Upper bounds for the $M D$-numbers and characterization of extremal graphs ${ }^{1}$

Ping Li, Xueliang Li
Center for Combinatorics and LPMC
Nankai University, Tianjin 300071, China
Email: qdli_ping@163.com, lxl@nankai.edu.cn

Abstract

For an edge-colored graph G, we call an edge-cut M of G monochromatic if the edges of M are colored with the same color. The graph G is called monochromatic disconnected if any two distinct vertices of G are separated by a monochromatic edge-cut. For a connected graph G, the monochromatic disconnection number (or $M D$-number for short) of G, denoted by $\operatorname{md}(G)$, is the maximum number of colors that are allowed in order to make G monochromatic disconnected. For graphs with diameter one, they are complete graphs and so their $M D$-numbers are 1 . For graphs with diameter at least 3, we can construct 2-connected graphs such that their $M D$-numbers can be arbitrarily large; whereas for graphs G with diameter two, we show that if G is a 2 -connected graph then $\operatorname{md}(G) \leq 2$, and if G has a cut-vertex then $\operatorname{md}(G)$ is equal to the number of blocks of G. So, we will focus on studying 2 -connected graphs with diameter two, and give two upper bounds of their $M D$-numbers depending on their connectivity and independent numbers, respectively. We also characterize the $\left\lfloor\frac{n}{2}\right\rfloor$-connected graphs (with large connectivity) whose $M D$-numbers are 2 and the 2 -connected graphs (with small connectivity) whose $M D$-numbers achieve the upper bound $\left\lfloor\frac{n}{2}\right\rfloor$ (these graphs are called extremal graphs). For graphs with connectivity less than $\frac{n}{2}$, we show that if the connectivity of a graph is linear in its order n, then its $M D$-number is upper bounded by a constant, and this suggests us to leave a conjecture that for a k-connected graph $G, \operatorname{md}(G) \leq\left\lfloor\frac{n}{k}\right\rfloor$.

Keywords: monochromatic disconnection number, connectivity, diameter, independent number, upper bound, extremal graph.
AMS subject classification (2020): 05C15, 05C40, 05C35.

[^0]
1 Introduction

Let G be a graph and let $V(G), E(G)$ denote the vertex-set and the edge-set of G, respectively. We use $|G|$ and $\|G\|$ to denote the number of vertices and the number of edges of G, respectively, and call them the order and the size of G. If there is no confusion, we also use n and m to denote $|G|$ and $\|G\|$, respectively, throughout this paper. Let S and F be a vertex subset and an edge subset of G, respectively. Then $G-S$ is the graph obtained from G by deleting the vertices of S together with the edges incident with vertices of S, and $G-F$ is the graph whose vertex-set is $V(G)$ and edge-set is $E(G)-F$. Let $G[S]$ and $G[F]$ be the subgraphs of G induced, respectively, by S and F. We use $[r]$ to denote the set $\{1,2, \cdots, r\}$ of positive integers. If $r=0$, then set $[r]=\emptyset$. For all other terminology and notation not defined here we follow Bondy and Murty [4].
For a graph G, let $\Gamma: E(G) \rightarrow[r]$ be an edge-coloring of G that allows a same color to be assigned to adjacent edges. For an edge e of G, we use $\Gamma(e)$ to denote the color of e. If H is a subgraph of G, we also use $\Gamma(H)$ to denote the set of colors on the edges of H and use $|\Gamma(H)|$ to denote the number of colors in $\Gamma(H)$. For an edge-colored graph G and a vertex v of G, the color-degree of v, denoted by $d^{c}(v)$, is the number of colors appearing on the edges incident with v.
The three main colored connection colorings: rainbow connection coloring [8], proper connection coloring [5] and proper-walk connection coloring [3], monochromatic connection coloring [6], have been well-studied in recent years. As a counterpart concept of the rainbow connection coloring, rainbow disconnection coloring was introduced in [7] by Chartrand et al. in 2018. Subsequently, the concepts of monochromatic disconnection coloring and proper disconnection coloring were also introduced in [12] and [1, 9]. We refer to [2] for the philosophy of studying these so-called global graph colorings. More details on the monochromatic disconnection coloring can be found in [13]. We will further study this coloring in this paper and get some deeper and stronger results.
For an edge-colored graph G, we call an edge-cut M a monochromatic edge-cut if the edges of M are colored with the same color. If there is a monochromatic $u v$-cut with color i, then we say that color i separates u and v. We use $C_{\Gamma}(u, v)$ to denote the set of colors in $\Gamma(G)$ that separate u and v, and let $c_{\Gamma}(u, v)=\left|C_{\Gamma}(u, v)\right|$.
An edge-coloring of a graph is called a monochromatic disconnection coloring (or $M D$-coloring for short) if each pair of distinct vertices of the graph has a monochromatic edge-cut separating them, and the graph is called monochromatic disconnected. For a connected graph G, the monochromatic disconnection number (or $M D$-number for short) of G, denoted by $\operatorname{md}(G)$, is defined as the maximum number of colors that are allowed in order to make G monochromatic disconnected. An extremal MD-coloring of G is an $M D$-coloring that uses $\operatorname{md}(G)$ colors. If H is a subgraph of G and Γ is an edge-coloring of G, we call Γ an edge-coloring restricted on H.

The following terminology and notation are needed in the sequel. Let G and H be two graphs. The union of G and H is the graph $G \cup H$ with vertex-set $V(G) \cup V(H)$ and edge-set $E(G) \cup E(H)$. The intersect of G and H is the graph $G \cap H$ with vertexset $V(G) \cap V(H)$ and edge-set $E(G) \cap E(H)$. The Cartesian product of G and H is the graph $G \square H$ with $V(G \square H)=\{(u, v): u \in V(G), v \in V(H)\},(u, v)$ and (x, y) are adjacent in $G \square H$ if either $u x$ is an edge of G and $v=y$, or $v y$ is an edge of H and $u=x$. If G and H are vertex-disjoint, then let $G \vee H$ denote the join of G and H which is obtained from G and H by adding an edge between every vertex of G and every vertex of H.
For a graph G, a pendent vertex of G is a vertex with degree one. The ends of G is the set of pendent vertices, and the internal vertex set of G is the set of vertices with degree at least two. We use $\operatorname{end}(G)$ and $I(G)$ to denote the ends of G and the internal vertex set of G, respectively. The independent number of G, denoted by $\alpha(G)$, is the order of a maximum independent set of G. For two vertices u, v of G, we use $N(u)$ to denote the neighborhood of u in G, and $N(u, v)$ to denote the set of common neighbors of u and v in G. The distance between u and v in G is denoted by $d(u, v)$, and the diameter of G is denoted by $\operatorname{diam}(G)$. We call a cycle C (path P) a t-cycle (t-path) if $|C|=t(\|P\|=t)$. If t is even (odd), then we call the path an even (odd) path and the cycle an even (odd) cycle. A 3-cycle is also called a triangle. A matching-cut of G is an edge-cut of G, which also forms a matching in G.

In $[12,13]$ we got the following results, which are restated for our later use.
Lemma 1.1. [12]

1. If a connected graph G has r blocks B_{1}, \cdots, B_{r}, then $m d(G)=\sum_{i \in[r]} m d\left(B_{i}\right)$ and $\operatorname{md}(G)=n-1$ if and only if G is a tree.
2. $\operatorname{md}(G)=\left\lfloor\frac{\lfloor G \mid}{2}\right\rfloor$ if G is a cycle, and $\operatorname{md}(G)=1$ if G is a complete multipartite graph and G is not a star.
3. If H is a connected spanning subgraph of G, then $\operatorname{md}(H) \geq \operatorname{md}(G)$. Thus, $m d(G) \leq n-1$.
4. If G is connected, then $\operatorname{md}(v \vee G)=1$.
5. If v is neither a cut-vertex nor a pendent vertex of G and Γ is an extremal MDcoloring of G, then $\Gamma(G) \subseteq \Gamma(G-v)$, and thus, $\operatorname{md}(G) \leq \operatorname{md}(G-v)$.

Theorem 1.2. [12] If G is a 2-connected graph, then $\operatorname{md}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Theorem 1.3. [13] If G_{1} and G_{2} are connected graphs, then $\operatorname{md}\left(G_{1} \square G_{2}\right)=\operatorname{md}\left(G_{1}\right)+$ $m d\left(G_{2}\right)$.

Lemma 1.4. [13] If G has a matching-cut, then $\operatorname{md}(G) \geq 2$.

We will list some easy observations in the following, which will be used many times throughout this paper. Suppose Γ is an $M D$-coloring of G. If H is a subgraph of G, then Γ is an $M D$-coloring restricted on H. Every triangle of G is monochromatic. If G is a 4 -cycle, then its opposite edges have the same color. If G is a 5 -cycle, then there are two adjacent edges having the same color.

Let V be a set of vertices and let $\mathcal{E} \subseteq 2^{V}$. Then a hypergraph $\mathcal{H}=(V, \mathcal{E})$ is a linear hypergraph if $\left|E_{i}\right| \geq 2$ and $\left|E_{i} \cap E_{j}\right| \leq 1$ for any $E_{i}, E_{j} \in \mathcal{E}$. The size of \mathcal{H} is the number of hyperedges in \mathcal{H}. A hyperedge-coloring of \mathcal{H} assigns each hyperedge a positive integer. A linear hypergraph \mathcal{H} (say the size of \mathcal{H} is k) is a linear hypercycle if there is a sequence of hyperedges of \mathcal{H}, say E_{1}, \cdots, E_{k}, and there exist k distinct vertices v_{1}, \cdots, v_{k} of \mathcal{H}, such that $E_{1} \cap E_{k}=\left\{v_{k}\right\}$ and $E_{i} \cap E_{i+1}=\left\{v_{i}\right\}$ for $i \in[k-1]$. If we delete a hyperedge from a linear hypercycle and then delete the vertices only in this hyperedge, then we call the resulting hypergraph a linear hyperpath. A linear hypercycle (linear hyperpath) is called a linear hyper k-cycle (linear hyper k-path) if the size of this linear hypercycle (linear hyperpath) is k.

2 Preliminaries

We need some more preparations before proceeding to our main results.
Lemma 2.1. For two connected graphs G_{1} and G_{2}, if $\operatorname{md}\left(G_{1} \cap G_{2}\right)=1$ then $\operatorname{md}\left(G_{1} \cup\right.$ $\left.G_{2}\right)=m d\left(G_{1}\right)+m d\left(G_{2}\right)-1$.

