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Abstract

For an edge-colored graph G, we call an edge-cut M of G monochromat-
ic if the edges of M are colored with the same color. The graph G is called
monochromatic disconnected if any two distinct vertices of G are separated by
a monochromatic edge-cut. For a connected graph G, the monochromatic dis-
connection number (or M D-number for short) of G, denoted by md(G), is the
maximum number of colors that are allowed in order to make G monochromatic
disconnected. For graphs with diameter one, they are complete graphs and so
their M D-numbers are 1. For graphs with diameter at least 3, we can construct
2-connected graphs such that their M D-numbers can be arbitrarily large; where-
as for graphs G with diameter two, we show that if G is a 2-connected graph
then md(G) < 2, and if G has a cut-vertex then md(G) is equal to the number
of blocks of G. So, we will focus on studying 2-connected graphs with diame-
ter two, and give two upper bounds of their M D-numbers depending on their
connectivity and independent numbers, respectively. We also characterize the
L%J-Connected graphs (with large connectivity) whose M D-numbers are 2 and
the 2-connected graphs (with small connectivity) whose M D-numbers achieve
the upper bound L%J (these graphs are called extremal graphs). For graphs with

n

connectivity less than 5, we show that if the connectivity of a graph is linear

in its order n, then its M D-number is upper bounded by a constant, and this
n

suggests us to leave a conjecture that for a k-connected graph G, md(G) < LEJ
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1 Introduction

Let G be a graph and let V(G), E(G) denote the vertex-set and the edge-set of G,
respectively. We use |G| and ||G|| to denote the number of vertices and the number
of edges of GG, respectively, and call them the order and the size of GG. If there is no
confusion, we also use n and m to denote |G| and ||G||, respectively, throughout this
paper. Let S and F' be a vertex subset and an edge subset of G, respectively. Then
G — S is the graph obtained from G by deleting the vertices of S together with the
edges incident with vertices of S, and G — F is the graph whose vertex-set is V(G) and
edge-set is F(G) — F. Let G[S] and G[F] be the subgraphs of G induced, respectively,
by S and F'. We use [r] to denote the set {1,2,--- 7} of positive integers. If r = 0,
then set [r] = (). For all other terminology and notation not defined here we follow
Bondy and Murty [4].

For a graph G, let I' : E(G) — [r] be an edge-coloring of G that allows a same color
to be assigned to adjacent edges. For an edge e of G, we use I'(e) to denote the color of
e. If H is a subgraph of G, we also use I'(H) to denote the set of colors on the edges of
H and use |I'(H)| to denote the number of colors in I'(H). For an edge-colored graph
G and a vertex v of G, the color-degree of v, denoted by d°(v), is the number of colors
appearing on the edges incident with v.

The three main colored connection colorings: rainbow connection coloring [8], proper
connection coloring [5] and proper-walk connection coloring [3], monochromatic con-
nection coloring [6], have been well-studied in recent years. As a counterpart concept of
the rainbow connection coloring, rainbow disconnection coloring was introduced in [7]
by Chartrand et al. in 2018. Subsequently, the concepts of monochromatic disconnec-
tion coloring and proper disconnection coloring were also introduced in [12] and [1, 9].
We refer to [2] for the philosophy of studying these so-called global graph colorings.
More details on the monochromatic disconnection coloring can be found in [13]. We
will further study this coloring in this paper and get some deeper and stronger results.

For an edge-colored graph G, we call an edge-cut M a monochromatic edge-cut if the
edges of M are colored with the same color. If there is a monochromatic uv-cut with
color i, then we say that color i separates u and v. We use Cr(u,v) to denote the set
of colors in I'(G) that separate u and v, and let cp(u,v) = |Cr(u, v)].

An edge-coloring of a graph is called a monochromatic disconnection coloring (or
M D-coloring for short) if each pair of distinct vertices of the graph has a monochro-
matic edge-cut separating them, and the graph is called monochromatic disconnected.
For a connected graph G, the monochromatic disconnection number (or M D-number
for short) of G, denoted by md(G), is defined as the mazimum number of colors that are
allowed in order to make G monochromatic disconnected. An extremal M D-coloring
of G is an M D-coloring that uses md(G) colors. If H is a subgraph of G and I' is an
edge-coloring of GG, we call I' an edge-coloring restricted on H.



The following terminology and notation are needed in the sequel. Let G and H be
two graphs. The union of G and H is the graph G U H with vertex-set V(G) UV (H)
and edge-set E(G)U E(H). The intersect of G and H is the graph G N H with vertex-
set V(G) NV (H) and edge-set E(G) N E(H). The Cartesian product of G and H is
the graph GOH with V(GOH) = {(u,v) : u € V(G),v € V(H)}, (u,v) and (z,y) are
adjacent in GOH if either ux is an edge of G and v = y, or vy is an edge of H and
uw = x. If G and H are vertex-disjoint, then let G V H denote the join of G and H
which is obtained from G and H by adding an edge between every vertex of G and
every vertex of H.

For a graph G, a pendent vertex of GG is a vertex with degree one. The ends of G is
the set of pendent vertices, and the internal vertex set of G is the set of vertices with
degree at least two. We use end(G) and I(G) to denote the ends of G and the internal
vertex set of G, respectively. The independent number of G, denoted by a(G), is the
order of a maximum independent set of GG. For two vertices u, v of G, we use N(u) to
denote the neighborhood of u in G, and N (u,v) to denote the set of common neighbors
of w and v in G. The distance between v and v in G is denoted by d(u,v), and the
diameter of G is denoted by diam(G). We call a cycle C (path P) a t-cycle (t-path)
if |C| =1t (||P|| =t). If t is even (odd), then we call the path an even (odd) path and
the cycle an even (odd) cycle. A 3-cycle is also called a triangle. A matching-cut of G
is an edge-cut of GG, which also forms a matching in G.

In [12, 13] we got the following results, which are restated for our later use.

Lemma 1.1. [12/

1. If a connected graph G has r blocks By, - -+, B,, then md(G) = 3_,c(,; md(B;) and
md(G) =n — 1 if and only if G is a tree.

2. md(G) = L%J if G is a cycle, and md(G) = 1 if G is a complete multipartite
graph and G is not a star.

3. If H 1is a connected spanning subgraph of G, then md(H) > md(G). Thus,
md(G) <n—1.

4. If G is connected, then md(vV G) = 1.

5. If v is neither a cut-vertex nor a pendent vertex of G and I' is an extremal M D-
coloring of G, then T'(G) C I'(G —v), and thus, md(G) < md(G — v).
Theorem 1.2. [12] If G is a 2-connected graph, then md(G) < |2].

Theorem 1.3. [13] If Gy and G5 are connected graphs, then md(G10Gs) = md(G;) +

Lemma 1.4. [13] If G has a matching-cut, then md(G) > 2.
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We will list some easy observations in the following, which will be used many times
throughout this paper. Suppose I' is an M D-coloring of GG. If H is a subgraph of G,
then I' is an M D-coloring restricted on H. Every triangle of G is monochromatic. If
G is a 4-cycle, then its opposite edges have the same color. If G is a 5-cycle, then there
are two adjacent edges having the same color.

