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Abstract

Let f(D(i, j), di, dj) be a real function symmetric in i and j with the prop-
erty that f(d, (1 + o(1))np, (1 + o(1))np) = (1 + o(1))f(d, np, np) for d = 1, 2.
Let G be a graph, di denote the degree of a vertex i of G and D(i, j) de-
note the distance between vertices i and j in G. In this paper, we define the
f -weighted Laplacian matrix for random graphs in the Erdös-Rényi random
graph model Gn,p, where p ∈ (0, 1) is fixed. Four weighted Laplacian type
energies: the weighted Laplacian energy L E f (G), weighted signless Lapla-
cian energy L E +

f (G), weighted incidence energy I E f (G) and the weighted
Laplacian-energy like invariant L E L f (G) are introduced and studied. We
obtain the asymptotic values of I E f (G) and L E L f (G), and the values of
L E f (G) and L E +

f (G) under the condition that f(D(i, j), di, dj) is a function
dependent only on D(i, j). As a consequence, we get that under the condition
that f(D(i, j), di, dj) is a function dependent only on D(i, j), for almost all
graphs Gp ∈ Gn,p, the energy for the matrix with degree-distance-based entries
of Gp, E (Wf (Gp)) < L E f (Gp), the Laplacian energy of the matrix, which can
be viewed as a generalization of a conjecture by Gutman et al.

Keywords: random graph, Laplacian energy, signless Laplacian energy, inci-
dence energy, Laplacian-energy like invariant, asymptotic value, chemical in-
dices
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1 Introduction

Throughout this paper, G denotes a simple graph with n vertices and m edges.

In chemistry, there is a closed relation between the molecular orbital energy levels

of π-electrons in conjugated hydrocarbons and the eigenvalues of the corresponding

molecular graph. For the Hüchkel molecular orbital approximation, the total π-

electron energy in a conjugated hydrocarbon is given by the sum of absolute values

of the eigenvalues corresponding to the molecular graph G in which the maximum

degree is no more than 4 in general. In 1970s, Gutman in [11] extended the concept of

energy to all simple graphs G. More on the energy of graphs can be found in [25]. We

use A(G) to represent the adjacency matrix of G with spectrum ρ1 ≥ ρ2 ≥ . . . ≥ ρn,

which are said to be the eigenvalues of graph G. The energy of graph G is defined as

E (G) =
n∑
i=1

|ρi|.

Moreover, several other energy-like quantities were introduced later, such as the

Laplacian energy, signless Laplacian energy, Laplacian-energy like invariant and the

incidence energy, which have been widely studied in the mathematical and mathematical-

chemical literatures; see below for definitions.

The Laplacian matrix of G is defined as L(G) = D(G) − A(G), where D(G) is

the diagonal matrix in which every diagonal entry is equal to the degree of the cor-

responding vertex. Supposing λ1(L) ≥ λ2(L) ≥ . . . ≥ λn(L) are the eigenvalues of

L(G), Gutman and Zhou [15] defined the Laplacian energy of G as

L E (G) =
n∑
i=1

|λi(L)− 2m

n
|.

The signless Laplacian matrix is defined as L+(G) = D(G) + A(G). Supposing that

λ1(L
+) ≥ λ2(L

+) ≥ . . . ≥ λn(L+) are the eigenvalues of L+, So et al. [26] defined

the signless Laplacian energy of G as

L E +(G) =
n∑
i=1

|λi(L+)− 2m

n
|.

Furthermore, Liu et al. [26] proposed a Laplacian-energy like invariant, which is

defined as

L E L (G) =
n∑
i=1

√
λi(L).
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Gutman et al. pointed out in [16] that L E L (G) is more similar to E (G) than to

L E (G).

Moreover, Jooyandeh et al. [20] introduced the incidence energy I E (G) of G,

which is defined as the sum of the singular values of the incidence matrix of G. Gut-

man et al. [14] showed that

I E (G) =
n∑
i=1

√
λi(L+).

We call these four energies Laplacian type energies since they are defined on the

basis of Laplacian matrix rather than adjacency matrix. It is not difficult to calculate

these energies for a concrete graph, just by computing the eigenvalues of L(G) or

L+(G). But this is impractical when n is getting very large. Some upper and lower

bounds were established before, and for details we refer the reader to [14, 21]. Those

inequalities, however, have a common flaw that only a few specific graphs attain the

equalities of the bounds. So, they can hardly characterize the asymptotic tendency

of these energies as n → ∞. In order to see clearly the asymptotic tendency, one

usually employs random graphs in the so-called Erdös-Rényi random graph model

Gn,p. Recall that Gn,p consists of all graphs on n vertices in which the edges are

chosen independently and equally with probability p, where p ∈ (0, 1) is a constant.

To study the property of general graphs, random graphs in Gn,p are very suitable

objects to serve this purpose.

At first, we recall some results on random matrices, details of which can be found

in [28, 29]. In 1950s, Wigner studied the limiting spectral distribution of a type of

random matrices, named as Wigner matrix, denoted by X = {xij}ni,j=1, which satisfies

the following conditions:

(i) xij (i 6= j) are i.i.d. random variables with variance σ2, and xij = xji;

(ii) xii are i.i.d. random variables without any moment requirement.

