , in order. Then G has a red P_{11} with vertices $a_1, a_3, b_1, b_3, v_1, v_2, v_3, c_3, v_4, v_5, v_6$ in order, and so $i_r = 5$, $|X| \ge 9$. Suppose $G[\{v_4, \ldots, v_9\}]$ has no red P_5 . Then $G[\{v_4, \ldots, v_9\}]$ contains at most one part of the Gallai-partition with order three, say A_4 , and we may assume $G[A_4]$ has a monochromatic P_3 in some color m other than red and blue if $|A_4| = 3$ by Claim 7. Let $i_r^* := 1$, $i_m^* := 1$, $i_i^* := 0$ for all color $j \in [k] \setminus \{m\}$ other than red. Let $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*] = 6 < N$. Then $G[\{v_4, \dots, v_9\}]$ has no monochromatic copy of $G_{i_i^*}$ in any color $j \in [k]$, which contradicts to the minimality of N. Thus $G[\{v_4, \ldots, v_9\}]$ has a red P_5 with vertices, say v_4, \ldots, v_8 , in order. But then we obtain a red C_{12} with vertices $a_3, v_1, v_2, v_3, b_3, v_4, \ldots, v_8, c_3, v_9$ in order, a contradiction. Therefore, $|X \cap B^1| \leq 1$.

By symmetry, $|X \cap B^3| \leq 1$. Let $w \in X \cap B^1$ when $X \cap B^1 \neq \emptyset$ and $w' \in X \cap B^3$ when $X \cap B^3 \neq \emptyset$. Then $A_1 \cup A_3$ is red-complete to $X \setminus \{w, w'\}$. It follows that n = 5 and $|X \cap B^1| = |X \cap B^3| = 1$, else $G[A_1 \cup A_3 \cup (X \setminus \{w, w'\})]$ has a red G_{i_r} because $|X| \geq 2n - 8 + \min\{i_b, i_r\}$, a contradiction. But then we obtain a blue C_{10} with vertices $a_2, a_1, w, b_1, b_2, a_3, w', b_3, c_2, c_3$ in order, a contradiction. This proves that $|A_3| \leq 2$ and so $G[A_i]$ has no monochromatic copy of P_3 for all $i \in [p]$ with $i \geq 3$. Since $G[R \cup B]$ has a green P_3 , it follows that $G[A_2]$ has a green P_3 , so $i_j = 0$ for all color $j \in [k]$ other than red, blue and green by Claim 4.

Claim 11. If $i_b = |A_1| + 1$, then $|R| \le 2$.

Proof. Suppose $i_b = |A_1| + 1$ but $|R| \ge 3$. By Claim 8, $i_r \ge |R|$, it follows that $|B| \ge 1 + n + i_b + i_r + i_g - |A_1| - |R| \ge 3 + n$. Thus $G[B \cup R]$ has no blue P_5 with both ends in B, else we obtain a blue G_{i_b} . Let $i_b^* := i_b - |A_1| = 1$, $i_r^* := i_r - |R| + 1$ (when n = 5) or $i_r^* := \max\{i_r - |R| + 1, 2\}$ (when n = 6), $i_j^* := i_j$ for all $j \in [k]$ other than red and blue. Let $i_\ell^* := \max\{i_j^* \mid j \in [k]\}$ and $N^* := |G_{i_\ell^*}| + [(\sum_{j=1}^k i_j^*) - i_\ell^*]$. Then $3 < N^* < N$. Observe that $|B| \ge N^*$. By minimality of N, G[B] has a red $G_{i_r^*} = P_{2i_r^*+3}$ with vertices, say x_1, \ldots, x_q , in order, where $q = 2i_r^* + 3$. If R is blue-complete to $\{x_1, x_q\}$, then R is red-complete to $B \setminus \{x_2, \ldots, x_{q-1}\}$ has a red G_{i_r} , a contradiction. Thus R is not blue-complete to $\{x_1, x_q\}$, and so we may assume y_1x_1 is colored red. Then $i_r = n - 1$ and $R \setminus \{y_1\}$ is blue-complete to $\{x_{q-2}, x_q\}$, else $G[B \cup R]$ has no blue P_5 with both ends in B. But then $G[B \cup R]$ has no blue P_5 with both ends in B. But then $G[A_1 \cup R \cup \{x_2, \ldots, x_{q-1}\}]$ has a red G_{i_r} . So $R \setminus \{y_1\}$ is red-complete to $B \setminus \{x_{q-2}, x_q\}$ because $G[B \cup R]$ has no blue P_5 with both ends in B. But then $G[A_1 \cup R \cup \{x_2, \ldots, x_{q-1}\}]$ has need G_{i_r} . So $R \setminus \{y_1\}$ is red-complete to $B \setminus \{x_2, \ldots, x_{q-1}\}$ has no blue P_5 with both ends in B. But then $G[A_1 \cup R \cup \{x_2, \ldots, x_{q-1}\}]$ has no blue P_5 with both ends in B. But then $G[A_1 \cup R \cup \{x_1, \ldots, x_q\}]$ has need G_{i_r} . So $R \setminus \{y_1\}$ is red-complete to $B \setminus \{x_{q-2}, x_q\}$ because $G[B \cup R]$ has no blue P_5 with both ends in B. But then $G[A_1 \cup R \cup \{x_2, \ldots, x_{q-1}\}]$ has a red $G_{i_r} = C_{2n}$, a contradiction.