Let V be a set of vertices and let £ C 2. Then a hypergraph H = (V,€) is a
linear hypergraph if |E;| > 2 and |E; N E;| < 1 for any E;, E; € £. The size of H is
the number of hyperedges in H. A hyperedge-coloring of H assigns each hyperedge a
positive integer. A linear hypergraph H (say the size of H is k) is a linear hypercycle
if there is a sequence of hyperedges of H, say Fi,---, E, and there exist k distinct
vertices vy, - - - , v of H, such that £y N Ey, = {v;} and E; N E;q = {v;} for i € [k —1].
If we delete a hyperedge from a linear hypercycle and then delete the vertices only
in this hyperedge, then we call the resulting hypergraph a linear hyperpath. A linear
hypercycle (linear hyperpath) is called a linear hyper k-cycle (linear hyper k-path) if
the size of this linear hypercycle (linear hyperpath) is k.

2 Preliminaries

We need some more preparations before proceeding to our main results.

Lemma 2.1. For two connected graphs Gy and Ga, if md(G; N Gs) =1 then md(G, U

Proof. Let G = G1UG, and I be an extremal M D-coloring of G. Then [I'(G;NG2)| =1
and I" is an M D-coloring restricted on G (and also Gs). So, md(G,UG,) = |T'(Gy)|+
IT(G2)|— T'(G1NGy)| < md(Gy)+md(G2) —1. On the other hand, since E(G1NG2) is
monochromatic under any M D-coloring of G1 UG5, let I'; be an M D-coloring of G; for
i € [2] such that ['1(G1NG3) = T'a(G1NG2) = I'(G1)NI'(Gse). Let IV be an edge-coloring
of G; U Gy such that I'(e) = I['(e) if e € E(G;), and let w be a vertex of G5 N Gs.
Then for any two vertices u, v of G1 UGy, if u,v € V(G;), then Cr,(u,v) C Cp/(u,v); if
u € V(G)—V(Gy) and v € V(Gq) — V(G1), then (Cr, (u, w) UCr,(v,w)) C Cr(u,v).
So, I is an M D-coloring of G, i.e., md(G1UGs) > [I'(G1UG3)| = md(G1)+md(Gy)—1.
Therefore, md(Gy U G2) = md(G;) + md(Gs) — 1. ]

Lemma 2.2. Let G be a connected graph and let G' be a graph obtained from G by
replacing an edge e = ab with a path P. Then md(G') > md(G) + L%J

Proof. Let I' be an extremal M D-coloring of G. Let ||P|| =t and let P = aejcy - - - e;b.
Let I'" be an edge-coloring of G’ such that I'(f) = I'(f) when f € E(G) —e, I'(e;) =
I'(erp1-i) = |T(G)| + i for i € [|5]], T(e) = I["(ez1) when ¢ is odd, and I'(e) =
F'(e%) = F’(e%H) when ¢ is even. It is easy to verify that I is an M D-coloring of G'.

Thus, md(G") > md(G) + “P'%J i



Lemma 2.3. Suppose u,v are nonadjacent vertices of G and I' is an extremal M D-
coloring of G. Let Cr(u,v) = {t} and e an extra edge, and let I be an edge-coloring
of G U e that is obtained from I' by coloring the added edge e with color t. Then I is
an M D-coloring of GU e and md(G) = md(G Ue).

Proof. Let H; be the graph obtained from G by deleting all the edges with color i. Let
G'=GUe. If I is not an M D-coloring of G’, then there are two vertices x,y of G’
such that Cr (z,y) = 0. If t € Cr(z,y), since z, y are in different components of H;, we
have t € Cp/(x,y), a contradiction. If ¢t ¢ Cr(x,y), then let 7 € Cr(z,y). Then there
are two components Dy, Dy of H; such that x € V(D;) and y € V(D,). Since j does
not separate z,y in G', the edge e connects Dy and Do, say u € V(D;) and v € V(D).
Thus, the color j separates u, v in G, which contradicts that Cr(u,v) = {t}. Therefore,
[ is an M D-coloring of G’. Since |I"(G")| = |I'(G)| and T is an extremal M D-coloring
of G, we have md(G’) > md(G). Since G is a connected spanning subgraph of G', by
Lemma 1.1 (3) we have md(G) > md(G"). So, md(G) = md(G"). |

Suppose I' is an M D-coloring of G and G; is the subgraph of G induced by the set
of edges with color ¢, which, in what follows, is called the color ¢ induced subgraph
of G. Then for any component D; of G; and any component Dy of (Gj, we have
|V(D1) NV(Dy)| < 1; otherwise, suppose u,v € V(Dy) N V(D3). Then Cr(u,v) = 0,
a contradiction. We use Hr to denote a hyperedge-colored hypergraph with vertex-set
V(G) and hyperedge-set {V (D) | D is a component of some G;}, and the hyperedge
F has color i if F' corresponds to a component of G;. Let Hr be a graph with V (Hy) =
V(G) and

E(Hr) = {uv | u,v are in the same component of some G,}.

Then each hyperedge of Hr corresponds to a clique of Hr, and any two hyperedges of
Hr (any two cliques of Hr) share at most one vertex. Thus, Hr is a linear hypergraph.
If F'is a hyperedge of Hr and u,v € F, then cp(u,v) = 1. According to Lemma 2.3,
we have the following result.

Lemma 2.4. IfT" is an extremal M D-coloring of G, then md(G) = md(Hry).

Suppose I' is an M D-coloring of G and C is a hyper k-cycle of Hr. Then there is a
k-cycle C of Hr such that any adjacent edges of C' have different colors. Thus, t # 3, 5.
Moreover, if k = 4, then the opposite hyperedges of C have the same color.

3 Graphs with diameter two

In this section, we show that md(G) < 2 for a 2-connected graph G if diam(G) < 2.
However, for any integer d > 3, we can construct a 2-connected graph G such that



diam(G) = d and md(G) can be arbitrarily large. Thus, it makes sense to focus on
studying the graphs with diameter two, since graphs with diameter 1 are complete
graphs and their M D-numbers are 1.

Theorem 3.1. Suppose G is a graph with diam(G) = 2. Then

1. if G has a cut-vertex, then md(QG) is equal to the number of blocks of G;
2. if G is a 2-connected graph, then md(G) < 2;

3. if any two nonadjacent vertices of G has at least two common neighbors, then
md(G) < 2, and the equality holds if and only if G = K,;OK;, where s,t > 2.

Proof. The proof of statement (1) goes as follows. If v is a cut-vertex of G and
diam(G) = 2, then v connects every vertex of V(G — v). Thus, for each block D
of G, D — v is connected and D = (D —v) Vv, i.e., md(D) = 1. Therefore, md(G) is
equal to the number of blocks of G.

Next, for the proof of statement (2) suppose I' is an M D-coloring of G with [['(G)| >
3. Then each hypercycle (hyperpath) of the above mentioned hypergraph Hr is a linear
hypercycle (linear hyperedge). We now prove that there is a rainbow hyper 3-path (the
colors of the three hyperedges are pairwise differently) in Hr. Since Hr does not have
hyper 3-cycle, the union of three consecutive hyperedges forms a hyper 3-path. If every
vertex z of G has d°(z) < 2, then there is a rainbow hyper 3-path in Hr. If there is
a vertex x of G with d°(z) > 3, then there are three hyperedges, say D, Dy and Ds,
such that x is the common vertex of them. Then the colors of D, Dy and D53 are
pairwise differently. Since G is a 2-connected graph, there is a vertex w of V(D) —{z}
with d°(w) > 2 (otherwise, x is a cut-vertex of GG, a contradiction). Then there is
a hyperedge F' of Hr, such that w is a common vertex of F' and D;. Thus, either
FUD,UD;or FU D, U D3 is a rainbow hyper 3-path.