Proof. Let $G=G_{1} \cup G_{2}$ and Γ be an extremal $M D$-coloring of G. Then $\left|\Gamma\left(G_{1} \cap G_{2}\right)\right|=1$ and Γ is an $M D$-coloring restricted on G_{1} (and also G_{2}). So, $\operatorname{md}\left(G_{1} \cup G_{2}\right)=\left|\Gamma\left(G_{1}\right)\right|+$ $\left|\Gamma\left(G_{2}\right)\right|-\left|\Gamma\left(G_{1} \cap G_{2}\right)\right| \leq m d\left(G_{1}\right)+m d\left(G_{2}\right)-1$. On the other hand, since $E\left(G_{1} \cap G_{2}\right)$ is monochromatic under any $M D$-coloring of $G_{1} \cup G_{2}$, let Γ_{i} be an $M D$-coloring of G_{i} for $i \in[2]$ such that $\Gamma_{1}\left(G_{1} \cap G_{2}\right)=\Gamma_{2}\left(G_{1} \cap G_{2}\right)=\Gamma\left(G_{1}\right) \cap \Gamma\left(G_{2}\right)$. Let Γ^{\prime} be an edge-coloring of $G_{1} \cup G_{2}$ such that $\Gamma^{\prime}(e)=\Gamma_{i}(e)$ if $e \in E\left(G_{i}\right)$, and let w be a vertex of $G_{1} \cap G_{2}$. Then for any two vertices u, v of $G_{1} \cup G_{2}$, if $u, v \in V\left(G_{i}\right)$, then $C_{\Gamma_{i}}(u, v) \subseteq C_{\Gamma^{\prime}}(u, v)$; if $u \in V\left(G_{1}\right)-V\left(G_{2}\right)$ and $v \in V\left(G_{2}\right)-V\left(G_{1}\right)$, then $\left(C_{\Gamma_{1}}(u, w) \cup C_{\Gamma_{2}}(v, w)\right) \subseteq C_{\Gamma^{\prime}}(u, v)$. So, Γ^{\prime} is an $M D$-coloring of G, i.e., $\operatorname{md}\left(G_{1} \cup G_{2}\right) \geq\left|\Gamma\left(G_{1} \cup G_{2}\right)\right|=\operatorname{md}\left(G_{1}\right)+\operatorname{md}\left(G_{2}\right)-1$. Therefore, $\operatorname{md}\left(G_{1} \cup G_{2}\right)=m d\left(G_{1}\right)+m d\left(G_{2}\right)-1$.
Lemma 2.2. Let G be a connected graph and let G^{\prime} be a graph obtained from G by replacing an edge $e=a b$ with a path P. Then $\operatorname{md}\left(G^{\prime}\right) \geq \operatorname{md}(G)+\left\lfloor\frac{\|P\|-1}{2}\right\rfloor$.
Proof. Let Γ be an extremal $M D$-coloring of G. Let $\|P\|=t$ and let $P=a e_{1} c_{1} \cdots e_{t} b$. Let Γ^{\prime} be an edge-coloring of G^{\prime} such that $\Gamma(f)=\Gamma^{\prime}(f)$ when $f \in E(G)-e, \Gamma^{\prime}\left(e_{i}\right)=$ $\Gamma^{\prime}\left(e_{t+1-i}\right)=|\Gamma(G)|+i$ for $i \in\left[\left\lfloor\frac{t-1}{2}\right\rfloor\right], \Gamma(e)=\Gamma^{\prime}\left(e_{\frac{t+1}{2}}\right)$ when t is odd, and $\Gamma(e)=$ $\Gamma^{\prime}\left(e_{\frac{t}{2}}\right)=\Gamma^{\prime}\left(e_{\frac{t}{2}+1}\right)$ when t is even. It is easy to verify that Γ^{\prime} is an $M D$-coloring of G^{\prime}. Thus, $\operatorname{md}\left(G^{\prime}\right) \geq m d(G)+\left\lfloor\frac{\|P\|-1}{2}\right\rfloor$.

Lemma 2.3. Suppose u, v are nonadjacent vertices of G and Γ is an extremal MDcoloring of G. Let $C_{\Gamma}(u, v)=\{t\}$ and e an extra edge, and let Γ^{\prime} be an edge-coloring of $G \cup e$ that is obtained from Γ by coloring the added edge e with color t. Then Γ^{\prime} is an MD-coloring of $G \cup e$ and $\operatorname{md}(G)=m d(G \cup e)$.

Proof. Let H_{i} be the graph obtained from G by deleting all the edges with color i. Let $G^{\prime}=G \cup e$. If Γ^{\prime} is not an $M D$-coloring of G^{\prime}, then there are two vertices x, y of G^{\prime} such that $C_{\Gamma^{\prime}}(x, y)=\emptyset$. If $t \in C_{\Gamma}(x, y)$, since x, y are in different components of H_{t}, we have $t \in C_{\Gamma^{\prime}}(x, y)$, a contradiction. If $t \notin C_{\Gamma}(x, y)$, then let $j \in C_{\Gamma}(x, y)$. Then there are two components D_{1}, D_{2} of H_{j} such that $x \in V\left(D_{1}\right)$ and $y \in V\left(D_{2}\right)$. Since j does not separate x, y in G^{\prime}, the edge e connects D_{1} and D_{2}, say $u \in V\left(D_{1}\right)$ and $v \in V\left(D_{2}\right)$. Thus, the color j separates u, v in G, which contradicts that $C_{\Gamma}(u, v)=\{t\}$. Therefore, Γ^{\prime} is an $M D$-coloring of G^{\prime}. Since $\left|\Gamma^{\prime}\left(G^{\prime}\right)\right|=|\Gamma(G)|$ and Γ is an extremal $M D$-coloring of G, we have $\operatorname{md}\left(G^{\prime}\right) \geq \operatorname{md}(G)$. Since G is a connected spanning subgraph of G^{\prime}, by Lemma 1.1 (3) we have $m d(G) \geq m d\left(G^{\prime}\right)$. So, $m d(G)=m d\left(G^{\prime}\right)$.

Suppose Γ is an $M D$-coloring of G and G_{i} is the subgraph of G induced by the set of edges with color i, which, in what follows, is called the color i induced subgraph of G. Then for any component D_{1} of G_{i} and any component D_{2} of G_{j}, we have $\left|V\left(D_{1}\right) \cap V\left(D_{2}\right)\right| \leq 1$; otherwise, suppose $u, v \in V\left(D_{1}\right) \cap V\left(D_{2}\right)$. Then $C_{\Gamma}(u, v)=\emptyset$, a contradiction. We use \mathcal{H}_{Γ} to denote a hyperedge-colored hypergraph with vertex-set $V(G)$ and hyperedge-set $\left\{V(D) \mid D\right.$ is a component of some $\left.G_{i}\right\}$, and the hyperedge F has color i if F corresponds to a component of G_{i}. Let H_{Γ} be a graph with $V\left(H_{\Gamma}\right)=$ $V(G)$ and

$$
E\left(H_{\Gamma}\right)=\left\{u v \mid u, v \text { are in the same component of some } G_{i}\right\}
$$

Then each hyperedge of \mathcal{H}_{Γ} corresponds to a clique of H_{Γ}, and any two hyperedges of \mathcal{H}_{Γ} (any two cliques of H_{Γ}) share at most one vertex. Thus, \mathcal{H}_{Γ} is a linear hypergraph. If F is a hyperedge of \mathcal{H}_{Γ} and $u, v \in F$, then $c_{\Gamma}(u, v)=1$. According to Lemma 2.3, we have the following result.

Lemma 2.4. If Γ is an extremal $M D$-coloring of G, then $\operatorname{md}(G)=\operatorname{md}\left(H_{\Gamma}\right)$.
Suppose Γ is an $M D$-coloring of G and \mathcal{C} is a hyper k-cycle of \mathcal{H}_{Γ}. Then there is a k-cycle C of H_{Γ} such that any adjacent edges of C have different colors. Thus, $t \neq 3,5$. Moreover, if $k=4$, then the opposite hyperedges of \mathcal{C} have the same color.

3 Graphs with diameter two

In this section, we show that $m d(G) \leq 2$ for a 2-connected graph G if $\operatorname{diam}(G) \leq 2$. However, for any integer $d \geq 3$, we can construct a 2-connected graph G such that
$\operatorname{diam}(G)=d$ and $\operatorname{md}(G)$ can be arbitrarily large. Thus, it makes sense to focus on studying the graphs with diameter two, since graphs with diameter 1 are complete graphs and their $M D$-numbers are 1 .

Theorem 3.1. Suppose G is a graph with $\operatorname{diam}(G)=2$. Then

1. if G has a cut-vertex, then $\operatorname{md}(G)$ is equal to the number of blocks of G;
2. if G is a 2-connected graph, then $\operatorname{md}(G) \leq 2$;
3. if any two nonadjacent vertices of G has at least two common neighbors, then $\operatorname{md}(G) \leq 2$, and the equality holds if and only if $G=K_{s} \square K_{t}$, where $s, t \geq 2$.

Proof. The proof of statement (1) goes as follows. If v is a cut-vertex of G and $\operatorname{diam}(G)=2$, then v connects every vertex of $V(G-v)$. Thus, for each block D of $G, D-v$ is connected and $D=(D-v) \vee v$, i.e., $\operatorname{md}(D)=1$. Therefore, $\operatorname{md}(G)$ is equal to the number of blocks of G.

Next, for the proof of statement (2) suppose Γ is an $M D$-coloring of G with $|\Gamma(G)| \geq$ 3. Then each hypercycle (hyperpath) of the above mentioned hypergraph \mathcal{H}_{Γ} is a linear hypercycle (linear hyperedge). We now prove that there is a rainbow hyper 3-path (the colors of the three hyperedges are pairwise differently) in \mathcal{H}_{Γ}. Since \mathcal{H}_{Γ} does not have hyper 3-cycle, the union of three consecutive hyperedges forms a hyper 3-path. If every vertex z of G has $d^{c}(z) \leq 2$, then there is a rainbow hyper 3-path in \mathcal{H}_{Γ}. If there is a vertex x of G with $d^{c}(x) \geq 3$, then there are three hyperedges, say D_{1}, D_{2} and D_{3}, such that x is the common vertex of them. Then the colors of D_{1}, D_{2} and D_{3} are pairwise differently. Since G is a 2-connected graph, there is a vertex w of $V\left(D_{1}\right)-\{x\}$ with $d^{c}(w) \geq 2$ (otherwise, x is a cut-vertex of G, a contradiction). Then there is a hyperedge F of \mathcal{H}_{Γ}, such that w is a common vertex of F and D_{1}. Thus, either $F \cup D_{1} \cup D_{2}$ or $F \cup D_{1} \cup D_{3}$ is a rainbow hyper 3-path.
Let \mathcal{P} be a rainbow hyper 3-path of \mathcal{H}_{Γ} and let $V\left(D_{i}\right) \cap V\left(D_{i+1}\right)=\left\{u_{i}\right\}$ for $i \in[2]$. Let $u \in V\left(D_{1}\right)-\left\{u_{1}\right\}$ and $v \in V\left(D_{3}\right)-\left\{u_{2}\right\}$. We use $\mathcal{P}_{u, v}$ to denote a minimum hyperpath connecting u and v. Since $\operatorname{diam}(G)=2$, the size of $\mathcal{P}_{u, v}$ is either one or two. Let $\mathcal{C}=\mathcal{P}_{u, v} \cup \mathcal{P}$. If $\mathcal{P}_{u, v}$ is a hyperedge, then \mathcal{C} is a hyper 4 -cycle. Since D_{1} and D_{3} are opposite hyperedges of \mathcal{C} and they have different colors, a contradiction. If $\mathcal{P}_{u, v}$ is a hyper 2-path, then let F_{1}, F_{2} be hyperedges of $\mathcal{P}_{u, v}$, and let $V\left(F_{1}\right) \cap V\left(F_{2}\right)=\left\{u_{3}\right\}$. If $u_{3} \notin\left\{u_{1}, u_{2}\right\}$, then \mathcal{C} is a hyper 5 -cycle, a contradiction. If $u_{3} \in\left\{u_{1}, u_{2}\right\}$, then \mathcal{C} contains a hyper 3 -cycle, a contradiction.
Finally, we show statement (3). It is obvious that $\operatorname{diam}(G) \leq 2$, and G is a 2 connected graph when $n \geq 3$. So, $m d(G) \leq 2$. Suppose $G=K_{s} \square K_{t}$ and $s, t \geq 2$. Then $|N(u, v)|=2$ for any nonadjacent vertices u and v of G. By Lemma 1.1 (2) and Theorem 1.3, we have $m d(G)=m d\left(K_{s}\right)+m d\left(K_{t}\right)=2$.

Suppose $\operatorname{md}(G)=2$. Then $n \geq 3$ and G is a 2 -connected graph. Let Γ be an extremal $M D$-coloring of G and let G_{1}, G_{2} be the induced subgraphs of G colored by the colors 1 and 2 , respectively. Since $m d(G)=2$, we have $d^{c}(v) \leq 2$ for each $v \in V(G)$. If $d^{c}(v)=1$, by symmetry, suppose v is in a component D of G_{1}. Since $m d(G)=2$, we have $D \neq G$, i.e., there exists a vertex u in $V(G)-V(D)$. Then u, v are nonadjacent and $N(u, v) \subseteq D$. Let $\{a, b\} \subseteq N(u, v)$. Since $\Gamma(v a)=\Gamma(v b)=1$, we have $v a \cup v b \cup u a \cup u b$ is a monochromatic 4-cycle, i.e., $u \in V(D)$, a contradiction. Thus, $d^{c}(v)=2$ for each $v \in V(G)$. We use D_{u}^{1} and D_{u}^{2} to denote the components of G_{1} and G_{2}, respectively, such that $V\left(D_{u}^{1}\right) \cap V\left(D_{u}^{2}\right)=u$.