Claim 12. $i_b = n - 1$.

Proof. Suppose $i_b \leq n-2$. By Claim 6 and Claim 9, $|A_1| \geq 3$ and $i_b > |A_1|$, it follows that n = 6, $i_r = n-1 = 5$, $i_b = 4$, and $|A_1| = 3$. By Claim 10, $|A_2| = 3$, $|A_3| \leq 2$, $i_j = 0$ for all colors $j \in [k] \setminus [3]$. By Claim 11, $|R| \leq 2$ and so $A_2 \subset B$. It follows that $|B| = 7 + i_b + i_r + i_g - |A_1 \cup R| = 14 - |R| \geq 12$. Then $G[B \cup R]$ has no blue P_5 with both ends in B, else G has a blue P_{11} because $|A_1| = 3$. Thus there exists a set W such that $(B \cup R) \setminus (A_2 \cup W)$ is red-complete to A_2 , where $W \subset (B \cup R) \setminus A_2$ with $|W| \leq 1$. Let $i_b^* := i_b - |A_1| = 1$, $i_r^* := 2$, $i_j^* := 0$ for all $j \in [k]$ other than red and blue. Let $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*] = 8$. Then $N^* < N$. Observe that $|B \setminus (A_2 \cup W)| = |B| - |A_2| - |W| \geq 8 = N^*$. By minimality of N, $G[B \setminus (A_2 \cup W)]$ must contain a red $G_{i_r^*} = P_7$. But then $G[(B \cup R) \setminus W]$ has a red C_{12} , a contradiction. Thus $i_b = n - 1$.

Claim 13. $|A_1| = n - 2$.

Proof. By Claim 9, $|A_1| \leq n-2$. Suppose $|A_1| \leq n-3$. By Claim 6, n = 6 and $|A_1| = 3$. By Claim 12, $i_b = 5$. By Claim 10, $|A_2| = 3$, $|A_3| \leq 2$ and $i_j = 0$ for all colors $j \in [k] \setminus [3]$. By Claim 8, $i_r \geq |R|$. Then $|B| = 7 + i_b + i_r + i_g - |A_1| - |R| \geq 10$, and so $G[B \cup R]$ has neither blue P_7 nor blue $P_5 \cup P_3$ with all ends in B else we obtain a blue C_{12} .

Suppose $|R| \leq 2$. Then $A_2 \subset B$ and there exists a set $W \subset (B \cup R) \setminus A_2$ with $|W| \leq 3$ such that W is blue-complete to A_2 and $(B \cup R) \setminus (A_2 \cup W)$ is red-complete to A_2 . Since $|B \setminus (A_2 \cup W)| \geq 4$, we see that there is a red P_7 using edges between A_2 and $B \setminus (A_2 \cup W)$, so $i_r \geq 3$ and $i_r - |R| \geq 1$. Let $i_b^* := 2$ (when $|B \cap W| \leq 1$) or $i_b^* := 0$ (when $|B \cap W| \geq 2$), $i_r^* := \min\{i_r - |R| - 1, 2\}$, $i_j^* := 0$ for all colors $j \in [k]$ other than red and blue. Let $i_\ell^* := \max\{i_j^* \mid j \in [k]\}$ and $N^* := |G_{i_\ell^*}| + [(\sum_{j=1}^k i_j^*) - i_\ell^*] = 3 + \max\{i_b^*, i_r^*\} + i_b^* + i_r^*$. Observe that $|B \setminus (A_2 \cup W)| = 7 + i_r - |R \cup W| \geq N^*$. By minimality of $N, G[B \setminus (A_2 \cup W)]$ has a red $G_{i_r^*} = P_{2i_r^*+3}$ because G[B] has neither blue P_7 nor blue $P_5 \cup P_3$ and $|A_3| \leq 2$. But then $G[(B \cup R) \setminus W]$ has a red G_{i_r} because $|(B \cup R) \setminus W| \geq 7 + i_r \geq |G_{i_r}|$ and A_2 is red-complete to $(B \cup R) \setminus (A_2 \cup W)$, a contradiction. Therefore, $3 \leq |R| \leq 5$ and so $i_r \geq 3$.