Let P be a rainbow hyper 3-path of Hr and let V/(D;) N V(D;11) = {u;} for i € [2].
Let u € V(D) —{u1} and v € V(D3) — {us}. We use P,, to denote a minimum
hyperpath connecting v and v. Since diam(G) = 2, the size of P,, is either one or
two. Let C =P, ,UP. If P,, is a hyperedge, then C is a hyper 4-cycle. Since D; and
D3 are opposite hyperedges of C and they have different colors, a contradiction. If P,
is a hyper 2-path, then let F, F, be hyperedges of P, ,, and let V(Fy) NV (Fy) = {us}.
If ug ¢ {uy,us}, then C is a hyper 5-cycle, a contradiction. If ug € {uj,us}, then C
contains a hyper 3-cycle, a contradiction.

Finally, we show statement (3). It is obvious that diam(G) < 2, and G is a 2-
connected graph when n > 3. So, md(G) < 2. Suppose G = K,O0K; and s,t > 2.
Then |N(u,v)| = 2 for any nonadjacent vertices u and v of G. By Lemma 1.1 (2) and
Theorem 1.3, we have md(G) = md(K,) + md(K;) = 2.



Suppose md(G) = 2. Then n > 3 and G is a 2-connected graph. Let I' be an
extremal M D-coloring of G and let G, Gy be the induced subgraphs of GG colored
by the colors 1 and 2, respectively. Since md(G) = 2, we have d°(v) < 2 for each
v € V(G). If d°(v) = 1, by symmetry, suppose v is in a component D of G;. Since
md(G) = 2, we have D # G, i.e., there exists a vertex u in V(G) — V(D). Then u,v
are nonadjacent and N(u,v) C D. Let {a,b} C N(u,v). Since I'(va) = T'(vd) = 1,
we have va U vbU ua U ub is a monochromatic 4-cycle, i.e., u € V(D), a contradiction.
Thus, d°(v) = 2 for each v € V(G). We use D! and D? to denote the components of
G, and G, respectively, such that V(D!) NV (D?) = w.

Suppose there are t components of GG; and s components of GG,. Since G is a 2-
connected graph, we have s, > 2. Otherwise, if s = 1, then for each vertex v of Gy, v
is a cut-vertex, a contradiction. We label the ¢ components of (G; by the numbers in
[t] and label the s components of Gy by the numbers in [s], respectively. We use {4(D)
to denote the label of a component D of Gy, and use [5(F') to denote the label of a
component F of Gy. For a vertex u of G, since d°(u) = 2, we use (I;(D}),15(D?)) to
denote u. For two vertices u,v of G, let u = (4, ) and let v = (s,t). In order to show
G = K,OK,;, we need to show that uv is an edge of G when i = s and j # ¢, ori # s
and j = t, and u, v are nonadjacent vertices when ¢ # s and j # t. If i # s and j # ¢,
then v ¢ V(D! U D?). Since N(u) C V(D} U D?), u,v are nonadjacent vertices of G.
If, by symmetry, i = s and j # t, then DL = D}. Let ' € V(D?) — {u}. Then v/, v
are nonadjacent. Since N(v) C V(D! U D?) and N(u') C V(D}, U D?,), we have

2 <|N(v,u)| < |V(DyuD;)NV(D,, UD.)| =|DyND.| +|D, NnDj| <2.
Thus, D} N D? C N(v,u'). Since D} N D% = {u}, we have uv is an edge of G. i

Remark 1. Suppose G = ¢,y Li, where Ly, - -+, L, are r (> 2) internal disjoint odd
paths with an order 2k; + 2 for each i € [r], and they have the same ends {u,v}. Let
Li = ueiaiehay - - - ahy ey v Let co = 1 and ¢; = Xi_ok;. If k; > 1 fori € [r], then
let T be an edge-coloring of G such that T'(e}) = T'(eby 1o ;) = ¢i14J and T(eg, ) =1
for each i € [r] and j € [k;]. Then T is an M D-coloring of G with |I'(G)| = @ Since
G is a 2-connected graph, we have md(G) = @ If k; = 1 for each i € [r], then G
is a 2-connected graph with diam(G) = 3 and md(G) = r + 1. Therefore, there exist
2-connected graphs with diameter three, but their M D-numbers can be arbitrarily large.

Let A, be a graph with V(4,) = {vy,--- ’Ufﬂ} U {uq,--- ,ULQJ} and E(A,) =

{vw; 1i,5 € [[2]1}U{wu; : 0,5 € [|2]]} Uf{viw i € [[2]]}. Then {viu, :i € [[2]]} is
a matching-cut of G. If n is an odd integer, then let

A, ={A, — E | E is either an emptyset or a matching of A,[{vy,---  Uno H}

In the following theorem, we characterize extremal [gj -connected graphs, i.e., the
ng—connected graphs with M D-number two.
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Theorem 3.2. Suppose G is a L%J -connected graph and n > 4. Then md(G) < 2 and

1. if n is even, then md(G) = 2 if and only if G = A,;
2. if n is odd, then md(G) = 2 if and only if G € A,.

Proof. Since |N(x)| + |N(y)] > n — 1 for any two nonadjacent vertices x and y, we
have diam(G) < 2. So, md(G) < 2.

It is obvious that G is a L%J—connected graph if G = A, or G € A,,. Moreover, by
Lemma 1.4 and Theorem 3.1, we have md(G) = 2.

Now suppose G is a L%J—connec’ced graph and md(G) = 2. Since n > 4, G is a

2-connected graph. We distinguish the following cases for our proof.
Case 1. n is even.

For any two nonadjacent vertices u,v of G, |[N(u) N N(v)| > 2. By Theorem 3.1 (3),
G = K,OK;, where s,t > 2. We need to prove that at least one of s,t equals two.
Suppose Hy, Hy are two cliques of order s, ¢, respectively, and V(Hy) NV (Hy) = {u}.
Then N(u) C V(HUH,),ie., s+t—22> 7. Since n = st, we have t(s —2) < 2(s —2).
Thus, either s =2 or t = 2.

Case 2. n is odd.

Say n = 2k + 1 for some integer k. Suppose I' is an extremal M D-coloring of G and
(G4, G, are the colors 1, 2 induced subgraphs, respectively.

Subcase 2.1 Every vertex v of G has d°(v) = 2.

Suppose there are components D, F' of G, G, respectively, such that V/(D)NV (F) =
(). Then let u € V(D) and v € V(F). Since d°(u) = d°(v) = 2, there are components
D" of Gy and F' of Gy, such that V(D) NV (F') = {u} and V(F) N V(D') = {v}.
Since V(D) U V(F') — {u} and V(D') U V(F) — {v} are vertex-cuts of GG, we have
\V(D)UV(F)| > k+1and |V(D')UV(F) > k+ 1. Since |V(D')NV(F')| <1,
we have n > |[V(D)UV(F")| + |[V(D)UV(E)| — |[V(D)NV(F')| > 2k+1=n,ie.,
DUD'UFUF' = @G. Then u is a cut-vertex of GG, a contradiction. Therefore, for each
component D of G and each component F' of Go, we have |V(G) NV (F)| = 1. Then
since d°(v) = 2 for each v € V(G), any two components of G; (and also G3) have the
same order, say s (the order is t). Then s,t > 2; otherwise, suppose s = 2, i.e., Gy
is a matching. Since n is odd, we have V(G) — V(G1) # 0. Thus, each vertex v of
V(G) — V(G4) has d°(v) = 1, a contradiction. For a vertex x of G, let Dy, Dy be the
components of G, G, respectively, containing . Then D; U Dy — {x} is a vertex-cut
of G,ie., s+t—22>k. However, 2k +1 =n = st and s,t > 3, a contradiction.

