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Abstract

For an edge-colored graph G, we call an edge-cut M of G monochromat-
ic if the edges of M are colored with the same color. The graph G is called
monochromatic disconnected if any two distinct vertices of G are separated by
a monochromatic edge-cut. For a connected graph G, the monochromatic dis-
connection number (or MD-number for short) of G, denoted by md(G), is the
maximum number of colors that are allowed in order to make G monochromatic
disconnected. For graphs with diameter one, they are complete graphs and so
their MD-numbers are 1. For graphs with diameter at least 3, we can construct
2-connected graphs such that their MD-numbers can be arbitrarily large; where-
as for graphs G with diameter two, we show that if G is a 2-connected graph
then md(G) ≤ 2, and if G has a cut-vertex then md(G) is equal to the number
of blocks of G. So, we will focus on studying 2-connected graphs with diame-
ter two, and give two upper bounds of their MD-numbers depending on their
connectivity and independent numbers, respectively. We also characterize the⌊
n
2

⌋
-connected graphs (with large connectivity) whose MD-numbers are 2 and

the 2-connected graphs (with small connectivity) whose MD-numbers achieve
the upper bound

⌊
n
2

⌋
(these graphs are called extremal graphs). For graphs with

connectivity less than n
2 , we show that if the connectivity of a graph is linear

in its order n, then its MD-number is upper bounded by a constant, and this
suggests us to leave a conjecture that for a k-connected graph G, md(G) ≤

⌊
n
k

⌋
.
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1 Introduction

Let G be a graph and let V (G), E(G) denote the vertex-set and the edge-set of G,

respectively. We use |G| and ||G|| to denote the number of vertices and the number

of edges of G, respectively, and call them the order and the size of G. If there is no

confusion, we also use n and m to denote |G| and ||G||, respectively, throughout this

paper. Let S and F be a vertex subset and an edge subset of G, respectively. Then

G − S is the graph obtained from G by deleting the vertices of S together with the

edges incident with vertices of S, and G−F is the graph whose vertex-set is V (G) and

edge-set is E(G)−F . Let G[S] and G[F ] be the subgraphs of G induced, respectively,

by S and F . We use [r] to denote the set {1, 2, · · · , r} of positive integers. If r = 0,

then set [r] = ∅. For all other terminology and notation not defined here we follow

Bondy and Murty [4].

For a graph G, let Γ : E(G)→ [r] be an edge-coloring of G that allows a same color

to be assigned to adjacent edges. For an edge e of G, we use Γ(e) to denote the color of

e. If H is a subgraph of G, we also use Γ(H) to denote the set of colors on the edges of

H and use |Γ(H)| to denote the number of colors in Γ(H). For an edge-colored graph

G and a vertex v of G, the color-degree of v, denoted by dc(v), is the number of colors

appearing on the edges incident with v.

The three main colored connection colorings: rainbow connection coloring [8], proper

connection coloring [5] and proper-walk connection coloring [3], monochromatic con-

nection coloring [6], have been well-studied in recent years. As a counterpart concept of

the rainbow connection coloring, rainbow disconnection coloring was introduced in [7]

by Chartrand et al. in 2018. Subsequently, the concepts of monochromatic disconnec-

tion coloring and proper disconnection coloring were also introduced in [12] and [1, 9].

We refer to [2] for the philosophy of studying these so-called global graph colorings.

More details on the monochromatic disconnection coloring can be found in [13]. We

will further study this coloring in this paper and get some deeper and stronger results.

For an edge-colored graph G, we call an edge-cut M a monochromatic edge-cut if the

edges of M are colored with the same color. If there is a monochromatic uv-cut with

color i, then we say that color i separates u and v. We use CΓ(u, v) to denote the set

of colors in Γ(G) that separate u and v, and let cΓ(u, v) = |CΓ(u, v)|.
An edge-coloring of a graph is called a monochromatic disconnection coloring (or

MD-coloring for short) if each pair of distinct vertices of the graph has a monochro-

matic edge-cut separating them, and the graph is called monochromatic disconnected.

For a connected graph G, the monochromatic disconnection number (or MD-number

for short) of G, denoted by md(G), is defined as the maximum number of colors that are

allowed in order to make G monochromatic disconnected. An extremal MD-coloring

of G is an MD-coloring that uses md(G) colors. If H is a subgraph of G and Γ is an

edge-coloring of G, we call Γ an edge-coloring restricted on H.
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The following terminology and notation are needed in the sequel. Let G and H be

two graphs. The union of G and H is the graph G ∪H with vertex-set V (G) ∪ V (H)

and edge-set E(G)∪E(H). The intersect of G and H is the graph G∩H with vertex-

set V (G) ∩ V (H) and edge-set E(G) ∩ E(H). The Cartesian product of G and H is

the graph G2H with V (G2H) = {(u, v) : u ∈ V (G), v ∈ V (H)}, (u, v) and (x, y) are

adjacent in G2H if either ux is an edge of G and v = y, or vy is an edge of H and

u = x. If G and H are vertex-disjoint, then let G ∨ H denote the join of G and H

which is obtained from G and H by adding an edge between every vertex of G and

every vertex of H.

For a graph G, a pendent vertex of G is a vertex with degree one. The ends of G is

the set of pendent vertices, and the internal vertex set of G is the set of vertices with

degree at least two. We use end(G) and I(G) to denote the ends of G and the internal

vertex set of G, respectively. The independent number of G, denoted by α(G), is the

order of a maximum independent set of G. For two vertices u, v of G, we use N(u) to

denote the neighborhood of u in G, and N(u, v) to denote the set of common neighbors

of u and v in G. The distance between u and v in G is denoted by d(u, v), and the

diameter of G is denoted by diam(G). We call a cycle C (path P ) a t-cycle (t-path)

if |C| = t (||P || = t). If t is even (odd), then we call the path an even (odd) path and

the cycle an even (odd) cycle. A 3-cycle is also called a triangle. A matching-cut of G

is an edge-cut of G, which also forms a matching in G.

In [12, 13] we got the following results, which are restated for our later use.

Lemma 1.1. [12]

1. If a connected graph G has r blocks B1, · · · , Br, then md(G) =
∑

i∈[r] md(Bi) and

md(G) = n− 1 if and only if G is a tree.

2. md(G) = b |G|
2
c if G is a cycle, and md(G) = 1 if G is a complete multipartite

graph and G is not a star.

3. If H is a connected spanning subgraph of G, then md(H) ≥ md(G). Thus,

md(G) ≤ n− 1.

4. If G is connected, then md(v ∨G) = 1.

5. If v is neither a cut-vertex nor a pendent vertex of G and Γ is an extremal MD-

coloring of G, then Γ(G) ⊆ Γ(G− v), and thus, md(G) ≤ md(G− v).

Theorem 1.2. [12] If G is a 2-connected graph, then md(G) ≤
⌊
n
2

⌋
.

Theorem 1.3. [13] If G1 and G2 are connected graphs, then md(G12G2) = md(G1)+

md(G2).

Lemma 1.4. [13] If G has a matching-cut, then md(G) ≥ 2.
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We will list some easy observations in the following, which will be used many times

throughout this paper. Suppose Γ is an MD-coloring of G. If H is a subgraph of G,

then Γ is an MD-coloring restricted on H. Every triangle of G is monochromatic. If

G is a 4-cycle, then its opposite edges have the same color. If G is a 5-cycle, then there

are two adjacent edges having the same color.

Let V be a set of vertices and let E ⊆ 2V . Then a hypergraph H = (V, E) is a

linear hypergraph if |Ei| ≥ 2 and |Ei ∩ Ej| ≤ 1 for any Ei, Ej ∈ E . The size of H is

the number of hyperedges in H. A hyperedge-coloring of H assigns each hyperedge a

positive integer. A linear hypergraph H (say the size of H is k) is a linear hypercycle

if there is a sequence of hyperedges of H, say E1, · · · , Ek, and there exist k distinct

vertices v1, · · · , vk of H, such that E1 ∩Ek = {vk} and Ei ∩Ei+1 = {vi} for i ∈ [k− 1].

If we delete a hyperedge from a linear hypercycle and then delete the vertices only

in this hyperedge, then we call the resulting hypergraph a linear hyperpath. A linear

hypercycle (linear hyperpath) is called a linear hyper k-cycle (linear hyper k-path) if

the size of this linear hypercycle (linear hyperpath) is k.

2 Preliminaries

We need some more preparations before proceeding to our main results.