We claim that $i_r = 5$. Suppose $3 \le i_r \le 4$. Let $i_b^* := 2$, $i_r^* := 2$, $i_j^* := i_j$ for all colors $j \in [k]$ other than red and blue, and $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*] = 10$. Observe that $|B| \ge 10 = N^*$. Since G[B] has no blue P_7 , by minimality of N, G[B] has a red P_7 with vertices, say x_1, \ldots, x_7 , in order. Then R is blue-complete to $\{x_1, \ldots, x_7\}\setminus x_4$, else $G[A_1 \cup R \cup \{x_1, \ldots, x_7\}]$ has a red $G_{i_r} = P_{2i_r+3}$. But then $G[B \cup R]$ has a blue P_7 with vertices $x_1, y_1, x_2, y_2, x_3, y_3, x_5$ in order, a contradiction. Thus $i_r = 5$ and so |G| = 18, |B| = 15 - |R|.

We next consider the case |R| = 3. Suppose first $A_2 = R$. Since R is not red-complete to B, we may assume that A_2 is blue-complete to x_1 . Let $i_b^* := 2$, $i_r^* := 3$, $i_j^* := 0$ for all colors $j \in [k]$ other than red and blue, and $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*] = 11$. Observe that $|B \setminus x_1| = 11 = N^*$. By minimality of N, $G[B \setminus x_1]$ has a red P_9 with vertices, say x_2, \ldots, x_{10} , in order. We claim that A_2 is blue-complete to $\{x_2, x_{10}\}$, else, say x_2 is red-complete to A_2 . Then A_2 is blue-complete to $\{x_3, x_{10}\}$, else $G[A_1 \cup A_2 \cup \{x_2, \ldots, x_{10}\}]$ has a red C_{12} . Thus A_2 is red-complete to $B \setminus \{x_1, x_8, x_{10}\}$ because $G[B \cup R]$ has no blue P_7 with both ends in B. But then we obtain a red C_{12} with vertices $a_1, a_2, x_3, \ldots, x_9, b_2, b_1, c_2$ in order, a contradiction. Thus, A_2 is blue-complete to $\{x_1, x_2, x_{10}\}$, and so A_2 is red-complete to $B \setminus \{x_1, x_2, x_{10}\}$ because $G[B \cup R]$ has no blue P_7 with both ends in B. But then we obtain a red C_{12} with vertices $a_1, a_2, x_3, \ldots, x_9, b_2, b_1, c_2$ in order, a contradiction. Thus, A_2 is blue-complete to $\{x_1, x_2, x_{10}\}$, and so A_2 is red-complete to $B \setminus \{x_1, x_2, x_{10}\}$ because $G[B \cup R]$ has no blue P_7 with both ends in B. But then we obtain a red C_{12} with vertices $a_1, a_2, x_3, \ldots, x_9, b_2, b_1, c_2$ in order, a contradiction. This proves that $A_2 \subset B$. Then there exists a set $W \subset (B \cup R) \setminus A_2$ with $|W \cap B| \leq 3$ such that W is blue-complete to A_2 and $(B \cup R) \setminus (A_2 \cup W)$ is red-complete to A_2 . Then $|W| \leq 3$ and $|W \cap B| \leq 3$ or |W| = 4 and $|W \cap B| = 1$ because $G[B \cup R]$ has no blue P_7 with both ends in B. Let

$$\begin{split} &i_b^* := 2 - |W|, \ i_r^* := 2 \ \text{when} \ |W| \in \{0, 1\}, \\ &i_b^* := 0, \ i_r^* := 2 \ \text{when} \ |W| \ge 2 \ \text{and} \ |W \cap B| \le 2, \\ &i_b^* := 0, \ i_r^* := 1 \ \text{when} \ |W| = |W \cap B| = 3, \end{split}$$