Subcase 2.2 There is a vertex v of G with d°(v) = 1.

Suppose D is the component of Gy containing v. Then since D — {v} is a vertex cut
of G, we have |D| > k + 1. Since the set of vertices of D with color-degree two is a
vertex-cut of G, there are at least k vertices of D, say vy, - -+ , vy, such that d°(v;) = 2 for
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i € [k]. Let F; be the component of G5 containing v; and let U = ;¢ (V(Fi) — {vi}).
Then |U| > k. Since n > |D|+ |U| > 2k + 1 = n, we have |D| = k+ 1, |U| = k,
and |F;| = 2 for ¢ € [k]. Moreover, N(v) = {vy, -+ ,vr}. Let V(F;) — {v;} = {w}.
For i,j € [k], if u;u; is not an edge of G, then U — {u;,u;} + v; is a vertex-cut of G
with order k£ — 1, which contradicts that G is k-connected. For each v;, if there are two
vertices vj, v; such that v;v; and v;v; are not edges of G, then V(D) — {v;, v;, v} +u; is
a vertex-cut of G with order k — 1, which contradicts that GG is k-connected. Therefore,
v; connects all but at most one vertex of D —v. So, G € A,,. |

4 Upper bounds

In this section, we give two upper bounds of the monochromatic disconnection num-
ber of a graph G, one of which depends on the connectivity of GG, and the other depends
on the independent number of G. Note that for a k-connected graph G, when k£ = 2
(small) and k& > [ %] (large), from Theorems 1.2 and 3.2 we know that md(G) < |2].
This suggests us to make the following conjecture.

Conjecture 4.1. Suppose G is a k-connected graph. Then md(G) < L%J

Suppose P is a k-path. Then md(K,O0P) = md(K,) + md(P) = k + 1. Since
n = |K,O0P| = r(k+ 1) and K,OP is an r-connected graph, the bound is sharp for
k > 2 if the conjecture is true.

The mean distance of a connected graph G is defined as u(G) = (5) _IEWeV(G)d(u, v).
Plesnik in [14] posed the problem of finding sharp upper bounds on u(G) for k-
connected graphs. Favaron et al. in [11] proved that if G is a k-connected graph

of order n, then

n—i—k—lJ 'n—l—gL"T_lJ

ue) < |5 , )

n—1
and the bound is sharp when n is even. If n is odd and k£ > 3, then Dankelmann et
al. in [10] proved that x(G) < 525 + 30 and this bound is, apart from an additive
constant, best possible.

The following result gives a relationship between the monochromatic disconnection
number and the connectivity of a graph, which means that if the connectivity of a graph
is linear in the order of the graph, then the monochromatic disconnection number of
the graph is upper bounded by a constant.

Theorem 4.2. For any 0 < ¢ < 3, there is a constant C' = C(e) < 422?—16225)7 such that
for any en-connected graph G, md(G) < C.



Proof. Suppose I is an extremal M D-coloring of G and V(G) = {vy,--- ,v,}. We use
(i,7) to denote an unordered integer pair in this proof. For each color i of I'(G), let

Si ={(J,1) : the color i separates v; and v;}.
Then Eicr|Si| = Xjucr(vj, ).
Claim 4.3. |S;| > k(n — k) for each i € T'(G).

Proof. Let en = k. The result holds obviously for k = 1. Thus, let £k > 2. For each
i € I'(G), let G; be the color ¢ induced subgraph of G, and let H; be the graph obtained
from G by deleting all the edges with color ¢. Then H; is a disconnected graph. Suppose
there is a component D of H; with |D| > n — k. Let U = {v; | v; € V(D) NV (G;)}.
For a component B of G;, if V(B) N V(D) # 0, then |V(B)NV(D)| = 1. Since B
contains at least one vertex of V(G — D), we have |U| < |[V(G — D)| < k. Since
|D| >n—k=n(l—¢)>en=k, U is a proper subset of V(D). So, U is a vertex-cut
of G. Since |U| < k and G is k-connected, this yields a contradiction. Thus, for each
i € I'(G), there is no component of H; with order greater than n — k.

We partition the components of H; into r parts such that r is minimum and the
number of vertices in each part is at most n — k. Suppose the r parts have ny,--- ,n,
vertices, respectively. Then
n — k for each [, j € [r]. Thus,

nr=1)=0r-1Y n=3Y (n+n)> <£)(n—k),

te(r] l,j€lr]

jep] T = 1 If r > 4, then since r is minimum, n; +n; >

and then r(n — k) < 2n. Since k < 7, this yields a contradiction. Therefore, r is equal
to 2 or 3. If r = 2, then |S;| > ny-ng > k(n—Ek). If r = 3, then there is an n; such that
k <n; <n-—k,sayl=1. Otherwise, n; < k for each j € [3], then n = zje[iﬂ nj <n,
a contradiction. Thus, |S;| > ny - (n2 + n3) > k(n — k). i

By the inequality (1) above, we have

WG < VJFZ_lJ _n—ln—_glL”le _ VﬁLZ_lJ . (1_2<n1<;_ ; V;lb

(") [ ()]

n+k—1 n+k—1 _ (n + k)*
k 2(n—1)  2k(n—1)
Since Y7, . d(vi,v;) = p(G) - (5), we have Y, - d(vi,v;) < (”Z]Z)Q". It is obvious that
d(vi,v;) > er(v;,v;) for any two vertices v;, v; of G. Thus,
md(G) < Yier|Si| _ ZH cr(vi, v)) < Z” d(u,v) _ (n+k)°n _ (1+¢)? '
k(n —k) k(n —k) k(n — k) 4k%2(n — k)  4e?(1 —¢)

The proof is thus complete. |
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Remark 2. Since ¢ < 1, we have 4(2?—152; < (2)?/2e® = . This means that when the
connectivity of a graph increases, its M D-number could decrease, and the upper bound

15 4 when € is getting to %

The following result gives a relationship between the monochromatic disconnection
number and the independent number of a graph.

Theorem 4.4. If G is a 2-connected graph, then md(G) < a(G). The bound is sharp.

Proof. Let P be a path and let ¢ > 2 be an integer. Since o(K,0P) = |P| =
md(K,;OP), the bound is sharp if the result holds.

The proof proceeds by induction on the order n of a graph G. If n < 2a(G), then
since G is a 2-connected graph, md(G) < a(G). If G has a vertex v such that G — v
is still 2-connected, then by Lemma 1.1 (5), we know md(G — v) > md(G). Since
a(G —v) < a(G), by induction, we have md(G) < md(G —v) < a(G —v) < a(G).
Thus, we only need to consider the graph G with the property that G — v is not a
2-connected graph for any vertex v of G.