Suppose there are t components of G_{1} and s components of G_{2}. Since G is a 2connected graph, we have $s, t \geq 2$. Otherwise, if $s=1$, then for each vertex v of G_{1}, v is a cut-vertex, a contradiction. We label the t components of G_{1} by the numbers in $[t]$ and label the s components of G_{2} by the numbers in $[s]$, respectively. We use $l_{1}(D)$ to denote the label of a component D of G_{1}, and use $l_{2}(F)$ to denote the label of a component F of G_{2}. For a vertex u of G, since $d^{c}(u)=2$, we use $\left(l_{1}\left(D_{u}^{1}\right), l_{2}\left(D_{u}^{2}\right)\right)$ to denote u. For two vertices u, v of G, let $u=(i, j)$ and let $v=(s, t)$. In order to show $G=K_{s} \square K_{t}$, we need to show that $u v$ is an edge of G when $i=s$ and $j \neq t$, or $i \neq s$ and $j=t$, and u, v are nonadjacent vertices when $i \neq s$ and $j \neq t$. If $i \neq s$ and $j \neq t$, then $v \notin V\left(D_{u}^{1} \cup D_{u}^{2}\right)$. Since $N(u) \subseteq V\left(D_{u}^{1} \cup D_{u}^{2}\right), u, v$ are nonadjacent vertices of G. If, by symmetry, $i=s$ and $j \neq t$, then $D_{u}^{1}=D_{v}^{1}$. Let $u^{\prime} \in V\left(D_{u}^{2}\right)-\{u\}$. Then u^{\prime}, v are nonadjacent. Since $N(v) \subseteq V\left(D_{v}^{1} \cup D_{v}^{2}\right)$ and $N\left(u^{\prime}\right) \subseteq V\left(D_{u^{\prime}}^{1} \cup D_{u^{\prime}}^{2}\right)$, we have

$$
2 \leq\left|N\left(v, u^{\prime}\right)\right| \leq\left|V\left(D_{v}^{1} \cup D_{v}^{2}\right) \cap V\left(D_{u^{\prime}}^{1} \cup D_{u^{\prime}}^{2}\right)\right|=\left|D_{v}^{1} \cap D_{u^{\prime}}^{2}\right|+\left|D_{u^{\prime}}^{1} \cap D_{v}^{2}\right| \leq 2
$$

Thus, $D_{v}^{1} \cap D_{u^{\prime}}^{2} \subseteq N\left(v, u^{\prime}\right)$. Since $D_{v}^{1} \cap D_{u^{\prime}}^{2}=\{u\}$, we have $u v$ is an edge of G.
Remark 1. Suppose $G=\bigcup_{i \in[r]} L_{i}$, where L_{1}, \cdots, L_{r} are $r(\geq 2)$ internal disjoint odd paths with an order $2 k_{i}+2$ for each $i \in[r]$, and they have the same ends $\{u, v\}$. Let $L_{i}=u e_{1}^{i} x_{1}^{i} e_{2}^{i} x_{2}^{i} \cdots x_{2 k_{i}}^{i} e_{2 k_{i}+1}^{i} v$. Let $c_{0}=1$ and $c_{i}=\Sigma_{j=0}^{i} k_{j}$. If $k_{i} \geq 1$ for $i \in[r]$, then let Γ be an edge-coloring of G such that $\Gamma\left(e_{j}^{i}\right)=\Gamma\left(e_{2 k_{i}+2-j}^{i}\right)=c_{i-1}+j$ and $\Gamma\left(e_{k_{i}+1}^{i}\right)=1$ for each $i \in[r]$ and $j \in\left[k_{i}\right]$. Then Γ is an MD-coloring of G with $|\Gamma(G)|=\frac{|G|}{2}$. Since G is a 2 -connected graph, we have $\operatorname{md}(G)=\frac{|G|}{2}$. If $k_{i}=1$ for each $i \in[r]$, then G is a 2 -connected graph with $\operatorname{diam}(G)=3$ and $\operatorname{md}(G)=r+1$. Therefore, there exist 2 -connected graphs with diameter three, but their MD-numbers can be arbitrarily large.

Let A_{n} be a graph with $V\left(A_{n}\right)=\left\{v_{1}, \cdots, v_{\left\lceil\frac{n}{2}\right\rceil}\right\} \cup\left\{u_{1}, \cdots, u_{\left\lfloor\frac{n}{2}\right\rfloor}\right\}$ and $E\left(A_{n}\right)=$ $\left\{v_{i} v_{j}: i, j \in\left[\left\lceil\frac{n}{2}\right\rceil\right]\right\} \cup\left\{u_{i} u_{j}: i, j \in\left[\left\lfloor\frac{n}{2}\right\rfloor\right]\right\} \cup\left\{v_{i} u_{i}: i \in\left[\left\lfloor\frac{n}{2}\right\rfloor\right]\right\}$. Then $\left\{v_{i} u_{i}: i \in\left[\left\lfloor\frac{n}{2}\right\rfloor\right]\right\}$ is a matching-cut of G. If n is an odd integer, then let

$$
\mathcal{A}_{n}=\left\{A_{n}-E \mid E \text { is either an emptyset or a matching of } A_{n}\left[\left\{v_{1}, \cdots, v_{\frac{n-1}{2}}\right\}\right]\right\} .
$$

In the following theorem, we characterize extremal $\left\lfloor\frac{n}{2}\right\rfloor$-connected graphs, i.e., the $\left\lfloor\frac{n}{2}\right\rfloor$-connected graphs with MD-number two.

Theorem 3.2. Suppose G is a $\left\lfloor\frac{n}{2}\right\rfloor$-connected graph and $n \geq 4$. Then $\operatorname{md}(G) \leq 2$ and

1. if n is even, then $\operatorname{md}(G)=2$ if and only if $G=A_{n}$;
2. if n is odd, then $\operatorname{md}(G)=2$ if and only if $G \in \mathcal{A}_{n}$.

Proof. Since $|N(x)|+|N(y)| \geq n-1$ for any two nonadjacent vertices x and y, we have $\operatorname{diam}(G) \leq 2$. So, $m d(G) \leq 2$.
It is obvious that G is a $\left\lfloor\frac{n}{2}\right\rfloor$-connected graph if $G=A_{n}$ or $G \in \mathcal{A}_{n}$. Moreover, by Lemma 1.4 and Theorem 3.1, we have $\operatorname{md}(G)=2$.

Now suppose G is a $\left\lfloor\frac{n}{2}\right\rfloor$-connected graph and $m d(G)=2$. Since $n \geq 4, G$ is a 2-connected graph. We distinguish the following cases for our proof.

Case 1. n is even.
For any two nonadjacent vertices u, v of $G,|N(u) \cap N(v)| \geq 2$. By Theorem 3.1 (3), $G=K_{s} \square K_{t}$, where $s, t \geq 2$. We need to prove that at least one of s, t equals two. Suppose H_{1}, H_{2} are two cliques of order s, t, respectively, and $V\left(H_{1}\right) \cap V\left(H_{2}\right)=\{u\}$. Then $N(u) \subseteq V\left(H_{1} \cup H_{2}\right)$, i.e., $s+t-2 \geq \frac{n}{2}$. Since $n=s t$, we have $t(s-2) \leq 2(s-2)$. Thus, either $s=2$ or $t=2$.

Case 2. n is odd.
Say $n=2 k+1$ for some integer k. Suppose Γ is an extremal $M D$-coloring of G and G_{1}, G_{2} are the colors 1, 2 induced subgraphs, respectively.

Subcase 2.1 Every vertex v of G has $d^{c}(v)=2$.
Suppose there are components D, F of G_{1}, G_{2}, respectively, such that $V(D) \cap V(F)=$ \emptyset. Then let $u \in V(D)$ and $v \in V(F)$. Since $d^{c}(u)=d^{c}(v)=2$, there are components D^{\prime} of G_{1} and F^{\prime} of G_{2}, such that $V(D) \cap V\left(F^{\prime}\right)=\{u\}$ and $V(F) \cap V\left(D^{\prime}\right)=\{v\}$. Since $V(D) \cup V\left(F^{\prime}\right)-\{u\}$ and $V\left(D^{\prime}\right) \cup V(F)-\{v\}$ are vertex-cuts of G, we have $\left|V(D) \cup V\left(F^{\prime}\right)\right| \geq k+1$ and $\left|V\left(D^{\prime}\right) \cup V(F)\right| \geq k+1$. Since $\left|V\left(D^{\prime}\right) \cap V\left(F^{\prime}\right)\right| \leq 1$, we have $n \geq\left|V(D) \cup V\left(F^{\prime}\right)\right|+\left|V\left(D^{\prime}\right) \cup V(F)\right|-\left|V\left(D^{\prime}\right) \cap V\left(F^{\prime}\right)\right| \geq 2 k+1=n$, i.e., $D \cup D^{\prime} \cup F \cup F^{\prime}=G$. Then u is a cut-vertex of G, a contradiction. Therefore, for each component D of G_{1} and each component F of G_{2}, we have $|V(G) \cap V(F)|=1$. Then since $d^{c}(v)=2$ for each $v \in V(G)$, any two components of G_{1} (and also G_{2}) have the same order, say s (the order is t). Then $s, t>2$; otherwise, suppose $s=2$, i.e., G_{1} is a matching. Since n is odd, we have $V(G)-V\left(G_{1}\right) \neq \emptyset$. Thus, each vertex v of $V(G)-V\left(G_{1}\right)$ has $d^{c}(v)=1$, a contradiction. For a vertex x of G, let D_{1}, D_{2} be the components of G_{1}, G_{2}, respectively, containing x. Then $D_{1} \cup D_{2}-\{x\}$ is a vertex-cut of G, i.e., $s+t-2 \geq k$. However, $2 k+1=n=s t$ and $s, t>3$, a contradiction.

Subcase 2.2 There is a vertex v of G with $d^{c}(v)=1$.
Suppose D is the component of G_{1} containing v. Then since $D-\{v\}$ is a vertex cut of G, we have $|D| \geq k+1$. Since the set of vertices of D with color-degree two is a vertex-cut of G, there are at least k vertices of D, say v_{1}, \cdots, v_{k}, such that $d^{c}\left(v_{i}\right)=2$ for
$i \in[k]$. Let F_{i} be the component of G_{2} containing v_{i} and let $U=\bigcup_{i \in[k]}\left(V\left(F_{i}\right)-\left\{v_{i}\right\}\right)$. Then $|U| \geq k$. Since $n \geq|D|+|U| \geq 2 k+1=n$, we have $|D|=k+1,|U|=k$, and $\left|F_{i}\right|=2$ for $i \in[k]$. Moreover, $N(v)=\left\{v_{1}, \cdots, v_{k}\right\}$. Let $V\left(F_{i}\right)-\left\{v_{i}\right\}=\left\{u_{i}\right\}$. For $i, j \in[k]$, if $u_{i} u_{j}$ is not an edge of G, then $U-\left\{u_{i}, u_{j}\right\}+v_{j}$ is a vertex-cut of G with order $k-1$, which contradicts that G is k-connected. For each v_{i}, if there are two vertices v_{j}, v_{l} such that $v_{i} v_{j}$ and $v_{i} v_{l}$ are not edges of G, then $V(D)-\left\{v_{i}, v_{j}, v_{l}\right\}+u_{i}$ is a vertex-cut of G with order $k-1$, which contradicts that G is k-connected. Therefore, v_{i} connects all but at most one vertex of $D-v$. So, $G \in \mathcal{A}_{n}$.

4 Upper bounds

In this section, we give two upper bounds of the monochromatic disconnection number of a graph G, one of which depends on the connectivity of G, and the other depends on the independent number of G. Note that for a k-connected graph G, when $k=2$ (small) and $k \geq\left\lfloor\frac{n}{2}\right\rfloor$ (large), from Theorems 1.2 and 3.2 we know that $m d(G) \leq\left\lfloor\frac{n}{k}\right\rfloor$. This suggests us to make the following conjecture.

Conjecture 4.1. Suppose G is a k-connected graph. Then $\operatorname{md}(G) \leq\left\lfloor\frac{n}{k}\right\rfloor$.
Suppose P is a k-path. Then $m d\left(K_{r} \square P\right)=m d\left(K_{r}\right)+m d(P)=k+1$. Since $n=\left|K_{r} \square P\right|=r(k+1)$ and $K_{r} \square P$ is an r-connected graph, the bound is sharp for $k \geq 2$ if the conjecture is true.