 $i_j^* := 0$ for all colors $j \in [k]$ other than red and blue, and $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*] = 3 + 2i_r^* + i_b^*$. Observe that $|B \setminus (A_2 \cup W)| \ge N^*$. By minimality of N, $G[B \setminus (A_2 \cup W)]$ has a red $G_{i_r^*} = P_{2i_r^*+3}$ because $G[B \cup R]$ has neither blue P_7 nor blue $P_5 \cup P_3$ with all ends in B and $|A_3| \le 2$. If $|W| \le 3$ and $|W \cap B| \le 2$, then $G[(B \cup R) \setminus W]$ has a red C_{12} because $|(B \cup R) \setminus W| \ge 12$ and A_2 is red-complete to $(B \cup R) \setminus (A_2 \cup W)$. Thus $|W| = |W \cap B| = 3$ or |W| = 4 and $|W \cap B| = 1$. For the former case, $G[B \setminus (A_2 \cup W)]$ has a red P_5 with vertices, say x_1, \ldots, x_5 , in order. Let $W := \{w_1, w_2, w_3\} \subset B$. Then A_2 is blue-complete to W and red-complete to $\{x_1, \ldots, x_5\}$, and so W is red-complete to $\{x_1, \ldots, x_5\}$ because G[B] has no blue P_7 . But then we obtain a red C_{12} with vertices $a_2, x_1, w_1, x_2, w_2, x_3, w_3, x_4, b_2, x_5, c_2, x_6$ in order, where $x_6 \in B \setminus (A_2 \cup W \cup \{x_1, \ldots, x_5\})$, a contradiction. For the latter case, $G[B \setminus (A_2 \cup W)]$ has a red P_7 with vertices, say x_1, \ldots, x_7 , in order. Let $W \cap B := \{w\}$. Then w is red-complete to $\{x_1, \ldots, x_7\}$ because G[B] has no blue P_7 . But then we obtain a red C_{12} with vertices $a_2, x_1, w, x_2, \ldots, x_6, b_2, x_7, c_2, x_8$ in order, where $x_8 \in B \setminus (A_2 \cup W \cup \{x_1, \ldots, x_7\})$, a contradiction. This proves that $|R| \in \{4, 5\}$.

We claim that G[E(B, R)] has no blue P_5 with both ends in B. Suppose there is a blue $H := P_5$ with vertices, say x_1, y_1, x_2, y_2, x_3 , in order. Then $G[(B \cup R) \setminus V(H)]$ has no blue P_3 with both ends in B. Let $i_b^* := 0$, $i_r^* := i_r - |R| + 1 = 6 - |R|$, $i_j^* := i_j$ for all colors $j \in [k]$ other than red and blue, and $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*] = 3 + 2(6 - |R|) + 1 = 16 - 2|R|$. Observe that $|B \setminus \{x_1, x_2, x_3\}| = 12 - |R| \ge N^*$ since $|R| \in \{4, 5\}$. By minimality of N, $G[B \setminus \{x_1, x_2, x_3\}|$ has a red $G_{i_r^*}$ with vertices, say x_4, \ldots, x_q , in order, where $q = 2i_r^* + 6$. Then y_3 is not bluecomplete to $\{x_4, x_q\}$ because $G[(B \cup R) \setminus V(H)]$ has no blue P_3 with both ends in B. We may assume x_4y_3 is colored red. Then $R \setminus \{y_1, y_2, y_3\}$ is blue-complete to x_8 , else say if x_8y_4 is colored red, we obtain a red C_{12} with vertices $a_1, y_3, x_4, \ldots, x_8, y_4, b_1, y_1, c_1, y_2$ in order, a contradiction. Since $G[(B \cup R) \setminus V(H)]$ has no blue P_3 with both ends in B, we see that $R \setminus \{y_1, y_2, y_3\}$ is redcomplete to $\{x_4, \ldots, x_q\}\setminus x_8$. But then we obtain a red C_{12} with vertices $a_1, y_3, x_4, \ldots, x_{10}, y_4, b_1, y_1$ (when |R| = 4), or $a_1, y_3, x_4, x_5, x_6, y_4, x_7, y_5, b_1, y_1, c_1, y_2$ (when |R| = 5) in order, a contradiction. Thus, G[E(B,R)] has no blue P_5 with both ends in B. Let $i_b^* := 2$, $i_r^* := 2$, $i_j^* := i_j$ for all colors $j \in [k]$ other than red and blue, and $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*] = 10$. Observe that $|B| \ge 10 = N^*$. By minimality of N, G[B] has a red P_7 with vertices, say x_1, \ldots, x_7 , in order. We claim that x_1 is blue-complete to R. Suppose x_1y_1 is colored red. Then $R \setminus y_1$ is blue-complete to $\{x_5, x_7\}$, else $G[A_1 \cup R \cup \{x_1, \ldots, x_7\}]$ has a red C_{12} . Thus $R \setminus y_1$ is red-complete to $B \setminus \{x_5, x_7\}$ because G[E(B,R)] has no blue P_5 with both ends in B. But then we obtain a red C_{12} with vertices $a_1, y_2, x_2, \ldots, x_6, y_3, b_1, y_4, c_1, y_1$ in order, a contradiction. Therefore, x_1 is blue-complete to R. By symmetry, x_7 is blue-complete to R. Then R is red-complete to $B \setminus \{x_1, x_7\}$ because G[E(B,R)] has no blue P_5 with both ends in B. But then we obtain a red C_{12} with vertices $a_1, y_2, x_2, \ldots, x_6, y_3, b_1, y_4, c_1, y_1$ in order, a contradiction. This proves that $|A_1| = n - 2$.