Let u be a vertex of G such that G — v has a maximum component. Let B =
{Dy, -, Ds} be the set of components of G —u and let D, be a maximum component.
Let S be the set of cut-vertices of G — u. The block-tree of G — u, denoted by T, is a
bipartite graph with bipartition B and S, and a block D; has an edge with a cut-vertex
v in 7" if and only if D; contains v. Then the leaves of T" are blocks, say Dy, ,- -, Dy,.
Since G is 2-connected, there is a vertex v; of Dy, — .S such that u connects v; in G for

€ [l]. We use P;; to denote the subpath of T from Dy, to Dy;. We now prove that
T is a path and D; is an edge for i« # r. If T is not a path, then [ > 3. There are two
leaves of T', say Dy, and Djy,, such that D, € V(P;5). Then G — v3 has a component
containing V' (D,) U {u}, which contradicts that D, is maximum. Thus, 7" is a path.
Suppose r # j and D, is not an edge, i.e., D, is a 2-connected graph. Since T is a
path, we have W = V(D;) — S — {v1,--- ,u;} # 0. Let v’ € W. Then G — «’ has a
component containing V(D,) U {u}, which contradicts that D, is maximum. Thus, D;
is an edge for i # 7.

Without loss of generality, suppose V(D;) NV (D;41) = {w;} for i € [s —1]. Then,
Dy, Dy are leaves of T, D; is an edge for i # r and S = {uy, -+ ,us_1}. Let ug €
V(D1 — S) and us € V(Dg — S) be two vertices adjacent to u.

Let P, = ., D; and let P, = |J;_, .y D;. Then P, and P, are paths. There is an

independent set U; of P; such that U; N V(D,) = 0 and |U;| = [%—‘ for i € [2]. Let
U be a maximum independent set of D,. Then U U U; U U, is an independent set of

11



G —u, i.e.,

a(G) > a(G—v) > |UUULUUy| =a(D,) + PPHQ— 1} N [|P2|2_ 1}

RN ]

Let P = {uug,uus} U (U, Di) and let G = D, U P. Then P is an (s + 1)-
path and G’ is a 2-connected spanning subgraph of G. By Lemma 1.1 (3), we have
md(G) < md(G’). Let I" be an extremal M D-coloring of G'. Then I' is an M D-
coloring restricted on D, and P. We call D, and each edge of P the joints of G'.
Let C' be the set of colors ¢ € I'(G’) such that ¢ is in at least two joints of G'. For
c € C, we use n. to denote the number of joints of G having edges colored with c.
Then md(G") = |I'(G")| = [T(D,)| + ||P|| — Leec(ne — 1). Since there is a color ¢
of Cr(u,—1,u,) that separates u,_; and w,, we have ¢ € I'(D,) N I'(P). By the same
reason, for each e € E(P), either I'(e) = I'(f) for an edge f of P —e, or I'(e) C T'(D,).
Thus, Yecc(ne — 1) > {%W Therefore,

md(G) < md(G') = [L(Dy)| + ||P[| = Ecec(ne — 1)

co@resr- [2] ey |}

s—1
2

=a(D,) + [ w < a(Q).

The proof is thus complete. |

5 Characterization of extremal 2-connected graphs

We knew that md(G) < 2 if G is a | % |-connected graph and md(G) < |%] if G is a
2-connected graph. We have characterized extremal L%J -connected graphs in Theorem
3.2. In this section, we characterize extremal 2-connected graphs, i.e., the 2-connected

graphs with M D-number L%J

For a 2-connected graph G, we use € = (Lg; L1, - - - , L;) to denote an ear-decomposition
of G, where Ly is a 2-connected subgraph of G and L; is a path for i € [t]. Let
Ze ={L; | i >0 and end(L;) C V(Ly)}.

If C'isacycle of G and v € V(G)—V(C), then we use k(v, C') to denote the maximum
number of vv;-path P, of G, such that V(P,) NV(FP;) = {v} and V() NV (C) = {v;}.
We call H = C U (U:ﬁc) P) a (v,C)-umbrella of G (or an umbrella for short) if
k(v,C) > 3. The vertices vy, - - -, Vg (v,0y divide C'into k(v, C) paths, say Pj, - -, Pé(v,C)-
We call P, a spoke of H and call P/ a rim of H. If the size of each spoke is odd and
the size of each rim is even, then we call the (v, C')-umbrella a uniform (v, C)-umbrella
(or uniform umbrella for short).
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A graph G is called a 0-graph if G is the union of three internal disjoint paths 77, T
and T3 with end(T)) = end(T3) = end(T3). If each T; is an even path, then we call G
an even 60-graph and call each T; a route.

Suppose € = (Lg; L1, - - - L;) is an ear-decomposition of G. Then the concept normal
ear-decomposition of G is defined as follows.

o If |G| is even, then & is a normal ear-decomposition of G if Ly is a cycle.

e If |G| is odd and G is not a bipartite graph, then £ is a normal ear-decomposition
of G if Ly is an odd cycle.

e If |G| is odd and G is a bipartite graph, then £ is a normal ear-decomposition of
G if Lg is either an umbrella or an even #-graph. Moreover, if Ly is an even 6-graph,
then for each L; € Zg, end(L;) is contained in one route.

Lemma 5.1. If G is a 2-connected graph, then G has a normal ear-decomposition.

Proof. 1f n is even or G is a nonbipartite graph with n odd, then G has a normal ear-
decomposition. If G is a bipartite graph and n is odd, then let & = {L¢; Ly, -+, L;}
be an ear-decomposition of G with Ly an even cycle. Since n = |Lo| + Xicy(|Li| — 2)
and n is odd, there is an even path among the ears, say L;. Since H = U;;é L;is a 2-
connected bipartite graph, there is an even cycle C' of H containing end(L;). Moreover,
end(L;) divides C' into two even paths. So, Ly = C'U L; is an even #-graph, say the
three routes are 77, T, and T3. Let & = {Ly; L, -+, L.} be an ear-decomposition of
G and let end(L’) = {u;,v;} for j € [s]. If the ends of each L’ in Zg are contained in
one route, then £ is a normal ear-decomposition of Gi. Otherwise, suppose L € Zg,
u; € I(T1) and v; € I(Ty). Then k(u;, TobUT3) > 3, i.e., thereis a (u;, T,UT3)-umbrella,
say M. Then there is a normal ear-decomposition of G containing M. |

Lemma 5.2. Suppose G is a 2-connected graph with md(G) = ng . Let& = (Lo; Ly, -+, Ly)
be an ear-decomposition of G with Ly a 2-connected subgraph of G and end(L;) =
{ai,b;} fori € [t]. Then we have the following results.

1. If H is a 2-connected subgraph of G, then each extremal M D-coloring of G is an
extremal M D-coloring restricted on H, and md(H) = L@J .

2. If n is even, then G is a bipartite graph and L; is an odd path for i € [t].

3. If n is odd, then when |Lg| is even, exact one of {||L1||,--- ,||L¢||} is even; when
|Lo| is odd, L; is an odd path for i € [t].

Proof. Let I' be an extremal M D-coloring of G. Then for each ¢ € [t], ['(L;) N
IN¢ ;;é L)) # 0; otherwise, Cr(a;,b;) = (), a contradiction. Moreover, each col-

or of I'(L;) — I'( E;é L;) is used on at least two edges of L;. Otherwise, suppose
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pe(L;) —T( z;(l) L;) and color p is only used on one edge e = zy of L;. Then since
I'(Uj_o Li) — e is connected, Cr(z,y) = 0, a contradiction. Therefore,

n
5] = ma@) = Iro)l +zire ULZ
< md(Ly) + %', {%J
|Lo| o | Ll =1
< (=90 A Bl
| Lol 1L =1 n
< | 1=90 ISPt Rl IR I
= { 5 T LQJ
Then |[(Lo)| = md(Lo) = {MJ and |D(L; L for each i € [t]. So, T is

an extremal M D-coloring restricted on Ly, and md(Lg) = L@J Moreover, |['(L;) N
T'(U—y Li)| = 1 when L, is an odd path.