The mean distance of a connected graph G is defined as $\mu(G)=\binom{n}{2}^{-1} \Sigma_{u, v \in V(G)} d(u, v)$. Plesnĺk in [14] posed the problem of finding sharp upper bounds on $\mu(G)$ for k connected graphs. Favaron et al. in [11] proved that if G is a k-connected graph of order n, then

$$
\begin{equation*}
\mu(G) \leq\left\lfloor\frac{n+k-1}{k}\right\rfloor \cdot \frac{n-1-\frac{k}{2}\left\lfloor\frac{n-1}{k}\right\rfloor}{n-1}, \tag{1}
\end{equation*}
$$

and the bound is sharp when n is even. If n is odd and $k \geq 3$, then Dankelmann et al. in [10] proved that $\mu(G) \leq \frac{n}{2 k+1}+30$ and this bound is, apart from an additive constant, best possible.

The following result gives a relationship between the monochromatic disconnection number and the connectivity of a graph, which means that if the connectivity of a graph is linear in the order of the graph, then the monochromatic disconnection number of the graph is upper bounded by a constant.

Theorem 4.2. For any $0<\varepsilon<\frac{1}{2}$, there is a constant $C=C(\varepsilon)<\frac{(1+\varepsilon)^{2}}{4 \varepsilon^{2}(1-\varepsilon)}$, such that for any en-connected graph $G, \operatorname{md}(G) \leq C$.

Proof. Suppose Γ is an extremal $M D$-coloring of G and $V(G)=\left\{v_{1}, \cdots, v_{n}\right\}$. We use (i, j) to denote an unordered integer pair in this proof. For each color i of $\Gamma(G)$, let

$$
S_{i}=\left\{(j, l): \text { the color } i \text { separates } v_{j} \text { and } v_{l}\right\} .
$$

Then $\Sigma_{i \in \Gamma}\left|S_{i}\right|=\Sigma_{j \neq l} c_{\Gamma}\left(v_{j}, v_{l}\right)$.
Claim 4.3. $\left|S_{i}\right| \geq k(n-k)$ for each $i \in \Gamma(G)$.
Proof. Let $\varepsilon n=k$. The result holds obviously for $k=1$. Thus, let $k \geq 2$. For each $i \in \Gamma(G)$, let G_{i} be the color i induced subgraph of G, and let H_{i} be the graph obtained from G by deleting all the edges with color i. Then H_{i} is a disconnected graph. Suppose there is a component D of H_{i} with $|D|>n-k$. Let $U=\left\{v_{j} \mid v_{j} \in V(D) \cap V\left(G_{i}\right)\right\}$. For a component B of G_{i}, if $V(B) \cap V(D) \neq \emptyset$, then $|V(B) \cap V(D)|=1$. Since B contains at least one vertex of $V(G-D)$, we have $|U| \leq|V(G-D)|<k$. Since $|D|>n-k=n(1-\varepsilon)>\varepsilon n=k, U$ is a proper subset of $V(D)$. So, U is a vertex-cut of G. Since $|U|<k$ and G is k-connected, this yields a contradiction. Thus, for each $i \in \Gamma(G)$, there is no component of H_{i} with order greater than $n-k$.

We partition the components of H_{i} into r parts such that r is minimum and the number of vertices in each part is at most $n-k$. Suppose the r parts have n_{1}, \cdots, n_{r} vertices, respectively. Then $\sum_{j \in[r]} n_{j}=n$. If $r \geq 4$, then since r is minimum, $n_{l}+n_{j}>$ $n-k$ for each $l, j \in[r]$. Thus,

$$
n(r-1)=(r-1) \sum_{t \in[r]} n_{t}=\sum_{l, j \in[r]}\left(n_{l}+n_{j}\right)>\binom{r}{2}(n-k),
$$

and then $r(n-k)<2 n$. Since $k<\frac{n}{2}$, this yields a contradiction. Therefore, r is equal to 2 or 3. If $r=2$, then $\left|S_{i}\right| \geq n_{1} \cdot n_{2} \geq k(n-k)$. If $r=3$, then there is an n_{l} such that $k \leq n_{l} \leq n-k$, say $l=1$. Otherwise, $n_{j}<k$ for each $j \in[3]$, then $n=\sum_{j \in[3]} n_{j}<n$, a contradiction. Thus, $\left|S_{i}\right|>n_{1} \cdot\left(n_{2}+n_{3}\right) \geq k(n-k)$.

By the inequality (1) above, we have

$$
\begin{aligned}
\mu(G) & \leq\left\lfloor\frac{n+k-1}{k}\right\rfloor \cdot \frac{n-1-\frac{k}{2}\left\lfloor\frac{n-1}{k}\right\rfloor}{n-1}=\left\lfloor\frac{n+k-1}{k}\right\rfloor \cdot\left(1-\frac{k}{2(n-1)}\left\lfloor\frac{n-1}{k}\right\rfloor\right) \\
& \leq\left(\frac{n+k-1}{k}\right) \cdot\left[1-\frac{k}{2(n-1)}\left(\frac{n-1}{k}-1\right)\right] \\
& =\frac{n+k-1}{k} \cdot \frac{n+k-1}{2(n-1)}<\frac{(n+k)^{2}}{2 k(n-1)} .
\end{aligned}
$$

Since $\sum_{i, j} d\left(v_{i}, v_{j}\right)=\mu(G) \cdot\binom{n}{2}$, we have $\sum_{i, j} d\left(v_{i}, v_{j}\right)<\frac{(n+k)^{2} n}{4 k}$. It is obvious that $d\left(v_{i}, v_{j}\right) \geq c_{\Gamma}\left(v_{i}, v_{j}\right)$ for any two vertices v_{i}, v_{j} of G. Thus,

$$
m d(G) \leq \frac{\Sigma_{i \in \Gamma}\left|S_{i}\right|}{k(n-k)}=\frac{\sum_{i, j} c_{\Gamma}\left(v_{i}, v_{j}\right)}{k(n-k)} \leq \frac{\sum_{i, j} d(u, v)}{k(n-k)}<\frac{(n+k)^{2} n}{4 k^{2}(n-k)}=\frac{(1+\varepsilon)^{2}}{4 \varepsilon^{2}(1-\varepsilon)}
$$

The proof is thus complete.

Remark 2. Since $\varepsilon<\frac{1}{2}$, we have $\frac{(1+\varepsilon)^{2}}{4 \varepsilon^{2}(1-\varepsilon)}<\left(\frac{3}{2}\right)^{2} / 2 \varepsilon^{2}=\frac{9}{8 \varepsilon^{2}}$. This means that when the connectivity of a graph increases, its $M D$-number could decrease, and the upper bound is 4 when ε is getting to $\frac{1}{2}$.

The following result gives a relationship between the monochromatic disconnection number and the independent number of a graph.

Theorem 4.4. If G is a 2 -connected graph, then $\operatorname{md}(G) \leq \alpha(G)$. The bound is sharp.
Proof. Let P be a path and let $t \geq 2$ be an integer. Since $\alpha\left(K_{t} \square P\right)=|P|=$ $m d\left(K_{t} \square P\right)$, the bound is sharp if the result holds.

The proof proceeds by induction on the order n of a graph G. If $n \leq 2 \alpha(G)$, then since G is a 2-connected graph, $\operatorname{md}(G) \leq \alpha(G)$. If G has a vertex v such that $G-v$ is still 2 -connected, then by Lemma 1.1 (5), we know $\operatorname{md}(G-v) \geq m d(G)$. Since $\alpha(G-v) \leq \alpha(G)$, by induction, we have $m d(G) \leq m d(G-v) \leq \alpha(G-v) \leq \alpha(G)$. Thus, we only need to consider the graph G with the property that $G-v$ is not a 2-connected graph for any vertex v of G.

Let u be a vertex of G such that $G-u$ has a maximum component. Let $\mathcal{B}=$ $\left\{D_{1}, \cdots, D_{s}\right\}$ be the set of components of $G-u$ and let D_{r} be a maximum component. Let S be the set of cut-vertices of $G-u$. The block-tree of $G-u$, denoted by T, is a bipartite graph with bipartition \mathcal{B} and S, and a block D_{i} has an edge with a cut-vertex v in T if and only if D_{i} contains v. Then the leaves of T are blocks, say $D_{k_{1}}, \cdots, D_{k_{l}}$. Since G is 2-connected, there is a vertex v_{i} of $D_{k_{i}}-S$ such that u connects v_{i} in G for $i \in[l]$. We use $P_{i, j}$ to denote the subpath of T from $D_{k_{i}}$ to $D_{k_{j}}$. We now prove that T is a path and D_{i} is an edge for $i \neq r$. If T is not a path, then $l \geq 3$. There are two leaves of T, say $D_{k_{1}}$ and $D_{k_{2}}$, such that $D_{r} \in V\left(P_{1,2}\right)$. Then $G-v_{3}$ has a component containing $V\left(D_{r}\right) \cup\{u\}$, which contradicts that D_{r} is maximum. Thus, T is a path. Suppose $r \neq j$ and D_{j} is not an edge, i.e., D_{j} is a 2-connected graph. Since T is a path, we have $W=V\left(D_{j}\right)-S-\left\{v_{1}, \cdots, v_{l}\right\} \neq \emptyset$. Let $u^{\prime} \in W$. Then $G-u^{\prime}$ has a component containing $V\left(D_{r}\right) \cup\{u\}$, which contradicts that D_{r} is maximum. Thus, D_{i} is an edge for $i \neq r$.
Without loss of generality, suppose $V\left(D_{i}\right) \cap V\left(D_{i+1}\right)=\left\{u_{i}\right\}$ for $i \in[s-1]$. Then, D_{1}, D_{s} are leaves of T, D_{i} is an edge for $i \neq r$ and $S=\left\{u_{1}, \cdots, u_{s-1}\right\}$. Let $u_{0} \in$ $V\left(D_{1}-S\right)$ and $u_{s} \in V\left(D_{s}-S\right)$ be two vertices adjacent to u.

Let $P_{1}=\bigcup_{i<r} D_{i}$ and let $P_{2}=\bigcup_{i=r+1}^{s} D_{i}$. Then P_{1} and P_{2} are paths. There is an independent set U_{i} of P_{i} such that $U_{i} \cap V\left(D_{r}\right)=\emptyset$ and $\left|U_{i}\right|=\left\lceil\frac{\left|P_{i}\right|-1}{2}\right\rceil$ for $i \in[2]$. Let U be a maximum independent set of D_{r}. Then $U \cup U_{1} \cup U_{2}$ is an independent set of
$G-u$, i.e.,

$$
\begin{aligned}
\alpha(G) & \geq \alpha(G-v) \geq\left|U \cup U_{1} \cup U_{2}\right|=\alpha\left(D_{r}\right)+\left\lceil\frac{\left|P_{1}\right|-1}{2}\right\rceil+\left\lceil\frac{\left|P_{2}\right|-1}{2}\right\rceil \\
& \geq \alpha\left(D_{r}\right)+\left\lceil\frac{\left|P_{1}\right|+\left|P_{2}\right|-2}{2}\right\rceil=\alpha\left(D_{r}\right)+\left\lceil\frac{s-1}{2}\right\rceil .
\end{aligned}
$$

Let $P=\left\{u u_{0}, u u_{s}\right\} \cup\left(\bigcup_{i \neq r} D_{i}\right)$ and let $G^{\prime}=D_{r} \cup P$. Then P is an $(s+1)$ path and G^{\prime} is a 2-connected spanning subgraph of G. By Lemma 1.1 (3), we have $m d(G) \leq m d\left(G^{\prime}\right)$. Let Γ be an extremal $M D$-coloring of G^{\prime}. Then Γ is an $M D$ coloring restricted on D_{r} and P. We call D_{r} and each edge of P the joints of G^{\prime}. Let C be the set of colors $c \in \Gamma\left(G^{\prime}\right)$ such that c is in at least two joints of G^{\prime}. For $c \in C$, we use n_{c} to denote the number of joints of G having edges colored with c. Then $\operatorname{md}\left(G^{\prime}\right)=\left|\Gamma\left(G^{\prime}\right)\right|=\left|\Gamma\left(D_{r}\right)\right|+\|P\|-\Sigma_{c \in C}\left(n_{c}-1\right)$. Since there is a color c of $C_{\Gamma}\left(u_{r-1}, u_{r}\right)$ that separates u_{r-1} and u_{r}, we have $c \in \Gamma\left(D_{r}\right) \cap \Gamma(P)$. By the same reason, for each $e \in E(P)$, either $\Gamma(e)=\Gamma(f)$ for an edge f of $P-e$, or $\Gamma(e) \subseteq \Gamma\left(D_{r}\right)$. Thus, $\Sigma_{c \in C}\left(n_{c}-1\right) \geq\left\lceil\frac{s+2}{2}\right\rceil$. Therefore,

$$
\begin{aligned}
m d(G) & \leq m d\left(G^{\prime}\right)=\left|\Gamma\left(D_{r}\right)\right|+\|P\|-\Sigma_{c \in C}\left(n_{c}-1\right) \\
& \leq \alpha\left(D_{r}\right)+s+1-\left\lceil\frac{s+2}{2}\right\rceil=\alpha\left(D_{r}\right)+\left\lfloor\frac{s}{2}\right\rfloor \\
& =\alpha\left(D_{r}\right)+\left\lceil\frac{s-1}{2}\right\rceil \leq \alpha(G) .
\end{aligned}
$$

The proof is thus complete.