By Claim 12, Claim 13 and Claim 8, $i_b = n - 1$, $|A_1| = n - 2$, $i_r \ge |R|$. By Claim 11, $|R| \le 2$. Then $|B| \ge 3 + n + i_r - |R| \ge 3 + n$, and so $G[B \cup R]$ has no blue P_5 with both ends in B, else there is a blue C_{2n} .

Claim 14. $i_r = n - 1$.

Proof. Suppose $i_r \leq n-2$. By Claim 3, B is not blue-complete to R. Let $x \in B$ and $y \in R$ such that xy is colored red. Let $i_b^* := i_b - |A_1| = 1$ and $i_r^* := i_r - |R| \leq n-3$, $i_j^* := i_j \leq n-4$ for all colors $j \in [k]$ other than red and blue. Let $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*]$. Then $3 < N^* < N$ and $|B \setminus x| = N - |A_1| - |R| - 1 \geq N^*$. By minimality of N, $G[B \setminus x]$ must have a red $P_{2i_r^*+3}$ with vertices,

say $x_1, x_2, \ldots, x_{2i_r^*+3}$, in order. Then $\{x_1, x_{2i_r^*+3}\}$ must be blue-complete to $\{x, y\}$ and xx_2 must be colored blue under c, else we obtain a red P_{2i_r+3} using vertices in $V(P_{2i_r^*+3}) \cup \{x, y\} \cup A_1$. But then $G[B \cup R]$ has a blue P_5 with vertices $x_2, x, x_1, y, x_{2i_r^*+3}$ in order, a contradiction.