Lemma 2.1. For two connected graphs G1 and G2, if md(G1 ∩G2) = 1 then md(G1 ∪
G2) = md(G1) +md(G2)− 1.

Proof. Let G = G1∪G2 and Γ be an extremal MD-coloring of G. Then |Γ(G1∩G2)| = 1

and Γ is an MD-coloring restricted on G1 (and also G2). So, md(G1∪G2) = |Γ(G1)|+
|Γ(G2)|−|Γ(G1∩G2)| ≤ md(G1)+md(G2)−1. On the other hand, since E(G1∩G2) is

monochromatic under any MD-coloring of G1∪G2, let Γi be an MD-coloring of Gi for

i ∈ [2] such that Γ1(G1∩G2) = Γ2(G1∩G2) = Γ(G1)∩Γ(G2). Let Γ′ be an edge-coloring

of G1 ∪ G2 such that Γ′(e) = Γi(e) if e ∈ E(Gi), and let w be a vertex of G1 ∩ G2.

Then for any two vertices u, v of G1∪G2, if u, v ∈ V (Gi), then CΓi
(u, v) ⊆ CΓ′(u, v); if

u ∈ V (G1)− V (G2) and v ∈ V (G2)− V (G1), then (CΓ1(u,w)∪CΓ2(v, w)) ⊆ CΓ′(u, v).

So, Γ′ is an MD-coloring of G, i.e., md(G1∪G2) ≥ |Γ(G1∪G2)| = md(G1)+md(G2)−1.

Therefore, md(G1 ∪G2) = md(G1) +md(G2)− 1.

Lemma 2.2. Let G be a connected graph and let G′ be a graph obtained from G by

replacing an edge e = ab with a path P . Then md(G′) ≥ md(G) +
⌊
||P ||−1

2

⌋
.

Proof. Let Γ be an extremal MD-coloring of G. Let ||P || = t and let P = ae1c1 · · · etb.
Let Γ′ be an edge-coloring of G′ such that Γ(f) = Γ′(f) when f ∈ E(G)− e, Γ′(ei) =

Γ′(et+1−i) = |Γ(G)| + i for i ∈ [
⌊
t−1

2

⌋
], Γ(e) = Γ′(e t+1

2
) when t is odd, and Γ(e) =

Γ′(e t
2
) = Γ′(e t

2
+1) when t is even. It is easy to verify that Γ′ is an MD-coloring of G′.

Thus, md(G′) ≥ md(G) +
⌊
||P ||−1

2

⌋
.
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Lemma 2.3. Suppose u, v are nonadjacent vertices of G and Γ is an extremal MD-

coloring of G. Let CΓ(u, v) = {t} and e an extra edge, and let Γ′ be an edge-coloring

of G ∪ e that is obtained from Γ by coloring the added edge e with color t. Then Γ′ is

an MD-coloring of G ∪ e and md(G) = md(G ∪ e).

Proof. Let Hi be the graph obtained from G by deleting all the edges with color i. Let

G′ = G ∪ e. If Γ′ is not an MD-coloring of G′, then there are two vertices x, y of G′

such that CΓ′(x, y) = ∅. If t ∈ CΓ(x, y), since x, y are in different components of Ht, we

have t ∈ CΓ′(x, y), a contradiction. If t /∈ CΓ(x, y), then let j ∈ CΓ(x, y). Then there

are two components D1, D2 of Hj such that x ∈ V (D1) and y ∈ V (D2). Since j does

not separate x, y in G′, the edge e connects D1 and D2, say u ∈ V (D1) and v ∈ V (D2).

Thus, the color j separates u, v in G, which contradicts that CΓ(u, v) = {t}. Therefore,

Γ′ is an MD-coloring of G′. Since |Γ′(G′)| = |Γ(G)| and Γ is an extremal MD-coloring

of G, we have md(G′) ≥ md(G). Since G is a connected spanning subgraph of G′, by

Lemma 1.1 (3) we have md(G) ≥ md(G′). So, md(G) = md(G′).

Suppose Γ is an MD-coloring of G and Gi is the subgraph of G induced by the set

of edges with color i, which, in what follows, is called the color i induced subgraph

of G. Then for any component D1 of Gi and any component D2 of Gj, we have

|V (D1) ∩ V (D2)| ≤ 1; otherwise, suppose u, v ∈ V (D1) ∩ V (D2). Then CΓ(u, v) = ∅,
a contradiction. We use HΓ to denote a hyperedge-colored hypergraph with vertex-set

V (G) and hyperedge-set {V (D) | D is a component of some Gi}, and the hyperedge

F has color i if F corresponds to a component of Gi. Let HΓ be a graph with V (HΓ) =

V (G) and

E(HΓ) = {uv | u, v are in the same component of some Gi}.

Then each hyperedge of HΓ corresponds to a clique of HΓ, and any two hyperedges of

HΓ (any two cliques of HΓ) share at most one vertex. Thus, HΓ is a linear hypergraph.

If F is a hyperedge of HΓ and u, v ∈ F , then cΓ(u, v) = 1. According to Lemma 2.3,

we have the following result.

Lemma 2.4. If Γ is an extremal MD-coloring of G, then md(G) = md(HΓ).

Suppose Γ is an MD-coloring of G and C is a hyper k-cycle of HΓ. Then there is a

k-cycle C of HΓ such that any adjacent edges of C have different colors. Thus, t 6= 3, 5.

Moreover, if k = 4, then the opposite hyperedges of C have the same color.

3 Graphs with diameter two

In this section, we show that md(G) ≤ 2 for a 2-connected graph G if diam(G) ≤ 2.

However, for any integer d ≥ 3, we can construct a 2-connected graph G such that
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diam(G) = d and md(G) can be arbitrarily large. Thus, it makes sense to focus on

studying the graphs with diameter two, since graphs with diameter 1 are complete

graphs and their MD-numbers are 1.

Theorem 3.1. Suppose G is a graph with diam(G) = 2. Then

1. if G has a cut-vertex, then md(G) is equal to the number of blocks of G;

2. if G is a 2-connected graph, then md(G) ≤ 2;

3. if any two nonadjacent vertices of G has at least two common neighbors, then

md(G) ≤ 2, and the equality holds if and only if G = Ks2Kt, where s, t ≥ 2.

Proof. The proof of statement (1) goes as follows. If v is a cut-vertex of G and

diam(G) = 2, then v connects every vertex of V (G − v). Thus, for each block D

of G, D − v is connected and D = (D − v) ∨ v, i.e., md(D) = 1. Therefore, md(G) is

equal to the number of blocks of G.

Next, for the proof of statement (2) suppose Γ is an MD-coloring of G with |Γ(G)| ≥
3. Then each hypercycle (hyperpath) of the above mentioned hypergraph HΓ is a linear

hypercycle (linear hyperedge). We now prove that there is a rainbow hyper 3-path (the

colors of the three hyperedges are pairwise differently) in HΓ. Since HΓ does not have

hyper 3-cycle, the union of three consecutive hyperedges forms a hyper 3-path. If every

vertex z of G has dc(z) ≤ 2, then there is a rainbow hyper 3-path in HΓ. If there is

a vertex x of G with dc(x) ≥ 3, then there are three hyperedges, say D1, D2 and D3,

such that x is the common vertex of them. Then the colors of D1, D2 and D3 are

pairwise differently. Since G is a 2-connected graph, there is a vertex w of V (D1)−{x}
with dc(w) ≥ 2 (otherwise, x is a cut-vertex of G, a contradiction). Then there is

a hyperedge F of HΓ, such that w is a common vertex of F and D1. Thus, either

F ∪D1 ∪D2 or F ∪D1 ∪D3 is a rainbow hyper 3-path.

Let P be a rainbow hyper 3-path of HΓ and let V (Di) ∩ V (Di+1) = {ui} for i ∈ [2].

Let u ∈ V (D1) − {u1} and v ∈ V (D3) − {u2}. We use Pu,v to denote a minimum

hyperpath connecting u and v. Since diam(G) = 2, the size of Pu,v is either one or

two. Let C = Pu,v ∪P . If Pu,v is a hyperedge, then C is a hyper 4-cycle. Since D1 and

D3 are opposite hyperedges of C and they have different colors, a contradiction. If Pu,v
is a hyper 2-path, then let F1, F2 be hyperedges of Pu,v, and let V (F1)∩V (F2) = {u3}.
If u3 /∈ {u1, u2}, then C is a hyper 5-cycle, a contradiction. If u3 ∈ {u1, u2}, then C
contains a hyper 3-cycle, a contradiction.