5 Characterization of extremal 2-connected graphs

We knew that $\operatorname{md}(G) \leq 2$ if G is a $\left\lfloor\frac{n}{2}\right\rfloor$-connected graph and $\operatorname{md}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$ if G is a 2-connected graph. We have characterized extremal $\left\lfloor\frac{n}{2}\right\rfloor$-connected graphs in Theorem 3.2. In this section, we characterize extremal 2-connected graphs, i.e., the 2-connected graphs with $M D$-number $\left\lfloor\frac{n}{2}\right\rfloor$.

For a 2-connected graph G, we use $\mathcal{E}=\left(L_{0} ; L_{1}, \cdots, L_{t}\right)$ to denote an ear-decomposition of G, where L_{0} is a 2-connected subgraph of G and L_{i} is a path for $i \in[t]$. Let $Z_{\mathcal{E}}=\left\{L_{i} \mid i>0\right.$ and $\left.\operatorname{end}\left(L_{i}\right) \subseteq V\left(L_{0}\right)\right\}$.

If C is a cycle of G and $v \in V(G)-V(C)$, then we use $\kappa(v, C)$ to denote the maximum number of $v v_{i}$-path P_{i} of G, such that $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{v\}$ and $V\left(P_{i}\right) \cap V(C)=\left\{v_{i}\right\}$. We call $H=C \cup\left(\bigcup_{i=1}^{\kappa(v, C)} P_{i}\right)$ a (v, C)-umbrella of G (or an umbrella for short) if $\kappa(v, C) \geq 3$. The vertices $v_{1}, \cdots, v_{\kappa(v, C)}$ divide C into $\kappa(v, C)$ paths, say $P_{1}^{\prime}, \cdots, P_{\kappa(v, C)}^{\prime}$. We call P_{i} a spoke of H and call P_{i}^{\prime} a rim of H. If the size of each spoke is odd and the size of each rim is even, then we call the (v, C)-umbrella a uniform (v, C)-umbrella (or uniform umbrella for short).

A graph G is called a θ-graph if G is the union of three internal disjoint paths T_{1}, T_{2} and T_{3} with $\operatorname{end}\left(T_{1}\right)=\operatorname{end}\left(T_{2}\right)=\operatorname{end}\left(T_{3}\right)$. If each T_{i} is an even path, then we call G an even θ-graph and call each T_{i} a route.
Suppose $\mathcal{E}=\left(L_{0} ; L_{1}, \cdots L_{t}\right)$ is an ear-decomposition of G. Then the concept normal ear-decomposition of G is defined as follows.

- If $|G|$ is even, then \mathcal{E} is a normal ear-decomposition of G if L_{0} is a cycle.
- If $|G|$ is odd and G is not a bipartite graph, then \mathcal{E} is a normal ear-decomposition of G if L_{0} is an odd cycle.
- If $|G|$ is odd and G is a bipartite graph, then \mathcal{E} is a normal ear-decomposition of G if L_{0} is either an umbrella or an even θ-graph. Moreover, if L_{0} is an even θ-graph, then for each $L_{i} \in Z_{\mathcal{E}}, \operatorname{end}\left(L_{i}\right)$ is contained in one route.

Lemma 5.1. If G is a 2 -connected graph, then G has a normal ear-decomposition.
Proof. If n is even or G is a nonbipartite graph with n odd, then G has a normal eardecomposition. If G is a bipartite graph and n is odd, then let $\mathcal{E}=\left\{L_{0} ; L_{1}, \cdots, L_{t}\right\}$ be an ear-decomposition of G with L_{0} an even cycle. Since $n=\left|L_{0}\right|+\Sigma_{i \in[t]}\left(\left|L_{i}\right|-2\right)$ and n is odd, there is an even path among the ears, say L_{i}. Since $H=\bigcup_{l=0}^{i-1} L_{i}$ is a 2 connected bipartite graph, there is an even cycle C of H containing $\operatorname{end}\left(L_{i}\right)$. Moreover, $\operatorname{end}\left(L_{i}\right)$ divides C into two even paths. So, $L_{0}^{\prime}=C \cup L_{i}$ is an even θ-graph, say the three routes are T_{1}, T_{2} and T_{3}. Let $\mathcal{E}^{\prime}=\left\{L_{0}^{\prime} ; L_{1}^{\prime}, \cdots, L_{s}^{\prime}\right\}$ be an ear-decomposition of G and let $\operatorname{end}\left(L_{j}^{\prime}\right)=\left\{u_{j}, v_{j}\right\}$ for $j \in[s]$. If the ends of each L_{j}^{\prime} in $Z_{\mathcal{E}^{\prime}}$ are contained in one route, then \mathcal{E}^{\prime} is a normal ear-decomposition of G. Otherwise, suppose $L_{j}^{\prime} \in Z_{\mathcal{E}^{\prime}}$, $u_{j} \in I\left(T_{1}\right)$ and $v_{j} \in I\left(T_{2}\right)$. Then $\kappa\left(u_{j}, T_{2} \cup T_{3}\right) \geq 3$, i.e., there is a $\left(u_{j}, T_{2} \cup T_{3}\right)$-umbrella, say M. Then there is a normal ear-decomposition of G containing M.

Lemma 5.2. Suppose G is a 2-connected graph with $\operatorname{md}(G)=\left\lfloor\frac{n}{2}\right\rfloor . \operatorname{Let} \mathcal{E}=\left(L_{0} ; L_{1}, \cdots, L_{t}\right)$ be an ear-decomposition of G with L_{0} a 2 -connected subgraph of G and end $\left(L_{i}\right)=$ $\left\{a_{i}, b_{i}\right\}$ for $i \in[t]$. Then we have the following results.

1. If H is a 2-connected subgraph of G, then each extremal $M D$-coloring of G is an extremal MD-coloring restricted on H, and $m d(H)=\left\lfloor\frac{|H|}{2}\right\rfloor$.
2. If n is even, then G is a bipartite graph and L_{i} is an odd path for $i \in[t]$.
3. If n is odd, then when $\left|L_{0}\right|$ is even, exact one of $\left\{\left\|L_{1}\right\|, \cdots,\left\|L_{t}\right\|\right\}$ is even; when $\left|L_{0}\right|$ is odd, L_{i} is an odd path for $i \in[t]$.

Proof. Let Γ be an extremal $M D$-coloring of G. Then for each $i \in[t], \Gamma\left(L_{i}\right) \cap$ $\Gamma\left(\bigcup_{l=0}^{i-1} L_{l}\right) \neq \emptyset$; otherwise, $C_{\Gamma}\left(a_{i}, b_{i}\right)=\emptyset$, a contradiction. Moreover, each color of $\Gamma\left(L_{i}\right)-\Gamma\left(\bigcup_{l=0}^{i-1} L_{l}\right)$ is used on at least two edges of L_{i}. Otherwise, suppose
$p \in \Gamma\left(L_{i}\right)-\Gamma\left(\bigcup_{l=0}^{i-1} L_{l}\right)$ and color p is only used on one edge $e=x y$ of L_{i}. Then since $\Gamma\left(\bigcup_{l=0}^{i} L_{l}\right)-e$ is connected, $C_{\Gamma}(x, y)=\emptyset$, a contradiction. Therefore,

$$
\begin{aligned}
\left\lfloor\frac{n}{2}\right\rfloor & =m d(G)=\left|\Gamma\left(L_{0}\right)\right|+\Sigma_{i=1}^{t}\left|\Gamma\left(L_{i}\right)-\Gamma\left(\bigcup_{l=0}^{i-1} L_{l}\right)\right| \\
& \leq m d\left(L_{0}\right)+\Sigma_{i=1}^{t}\left\lfloor\frac{\left\|L_{i}\right\|-1}{2}\right\rfloor \\
& \leq\left\lfloor\frac{\left|L_{0}\right|}{2}\right\rfloor+\Sigma_{i=1}^{t}\left\lfloor\frac{\| L_{i}| |-1}{2}\right\rfloor \\
& \leq\left\lfloor\frac{\left|L_{0}\right|}{2}+\Sigma_{i \in[t]} \frac{\| L_{i}| |-1}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

Then $\left|\Gamma\left(L_{0}\right)\right|=m d\left(L_{0}\right)=\left\lfloor\frac{\left|L_{0}\right|}{2}\right\rfloor$ and $\left|\Gamma\left(L_{i}\right)\right|=\left\lfloor\frac{\left\|L_{i}\right\|-1}{2}\right\rfloor$ for each $i \in[t]$. So, Γ is an extremal $M D$-coloring restricted on L_{0}, and $m d\left(L_{0}\right)=\left\lfloor\frac{\left\lfloor L_{0} \mid\right.}{2}\right\rfloor$. Moreover, $\mid \Gamma\left(L_{i}\right) \cap$ $\Gamma\left(\bigcup_{l=0}^{i-1} L_{l}\right) \mid=1$ when L_{i} is an odd path.

If G is not a bipartite graph, n is even and L_{0} an odd cycle, then the above inequality does not hold. Thus, G is a bipartite graph when n is even. Moreover, L_{i} is an odd path for each $i \in[t]$. If n and $\left|L_{0}\right|$ are odd, then L_{i} is an odd path for $i \in[t]$. If n is odd and $\left|L_{0}\right|$ is even, then exact one of $\left\{\left\|L_{1}\right\|, \cdots,\left\|L_{t}\right\|\right\}$ is even.

For a normal ear-decomposition $\mathcal{E}=\left\{L_{0} ; L_{1}, \cdots, L_{t}\right\}$ of a 2-connected graph G, if L_{0} is an odd cycle and $L_{i} \in Z_{\mathcal{E}}$, then $\operatorname{end}\left(L_{i}\right)$ divides L_{0} into an odd path and an even path, which are denoted by $f_{o}(\mathcal{E}, i)$ and $f_{e}(\mathcal{E}, i)$, respectively. If L_{0} is an even cycle, $L_{i} \in Z_{\mathcal{E}}$ and $e \in E\left(L_{0}\right)$, then we use $g(\mathcal{E}, i, e)$ to denote the subpath of L_{0} with ends $\operatorname{end}\left(L_{i}\right)$ and $g(\mathcal{E}, i, e)$ contains e. We define a function $f(\mathcal{E}, i, j)$ for $0 \leq i<j \leq t$ as follows.
$f(\mathcal{E}, i, j)= \begin{cases}f_{o}(\mathcal{E}, j) & i=0, L_{j} \in Z_{\mathcal{E}} \text { and } L_{0} \text { is an odd cycle; } \\ g(\mathcal{E}, i, e) & i=0, L_{j} \in Z_{\mathcal{E}} \text { and } L_{0} \text { is an even cycle with } e \in E\left(L_{0}\right) ; \\ a_{j} P b_{j} & i=0, L_{j} \in Z_{\mathcal{E}}, L_{0} \text { is an umbrella, } P \text { is either a spoke or a rim of } \\ & \begin{array}{l}L_{0} \text { such that } \operatorname{end}\left(L_{j}\right) \subseteq V(P) ; \\ a_{j} T b_{j}\end{array} \\ & \begin{array}{l}i=0, L_{j} \in Z_{\mathcal{E}}, L_{0} \text { is an even } \theta \text {-graph, } T \text { is one of the three } \\ \text { routes such that } \operatorname{end}\left(L_{i}\right) \subseteq V(T) ;\end{array} \\ a_{j} L_{i} b_{j} & i>0 \text { and } \operatorname{end}\left(L_{j}\right) \subseteq V\left(L_{i}\right) ; \\ K_{4} & \text { otherwise. }\end{cases}$
If L_{0} is not an even cycle, then the function depends only on \mathcal{E}, i and j. If L_{0} is an even cycle and $i=0$, then the function also depends on e. Thus, we need to fix an edge e of L_{0} in advance if L_{0} is an even cycle.