If GG is not a bipartite graph, n is even and Lg an odd cycle, then the above inequality
does not hold. Thus, G is a bipartite graph when n is even. Moreover, L; is an odd
path for each i € [t]. If n and |Lg| are odd, then L; is an odd path for i € [t]. If n is
odd and |Lg| is even, then exact one of {||Ly||,- -, ||L|} is even. i

For a normal ear-decomposition & = {Lg; Ly, -, Ly} of a 2-connected graph G, if
Ly is an odd cycle and L; € Zg, then end(L;) divides Ly into an odd path and an even
path, which are denoted by f,(£,7) and f.(&,1), respectively. If Ly is an even cycle,
L; € Zg and e € E(Ly), then we use g(&€,1,e) to denote the subpath of Ly with ends
end(L;) and g(€,1,e) contains e. We define a function f(&,4,j) for 0 <i < j <t as
follows.

(£,(£,7) i=0,L; € Ze and Ly is an odd cycle;

g(€,i,e) i=0,L; € Zg and Ly is an even cycle with e € E(Ly);

a; Pb; 1t =0,L; € Zg, Ly is an umbrella, P is either a spoke or a rim of
Ly such that end(L;) C V(P);

a;Th; it =0,L; € Zg, Lo is an even f-graph, T is one of the three
routes such that end(L;) C V(T);

a;L;b;  i>0and end(L;) CV(L;);

Ky otherwise.

f(€,1,5) =

\

If Ly is not an even cycle, then the function depends only on £,7 and j. If Ly is an
even cycle and ¢ = 0, then the function also depends on e. Thus, we need to fix an
edge e of Ly in advance if Ly is an even cycle.

Lemma 5.3. If G is a uniform umbrella or an even 0-graph other than Ks 3, then |G|
is odd and md(G) = L@J

14



Proof. 1t is obvious that |G| is odd. Fix an integer k& > 3. Suppose G’ is either
a minimum even ¢-graph other than K3, or a minimum uniform umbrella with &
spokes.

If G’ is a minimum even #-graph other than Kj 3, then G’ and one of its extremal
M D-colorings are depicted in Figure 1 (1), which implies md(G’) = 3 = L%J .

If G’ is a minimum uniform umbrella with & spokes, then each spoke is an edge and
each rim is a 2-path. Suppose the k spokes are e; = vvy,--- , e, = v, and the k rims
are P; = vy fiug fava, - -+, Py = Vg for—1ur forv1. We color each e; with i. The colors of
the edges of P; obey the rule that opposite edges of any 4-cycle have the same color
(see Figure 1). Since k > 3, we know that for vy, {ey, fa, for—1} is a monochromatic

Ul
V1 Vg

w

Uy

(1)

Figure 1: Extremal M D-colorings of the minimum even f-graph and the minimum
uniform umbrella.

viv-cut (it is also a monochromatic viv;-cut for ¢ # 1, and a monochromatic vyu;-
cut for ¢ # {1,2,k}), {es, f1, f1} is a monochromatic viui-cut and {ey, for, for—3} is
a monochromatic vjug-cut. By symmetry, the edge-coloring is an M D-coloring of G’
with k colors. Since G' is 2-connected and |G’| = 2k + 1, we have md(G’) = k = L‘%/'J

Suppose G is a uniform umbrella with k£ spokes (an even #-graph other than Ko 3).
Then G is obtained from G’ by replacing some edges with odd paths, respectively.
W.lo.g., suppose G is obtained from G’ by replacing one edge with an odd path P.
Then by Lemma 2.2, we have md(G) > md(G')+ L%J = L%J e, md(G) = L%J :
The proof is thus complete.

Lemma 5.4. If G is a bipartite graph of odd order and md(G) = L%J, then each
umbrella of G is a uniform umbrella.

Proof. Suppose G is a bipartite graph of odd order and md(G) = LgJ Let H be a
(v, C')-umbrella of G. We show that H is a uniform umbrella.

If k(v,C) = 3, then let Ry, Ry and R3 be spokes of H and R; be a vv;-path. Then
C' is divided into three paths by vertices v, vy and vs (say, the three paths are Wy, Wy
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and Wj, such that end(W1) = {v1,ve}, end(Wy) = {ve, v3} and end(W3) = {vy,v3}).
If each R; is an odd path, then since G is a bipartite graph, each W; is an even
path, H be a uniform (v, C')-umbrella of G. If, by symmetry, R; is an even path and
Ry, R3 are odd paths, then Wy, W3 are odd paths and W5 is an even path. Then since
(W1UW3URyU R3; Ry, Ws) is an ear-decomposition of H containing even paths R; and
Wy, by Lemma 5.2 (1) and (3) this yields a contradiction. If, by symmetry, R; is an
odd path and Ry, R3 are even paths, then H is a uniform (vy, RoUR3UW;)-umbrella. If
each R; is an even path, then (C; Ry U Ry, R3) is an ear-decomposition of H containing
two even paths, a contradiction.

If K(v,C) > 4, then let Ry, Ry, R3, Ry be four spokes of H (let R; be a vv; path for
i € [4]). Then C is divided into two paths by ve and v3 (say, the two paths are Y;
and Y3). W.lLo.g., suppose R; is an even path. Then (Y; U Ry U R3;Ys, Ry, Ry) is an

— | Hl
2

ear-decomposition of H. Since md(H) J and R; is an even path, by Lemma 5.2

(3), Y5 is an odd path. Since H is a bipartite graph, either Ry or R3 is an even path
(say Ry). Then (C'UR3U Ry; Ry, R») is an ear-decomposition of H containing two even
paths, a contradiction. So, each spoke of H is an odd path. Since H is a bipartite
graph, each rim of H is an even path. |

Suppose € = (Lg; L1,--- L) is an ear-decomposition of G. Then £ can have the
following possible properties.

Q: If end(L;) N I(L;) # 0, then end(L;) C V(L;).

R: If end(L;) N I(f(E,k,i)) # 0, then f(E,k,7) is a proper subpath of f(€,k,1).

The concept standard ear-decomposition of G is defined as follows.

e If |G| is even, then € is a standard ear-decomposition of G if Ly is an even cycle.

e If |G| is odd and G is not a bipartite graph, then £ is a standard ear-decomposition
of G if Ly is an odd cycle and f.(&,7) N fo(€,7) # 0 for L;, L; € Z¢.

e If |G| is odd and G is a bipartite graph, then £ is a standard ear-decomposition
of G if Ly is either a uniform umbrella or a even f-graph other than K,3. Moreover,
for each L; € Zg¢, if Ly is a uniform umbrella, then end(L;) is contained in either a rim

or a spoke; if Ly is an even #-graph other than Kj 3, then end(L;) is contained in one
route.

Therefore, a standard ear-decomposition of GG is also a normal ear-decomposition of

G.

Lemma 5.5. If £ = (Lo; L1, -+, L) is a standard ear-decomposition of G and € has
properties Q and R, then there exist integers 0 < k < r <t such that end(L,) C V(Ly),
and d(u) = 2 for each w € I(f(E,k,r)) UI(L,).

Proof. For i € [t], let end(L;) = {a;,b;}. We use m, (n,) to demote the minimum
integer such that a, € V(L,,.) (br € V(L,,)). Since I(Ly) = V(Ly), we have a; €
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I(L,,) and b, € I(L,,). Since £ has property Q, we know for each i € [t], either
end(L;) € V(Ly,), or end(L;) C V(L,,). Let l; be the minimum integer such that
end(L;) C V(Ly,).