Finally, we show statement (3). It is obvious that diam(G) ≤ 2, and G is a 2-

connected graph when n ≥ 3. So, md(G) ≤ 2. Suppose G = Ks2Kt and s, t ≥ 2.

Then |N(u, v)| = 2 for any nonadjacent vertices u and v of G. By Lemma 1.1 (2) and

Theorem 1.3, we have md(G) = md(Ks) +md(Kt) = 2.
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Suppose md(G) = 2. Then n ≥ 3 and G is a 2-connected graph. Let Γ be an

extremal MD-coloring of G and let G1, G2 be the induced subgraphs of G colored

by the colors 1 and 2, respectively. Since md(G) = 2, we have dc(v) ≤ 2 for each

v ∈ V (G). If dc(v) = 1, by symmetry, suppose v is in a component D of G1. Since

md(G) = 2, we have D 6= G, i.e., there exists a vertex u in V (G) − V (D). Then u, v

are nonadjacent and N(u, v) ⊆ D. Let {a, b} ⊆ N(u, v). Since Γ(va) = Γ(vb) = 1,

we have va ∪ vb ∪ ua ∪ ub is a monochromatic 4-cycle, i.e., u ∈ V (D), a contradiction.

Thus, dc(v) = 2 for each v ∈ V (G). We use D1
u and D2

u to denote the components of

G1 and G2, respectively, such that V (D1
u) ∩ V (D2

u) = u.

Suppose there are t components of G1 and s components of G2. Since G is a 2-

connected graph, we have s, t ≥ 2. Otherwise, if s = 1, then for each vertex v of G1, v

is a cut-vertex, a contradiction. We label the t components of G1 by the numbers in

[t] and label the s components of G2 by the numbers in [s], respectively. We use l1(D)

to denote the label of a component D of G1, and use l2(F ) to denote the label of a

component F of G2. For a vertex u of G, since dc(u) = 2, we use (l1(D1
u), l2(D2

u)) to

denote u. For two vertices u, v of G, let u = (i, j) and let v = (s, t). In order to show

G = Ks2Kt, we need to show that uv is an edge of G when i = s and j 6= t, or i 6= s

and j = t, and u, v are nonadjacent vertices when i 6= s and j 6= t. If i 6= s and j 6= t,

then v /∈ V (D1
u ∪D2

u). Since N(u) ⊆ V (D1
u ∪D2

u), u, v are nonadjacent vertices of G.

If, by symmetry, i = s and j 6= t, then D1
u = D1

v. Let u′ ∈ V (D2
u) − {u}. Then u′, v

are nonadjacent. Since N(v) ⊆ V (D1
v ∪D2

v) and N(u′) ⊆ V (D1
u′ ∪D2

u′), we have

2 ≤ |N(v, u′)| ≤ |V (D1
v ∪D2

v) ∩ V (D1
u′ ∪D2

u′)| = |D1
v ∩D2

u′|+ |D1
u′ ∩D2

v| ≤ 2.

Thus, D1
v ∩D2

u′ ⊆ N(v, u′). Since D1
v ∩D2

u′ = {u}, we have uv is an edge of G.

Remark 1. Suppose G =
⋃
i∈[r] Li, where L1, · · · , Lr are r (≥ 2) internal disjoint odd

paths with an order 2ki + 2 for each i ∈ [r], and they have the same ends {u, v}. Let

Li = uei1x
i
1e
i
2x

i
2 · · ·xi2kie

i
2ki+1v. Let c0 = 1 and ci = Σi

j=0kj. If ki ≥ 1 for i ∈ [r], then

let Γ be an edge-coloring of G such that Γ(eij) = Γ(ei2ki+2−j) = ci−1 +j and Γ(eiki+1) = 1

for each i ∈ [r] and j ∈ [ki]. Then Γ is an MD-coloring of G with |Γ(G)| = |G|
2

. Since

G is a 2-connected graph, we have md(G) = |G|
2

. If ki = 1 for each i ∈ [r], then G

is a 2-connected graph with diam(G) = 3 and md(G) = r + 1. Therefore, there exist

2-connected graphs with diameter three, but their MD-numbers can be arbitrarily large.

Let An be a graph with V (An) = {v1, · · · , vdn2 e} ∪ {u1, · · · , ubn2 c} and E(An) =

{vivj : i, j ∈ [
⌈
n
2

⌉
]} ∪ {uiuj : i, j ∈ [

⌊
n
2

⌋
]} ∪ {viui : i ∈ [

⌊
n
2

⌋
]}. Then {viui : i ∈ [

⌊
n
2

⌋
]} is

a matching-cut of G. If n is an odd integer, then let

An = {An − E | E is either an emptyset or a matching of An[{v1, · · · , vn−1
2
}]}.

In the following theorem, we characterize extremal
⌊
n
2

⌋
-connected graphs, i.e., the⌊

n
2

⌋
-connected graphs with MD-number two.
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Theorem 3.2. Suppose G is a
⌊
n
2

⌋
-connected graph and n ≥ 4. Then md(G) ≤ 2 and

1. if n is even, then md(G) = 2 if and only if G = An;

2. if n is odd, then md(G) = 2 if and only if G ∈ An.

Proof. Since |N(x)| + |N(y)| ≥ n − 1 for any two nonadjacent vertices x and y, we

have diam(G) ≤ 2. So, md(G) ≤ 2.

It is obvious that G is a
⌊
n
2

⌋
-connected graph if G = An or G ∈ An. Moreover, by

Lemma 1.4 and Theorem 3.1, we have md(G) = 2.

Now suppose G is a
⌊
n
2

⌋
-connected graph and md(G) = 2. Since n ≥ 4, G is a

2-connected graph. We distinguish the following cases for our proof.

Case 1. n is even.

For any two nonadjacent vertices u, v of G, |N(u)∩N(v)| ≥ 2. By Theorem 3.1 (3),

G = Ks2Kt, where s, t ≥ 2. We need to prove that at least one of s, t equals two.

Suppose H1, H2 are two cliques of order s, t, respectively, and V (H1) ∩ V (H2) = {u}.
Then N(u) ⊆ V (H1∪H2), i.e., s+ t−2 ≥ n

2
. Since n = st, we have t(s−2) ≤ 2(s−2).

Thus, either s = 2 or t = 2.

Case 2. n is odd.

Say n = 2k+ 1 for some integer k. Suppose Γ is an extremal MD-coloring of G and

G1, G2 are the colors 1, 2 induced subgraphs, respectively.

Subcase 2.1 Every vertex v of G has dc(v) = 2.

Suppose there are components D,F of G1, G2, respectively, such that V (D)∩V (F ) =

∅. Then let u ∈ V (D) and v ∈ V (F ). Since dc(u) = dc(v) = 2, there are components

D′ of G1 and F ′ of G2, such that V (D) ∩ V (F ′) = {u} and V (F ) ∩ V (D′) = {v}.
Since V (D) ∪ V (F ′) − {u} and V (D′) ∪ V (F ) − {v} are vertex-cuts of G, we have

|V (D) ∪ V (F ′)| ≥ k + 1 and |V (D′) ∪ V (F )| ≥ k + 1. Since |V (D′) ∩ V (F ′)| ≤ 1,

we have n ≥ |V (D) ∪ V (F ′)| + |V (D′) ∪ V (F )| − |V (D′) ∩ V (F ′)| ≥ 2k + 1 = n, i.e.,

D∪D′ ∪F ∪F ′ = G. Then u is a cut-vertex of G, a contradiction. Therefore, for each

component D of G1 and each component F of G2, we have |V (G) ∩ V (F )| = 1. Then

since dc(v) = 2 for each v ∈ V (G), any two components of G1 (and also G2) have the

same order, say s (the order is t). Then s, t > 2; otherwise, suppose s = 2, i.e., G1

is a matching. Since n is odd, we have V (G) − V (G1) 6= ∅. Thus, each vertex v of

V (G) − V (G1) has dc(v) = 1, a contradiction. For a vertex x of G, let D1, D2 be the

components of G1, G2, respectively, containing x. Then D1 ∪D2 − {x} is a vertex-cut

of G, i.e., s+ t− 2 ≥ k. However, 2k + 1 = n = st and s, t > 3, a contradiction.

Subcase 2.2 There is a vertex v of G with dc(v) = 1.