Lemma 5.3. If G is a uniform umbrella or an even θ-graph other than $K_{2,3}$, then $|G|$ is odd and $\operatorname{md}(G)=\left\lfloor\frac{|G|}{2}\right\rfloor$.

Proof. It is obvious that $|G|$ is odd. Fix an integer $k \geq 3$. Suppose G^{\prime} is either a minimum even θ-graph other than $K_{2,3}$, or a minimum uniform umbrella with k spokes.

If G^{\prime} is a minimum even θ-graph other than $K_{2,3}$, then G^{\prime} and one of its extremal $M D$-colorings are depicted in Figure 1 (1), which implies $m d\left(G^{\prime}\right)=3=\left\lfloor\frac{\left|G^{\prime}\right|}{2}\right\rfloor$.

If G^{\prime} is a minimum uniform umbrella with k spokes, then each spoke is an edge and each rim is a 2-path. Suppose the k spokes are $e_{1}=v v_{1}, \cdots, e_{k}=v v_{k}$, and the k rims are $P_{1}=v_{1} f_{1} u_{1} f_{2} v_{2}, \cdots, P_{k}=v_{k} f_{2 k-1} u_{k} f_{2 k} v_{1}$. We color each e_{i} with i. The colors of the edges of P_{i} obey the rule that opposite edges of any 4 -cycle have the same color (see Figure 1). Since $k \geq 3$, we know that for $v_{1},\left\{e_{1}, f_{2}, f_{2 k-1}\right\}$ is a monochromatic

(1)

(2)

Figure 1: Extremal $M D$-colorings of the minimum even θ-graph and the minimum uniform umbrella.
$v_{1} v$-cut (it is also a monochromatic $v_{1} v_{i}$-cut for $i \neq 1$, and a monochromatic $v_{1} u_{i}$ cut for $i \neq\{1,2, k\}),\left\{e_{2}, f_{1}, f_{4}\right\}$ is a monochromatic $v_{1} u_{1}$-cut and $\left\{e_{k}, f_{2 k}, f_{2 k-3}\right\}$ is a monochromatic $v_{1} u_{k}$-cut. By symmetry, the edge-coloring is an $M D$-coloring of G^{\prime} with k colors. Since G^{\prime} is 2 -connected and $\left|G^{\prime}\right|=2 k+1$, we have $m d\left(G^{\prime}\right)=k=\left\lfloor\frac{\left|G^{\prime}\right|}{2}\right\rfloor$.

Suppose G is a uniform umbrella with k spokes (an even θ-graph other than $K_{2,3}$). Then G is obtained from G^{\prime} by replacing some edges with odd paths, respectively. W.l.o.g., suppose G is obtained from G^{\prime} by replacing one edge with an odd path P. Then by Lemma 2.2, we have $m d(G) \geq m d\left(G^{\prime}\right)+\left\lfloor\frac{\|P\| \mid-1}{2}\right\rfloor=\left\lfloor\frac{|G|}{2}\right\rfloor$, i.e., $m d(G)=\left\lfloor\frac{|G|}{2}\right\rfloor$. The proof is thus complete.

Lemma 5.4. If G is a bipartite graph of odd order and $\operatorname{md}(G)=\left\lfloor\frac{n}{2}\right\rfloor$, then each umbrella of G is a uniform umbrella.

Proof. Suppose G is a bipartite graph of odd order and $\operatorname{md}(G)=\left\lfloor\frac{n}{2}\right\rfloor$. Let H be a (v, C)-umbrella of G. We show that H is a uniform umbrella.
If $\kappa(v, C)=3$, then let R_{1}, R_{2} and R_{3} be spokes of H and R_{i} be a $v v_{i}$-path. Then C is divided into three paths by vertices v_{1}, v_{2} and v_{3} (say, the three paths are W_{1}, W_{2}
and W_{3}, such that $\operatorname{end}\left(W_{1}\right)=\left\{v_{1}, v_{2}\right\}, \operatorname{end}\left(W_{2}\right)=\left\{v_{2}, v_{3}\right\}$ and $\left.\operatorname{end}\left(W_{3}\right)=\left\{v_{1}, v_{3}\right\}\right)$. If each R_{i} is an odd path, then since G is a bipartite graph, each W_{i} is an even path, H be a uniform (v, C)-umbrella of G. If, by symmetry, R_{1} is an even path and R_{2}, R_{3} are odd paths, then W_{1}, W_{3} are odd paths and W_{2} is an even path. Then since $\left(W_{1} \cup W_{3} \cup R_{2} \cup R_{3} ; R_{1}, W_{2}\right)$ is an ear-decomposition of H containing even paths R_{1} and W_{2}, by Lemma 5.2 (1) and (3) this yields a contradiction. If, by symmetry, R_{1} is an odd path and R_{2}, R_{3} are even paths, then H is a uniform $\left(v_{1}, R_{2} \cup R_{3} \cup W_{2}\right)$-umbrella. If each R_{i} is an even path, then $\left(C ; R_{1} \cup R_{2}, R_{3}\right)$ is an ear-decomposition of H containing two even paths, a contradiction.
If $\kappa(v, C) \geq 4$, then let $R_{1}, R_{2}, R_{3}, R_{4}$ be four spokes of H (let R_{i} be a $v v_{i}$ path for $i \in[4]$). Then C is divided into two paths by v_{2} and v_{3} (say, the two paths are Y_{1} and Y_{2}). W.l.o.g., suppose R_{1} is an even path. Then $\left(Y_{1} \cup R_{2} \cup R_{3} ; Y_{2}, R_{4}, R_{1}\right)$ is an ear-decomposition of H. Since $m d(H)=\left\lfloor\frac{|H|}{2}\right\rfloor$ and R_{1} is an even path, by Lemma 5.2 (3), Y_{2} is an odd path. Since H is a bipartite graph, either R_{2} or R_{3} is an even path (say R_{2}). Then $\left(C \cup R_{3} \cup R_{4} ; R_{1}, R_{2}\right)$ is an ear-decomposition of H containing two even paths, a contradiction. So, each spoke of H is an odd path. Since H is a bipartite graph, each rim of H is an even path.

Suppose $\mathcal{E}=\left(L_{0} ; L_{1}, \cdots L_{t}\right)$ is an ear-decomposition of G. Then \mathcal{E} can have the following possible properties.

Q: If $\operatorname{end}\left(L_{j}\right) \cap I\left(L_{i}\right) \neq \emptyset$, then $\operatorname{end}\left(L_{j}\right) \subseteq V\left(L_{i}\right)$.
\mathbf{R} : If $\operatorname{end}\left(L_{j}\right) \cap I(f(\mathcal{E}, k, i)) \neq \emptyset$, then $f(\mathcal{E}, k, j)$ is a proper subpath of $f(\mathcal{E}, k, i)$.
The concept standard ear-decomposition of G is defined as follows.

- If $|G|$ is even, then \mathcal{E} is a standard ear-decomposition of G if L_{0} is an even cycle.
- If $|G|$ is odd and G is not a bipartite graph, then \mathcal{E} is a standard ear-decomposition of G if L_{0} is an odd cycle and $f_{e}(\mathcal{E}, i) \cap f_{e}(\mathcal{E}, j) \neq \emptyset$ for $L_{i}, L_{j} \in Z_{\mathcal{E}}$.
- If $|G|$ is odd and G is a bipartite graph, then \mathcal{E} is a standard ear-decomposition of G if L_{0} is either a uniform umbrella or a even θ-graph other than $K_{2,3}$. Moreover, for each $L_{i} \in Z_{\mathcal{E}}$, if L_{0} is a uniform umbrella, then $\operatorname{end}\left(L_{i}\right)$ is contained in either a rim or a spoke; if L_{0} is an even θ-graph other than $K_{2,3}$, then $\operatorname{end}\left(L_{i}\right)$ is contained in one route.

Therefore, a standard ear-decomposition of G is also a normal ear-decomposition of G.

Lemma 5.5. If $\mathcal{E}=\left(L_{0} ; L_{1}, \cdots, L_{t}\right)$ is a standard ear-decomposition of G and \mathcal{E} has properties \mathbf{Q} and \mathbf{R}, then there exist integers $0 \leq k<r \leq t \operatorname{such}$ that end $\left(L_{r}\right) \subseteq V\left(L_{k}\right)$, and $d(u)=2$ for each $u \in I(f(\mathcal{E}, k, r)) \cup I\left(L_{r}\right)$.

Proof. For $i \in[t]$, let $\operatorname{end}\left(L_{i}\right)=\left\{a_{i}, b_{i}\right\}$. We use $m_{r}\left(n_{r}\right)$ to demote the minimum integer such that $a_{r} \in V\left(L_{m_{r}}\right)\left(b_{r} \in V\left(L_{n_{r}}\right)\right)$. Since $I\left(L_{0}\right)=V\left(L_{0}\right)$, we have $a_{i} \in$
$I\left(L_{m_{r}}\right)$ and $b_{r} \in I\left(L_{n_{r}}\right)$. Since \mathcal{E} has property \mathbf{Q}, we know for each $i \in[t]$, either $\operatorname{end}\left(L_{i}\right) \subseteq V\left(L_{m_{i}}\right)$, or end $\left(L_{i}\right) \subseteq V\left(L_{n_{i}}\right)$. Let l_{i} be the minimum integer such that $\operatorname{end}\left(L_{i}\right) \subseteq V\left(L_{l_{i}}\right)$.

Let D be a digraph with vertex-set $V(D)=\left\{s_{0}, s_{1}, \cdots, s_{t}\right\}$ and arc-set $A(D)=$ $\left\{\left(s_{i}, s_{j}\right) \mid f(\mathcal{E}, i, j) \neq K_{4}\right\}$. We use d_{j} to denote the length of a minimum directed path from s_{0} to s_{j}. If $\operatorname{end}\left(L_{j}\right) \cap I\left(L_{i}\right) \neq \emptyset$, then $d_{j}=d_{i}+1$. Let $U=\left\{j \mid d_{j}\right.$ is maximum $\}$. If $j \in U$, then $d_{G}(u)=2$ for each $u \in I\left(L_{j}\right)$.

Let i be an integer in U such that $\left|f\left(\mathcal{E}, l_{i}, i\right)\right|$ is minimum. If there is a vertex v of $I\left(f\left(\mathcal{E}, l_{i}, i\right)\right)$ such that $d_{G}(v) \geq 3$, then there is a path L_{k} such that $v \in \operatorname{end}\left(L_{k}\right) \cap$ $I\left(f\left(\mathcal{E}, l_{i}, i\right)\right)$. Since \mathcal{E} has property $\mathbf{R}, f\left(\mathcal{E}, l_{i}, k\right)$ is a proper subpath of $f\left(\mathcal{E}, l_{i}, i\right)$, i.e., $\left|f\left(\mathcal{E}, l_{i}, k\right)\right|<\left|f\left(\mathcal{E}, l_{i}, i\right)\right|$. Since $\left|f\left(\mathcal{E}, l_{i}, i\right)\right|$ is minimum, we have $k \notin U$. Then there is a path, say L_{p}, such that $\operatorname{end}\left(L_{p}\right) \cap I\left(L_{k}\right) \neq \emptyset$. Thus, $d_{p}>d_{k}=d_{i}$, a contradiction. Hence, $d_{G}(u)=2$ for each $u \in I\left(f\left(\mathcal{E}, l_{i}, i\right)\right)$.