Let D be a digraph with vertex-set V(D) = {so,s1,--+,s:} and arc-set A(D) =
{(siys5) | f(E,4,75) # K4}. We use d; to denote the length of a minimum directed path
from so to s;. If end(L;) NI(L;) # 0, then d; = d; + 1. Let U = {j | d; is maximum}.
If j € U, then dg(u) = 2 for each u € I(L;).

Let i be an integer in U such that |f(€,[;,7)] is minimum. If there is a vertex v of
I(f(&,1;,1)) such that dg(v) > 3, then there is a path Lj such that v € end(Ly) N
I(f(&,1;,1)). Since &€ has property R, f(€,1;, k) is a proper subpath of f(&,1;,1), i.e.,
|f(E L, k)| < |f(E,1i,i)|. Since |f(&,1;,4)| is minimum, we have k ¢ U. Then there is
a path, say L,, such that end(L,) N I(Lg) # 0. Thus, d, > d) = d;, a contradiction.
Hence, dg(u) = 2 for each u € I(f(&,1;,17)). i

Theorem 5.6. Suppose G is a 2-connected graph and & = (Lg; L1, -+ Ly) is a nor-
mal ear-decomposition of G. Then md(G) = L%J if and only iof € is a standard ear-
decomposition of G that has properties Q and R, L; is an odd path for each i € |t],

and f(€,1,7) is an odd path if f(€,i,75) # Kjy.

Proof. For i € [t], let end(L;) = {a;, b;}.

For the necessity, suppose md(G) = L%J If n is even, then L is an even cycle.
By Lemma 5.2 (2), G is a bipartite graph and L; is an odd path for ¢ € [t]. Since
f(€,i,7) U L; is an even cycle, f(€,4,j) is an odd path. If n is odd, then since &
is normal, |Lg| is odd. By Lemma 5.2 (3), L; is an odd path for ¢ € [t|. Suppose
there are integers i,j such that f(&£,4,j) is an even path. If i = 0 and Ly is an
odd cycle, then f(£,i,7) = fo(i,7) is an odd path, a contradiction. If ¢ > 0 and
Ly is an odd cycle, then H = L; U (J'_, L) is a 2-connected subgraph of G' and
(Lo; Ly -+, Liy, LiUL; —I(f(&,1,7)), f(£,4,7)) is an ear-decomposition of H with L,
an odd cycle and f(&,4,7) an even path, and by Lemma 5.2 (1) and (3) this yields a
contradiction. If Ly is an umbrella or an even 6-graph other than K3, then G is a
bipartite graph. Since f(€,4,j) U L; is an even cycle and L; is an odd path, f(&€,1, j)
is an odd path. Thus, f(&,4,J) is an odd path if n is odd.

We need to prove that £ is standard and £ has properties Q and R below.
Claim 5.7. &£ is standard.

Proof. If n is even, then since G is a bipartite graph, Ly is an even cycle. Thus, & is
standard.

If G is not a bipartite graph and n is odd, then Lj is an odd cycle. Suppose & is
not a standard ear-decomposition of G. Then there are paths L; and L; of Z¢ such
that E(f.(€,7)) N E(fe(€,7)) = 0. Let D = L, U L; ULy — I(fo(E,1) U fe(€,))].
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Then D is 2-connected subgraph of Ly U L; U L;. Since (D; f.(€,1), f.(€,7)) is an ear-
decomposition of Ly U L; U L; and f.(&,1), fe(€,j) are even paths, by Lemma 5.2 (1)
and (3) this yields a contradiction. Thus, £ is standard.

If G'is a bipartite graph, n is odd and L, is an even @-graph, then L, # Kj3.
Otherwise L is a 2-connected subgraph of G with md(Ly) = 1 < L@J (by Lemma
1.1 (2)), and by Lemma 5.2 (1) this yields a contradiction. Thus, £ is standard.

If G is a bipartite graph, n is odd and Ly is an umbrella, then suppose the rims of
Ly are Wy, -+ Wy, where k > 3 and W; is a v;v;41-path for i € [k — 1]. Suppose the
spokes are Ry, -+ , Ry, where R; is a vv-path. Let C' = (J;cy Wi. Since md(G) = 2],
by Lemma 5.4, Lg is a uniform umbrella, i.e., each W; is an even path and each R; is
an odd path. Suppose there is a path L; of Z¢ such that end(L;) is neither contained
in any spoke nor contained in any rim. If a; € I(R;) and b; € V(Ly) — V(R;), then a;
divides R; into two subpaths R} = vL;a; and R} = a;L;v;. Since k > 3, w.l.o.g., let
bi ¢ I(Wy). Then Hy = R;UL;U(U,, Wi)U(U,; Ri) is a 2-connected graph for s € [2].
Since L; is an odd path, one of le- and RJZ is an even path, say R}. Since (Hq; Wy, le)
is an ear-decomposition of Lo U L; and Wy, R]l are even paths, by Lemma 5.2 (1) and
(3) this yields a contradiction. If end(L;) C V(C'), then since G is a bipartite graph,
L; is an odd path and each W; is an even path, we have |end(L;) N {vy,--- , v} < 1.
Therefore, there is a rim W} such that a; divides W} into two odd paths Vle = v;Wja;
and W? = a;Wjvj41. (w.lo.g., suppose 1 < j < k). Since there is no rim containing
end(L;), we have b; ¢ V(W;). Note that end(L;) divides C' into two subpaths C' and
C? such that v; € V(C') and vj11 € V(C?). Since k > 3, by symmetry, suppose
|CYN{vy, -+, v} > 2. Then there is an integer [ € [k] —{j+ 1} such that C' contains
v; and v;. Then there is an ear-decomposition (C”; Py, Py,---) of Ly U L; such that
C'=C"UL;, Pl = RjUR; and Py = W? U R;,,. Since P{ and Py are even paths, by
Lemma 5.2 (3) this yields a contradiction. Thus £ is standard. i

Claim 5.8. £ has property Q.

Proof. Let m; (n;) be the minimum integer such that a; € V(L,,,) (b; € V(L,,)). Since
I(Ly) =V (Ly), we have a; € I(L,,,) and b; € I(L,,).

Suppose &£ does not have property Q. Then there are integers 0 < 7 < r < ¢ such
that a, € I(L;) and b, ¢ V(L;). Since b, € I(L,,), by symmetry, suppose j > n,.
For convenience, let n, = . Since L; is an odd path, let a;L;a, be an even path. Let
I = max{m;,n;,n,} and H = L; U L, U (J,_, Ly). Then H is a 2-connected graph
with an ear-decomposition (Lo; Ly, -+ , L, a,L;jb; U L,,a;L;a,). If Ly is an odd cycle,
or a uniform umbrella, or an even #-graph other than Ky 3, then since |Ly| is odd and
a;jL;a, is an even path, by Lemma 5.2 (1) and (3) this yields a contradiction. If Ly is
an even cycle, then by Lemma 5.2 (1) and (2) this yields a contradiction. i

Claim 5.9. &£ has property R.
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Proof. If £ does not have property R, then there are integers r, ¢, j such that end(L;)N
I(f(&,ri)) # 0 and f(E,r,7) is not a subpath of f(&,r,i). Since £ has property
Q, f(€,r,j) is a subpath of L,. Then end(L;) and end(L;) appear alternately on
L=f(&ri)Uf(&,rj),say a;,aj,b;,b; are consecutively on L. Here, L is a subpath
of the path L, if r > 0; L is a subpath of either a rim or a spoke of L, if r = 0
and Lg is a uniform umbrella; L is a subpath of a route if r = 0 and Lg is an even
O-graph other than Ks3; L is a subpath of a cycle L, if r = 0 and Ly is a cycle. Let
W' = a;Laj, W? = a;Lb; and W3 = b;Lb;. Since f(E,r,i) and f(E,r,j) are odd paths,
either W1, W3 are even paths and W? is an odd path, or W2 is an even path and
W, W? are odd paths. Let H = ({J;_, Li) U L; U L;.