Suppose D is the component of G1 containing v. Then since D−{v} is a vertex cut

of G, we have |D| ≥ k + 1. Since the set of vertices of D with color-degree two is a

vertex-cut of G, there are at least k vertices of D, say v1, · · · , vk, such that dc(vi) = 2 for
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i ∈ [k]. Let Fi be the component of G2 containing vi and let U =
⋃
i∈[k](V (Fi)−{vi}).

Then |U | ≥ k. Since n ≥ |D| + |U | ≥ 2k + 1 = n, we have |D| = k + 1, |U | = k,

and |Fi| = 2 for i ∈ [k]. Moreover, N(v) = {v1, · · · , vk}. Let V (Fi) − {vi} = {ui}.
For i, j ∈ [k], if uiuj is not an edge of G, then U − {ui, uj} + vj is a vertex-cut of G

with order k− 1, which contradicts that G is k-connected. For each vi, if there are two

vertices vj, vl such that vivj and vivl are not edges of G, then V (D)−{vi, vj, vl}+ui is

a vertex-cut of G with order k−1, which contradicts that G is k-connected. Therefore,

vi connects all but at most one vertex of D − v. So, G ∈ An.

4 Upper bounds

In this section, we give two upper bounds of the monochromatic disconnection num-

ber of a graph G, one of which depends on the connectivity of G, and the other depends

on the independent number of G. Note that for a k-connected graph G, when k = 2

(small) and k ≥
⌊
n
2

⌋
(large), from Theorems 1.2 and 3.2 we know that md(G) ≤

⌊
n
k

⌋
.

This suggests us to make the following conjecture.

Conjecture 4.1. Suppose G is a k-connected graph. Then md(G) ≤
⌊
n
k

⌋
.

Suppose P is a k-path. Then md(Kr2P ) = md(Kr) + md(P ) = k + 1. Since

n = |Kr2P | = r(k + 1) and Kr2P is an r-connected graph, the bound is sharp for

k ≥ 2 if the conjecture is true.

The mean distance of a connected graphG is defined as µ(G) =
(
n
2

)−1
Σu,v∈V (G)d(u, v).

Plesńlk in [14] posed the problem of finding sharp upper bounds on µ(G) for k-

connected graphs. Favaron et al. in [11] proved that if G is a k-connected graph

of order n, then

µ(G) ≤
⌊
n+ k − 1

k

⌋
·
n− 1− k

2

⌊
n−1
k

⌋
n− 1

, (1)

and the bound is sharp when n is even. If n is odd and k ≥ 3, then Dankelmann et

al. in [10] proved that µ(G) ≤ n
2k+1

+ 30 and this bound is, apart from an additive

constant, best possible.

The following result gives a relationship between the monochromatic disconnection

number and the connectivity of a graph, which means that if the connectivity of a graph

is linear in the order of the graph, then the monochromatic disconnection number of

the graph is upper bounded by a constant.

Theorem 4.2. For any 0 < ε < 1
2
, there is a constant C = C(ε) < (1+ε)2

4ε2(1−ε) , such that

for any εn-connected graph G, md(G) ≤ C.

9



Proof. Suppose Γ is an extremal MD-coloring of G and V (G) = {v1, · · · , vn}. We use

(i, j) to denote an unordered integer pair in this proof. For each color i of Γ(G), let

Si = {(j, l) : the color i separates vj and vl}.

Then Σi∈Γ|Si| = Σj 6=lcΓ(vj, vl).

Claim 4.3. |Si| ≥ k(n− k) for each i ∈ Γ(G).

Proof. Let εn = k. The result holds obviously for k = 1. Thus, let k ≥ 2. For each

i ∈ Γ(G), let Gi be the color i induced subgraph of G, and let Hi be the graph obtained

from G by deleting all the edges with color i. Then Hi is a disconnected graph. Suppose

there is a component D of Hi with |D| > n − k. Let U = {vj | vj ∈ V (D) ∩ V (Gi)}.
For a component B of Gi, if V (B) ∩ V (D) 6= ∅, then |V (B) ∩ V (D)| = 1. Since B

contains at least one vertex of V (G − D), we have |U | ≤ |V (G − D)| < k. Since

|D| > n− k = n(1− ε) > εn = k, U is a proper subset of V (D). So, U is a vertex-cut

of G. Since |U | < k and G is k-connected, this yields a contradiction. Thus, for each

i ∈ Γ(G), there is no component of Hi with order greater than n− k.

We partition the components of Hi into r parts such that r is minimum and the

number of vertices in each part is at most n− k. Suppose the r parts have n1, · · · , nr
vertices, respectively. Then

∑
j∈[r] nj = n. If r ≥ 4, then since r is minimum, nl+nj >

n− k for each l, j ∈ [r]. Thus,

n(r − 1) = (r − 1)
∑
t∈[r]

nt =
∑
l,j∈[r]

(nl + nj) >

(
r

2

)
(n− k),

and then r(n− k) < 2n. Since k < n
2
, this yields a contradiction. Therefore, r is equal

to 2 or 3. If r = 2, then |Si| ≥ n1 ·n2 ≥ k(n−k). If r = 3, then there is an nl such that

k ≤ nl ≤ n− k, say l = 1. Otherwise, nj < k for each j ∈ [3], then n =
∑

j∈[3] nj < n,

a contradiction. Thus, |Si| > n1 · (n2 + n3) ≥ k(n− k).

By the inequality (1) above, we have

µ(G) ≤
⌊
n+ k − 1

k

⌋
·
n− 1− k

2

⌊
n−1
k

⌋
n− 1

=

⌊
n+ k − 1

k

⌋
·
(

1− k

2(n− 1)

⌊
n− 1

k

⌋)
≤
(
n+ k − 1

k

)
·
[
1− k

2(n− 1)

(
n− 1

k
− 1

)]
=
n+ k − 1

k
· n+ k − 1

2(n− 1)
<

(n+ k)2

2k(n− 1)
.

Since
∑

i,j d(vi, vj) = µ(G) ·
(
n
2

)
, we have

∑
i,j d(vi, vj) <

(n+k)2n
4k

. It is obvious that

d(vi, vj) ≥ cΓ(vi, vj) for any two vertices vi, vj of G. Thus,

md(G) ≤ Σi∈Γ|Si|
k(n− k)

=

∑
i,j cΓ(vi, vj)

k(n− k)
≤
∑

i,j d(u, v)

k(n− k)
<

(n+ k)2n

4k2(n− k)
=

(1 + ε)2

4ε2(1− ε)
.

The proof is thus complete.
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Remark 2. Since ε < 1
2
, we have (1+ε)2

4ε2(1−ε) < (3
2
)2/2ε2 = 9

8ε2
. This means that when the

connectivity of a graph increases, its MD-number could decrease, and the upper bound

is 4 when ε is getting to 1
2
.

The following result gives a relationship between the monochromatic disconnection

number and the independent number of a graph.

Theorem 4.4. If G is a 2-connected graph, then md(G) ≤ α(G). The bound is sharp.

Proof. Let P be a path and let t ≥ 2 be an integer. Since α(Kt2P ) = |P | =

md(Kt2P ), the bound is sharp if the result holds.

The proof proceeds by induction on the order n of a graph G. If n ≤ 2α(G), then

since G is a 2-connected graph, md(G) ≤ α(G). If G has a vertex v such that G − v
is still 2-connected, then by Lemma 1.1 (5), we know md(G − v) ≥ md(G). Since

α(G − v) ≤ α(G), by induction, we have md(G) ≤ md(G − v) ≤ α(G − v) ≤ α(G).

Thus, we only need to consider the graph G with the property that G − v is not a

2-connected graph for any vertex v of G.

Let u be a vertex of G such that G − u has a maximum component. Let B =

{D1, · · · , Ds} be the set of components of G−u and let Dr be a maximum component.

Let S be the set of cut-vertices of G− u. The block-tree of G− u, denoted by T , is a

bipartite graph with bipartition B and S, and a block Di has an edge with a cut-vertex

v in T if and only if Di contains v. Then the leaves of T are blocks, say Dk1 , · · · , Dkl .

Since G is 2-connected, there is a vertex vi of Dki − S such that u connects vi in G for

i ∈ [l]. We use Pi,j to denote the subpath of T from Dki to Dkj . We now prove that

T is a path and Di is an edge for i 6= r. If T is not a path, then l ≥ 3. There are two

leaves of T , say Dk1 and Dk2 , such that Dr ∈ V (P1,2). Then G− v3 has a component

containing V (Dr) ∪ {u}, which contradicts that Dr is maximum. Thus, T is a path.