Theorem 5.6. Suppose G is a 2 -connected graph and $\mathcal{E}=\left(L_{0} ; L_{1}, \cdots L_{t}\right)$ is a normal ear-decomposition of G. Then $\operatorname{md}(G)=\left\lfloor\frac{n}{2}\right\rfloor$ if and only if \mathcal{E} is a standard eardecomposition of G that has properties \mathbf{Q} and \mathbf{R}, L_{i} is an odd path for each $i \in[t]$, and $f(\mathcal{E}, i, j)$ is an odd path if $f(\mathcal{E}, i, j) \neq K_{4}$.

Proof. For $i \in[t]$, let $\operatorname{end}\left(L_{i}\right)=\left\{a_{i}, b_{i}\right\}$.
For the necessity, suppose $m d(G)=\left\lfloor\frac{n}{2}\right\rfloor$. If n is even, then L_{0} is an even cycle. By Lemma 5.2 (2), G is a bipartite graph and L_{i} is an odd path for $i \in[t]$. Since $f(\mathcal{E}, i, j) \cup L_{j}$ is an even cycle, $f(\mathcal{E}, i, j)$ is an odd path. If n is odd, then since \mathcal{E} is normal, $\left|L_{0}\right|$ is odd. By Lemma $5.2(3), L_{i}$ is an odd path for $i \in[t]$. Suppose there are integers i, j such that $f(\mathcal{E}, i, j)$ is an even path. If $i=0$ and L_{0} is an odd cycle, then $f(\mathcal{E}, i, j)=f_{o}(i, j)$ is an odd path, a contradiction. If $i>0$ and L_{0} is an odd cycle, then $H=L_{j} \cup\left(\bigcup_{c=0}^{i} L_{c}\right)$ is a 2-connected subgraph of G and $\left(L_{0} ; L_{1} \cdots, L_{i-1}, L_{i} \cup L_{j}-I(f(\mathcal{E}, i, j)), f(\mathcal{E}, i, j)\right)$ is an ear-decomposition of H with L_{0} an odd cycle and $f(\mathcal{E}, i, j)$ an even path, and by Lemma 5.2 (1) and (3) this yields a contradiction. If L_{0} is an umbrella or an even θ-graph other than $K_{2,3}$, then G is a bipartite graph. Since $f(\mathcal{E}, i, j) \cup L_{j}$ is an even cycle and L_{j} is an odd path, $f(\mathcal{E}, i, j)$ is an odd path. Thus, $f(\mathcal{E}, i, j)$ is an odd path if n is odd.

We need to prove that \mathcal{E} is standard and \mathcal{E} has properties \mathbf{Q} and \mathbf{R} below.
Claim 5.7. \mathcal{E} is standard.
Proof. If n is even, then since G is a bipartite graph, L_{0} is an even cycle. Thus, \mathcal{E} is standard.
If G is not a bipartite graph and n is odd, then L_{0} is an odd cycle. Suppose \mathcal{E} is not a standard ear-decomposition of G. Then there are paths L_{i} and L_{j} of $Z_{\mathcal{E}}$ such that $E\left(f_{e}(\mathcal{E}, i)\right) \cap E\left(f_{e}(\mathcal{E}, j)\right)=\emptyset$. Let $D=L_{i} \cup L_{j} \cup\left[L_{0}-I\left(f_{e}(\mathcal{E}, i) \cup f_{e}(\mathcal{E}, j)\right)\right]$.

Then D is 2-connected subgraph of $L_{0} \cup L_{j} \cup L_{i}$. Since $\left(D ; f_{e}(\mathcal{E}, i), f_{e}(\mathcal{E}, j)\right)$ is an eardecomposition of $L_{0} \cup L_{i} \cup L_{j}$ and $f_{e}(\mathcal{E}, i), f_{e}(\mathcal{E}, j)$ are even paths, by Lemma 5.2 (1) and (3) this yields a contradiction. Thus, \mathcal{E} is standard.
If G is a bipartite graph, n is odd and L_{0} is an even θ-graph, then $L_{0} \neq K_{2,3}$. Otherwise L_{0} is a 2-connected subgraph of G with $\operatorname{md}\left(L_{0}\right)=1<\left\lfloor\frac{\left|L_{0}\right|}{2}\right\rfloor$ (by Lemma $1.1(2))$, and by Lemma 5.2 (1) this yields a contradiction. Thus, \mathcal{E} is standard.
If G is a bipartite graph, n is odd and L_{0} is an umbrella, then suppose the rims of L_{0} are W_{1}, \cdots, W_{k}, where $k \geq 3$ and W_{i} is a $v_{i} v_{i+1}$-path for $i \in[k-1]$. Suppose the spokes are R_{1}, \cdots, R_{k}, where R_{i} is a $v v_{i}$-path. Let $C=\bigcup_{i \in[k]} W_{i}$. Since $m d(G)=\left\lfloor\frac{n}{2}\right\rfloor$, by Lemma 5.4, L_{0} is a uniform umbrella, i.e., each W_{i} is an even path and each R_{i} is an odd path. Suppose there is a path L_{i} of $Z_{\mathcal{E}}$ such that $\operatorname{end}\left(L_{i}\right)$ is neither contained in any spoke nor contained in any rim. If $a_{i} \in I\left(R_{j}\right)$ and $b_{i} \in V\left(L_{0}\right)-V\left(R_{j}\right)$, then a_{i} divides R_{j} into two subpaths $R_{j}^{1}=v L_{j} a_{i}$ and $R_{j}^{2}=a_{i} L_{j} v_{j}$. Since $k \geq 3$, w.l.o.g., let $b_{i} \notin I\left(W_{k}\right)$. Then $H_{s}=R_{j}^{s} \cup L_{i} \cup\left(\bigcup_{l \neq k} W_{l}\right) \cup\left(\bigcup_{l \neq j} R_{l}\right)$ is a 2-connected graph for $s \in[2]$. Since L_{j} is an odd path, one of R_{j}^{1} and R_{j}^{2} is an even path, say R_{j}^{1}. Since ($H_{2} ; W_{k}, R_{j}^{1}$) is an ear-decomposition of $L_{0} \cup L_{i}$ and W_{k}, R_{j}^{1} are even paths, by Lemma 5.2 (1) and (3) this yields a contradiction. If $e n d\left(L_{i}\right) \subseteq V(C)$, then since G is a bipartite graph, L_{i} is an odd path and each W_{j} is an even path, we have $\left|\operatorname{end}\left(L_{i}\right) \cap\left\{v_{1}, \cdots, v_{k}\right\}\right| \leq 1$. Therefore, there is a rim W_{j} such that a_{i} divides W_{j} into two odd paths $W_{j}^{1}=v_{j} W_{j} a_{i}$ and $W_{j}^{2}=a_{i} W_{j} v_{j+1}$. (w.l.o.g., suppose $1 \leq j<k$). Since there is no rim containing $\operatorname{end}\left(L_{i}\right)$, we have $b_{i} \notin V\left(W_{j}\right)$. Note that $\operatorname{end}\left(L_{i}\right)$ divides C into two subpaths C^{1} and C^{2} such that $v_{j} \in V\left(C^{1}\right)$ and $v_{j+1} \in V\left(C^{2}\right)$. Since $k \geq 3$, by symmetry, suppose $\left|C^{1} \cap\left\{v_{1}, \cdots, v_{k}\right\}\right| \geq 2$. Then there is an integer $l \in[k]-\{j+1\}$ such that C^{1} contains v_{j} and v_{l}. Then there is an ear-decomposition $\left(C^{\prime} ; P_{1}^{\prime}, P_{2}^{\prime}, \cdots\right)$ of $L_{0} \cup L_{i}$ such that $C^{\prime}=C^{1} \cup L_{i}, P_{1}^{\prime}=R_{j} \cup R_{l}$ and $P_{2}^{\prime}=W_{j}^{2} \cup R_{j+1}$. Since P_{1}^{\prime} and P_{2}^{\prime} are even paths, by Lemma 5.2 (3) this yields a contradiction. Thus \mathcal{E} is standard.

Claim 5.8. \mathcal{E} has property \mathbf{Q}.

Proof. Let $m_{i}\left(n_{i}\right)$ be the minimum integer such that $a_{i} \in V\left(L_{m_{i}}\right)\left(b_{i} \in V\left(L_{n_{i}}\right)\right)$. Since $I\left(L_{0}\right)=V\left(L_{0}\right)$, we have $a_{i} \in I\left(L_{m_{i}}\right)$ and $b_{i} \in I\left(L_{n_{i}}\right)$.
Suppose \mathcal{E} does not have property \mathbf{Q}. Then there are integers $0 \leq j<r \leq t$ such that $a_{r} \in I\left(L_{j}\right)$ and $b_{r} \notin V\left(L_{j}\right)$. Since $b_{r} \in I\left(L_{n_{r}}\right)$, by symmetry, suppose $j>n_{r}$. For convenience, let $n_{r}=i$. Since L_{j} is an odd path, let $a_{j} L_{j} a_{r}$ be an even path. Let $l=\max \left\{m_{j}, n_{j}, n_{r}\right\}$ and $H=L_{j} \cup L_{r} \cup\left(\bigcup_{h=0}^{l} L_{h}\right)$. Then H is a 2-connected graph with an ear-decomposition $\left(L_{0} ; L_{1}, \cdots, L_{l}, a_{r} L_{j} b_{j} \cup L_{r}, a_{j} L_{j} a_{r}\right)$. If L_{0} is an odd cycle, or a uniform umbrella, or an even θ-graph other than $K_{2,3}$, then since $\left|L_{0}\right|$ is odd and $a_{j} L_{j} a_{r}$ is an even path, by Lemma $5.2(1)$ and (3) this yields a contradiction. If L_{0} is an even cycle, then by Lemma 5.2 (1) and (2) this yields a contradiction.

Claim 5.9. \mathcal{E} has property \mathbf{R}.

Proof. If \mathcal{E} does not have property \mathbf{R}, then there are integers r, i, j such that end $\left(L_{j}\right) \cap$ $I(f(\mathcal{E}, r, i)) \neq \emptyset$ and $f(\mathcal{E}, r, j)$ is not a subpath of $f(\mathcal{E}, r, i)$. Since \mathcal{E} has property Q, $f(\mathcal{E}, r, j)$ is a subpath of L_{r}. Then $\operatorname{end}\left(L_{i}\right)$ and $\operatorname{end}\left(L_{j}\right)$ appear alternately on $L=f(\mathcal{E}, r, i) \cup f(\mathcal{E}, r, j)$, say $a_{i}, a_{j}, b_{i}, b_{j}$ are consecutively on L. Here, L is a subpath of the path L_{r} if $r>0 ; L$ is a subpath of either a rim or a spoke of L_{r} if $r=0$ and L_{0} is a uniform umbrella; L is a subpath of a route if $r=0$ and L_{0} is an even θ-graph other than $K_{2,3} ; L$ is a subpath of a cycle L_{r} if $r=0$ and L_{0} is a cycle. Let $W^{1}=a_{i} L a_{j}, W^{2}=a_{j} L b_{i}$ and $W^{3}=b_{i} L b_{j}$. Since $f(\mathcal{E}, r, i)$ and $f(\mathcal{E}, r, j)$ are odd paths, either W^{1}, W^{3} are even paths and W^{2} is an odd path, or W^{2} is an even path and W^{1}, W^{3} are odd paths. Let $H=\left(\bigcup_{l=0}^{r} L_{l}\right) \cup L_{i} \cup L_{j}$.
Suppose W^{1}, W^{3} are even paths and W^{2} is an odd path. Let H^{\prime} be a graph obtained from H by removing W^{1} and W^{3}. Then H^{\prime} is a 2-connected graph. Since ($H^{\prime} ; W^{1}, W^{3}$) is an ear-decomposition of H and W^{1}, W^{3} are even paths, by Lemma 5.2 this yields a contradiction.