Suppose W, W3 are even paths and W? is an odd path. Let H' be a graph obtained
from H by removing W' and W3. Then H' is a 2-connected graph. Since (H'; W1 W?3)
is an ear-decomposition of H and W W? are even paths, by Lemma 5.2 this yields a
contradiction.

Suppose W? is an even path and W', W3 are odd paths. Let H; be a graph obtain
from H by removing W for i € [3]. It is obvious that each H; is a 2-connected graph.
If Ly is an even cycle, then (Hy;W?) is an ear-decomposition of G, and by Lemma
5.2 (1) and (2) this yields a contradiction. If r = 0 and Ly is an odd cycle, then
P = Ly — I(L) is an even path and C = Hy, — I(P) is an even cycle. Since (C; P, W?)
is an ear-decomposition of H and P, W? are even paths, by Lemma 5.2 (1) and (3) this
yields a contradiction. If » = 0 and Ly is an even 6-graph, then suppose T, T5 and Tj
are routes of Ly, and suppose L is a subpath of 7. Then (Hy — I(Ty); Ty, W?) is an
ear-decomposition of H and Ty, W? are even paths, a contradiction. If » = 0 and Lg
is a uniform umbrella, then there is a rim W of Ly such that L is not a subpath of W.
Then (Hy — I(W); W,W?) is an ear-decomposition of H and W, W? are even paths,

a contradiction. If r > 0 and n is odd, then (Lg;--- ,WW?) is an ear-decomposition of
H. Since |Lg| is odd and W? is an even path, by Lemma 5.2 (1) and (3) this yields a
contradiction. |

Now for the sufficiency, suppose € = (Lo; L1, - - - , L;) satisfies all conditions of the

theorem, i.e., £ is a standard ear-decomposition of G that has properties Q and R, L;
is an odd path for i € [t], and f(&,7,7) is an odd path when f(&,j,1) # K. Recall
the definitions of digraph D, set U and integer /; in Lemma 5.5. We choose an integer
r from U such that |f(&, 1, )| is minimum. For convenience, let [ = [,. Then for each
vertex u of I(f(€,1,r)) UI(L,), we have dg(u) = 2. The proof proceeds by induction
on t. By Lemmas 1.1 (2) and 5.3, the result holds for ¢ = 0.

If L, is not an edge, then let G’ be a graph obtained from G by replacing f(&,1,r)
with an edge f = a,b,, let G} = G'—I(L,) and G}, = L,Uf. Let L = [L;—I(f(E,l,r))—
E(f(€,1,r))]U f. Let & be an ear-decomposition of G} obtained from £ by removing
L,, and then replacing L; with L. If [ > 0, then since f(&,[,r) is an odd path, L is
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an odd path and &’ satisfies all the conditions. If [ = 0 and L; is a uniform umbrella
(an odd cycle or an even cycle), then L is also a uniform umbrella (an odd cycle, an
even cycle), i.e., & satisfies all the conditions in this case. If [ = 0 and L, is an even
g-graph, then &’ satisfies all the conditions except for L = Ky3. Thus, £ satisfies all
the conditions unless L = Ky 3.

If L # K3, then & satisfies all the conditions. Since the number of paths in £ is

t —1, by the induction hypothesis we have md(G)) = L@

we have md(GY) = ‘G—Q/ﬂ Thus, by Lemma 2.1, md(G") = md(G})+md(Gy)—1 = L‘%'J :

Since G is a graph obtained from G’ by replacing f with the odd path f(&,1,7), by
Lemma 2.2 we have md(G) > md(G") + LWJ = L%J Therefore, md(G) = FJ

J . Since GY is an even cycle,

2

If L = Ky3, then !l = 0 and r = 1. Since r € U, d, is maximum and d, = 1
(the definition d, is in the proof of Lemma 5.5). Thus, L; € Zg for each i € [t].
Let T1,T, and T3 be routes of Lo with |T1| < |T3| < |T3|. Then T; and T, are 2-
paths and f(&,0,r) is a subpath of T3 with |f(&,0,7)| = |T5| — 1. Since Ly # Ka3,
we have [f(€,0,r)] = |T3] —1 > 4. For each L;, if end(L;) N I(T;) # 0 for j €
2], then |f(£,0,7)] = 2 < |f(€,1,r)|, a contradiction; if end(L;) = end(T3), then
f(&€,0,i) is an even path, a contradiction. Thus, f(&,0,4) is a proper subpath of T}
and [f(€,0,7)] = |f(€,0,7)| for each i € [t]. If end(L;) # end(L,) for i,j € [t], then
end(L;) NI(f(E,0,7)) # 0 and f(€,0,i) is not a proper subpath of f(£,0,r), i.e., €
does not have property R, a contradiction. Therefore, end(L;) = end(L;) for each
i, € [t]. Let H =T, UT5U (Uyq
1. Thus, md(H) = @ Suppose I' is an extremal M D-coloring of H (see Remark 1).
Let T7 = uejaesv and Ty = ufibfov. Since G = H U Ty, let IV be an edge-coloring of
G such that I'(e) = I"(e) for each e € E(H), and I'(e;) = I"(f2) and I'(ez) = I"(f1).
Then I is an M D-coloring of G with | 2] colors, i.e., md(G) = |2].

If L, is an edge, then replace L; by L;U L, — I(f(€,1,r)) and replace L, by f(&,1,7).
Then the new ear-decomposition also satisfies all the conditions. Moreover, d,. is max-

L;). Then H is a graph constructed in Remark

imum and |f(€,l.,7)| = 2 is minimum in the new ear-decomposition. Since L, is not
an edge in the new ear-decomposition, this case has been discussed above. |

Remark 3. Recalling the proof of Lemma 5.1, we can find a normal ear-decomposition
for a given 2-connected graph in polynomial time. For a normal ear-decomposition £
of G, deciding whether &€ satisfies all the conditions of Theorem 5.6 can be done in
polynomial time. Thus, given a 2-connected graph G, deciding whether md(G) = L%J
15 polynomially solvable.

Corollary 5.10. If G is a 2-connected graph with md(G) = {%J , then G is a planar
graph.

Proof. By Theorem 5.6, there is a standard ear-decomposition & = {Lg; Ly, -+ , L} of
G that has properties Q and R. Since G is a planar graph if G is a cycle, an umbrella
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or a f-graph, the result holds for ¢ = 0. Our proof proceeds by induction on ¢. Suppose
t > 0. By Lemma 5.5, there are integers k,¢ such that f(&,k,1) is a path of order at
least two, and dg(u) = 2 for each u € I(f(€,k,i)) UI(L;). Let G' be a graph obtained
from G by removing L;. By Lemma 5.2 (1), md(G’') = {‘%'J By the induction
hypothesis, G’ is a planar graph. Since dg(u) = 2 for each u € I(f(€, k,i)), there is a
face F' of G’ such that f(&, k,7) is a subpath of F. Therefore, L; can be embedded in
F and G is a planar graph. |
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