Suppose r 6= j and Dj is not an edge, i.e., Dj is a 2-connected graph. Since T is a

path, we have W = V (Dj) − S − {v1, · · · , vl} 6= ∅. Let u′ ∈ W . Then G − u′ has a

component containing V (Dr)∪ {u}, which contradicts that Dr is maximum. Thus, Di

is an edge for i 6= r.

Without loss of generality, suppose V (Di) ∩ V (Di+1) = {ui} for i ∈ [s − 1]. Then,

D1, Ds are leaves of T , Di is an edge for i 6= r and S = {u1, · · · , us−1}. Let u0 ∈
V (D1 − S) and us ∈ V (Ds − S) be two vertices adjacent to u.

Let P1 =
⋃
i<rDi and let P2 =

⋃s
i=r+1Di. Then P1 and P2 are paths. There is an

independent set Ui of Pi such that Ui ∩ V (Dr) = ∅ and |Ui| =
⌈
|Pi|−1

2

⌉
for i ∈ [2]. Let

U be a maximum independent set of Dr. Then U ∪ U1 ∪ U2 is an independent set of
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G− u, i.e.,

α(G) ≥ α(G− v) ≥ |U ∪ U1 ∪ U2| = α(Dr) +

⌈
|P1| − 1

2

⌉
+

⌈
|P2| − 1

2

⌉
≥ α(Dr) +

⌈
|P1|+ |P2| − 2

2

⌉
= α(Dr) +

⌈
s− 1

2

⌉
.

Let P = {uu0, uus} ∪ (
⋃
i 6=rDi) and let G′ = Dr ∪ P . Then P is an (s + 1)-

path and G′ is a 2-connected spanning subgraph of G. By Lemma 1.1 (3), we have

md(G) ≤ md(G′). Let Γ be an extremal MD-coloring of G′. Then Γ is an MD-

coloring restricted on Dr and P . We call Dr and each edge of P the joints of G′.

Let C be the set of colors c ∈ Γ(G′) such that c is in at least two joints of G′. For

c ∈ C, we use nc to denote the number of joints of G having edges colored with c.

Then md(G′) = |Γ(G′)| = |Γ(Dr)| + ||P || − Σc∈C(nc − 1). Since there is a color c

of CΓ(ur−1, ur) that separates ur−1 and ur, we have c ∈ Γ(Dr) ∩ Γ(P ). By the same

reason, for each e ∈ E(P ), either Γ(e) = Γ(f) for an edge f of P − e, or Γ(e) ⊆ Γ(Dr).

Thus, Σc∈C(nc − 1) ≥
⌈
s+2

2

⌉
. Therefore,

md(G) ≤ md(G′) = |Γ(Dr)|+ ||P || − Σc∈C(nc − 1)

≤ α(Dr) + s+ 1−
⌈
s+ 2

2

⌉
= α(Dr) +

⌊s
2

⌋
= α(Dr) +

⌈
s− 1

2

⌉
≤ α(G).

The proof is thus complete.

5 Characterization of extremal 2-connected graphs

We knew that md(G) ≤ 2 if G is a
⌊
n
2

⌋
-connected graph and md(G) ≤

⌊
n
2

⌋
if G is a

2-connected graph. We have characterized extremal
⌊
n
2

⌋
-connected graphs in Theorem

3.2. In this section, we characterize extremal 2-connected graphs, i.e., the 2-connected

graphs with MD-number
⌊
n
2

⌋
.

For a 2-connected graphG, we use E = (L0;L1, · · · , Lt) to denote an ear-decomposition

of G, where L0 is a 2-connected subgraph of G and Li is a path for i ∈ [t]. Let

ZE = {Li | i > 0 and end(Li) ⊆ V (L0)}.
If C is a cycle of G and v ∈ V (G)−V (C), then we use κ(v, C) to denote the maximum

number of vvi-path Pi of G, such that V (Pi)∩ V (Pj) = {v} and V (Pi)∩ V (C) = {vi}.
We call H = C ∪ (

⋃κ(v,C)
i=1 Pi) a (v, C)-umbrella of G (or an umbrella for short) if

κ(v, C) ≥ 3. The vertices v1, · · · , vκ(v,C) divide C into κ(v, C) paths, say P ′1, · · · , P ′κ(v,C).

We call Pi a spoke of H and call P ′i a rim of H. If the size of each spoke is odd and

the size of each rim is even, then we call the (v, C)-umbrella a uniform (v, C)-umbrella

(or uniform umbrella for short).
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A graph G is called a θ-graph if G is the union of three internal disjoint paths T1, T2

and T3 with end(T1) = end(T2) = end(T3). If each Ti is an even path, then we call G

an even θ-graph and call each Ti a route.

Suppose E = (L0;L1, · · ·Lt) is an ear-decomposition of G. Then the concept normal

ear-decomposition of G is defined as follows.

• If |G| is even, then E is a normal ear-decomposition of G if L0 is a cycle.

• If |G| is odd and G is not a bipartite graph, then E is a normal ear-decomposition

of G if L0 is an odd cycle.

• If |G| is odd and G is a bipartite graph, then E is a normal ear-decomposition of

G if L0 is either an umbrella or an even θ-graph. Moreover, if L0 is an even θ-graph,

then for each Li ∈ ZE , end(Li) is contained in one route.

Lemma 5.1. If G is a 2-connected graph, then G has a normal ear-decomposition.

Proof. If n is even or G is a nonbipartite graph with n odd, then G has a normal ear-

decomposition. If G is a bipartite graph and n is odd, then let E = {L0;L1, · · · , Lt}
be an ear-decomposition of G with L0 an even cycle. Since n = |L0| + Σi∈[t](|Li| − 2)

and n is odd, there is an even path among the ears, say Li. Since H =
⋃i−1
l=0 Li is a 2-

connected bipartite graph, there is an even cycle C of H containing end(Li). Moreover,

end(Li) divides C into two even paths. So, L′0 = C ∪ Li is an even θ-graph, say the

three routes are T1, T2 and T3. Let E ′ = {L′0;L′1, · · · , L′s} be an ear-decomposition of

G and let end(L′j) = {uj, vj} for j ∈ [s]. If the ends of each L′j in ZE ′ are contained in

one route, then E ′ is a normal ear-decomposition of G. Otherwise, suppose L′j ∈ ZE ′ ,
uj ∈ I(T1) and vj ∈ I(T2). Then κ(uj, T2∪T3) ≥ 3, i.e., there is a (uj, T2∪T3)-umbrella,

say M . Then there is a normal ear-decomposition of G containing M .

Lemma 5.2. Suppose G is a 2-connected graph with md(G) =
⌊
n
2

⌋
. Let E = (L0;L1, · · · , Lt)

be an ear-decomposition of G with L0 a 2-connected subgraph of G and end(Li) =

{ai, bi} for i ∈ [t]. Then we have the following results.

1. If H is a 2-connected subgraph of G, then each extremal MD-coloring of G is an

extremal MD-coloring restricted on H, and md(H) =
⌊
|H|
2

⌋
.

2. If n is even, then G is a bipartite graph and Li is an odd path for i ∈ [t].

3. If n is odd, then when |L0| is even, exact one of {||L1||, · · · , ||Lt||} is even; when

|L0| is odd, Li is an odd path for i ∈ [t].

Proof. Let Γ be an extremal MD-coloring of G. Then for each i ∈ [t], Γ(Li) ∩
Γ(
⋃i−1
l=0 Ll) 6= ∅; otherwise, CΓ(ai, bi) = ∅, a contradiction. Moreover, each col-

or of Γ(Li) − Γ(
⋃i−1
l=0 Ll) is used on at least two edges of Li. Otherwise, suppose
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p ∈ Γ(Li)− Γ(
⋃i−1
l=0 Ll) and color p is only used on one edge e = xy of Li. Then since

Γ(
⋃i
l=0 Ll)− e is connected, CΓ(x, y) = ∅, a contradiction. Therefore,⌊n

2

⌋
= md(G) = |Γ(L0)|+ Σt

i=1|Γ(Li)− Γ(
i−1⋃
l=0

Ll)|

≤ md(L0) + Σt
i=1

⌊
||Li|| − 1

2

⌋
≤
⌊
|L0|

2

⌋
+ Σt

i=1

⌊
||Li|| − 1

2

⌋
≤
⌊
|L0|

2
+ Σi∈[t]

||Li|| − 1

2

⌋
=
⌊n

2

⌋
.