Recall that $|A_1| = n - 2$, $G[A_1]$ has a green P_3 , and $i_q = 1$. We next show that $|A_2| \ge 3$. Suppose $|A_2| \leq 2$. Then by Claim 10, $|A_1| = 4$ and so n = 6. Let $A_1 := \{a_1, b_1, c_1, z_1\}$. Let $i_b^* := i_b - |A_1| = 1, \ i_r^* := i_r - |R| + 1 = 6 - |R| \ge 4, \ i_q^* := i_g - 1 = 0 \ \text{and} \ i_j^* := i_j \ \text{for all} \ j \in [k]$ other than red, blue and green. Let $i_{\ell}^* := \max\{i_i^* \mid j \in [k]\}$ and $N^* := |G_{i_{\ell}^*}| + [(\sum_{j=1}^k i_j^*) - i_{\ell}^*]$. Then $3 < N^* < N$ and $|B| = |G| - |A_1| - |R| = N^*$. By minimality of N, G[B] must contain a red $G_{i_r^*}$. It follows that |R| = 2 and $G_{i_r^*} = P_{11}$. Let x_1, x_2, \ldots, x_{11} be the vertices of the red P_{11} in order. If R is blue-complete to $\{x_1, x_{11}\}$, then R is red-complete to $B \setminus \{x_1, x_{11}\}$ because $G[B \cup R]$ has no blue P_5 with both ends in B. But then G has a red C_{12} with vertices $a_1, y_1, x_2, \ldots, x_{10}, y_2$ in order, a contradiction. Thus, R is not blue-complete to $\{x_1, x_{11}\}$ and we may assume x_1y_1 is colored red. Then $x_{11}y_1$ and x_9y_2 are colored blue, else $G[\{x_1,\ldots,x_{11}\}\cup R\cup A_1]$ has a red C_{12} . If $x_{11}y_2$ is colored red, then x_1y_2 and x_3y_1 are colored blue by the same reasoning. But then we obtain a blue C_{12} with vertices $a_1, x_1, y_2, x_9, b_1, x_3, y_1, x_{11}, c_1, x_2, z_1, x_4$ in order, a contradiction. Thus $x_{11}y_2$ is colored blue. Then y_1 is red-complete to $B \setminus \{x_9, x_{11}\}$, else, say y_1w is colored blue with $w \in B \setminus \{x_9, x_{11}\}$, then $G[B \cup R]$ has a blue P_5 with vertices w, y_1, x_{11}, y_2, x_9 in order. It follows that $\{x_{11}, w\} \not\subseteq A_j$ for all $j \in [p]$, where $w \in B \setminus \{x_9, x_{11}\}$. Moreover, x_2y_2 is colored blue, else G has a red C_{12} with vertices $a_1, y_2, x_2, \ldots, x_{10}, y_1$ in order, a contradiction. Thus, $G[B \setminus \{x_2, x_9\}]$ has no blue P_3 , else $G[A_1 \cup B \cup \{y_2\}]$ has a blue C_{12} . Therefore, $x_i x_{11}$ is colored red for some $i \in \{3, \ldots, 7\}$. But then we obtain a red C_{12} with vertices $y_1, x_1, \ldots, x_i, x_{11}, x_{10}, \ldots, x_{i+1}$ in order, a contradiction. Thus $3 \le |A_2| \le n-2$ and $A_2 \subset B$ because $|R| \le 2$.

Since $G[B \cup R]$ has no blue P_5 with both ends in B, there exists at most one vertex, say $w \in (B \cup R) \setminus A_2$, such that $(B \cup R) \setminus (A_2 \cup \{w\})$ is red-complete to A_2 , and w is blue-complete to A_2 . Suppose $3 \leq |A_3| \leq n-2$. Then n = 6 and $|A_1| = 4$ by Claim 10, $A_3 \subseteq B$ and A_3 must be red-complete to A_2 , so $w \notin A_3$. Since $G[B \cup R]$ has no blue P_5 with both ends in B, there exists at most one vertex, say $w' \in (B \cup R) \setminus (A_2 \cup A_3)$, such that $(B \cup R) \setminus (A_2 \cup A_3 \cup \{w'\})$ is red-complete to A_3 . Note that we may have w' = w. Since $|(B \cup R) \setminus \{w, w'\}| \geq |G| - |A_1| - 2 = 18 - 4 - 2 = 12$, we see that $G[(B \cup R) \setminus \{w, w'\}]$ has a red C_{12} , a contradiction. Thus $|A_3| \leq 2$ and so $G[B \setminus A_2]$ has no monochromatic copy of P_3 in color j for all $j \in [k]$ other than red and blue. Let $i_b^* := 1$, $i_r^* := n - 1 - |A_2|$, and $i_j^* := 0$ for all colors $j \in [k]$ other than red and blue. Let $N^* := |G_{i_r^*}| + [(\sum_{j=1}^k i_j^*) - i_r^*] = 2i_r^* + 1 = 2n - 1 - 2|A_2|$. Then $3 < N^* < N$ and $|B \setminus (A_2 \cup \{w\})| \geq 2n + 1 - |R| - |A_2| \geq N^*$. By minimality of N, $G[B \setminus (A_2 \cup \{w\})]$ has a red $G_{i_r^*} = P_{2i_r^*+3}$. But then $G[(B \cup R) \setminus \{w\}]$ has a red C_{2n} , a contradiction.