Suppose W^{2} is an even path and W^{1}, W^{3} are odd paths. Let H_{i} be a graph obtain from H by removing W^{i} for $i \in[3]$. It is obvious that each H_{i} is a 2 -connected graph. If L_{0} is an even cycle, then $\left(H_{2} ; W^{2}\right)$ is an ear-decomposition of G, and by Lemma 5.2 (1) and (2) this yields a contradiction. If $r=0$ and L_{0} is an odd cycle, then $P=L_{0}-I(L)$ is an even path and $C=H_{2}-I(P)$ is an even cycle. Since ($C ; P, W^{2}$) is an ear-decomposition of H and P, W^{2} are even paths, by Lemma 5.2 (1) and (3) this yields a contradiction. If $r=0$ and L_{0} is an even θ-graph, then suppose T_{1}, T_{2} and T_{3} are routes of L_{0}, and suppose L is a subpath of T_{1}. Then $\left(H_{2}-I\left(T_{2}\right) ; T_{2}, W^{2}\right)$ is an ear-decomposition of H and T_{2}, W^{2} are even paths, a contradiction. If $r=0$ and L_{0} is a uniform umbrella, then there is a rim W of L_{0} such that L is not a subpath of W. Then $\left(H_{2}-I(W) ; W, W^{2}\right)$ is an ear-decomposition of H and W, W^{2} are even paths, a contradiction. If $r>0$ and n is odd, then $\left(L_{0} ; \cdots, W^{2}\right)$ is an ear-decomposition of H. Since $\left|L_{0}\right|$ is odd and W^{2} is an even path, by Lemma 5.2 (1) and (3) this yields a contradiction.

Now for the sufficiency, suppose $\mathcal{E}=\left(L_{0} ; L_{1}, \cdots, L_{t}\right)$ satisfies all conditions of the theorem, i.e., \mathcal{E} is a standard ear-decomposition of G that has properties \mathbf{Q} and \mathbf{R}, L_{i} is an odd path for $i \in[t]$, and $f(\mathcal{E}, j, i)$ is an odd path when $f(\mathcal{E}, j, i) \neq K_{4}$. Recall the definitions of digraph D, set U and integer l_{i} in Lemma 5.5. We choose an integer r from U such that $\left|f\left(\mathcal{E}, l_{r}, r\right)\right|$ is minimum. For convenience, let $l=l_{r}$. Then for each vertex u of $I(f(\mathcal{E}, l, r)) \cup I\left(L_{r}\right)$, we have $d_{G}(u)=2$. The proof proceeds by induction on t. By Lemmas 1.1 (2) and 5.3, the result holds for $t=0$.

If L_{r} is not an edge, then let G^{\prime} be a graph obtained from G by replacing $f(\mathcal{E}, l, r)$ with an edge $f=a_{r} b_{r}$, let $G_{1}^{\prime}=G^{\prime}-I\left(L_{r}\right)$ and $G_{2}^{\prime}=L_{r} \cup f$. Let $L=\left[L_{l}-I(f(\mathcal{E}, l, r))-\right.$ $E(f(\mathcal{E}, l, r))] \cup f$. Let \mathcal{E}^{\prime} be an ear-decomposition of G_{1}^{\prime} obtained from \mathcal{E} by removing L_{r}, and then replacing L_{l} with L. If $l>0$, then since $f(\mathcal{E}, l, r)$ is an odd path, L is
an odd path and \mathcal{E}^{\prime} satisfies all the conditions. If $l=0$ and L_{l} is a uniform umbrella (an odd cycle or an even cycle), then L is also a uniform umbrella (an odd cycle, an even cycle), i.e., \mathcal{E}^{\prime} satisfies all the conditions in this case. If $l=0$ and L_{l} is an even θ-graph, then \mathcal{E}^{\prime} satisfies all the conditions except for $L=K_{2,3}$. Thus, \mathcal{E}^{\prime} satisfies all the conditions unless $L=K_{2,3}$.
If $L \neq K_{2,3}$, then \mathcal{E}^{\prime} satisfies all the conditions. Since the number of paths in \mathcal{E}^{\prime} is $t-1$, by the induction hypothesis we have $m d\left(G_{1}^{\prime}\right)=\left\lfloor\frac{\left|G_{1}^{\prime}\right|}{2}\right\rfloor$. Since G_{2}^{\prime} is an even cycle, we have $m d\left(G_{2}^{\prime}\right)=\frac{\left|G_{2}^{\prime}\right|}{2}$. Thus, by Lemma 2.1, $m d\left(G^{\prime}\right)=m d\left(G_{1}^{\prime}\right)+m d\left(G_{2}^{\prime}\right)-1=\left\lfloor\frac{\left|G^{\prime}\right|}{2}\right\rfloor$. Since G is a graph obtained from G^{\prime} by replacing f with the odd path $f(\mathcal{E}, l, r)$, by Lemma 2.2 we have $m d(G) \geq m d\left(G^{\prime}\right)+\left\lfloor\frac{\lfloor f(\mathcal{E}, l, r) \|-1}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor$. Therefore, $\operatorname{md}(G)=\left\lfloor\frac{n}{2}\right\rfloor$.

If $L=K_{2,3}$, then $l=0$ and $r=1$. Since $r \in U, d_{r}$ is maximum and $d_{r}=1$ (the definition d_{r} is in the proof of Lemma 5.5). Thus, $L_{i} \in Z_{\mathcal{E}}$ for each $i \in[t]$. Let T_{1}, T_{2} and T_{3} be routes of L_{0} with $\left|T_{1}\right| \leq\left|T_{2}\right| \leq\left|T_{3}\right|$. Then T_{1} and T_{2} are 2paths and $f(\mathcal{E}, 0, r)$ is a subpath of T_{3} with $|f(\mathcal{E}, 0, r)|=\left|T_{3}\right|-1$. Since $L_{0} \neq K_{2,3}$, we have $|f(\mathcal{E}, 0, r)|=\left|T_{3}\right|-1 \geq 4$. For each L_{i}, if $\operatorname{end}\left(L_{i}\right) \cap I\left(T_{j}\right) \neq \emptyset$ for $j \in$ [2], then $|f(\mathcal{E}, 0, i)|=2<|f(\mathcal{E}, l, r)|$, a contradiction; if $\operatorname{end}\left(L_{i}\right)=\operatorname{end}\left(T_{3}\right)$, then $f(\mathcal{E}, 0, i)$ is an even path, a contradiction. Thus, $f(\mathcal{E}, 0, i)$ is a proper subpath of T_{3} and $|f(\mathcal{E}, 0, i)|=|f(\mathcal{E}, 0, r)|$ for each $i \in[t]$. If $\operatorname{end}\left(L_{i}\right) \neq \operatorname{end}\left(L_{r}\right)$ for $i, j \in[t]$, then $\operatorname{end}\left(L_{i}\right) \cap I(f(\mathcal{E}, 0, r)) \neq \emptyset$ and $f(\mathcal{E}, 0, i)$ is not a proper subpath of $f(\mathcal{E}, 0, r)$, i.e., \mathcal{E} does not have property \mathbf{R}, a contradiction. Therefore, $\operatorname{end}\left(L_{i}\right)=\operatorname{end}\left(L_{j}\right)$ for each $i, j \in[t]$. Let $H=T_{2} \cup T_{3} \cup\left(\bigcup_{i \in[t]} L_{i}\right)$. Then H is a graph constructed in Remark 1. Thus, $m d(H)=\frac{|H|}{2}$. Suppose Γ is an extremal $M D$-coloring of H (see Remark 1). Let $T_{1}=u e_{1} a e_{2} v$ and $T_{2}=u f_{1} b f_{2} v$. Since $G=H \cup T_{1}$, let Γ^{\prime} be an edge-coloring of G such that $\Gamma(e)=\Gamma^{\prime}(e)$ for each $e \in E(H)$, and $\Gamma\left(e_{1}\right)=\Gamma^{\prime}\left(f_{2}\right)$ and $\Gamma\left(e_{2}\right)=\Gamma^{\prime}\left(f_{1}\right)$. Then Γ^{\prime} is an $M D$-coloring of G with $\left\lfloor\frac{n}{2}\right\rfloor$ colors, i.e., $\operatorname{md}(G)=\left\lfloor\frac{n}{2}\right\rfloor$.
If L_{r} is an edge, then replace L_{l} by $L_{l} \cup L_{r}-I(f(\mathcal{E}, l, r))$ and replace L_{r} by $f(\mathcal{E}, l, r)$. Then the new ear-decomposition also satisfies all the conditions. Moreover, d_{r} is maximum and $\left|f\left(\mathcal{E}, l_{r}, r\right)\right|=2$ is minimum in the new ear-decomposition. Since L_{r} is not an edge in the new ear-decomposition, this case has been discussed above.

Remark 3. Recalling the proof of Lemma 5.1, we can find a normal ear-decomposition for a given 2-connected graph in polynomial time. For a normal ear-decomposition \mathcal{E} of G, deciding whether \mathcal{E} satisfies all the conditions of Theorem 5.6 can be done in polynomial time. Thus, given a 2-connected graph G, deciding whether $\operatorname{md}(G)=\left\lfloor\frac{n}{2}\right\rfloor$ is polynomially solvable.
Corollary 5.10. If G is a 2-connected graph with $\operatorname{md}(G)=\left\lfloor\frac{|G|}{2}\right\rfloor$, then G is a planar graph.

Proof. By Theorem 5.6, there is a standard ear-decomposition $\mathcal{E}=\left\{L_{0} ; L_{1}, \cdots, L_{t}\right\}$ of G that has properties \mathbf{Q} and \mathbf{R}. Since G is a planar graph if G is a cycle, an umbrella
or a θ-graph, the result holds for $t=0$. Our proof proceeds by induction on t. Suppose $t>0$. By Lemma 5.5, there are integers k, i such that $f(\mathcal{E}, k, i)$ is a path of order at least two, and $d_{G}(u)=2$ for each $u \in I(f(\mathcal{E}, k, i)) \cup I\left(L_{i}\right)$. Let G^{\prime} be a graph obtained from G by removing L_{i}. By Lemma $5.2(1), \operatorname{md}\left(G^{\prime}\right)=\left\lfloor\frac{\left|G^{\prime}\right|}{2}\right\rfloor$. By the induction hypothesis, G^{\prime} is a planar graph. Since $d_{G}(u)=2$ for each $u \in I(f(\mathcal{E}, k, i))$, there is a face F of G^{\prime} such that $f(\mathcal{E}, k, i)$ is a subpath of F. Therefore, L_{i} can be embedded in F and G is a planar graph.

Acknowledgement. The authors are very grateful to the reviewers for their very useful suggestions and comments, which helped to improving the presentation of the paper.

Declaration of interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

[1] X. Bai, Y. Chen, M. Ji, X. Li, Y. Weng, W. Wu, Proper disconnection of graphs, Bull. Malays. Math. Sci. Soc., in press. https://doi.org/10.1007/s40840-020-010695.
[2] X. Bai, X. Li, Graph colorings under global structural conditions, arXiv:2008.07163 [math.CO].
[3] J. Bang-Jensen, T. Ballitto, A. Yeo, Proper-walk connection number of graphs, J. Graph Theory 96(1) (2021), 137-159.
[4] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[5] V. Borozan, S. Fujita, A. Gerek, C. Magnant, Y. Manoussakis, L. Montero, Zs. Tuza, Proper connection of graphs, Discrete Math. 312(17) (2012), 2550-2560.
[6] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311 (2011), 1786-1792.
[7] G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi, P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38(4) (2018), 1007-1021.
[8] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133 (2008), 85-98.
[9] Y. Chen, P. Li, X. Li, Y. Weng, Complexity results for the proper disconnection of graphs, Proceedings of 14 th International Frontiers of Algorithmics Workshop (FAW 2020), LNCS No.12340, 1-12.
[10] P. Dankelmann, S. Mukwembi, H.C. Swart, Average distance and vertexconnectivity, J. Graph Theory 62(2) (2010), 157-177.
[11] O. Favaron, M. Kouider, M. Mahéo, Edge-vulnerability and mean distance, Networks 19 (1989), 493-504.
[12] P. Li, X. Li, Monochromatic disconnection of graphs, Discrete Appl. Math. 288 (2021), 171-179.
[13] P. Li, X. Li, Monochromatic disconnection: Erdős-Gallai-type problems and product graphs, arXiv:1904.08583 [math.CO].
[14] J. Plesník, On the sum of all distances in a graph or digraph, J. Graph Theory 8 (1984), 1-24.

[^0]: ${ }^{1}$ Supported by NSFC No. 11871034 .