Then |Γ(L0)| = md(L0) =
⌊
|L0|

2

⌋
and |Γ(Li)| =

⌊
||Li||−1

2

⌋
for each i ∈ [t]. So, Γ is

an extremal MD-coloring restricted on L0, and md(L0) =
⌊
|L0|

2

⌋
. Moreover, |Γ(Li) ∩

Γ(
⋃i−1
l=0 Ll)| = 1 when Li is an odd path.

If G is not a bipartite graph, n is even and L0 an odd cycle, then the above inequality

does not hold. Thus, G is a bipartite graph when n is even. Moreover, Li is an odd

path for each i ∈ [t]. If n and |L0| are odd, then Li is an odd path for i ∈ [t]. If n is

odd and |L0| is even, then exact one of {||L1||, · · · , ||Lt||} is even.

For a normal ear-decomposition E = {L0;L1, · · · , Lt} of a 2-connected graph G, if

L0 is an odd cycle and Li ∈ ZE , then end(Li) divides L0 into an odd path and an even

path, which are denoted by fo(E , i) and fe(E , i), respectively. If L0 is an even cycle,

Li ∈ ZE and e ∈ E(L0), then we use g(E , i, e) to denote the subpath of L0 with ends

end(Li) and g(E , i, e) contains e. We define a function f(E , i, j) for 0 ≤ i < j ≤ t as

follows.

f(E , i, j) =



fo(E , j) i = 0, Lj ∈ ZE and L0 is an odd cycle;

g(E , i, e) i = 0, Lj ∈ ZE and L0 is an even cycle with e ∈ E(L0);

ajPbj i = 0, Lj ∈ ZE , L0 is an umbrella, P is either a spoke or a rim of

L0 such that end(Lj) ⊆ V (P );

ajTbj i = 0, Lj ∈ ZE , L0 is an even θ-graph, T is one of the three

routes such that end(Li) ⊆ V (T );

ajLibj i > 0 and end(Lj) ⊆ V (Li);

K4 otherwise.

If L0 is not an even cycle, then the function depends only on E , i and j. If L0 is an

even cycle and i = 0, then the function also depends on e. Thus, we need to fix an

edge e of L0 in advance if L0 is an even cycle.

Lemma 5.3. If G is a uniform umbrella or an even θ-graph other than K2,3, then |G|
is odd and md(G) =

⌊
|G|
2

⌋
.
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Proof. It is obvious that |G| is odd. Fix an integer k ≥ 3. Suppose G′ is either

a minimum even θ-graph other than K2,3, or a minimum uniform umbrella with k

spokes.

If G′ is a minimum even θ-graph other than K2,3, then G′ and one of its extremal

MD-colorings are depicted in Figure 1 (1), which implies md(G′) = 3 =
⌊
|G′|

2

⌋
.

If G′ is a minimum uniform umbrella with k spokes, then each spoke is an edge and

each rim is a 2-path. Suppose the k spokes are e1 = vv1, · · · , ek = vvk, and the k rims

are P1 = v1f1u1f2v2, · · · , Pk = vkf2k−1ukf2kv1. We color each ei with i. The colors of

the edges of Pi obey the rule that opposite edges of any 4-cycle have the same color

(see Figure 1). Since k ≥ 3, we know that for v1, {e1, f2, f2k−1} is a monochromatic

v1

v2

v3
v4

v5

vk

u1

u2

u3

u4

uk

v

1

2

3 4

5

k1

2

3

4

k 1
2

3

4

5

u
v

a1
a3

a2

b

c

1

1

12

2

2

3 3

(1) (2)

Figure 1: Extremal MD-colorings of the minimum even θ-graph and the minimum
uniform umbrella.

v1v-cut (it is also a monochromatic v1vi-cut for i 6= 1, and a monochromatic v1ui-

cut for i 6= {1, 2, k}), {e2, f1, f4} is a monochromatic v1u1-cut and {ek, f2k, f2k−3} is

a monochromatic v1uk-cut. By symmetry, the edge-coloring is an MD-coloring of G′

with k colors. Since G′ is 2-connected and |G′| = 2k+ 1, we have md(G′) = k =
⌊
|G′|

2

⌋
.

Suppose G is a uniform umbrella with k spokes (an even θ-graph other than K2,3).

Then G is obtained from G′ by replacing some edges with odd paths, respectively.

W.l.o.g., suppose G is obtained from G′ by replacing one edge with an odd path P .

Then by Lemma 2.2, we have md(G) ≥ md(G′)+
⌊
||P ||−1

2

⌋
=
⌊
|G|
2

⌋
, i.e., md(G) =

⌊
|G|
2

⌋
.

The proof is thus complete.

Lemma 5.4. If G is a bipartite graph of odd order and md(G) =
⌊
n
2

⌋
, then each

umbrella of G is a uniform umbrella.

Proof. Suppose G is a bipartite graph of odd order and md(G) =
⌊
n
2

⌋
. Let H be a

(v, C)-umbrella of G. We show that H is a uniform umbrella.

If κ(v, C) = 3, then let R1, R2 and R3 be spokes of H and Ri be a vvi-path. Then

C is divided into three paths by vertices v1, v2 and v3 (say, the three paths are W1,W2
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and W3, such that end(W1) = {v1, v2}, end(W2) = {v2, v3} and end(W3) = {v1, v3}).
If each Ri is an odd path, then since G is a bipartite graph, each Wi is an even

path, H be a uniform (v, C)-umbrella of G. If, by symmetry, R1 is an even path and

R2, R3 are odd paths, then W1,W3 are odd paths and W2 is an even path. Then since

(W1∪W3∪R2∪R3;R1,W2) is an ear-decomposition of H containing even paths R1 and

W2, by Lemma 5.2 (1) and (3) this yields a contradiction. If, by symmetry, R1 is an

odd path and R2, R3 are even paths, then H is a uniform (v1, R2∪R3∪W2)-umbrella. If

each Ri is an even path, then (C;R1∪R2, R3) is an ear-decomposition of H containing

two even paths, a contradiction.

If κ(v, C) ≥ 4, then let R1, R2, R3, R4 be four spokes of H (let Ri be a vvi path for

i ∈ [4]). Then C is divided into two paths by v2 and v3 (say, the two paths are Y1

and Y2). W.l.o.g., suppose R1 is an even path. Then (Y1 ∪ R2 ∪ R3;Y2, R4, R1) is an

ear-decomposition of H. Since md(H) =
⌊
|H|
2

⌋
and R1 is an even path, by Lemma 5.2

(3), Y2 is an odd path. Since H is a bipartite graph, either R2 or R3 is an even path

(say R2). Then (C∪R3∪R4;R1, R2) is an ear-decomposition of H containing two even

paths, a contradiction. So, each spoke of H is an odd path. Since H is a bipartite

graph, each rim of H is an even path.

Suppose E = (L0;L1, · · ·Lt) is an ear-decomposition of G. Then E can have the

following possible properties.

Q: If end(Lj) ∩ I(Li) 6= ∅, then end(Lj) ⊆ V (Li).

R: If end(Lj) ∩ I(f(E , k, i)) 6= ∅, then f(E , k, j) is a proper subpath of f(E , k, i).
The concept standard ear-decomposition of G is defined as follows.

• If |G| is even, then E is a standard ear-decomposition of G if L0 is an even cycle.

• If |G| is odd and G is not a bipartite graph, then E is a standard ear-decomposition

of G if L0 is an odd cycle and fe(E , i) ∩ fe(E , j) 6= ∅ for Li, Lj ∈ ZE .
• If |G| is odd and G is a bipartite graph, then E is a standard ear-decomposition

of G if L0 is either a uniform umbrella or a even θ-graph other than K2,3. Moreover,

for each Li ∈ ZE , if L0 is a uniform umbrella, then end(Li) is contained in either a rim

or a spoke; if L0 is an even θ-graph other than K2,3, then end(Li) is contained in one

route.

Therefore, a standard ear-decomposition of G is also a normal ear-decomposition of

G.

Lemma 5.5. If E = (L0;L1, · · · , Lt) is a standard ear-decomposition of G and E has

properties Q and R, then there exist integers 0 ≤ k < r ≤ t such that end(Lr) ⊆ V (Lk),

and d(u) = 2 for each u ∈ I(f(E , k, r)) ∪ I(Lr).