This completes the proof of Theorem 1.9.

Acknowledgements

The authors would like to thank Christian Bosse for many helpful comments and discussion.

Lei was partially supported by the National Natural Science Foundation of China (No. 12001296) and the Fundamental Research Funds for the Central Universities, Nankai University (No. 63201163). Shi was partially supported by the National Natural Science Foundation of China (No. 11771221, 11922112).

References

- [1] V. Angeltveit, B. D. McKay, $R(5,5) \leq 48$, J. Graph Theory 89 (2018) 5–13.
- [2] C. Bosse, Z-X. Song, Multicolor Gallai-Ramsey numbers of C_9 and C_{11} , preprint 2018. arXiv:1802.06503.
- [3] C. Bosse, Z-X. Song, J. Zhang, Improved upper bounds for Gallai-Ramsey numbers of odd cycles, preprint 2018. arXiv:1808.09963.
- [4] D. Bruce, Z-X. Song, Gallai-Ramsey numbers of C₇ with multiple colors, *Discrete Math.* 342 (2019), 1191–1194.
- [5] K. Cameron, J. Edmonds, L. Lovász, A note on perfect graphs, Period. Math. Hungar. 17 (1986) 173–175.
- [6] F. R. K. Chung, R. L. Graham, Edge-colored complete graphs with precisely colored subgraphs, Combinatorica 3 (1983) 315–324.
- [7] T. Dzido, A. Nowik, P. Szuca, New lower bound for multicolor Ramsey numbers for even cycles, Electron. J. Combin. 12 (2005), #N13.
- [8] R. J. Faudree, S. L. Lawrence, T. D. Parsons, R. H. Schelp, Path-cycle Ramsey numbers, Discrete Math. 10 (1974) 269–277.
- J. Fox, A. Grinshpun, J. Pach, The Erdős-Hajnal conjecture for rainbow triangles, J. Combin. Theory Ser. B 111 (2015) 75–125.
- [10] S. Fujita, C. Magnant, Gallai-Ramsey numbers for cycles, Discrete Math. 311 (2011) 1247– 1254.
- [11] S. Fujita, C. Magnant, K. Ozeki, Rainbow generalizations of Ramsey theory: a survey, Graphs Combin. 26 (2010) 1–30.
- [12] T. Gallai, Transitiv orientierbare Graphen, Acta Math. Acad. Sci. Hung. 18 (1967) 25–66.
- [13] A. Gyárfás, G. N. Sárközy, Gallai colorings of non-complete graphs, Discrete Math. 310 (2010) 977–980.
- [14] A. Gyárfás, G. N. Sárközy, A. Sebő, S. Selkow, Ramsey-type results for Gallai colorings, J. Graph Theory 64 (2010) 233–243.
- [15] A. Gyárfás, G. Simonyi, Edge colorings of complete graphs without tricolored triangles, J. Graph Theory 46 (2004) 211–216.

- [16] M. Hall, C. Magnant, K. Ozeki, M. Tsugaki, Improved upper bounds for Gallai-Ramsey numbers of paths and cycles, J. Graph Theory 75 (2014) 59–74.
- [17] J. Körner, G. Simonyi, Graph pairs and their entropies: modularity problems, Combinatorica 20 (2000) 227–240.
- [18] H. Liu, C. Magnant, A. Saito, I. Schiermeyer, Y. Shi, Gallai-Ramsey number for K₄, J. Graph Theory 94 (2020) 192–205.
- [19] I. Schiermeyer, personal communication.
- [20] Z-X. Song, B. Wei, F. Zhang, Q. Zhao, A note on Gallai-Ramsey number of wheels, Discrete Math. 343 (2020), 111725, 5pp.
- [21] Z-X. Song, J. Zhang, A conjecture on Gallai-Ramsey numbers of even cycles and paths, Australas. J. Comb. 75(3) (2019) 296–308.
- [22] V. Rosta, On a Ramsey Type Problem of J. A. Bondy and P. Erdős, I & II, J. Combin. Theory Ser. B 15 (1973) 94–120.
- [23] F. Zhang, Z-X. Song, Y. Chen, Gallai-Ramsey number of odd cycles with chords. arXiv:1809.00227v2.
- [24] F. Zhang, Z-X. Song, Y. Chen, Gallai-Ramsey number of even cycles with chords. arXiv:1906.05263v3.