Proof. For i ∈ [t], let end(Li) = {ai, bi}. We use mr (nr) to demote the minimum

integer such that ar ∈ V (Lmr) (br ∈ V (Lnr)). Since I(L0) = V (L0), we have ai ∈
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I(Lmr) and br ∈ I(Lnr). Since E has property Q, we know for each i ∈ [t], either

end(Li) ⊆ V (Lmi
), or end(Li) ⊆ V (Lni

). Let li be the minimum integer such that

end(Li) ⊆ V (Lli).

Let D be a digraph with vertex-set V (D) = {s0, s1, · · · , st} and arc-set A(D) =

{(si, sj) | f(E , i, j) 6= K4}. We use dj to denote the length of a minimum directed path

from s0 to sj. If end(Lj) ∩ I(Li) 6= ∅, then dj = di + 1. Let U = {j | dj is maximum}.
If j ∈ U , then dG(u) = 2 for each u ∈ I(Lj).

Let i be an integer in U such that |f(E , li, i)| is minimum. If there is a vertex v of

I(f(E , li, i)) such that dG(v) ≥ 3, then there is a path Lk such that v ∈ end(Lk) ∩
I(f(E , li, i)). Since E has property R, f(E , li, k) is a proper subpath of f(E , li, i), i.e.,

|f(E , li, k)| < |f(E , li, i)|. Since |f(E , li, i)| is minimum, we have k /∈ U . Then there is

a path, say Lp, such that end(Lp) ∩ I(Lk) 6= ∅. Thus, dp > dk = di, a contradiction.

Hence, dG(u) = 2 for each u ∈ I(f(E , li, i)).

Theorem 5.6. Suppose G is a 2-connected graph and E = (L0;L1, · · ·Lt) is a nor-

mal ear-decomposition of G. Then md(G) =
⌊
n
2

⌋
if and only if E is a standard ear-

decomposition of G that has properties Q and R, Li is an odd path for each i ∈ [t],

and f(E , i, j) is an odd path if f(E , i, j) 6= K4.

Proof. For i ∈ [t], let end(Li) = {ai, bi}.
For the necessity, suppose md(G) =

⌊
n
2

⌋
. If n is even, then L0 is an even cycle.

By Lemma 5.2 (2), G is a bipartite graph and Li is an odd path for i ∈ [t]. Since

f(E , i, j) ∪ Lj is an even cycle, f(E , i, j) is an odd path. If n is odd, then since E
is normal, |L0| is odd. By Lemma 5.2 (3), Li is an odd path for i ∈ [t]. Suppose

there are integers i, j such that f(E , i, j) is an even path. If i = 0 and L0 is an

odd cycle, then f(E , i, j) = fo(i, j) is an odd path, a contradiction. If i > 0 and

L0 is an odd cycle, then H = Lj ∪ (
⋃i
c=0 Lc) is a 2-connected subgraph of G and

(L0;L1 · · · , Li−1, Li∪Lj− I(f(E , i, j)), f(E , i, j)) is an ear-decomposition of H with L0

an odd cycle and f(E , i, j) an even path, and by Lemma 5.2 (1) and (3) this yields a

contradiction. If L0 is an umbrella or an even θ-graph other than K2,3, then G is a

bipartite graph. Since f(E , i, j) ∪ Lj is an even cycle and Lj is an odd path, f(E , i, j)
is an odd path. Thus, f(E , i, j) is an odd path if n is odd.

We need to prove that E is standard and E has properties Q and R below.

Claim 5.7. E is standard.

Proof. If n is even, then since G is a bipartite graph, L0 is an even cycle. Thus, E is

standard.

If G is not a bipartite graph and n is odd, then L0 is an odd cycle. Suppose E is

not a standard ear-decomposition of G. Then there are paths Li and Lj of ZE such

that E(fe(E , i)) ∩ E(fe(E , j)) = ∅. Let D = Li ∪ Lj ∪ [L0 − I(fe(E , i) ∪ fe(E , j))].
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Then D is 2-connected subgraph of L0 ∪ Lj ∪ Li. Since (D; fe(E , i), fe(E , j)) is an ear-

decomposition of L0 ∪ Li ∪ Lj and fe(E , i), fe(E , j) are even paths, by Lemma 5.2 (1)

and (3) this yields a contradiction. Thus, E is standard.

If G is a bipartite graph, n is odd and L0 is an even θ-graph, then L0 6= K2,3.

Otherwise L0 is a 2-connected subgraph of G with md(L0) = 1 <
⌊
|L0|

2

⌋
(by Lemma

1.1 (2)), and by Lemma 5.2 (1) this yields a contradiction. Thus, E is standard.

If G is a bipartite graph, n is odd and L0 is an umbrella, then suppose the rims of

L0 are W1, · · · ,Wk, where k ≥ 3 and Wi is a vivi+1-path for i ∈ [k − 1]. Suppose the

spokes are R1, · · · , Rk, where Ri is a vvi-path. Let C =
⋃
i∈[k] Wi. Since md(G) =

⌊
n
2

⌋
,

by Lemma 5.4, L0 is a uniform umbrella, i.e., each Wi is an even path and each Ri is

an odd path. Suppose there is a path Li of ZE such that end(Li) is neither contained

in any spoke nor contained in any rim. If ai ∈ I(Rj) and bi ∈ V (L0)− V (Rj), then ai
divides Rj into two subpaths R1

j = vLjai and R2
j = aiLjvj. Since k ≥ 3, w.l.o.g., let

bi /∈ I(Wk). Then Hs = Rs
j∪Li∪(

⋃
l 6=kWl)∪(

⋃
l 6=j Rl) is a 2-connected graph for s ∈ [2].

Since Lj is an odd path, one of R1
j and R2

j is an even path, say R1
j . Since (H2;Wk, R

1
j )

is an ear-decomposition of L0 ∪ Li and Wk, R
1
j are even paths, by Lemma 5.2 (1) and

(3) this yields a contradiction. If end(Li) ⊆ V (C), then since G is a bipartite graph,

Li is an odd path and each Wj is an even path, we have |end(Li) ∩ {v1, · · · , vk}| ≤ 1.

Therefore, there is a rim Wj such that ai divides Wj into two odd paths W 1
j = vjWjai

and W 2
j = aiWjvj+1. (w.l.o.g., suppose 1 ≤ j < k). Since there is no rim containing

end(Li), we have bi /∈ V (Wj). Note that end(Li) divides C into two subpaths C1 and

C2 such that vj ∈ V (C1) and vj+1 ∈ V (C2). Since k ≥ 3, by symmetry, suppose

|C1∩{v1, · · · , vk}| ≥ 2. Then there is an integer l ∈ [k]−{j+1} such that C1 contains

vj and vl. Then there is an ear-decomposition (C ′;P ′1, P
′
2, · · · ) of L0 ∪ Li such that

C ′ = C1 ∪ Li, P ′1 = Rj ∪ Rl and P ′2 = W 2
j ∪ Rj+1. Since P ′1 and P ′2 are even paths, by

Lemma 5.2 (3) this yields a contradiction. Thus E is standard.

Claim 5.8. E has property Q.

Proof. Let mi (ni) be the minimum integer such that ai ∈ V (Lmi
) (bi ∈ V (Lni

)). Since

I(L0) = V (L0), we have ai ∈ I(Lmi
) and bi ∈ I(Lni

).

Suppose E does not have property Q. Then there are integers 0 ≤ j < r ≤ t such

that ar ∈ I(Lj) and br /∈ V (Lj). Since br ∈ I(Lnr), by symmetry, suppose j > nr.

For convenience, let nr = i. Since Lj is an odd path, let ajLjar be an even path. Let

l = max{mj, nj, nr} and H = Lj ∪ Lr ∪ (
⋃l
h=0 Lh). Then H is a 2-connected graph

with an ear-decomposition (L0;L1, · · · , Ll, arLjbj ∪ Lr, ajLjar). If L0 is an odd cycle,

or a uniform umbrella, or an even θ-graph other than K2,3, then since |L0| is odd and

ajLjar is an even path, by Lemma 5.2 (1) and (3) this yields a contradiction. If L0 is

an even cycle, then by Lemma 5.2 (1) and (2) this yields a contradiction.

Claim 5.9. E has property R.
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Proof. If E does not have property R, then there are integers r, i, j such that end(Lj)∩
I(f(E , r, i)) 6= ∅ and f(E , r, j) is not a subpath of f(E , r, i). Since E has property

Q, f(E , r, j) is a subpath of Lr. Then end(Li) and end(Lj) appear alternately on

L = f(E , r, i) ∪ f(E , r, j), say ai, aj, bi, bj are consecutively on L. Here, L is a subpath

of the path Lr if r > 0; L is a subpath of either a rim or a spoke of Lr if r = 0

and L0 is a uniform umbrella; L is a subpath of a route if r = 0 and L0 is an even

θ-graph other than K2,3; L is a subpath of a cycle Lr if r = 0 and L0 is a cycle. Let

W 1 = aiLaj,W
2 = ajLbi and W 3 = biLbj. Since f(E , r, i) and f(E , r, j) are odd paths,

either W 1,W 3 are even paths and W 2 is an odd path, or W 2 is an even path and

W 1,W 3 are odd paths. Let H = (
⋃r
l=0 Ll) ∪ Li ∪ Lj.

Suppose W 1,W 3 are even paths and W 2 is an odd path. Let H ′ be a graph obtained

from H by removing W 1 and W 3. Then H ′ is a 2-connected graph. Since (H ′;W 1,W 3)

is an ear-decomposition of H and W 1,W 3 are even paths, by Lemma 5.2 this yields a

contradiction.

Suppose W 2 is an even path and W 1,W 3 are odd paths. Let Hi be a graph obtain

from H by removing W i for i ∈ [3]. It is obvious that each Hi is a 2-connected graph.

If L0 is an even cycle, then (H2;W 2) is an ear-decomposition of G, and by Lemma

5.2 (1) and (2) this yields a contradiction. If r = 0 and L0 is an odd cycle, then

P = L0 − I(L) is an even path and C = H2 − I(P ) is an even cycle. Since (C;P,W 2)

is an ear-decomposition of H and P,W 2 are even paths, by Lemma 5.2 (1) and (3) this

yields a contradiction. If r = 0 and L0 is an even θ-graph, then suppose T1, T2 and T3

are routes of L0, and suppose L is a subpath of T1. Then (H2 − I(T2);T2,W
2) is an

ear-decomposition of H and T2,W
2 are even paths, a contradiction. If r = 0 and L0

is a uniform umbrella, then there is a rim W of L0 such that L is not a subpath of W .

Then (H2 − I(W );W,W 2) is an ear-decomposition of H and W,W 2 are even paths,

a contradiction. If r > 0 and n is odd, then (L0; · · · ,W 2) is an ear-decomposition of

H. Since |L0| is odd and W 2 is an even path, by Lemma 5.2 (1) and (3) this yields a

contradiction.

Now for the sufficiency, suppose E = (L0;L1, · · · , Lt) satisfies all conditions of the

theorem, i.e., E is a standard ear-decomposition of G that has properties Q and R, Li
is an odd path for i ∈ [t], and f(E , j, i) is an odd path when f(E , j, i) 6= K4. Recall

the definitions of digraph D, set U and integer li in Lemma 5.5. We choose an integer

r from U such that |f(E , lr, r)| is minimum. For convenience, let l = lr. Then for each

vertex u of I(f(E , l, r)) ∪ I(Lr), we have dG(u) = 2. The proof proceeds by induction

on t. By Lemmas 1.1 (2) and 5.3, the result holds for t = 0.

If Lr is not an edge, then let G′ be a graph obtained from G by replacing f(E , l, r)
with an edge f = arbr, let G′1 = G′−I(Lr) and G′2 = Lr∪f . Let L = [Ll−I(f(E , l, r))−
E(f(E , l, r))] ∪ f . Let E ′ be an ear-decomposition of G′1 obtained from E by removing

Lr, and then replacing Ll with L. If l > 0, then since f(E , l, r) is an odd path, L is
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an odd path and E ′ satisfies all the conditions. If l = 0 and Ll is a uniform umbrella

(an odd cycle or an even cycle), then L is also a uniform umbrella (an odd cycle, an

even cycle), i.e., E ′ satisfies all the conditions in this case. If l = 0 and Ll is an even

θ-graph, then E ′ satisfies all the conditions except for L = K2,3. Thus, E ′ satisfies all

the conditions unless L = K2,3.

If L 6= K2,3, then E ′ satisfies all the conditions. Since the number of paths in E ′ is

t−1, by the induction hypothesis we have md(G′1) =
⌊
|G′1|

2

⌋
. Since G′2 is an even cycle,

we have md(G′2) =
|G′2|

2
. Thus, by Lemma 2.1, md(G′) = md(G′1)+md(G′2)−1 =

⌊
|G′|

2

⌋
.

Since G is a graph obtained from G′ by replacing f with the odd path f(E , l, r), by

Lemma 2.2 we have md(G) ≥ md(G′) +
⌊
||f(E,l,r)||−1

2

⌋
=
⌊
n
2

⌋
. Therefore, md(G) =

⌊
n
2

⌋
.

If L = K2,3, then l = 0 and r = 1. Since r ∈ U , dr is maximum and dr = 1

(the definition dr is in the proof of Lemma 5.5). Thus, Li ∈ ZE for each i ∈ [t].

Let T1, T2 and T3 be routes of L0 with |T1| ≤ |T2| ≤ |T3|. Then T1 and T2 are 2-

paths and f(E , 0, r) is a subpath of T3 with |f(E , 0, r)| = |T3| − 1. Since L0 6= K2,3,

we have |f(E , 0, r)| = |T3| − 1 ≥ 4. For each Li, if end(Li) ∩ I(Tj) 6= ∅ for j ∈
[2], then |f(E , 0, i)| = 2 < |f(E , l, r)|, a contradiction; if end(Li) = end(T3), then

f(E , 0, i) is an even path, a contradiction. Thus, f(E , 0, i) is a proper subpath of T3

and |f(E , 0, i)| = |f(E , 0, r)| for each i ∈ [t]. If end(Li) 6= end(Lr) for i, j ∈ [t], then

end(Li) ∩ I(f(E , 0, r)) 6= ∅ and f(E , 0, i) is not a proper subpath of f(E , 0, r), i.e., E
does not have property R, a contradiction. Therefore, end(Li) = end(Lj) for each

i, j ∈ [t]. Let H = T2 ∪ T3 ∪ (
⋃
i∈[t] Li). Then H is a graph constructed in Remark

1. Thus, md(H) = |H|
2

. Suppose Γ is an extremal MD-coloring of H (see Remark 1).

Let T1 = ue1ae2v and T2 = uf1bf2v. Since G = H ∪ T1, let Γ′ be an edge-coloring of

G such that Γ(e) = Γ′(e) for each e ∈ E(H), and Γ(e1) = Γ′(f2) and Γ(e2) = Γ′(f1).

Then Γ′ is an MD-coloring of G with
⌊
n
2

⌋
colors, i.e., md(G) =

⌊
n
2

⌋
.

If Lr is an edge, then replace Ll by Ll∪Lr− I(f(E , l, r)) and replace Lr by f(E , l, r).
Then the new ear-decomposition also satisfies all the conditions. Moreover, dr is max-

imum and |f(E , lr, r)| = 2 is minimum in the new ear-decomposition. Since Lr is not

an edge in the new ear-decomposition, this case has been discussed above.

Remark 3. Recalling the proof of Lemma 5.1, we can find a normal ear-decomposition

for a given 2-connected graph in polynomial time. For a normal ear-decomposition E
of G, deciding whether E satisfies all the conditions of Theorem 5.6 can be done in

polynomial time. Thus, given a 2-connected graph G, deciding whether md(G) =
⌊
n
2

⌋
is polynomially solvable.

Corollary 5.10. If G is a 2-connected graph with md(G) =
⌊
|G|
2

⌋
, then G is a planar

graph.

Proof. By Theorem 5.6, there is a standard ear-decomposition E = {L0;L1, · · · , Lt} of

G that has properties Q and R. Since G is a planar graph if G is a cycle, an umbrella
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or a θ-graph, the result holds for t = 0. Our proof proceeds by induction on t. Suppose

t > 0. By Lemma 5.5, there are integers k, i such that f(E , k, i) is a path of order at

least two, and dG(u) = 2 for each u ∈ I(f(E , k, i))∪ I(Li). Let G′ be a graph obtained

from G by removing Li. By Lemma 5.2 (1), md(G′) =
⌊
|G′|

2

⌋
. By the induction

hypothesis, G′ is a planar graph. Since dG(u) = 2 for each u ∈ I(f(E , k, i)), there is a

face F of G′ such that f(E , k, i) is a subpath of F . Therefore, Li can be embedded in

F and G is a planar graph.
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