The empirical spectral distribution (ESD) of X is defined by ΦX(x) = 1
n
·]{λi | λi ≤

x, i = 1, 2, . . . , n}. Then, the energy of matrix X is E (X) = n ·
∫
|x| dΦX(x). Wigner

calculated the limiting spectral distribution (LSD for short) of X and obtained his

famous semicircle law; see [28, 29].

Define a random matrix Mn = Xn − Dn to be a Markov matrix, where Xn is a

Wigner matrix with all diagonal entries 0, and Dn is a diagonal matrix in which

Dn(i, i) =
∑
j 6=i

xij, i = 1, . . . n. Bryc et al. obtained the LSD of a Markov matrix; see
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below.

Theorem 1.1. (see Bryc et al. [3].) Let Mn be a Markov matrix such that x12 is of

expectation 0 and variance 1. Then with probability 1, Φn−1/2Mn
(x) converges weakly

to a distribution Ψ(x) as n → ∞, where Ψ is the free convolution of the standard

semicircle law φ(x) = 1
2π

√
4− x2 and the standard normal measure.

On the basis of the fact that the adjacency matrix A(Gp) of a random graph

Gp ∈ Gn,p is a Wigner matrix and that L(Gp) is a Markov matrix, in [6], Du, Li

and Li applied the semicircle law and Theorem 1.1, and they obtained the following

results.

Theorem 1.2. For almost all random graphs Gp ∈ Gn,p,

E (Gp) = (
8

3π

√
p(1− p) + o(1)) · n3/2.

Theorem 1.3. For almost all random graphs Gp ∈ Gn,p,

(
2
√

2

3

√
p(1− p) + o(1)) · n3/2 ≤ L E (Gp) ≤ (

√
2 ·
√
p(1− p) + o(1)) · n3/2.

In [7], they calculated the other three kinds of energies; see below.

Theorem 1.4. For almost all random graphs Gp ∈ Gn,p,

[(
16

3π
−
√

2)·
√
p(1− p)+o(1)]·n3/2 ≤ L E +(Gp) ≤ [(

16

3π
+
√

2)·
√
p(1− p)+o(1)]·n3/2.

Theorem 1.5. For almost all random graphs Gp ∈ Gn,p,

L E L (Gp) = (
√
p+ o(1)) · n3/2.

Theorem 1.6. For almost all random graphs Gp ∈ Gn,p,

I E (Gp) = (
√
p+ o(1)) · n3/2.

In practical requirements of molecular chemistry, many objects are concerned with

degrees of vertices and/or distances between pairs of vertices in a graph, and many

interesting matrices with entries from degrees and/or distances have been introduced;

see [22, 4]. They are categorized as the following three kinds. One kind of such

matrices comes from degree-based topological indices of chemical use, such as the

Zagreb matrix, ABC-matrix and Harmonic matrix. Another kind of such matrices
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comes from distance-based topological indices, such as the distance matrix, Harary

matrix and the reverse Wiener matrix, etc. In 1994, Dobrynin and Kochetova put

forward a new topological index determined by the values of both distances between

pairs of vertices and degrees of vertices, and recently this new type of indices becomes

more and more popular. We refer them as the degree-distance-based indices. From

this kind of indices, it is natural to define a new kind of matrices with mixed degree-

distance-based entries, since a 2-dimensional matrix contains much more structural

data than a single value of index. As one can see below, it is essentially a distance

matrix. So, we call it the weighted distance matrix of a graph G. We use di and D(i, j)

to represent the degree of a vertex i of G and the distance between two vertices i and

j in G, respectively. The definition of the matrix is given as follows.

Definition 1.7. Let G be a graph, and f(D(i, j), di, dj) be a real function symmetric

in i and j. The weighted distance matrix Wf (G) is defined as follows: the ij-entry of

Wf (G)

Wf (G)(i, j) =

{
f(D(i, j), di, dj), i 6= j

0, i = j

Similarly, the weighted distance Laplacian matrix are defined as Lf (G) = Df (G)−
Wf (G), whereDf (G) is a diagonal matrix in which the ii-entry equals

∑
j 6=i

f(D(i, j), di, dj).

The weighted Laplacian energy L E f and weighted signless Laplacian energy L E +
f

are also defined similarly, just to replace 2m
n

with∑
i 6=j

f(D(i, j), di, dj)

n
.

If we replace λi with |λi|, we get the definitions of weighted Laplacian-energy like

invariant L E L f and weighted incidence energy I E f .

Unfortunately, when we consider Wf (Gp) for random graphs Gp, a big problem aris-

es. This matrix is no longer a Wigner matrix since the random variables f(D(i, j), di, dj)

(i, j ∈ {1, 2, . . . , n}) are not independent. This limits the use of this method, and

most previous results become unavailable. Nevertheless, we still managed to ob-

tain the asymptotic values of weighted energies by doing some approximation of the

classical results. Throughout the paper, we suppose that f(1, di, dj) and f(2, di, dj)

satisfy the property that f(1, (1 + o(1))np, (1 + o(1))np) = (1 + o(1))f(1, np, np) and

f(2, (1 + o(1))np, (1 + o(1))np) = (1 + o(1))f(2, np, np). We give the asymptotic val-

ues of L E L f (Gp) and I E f (Gp), and L E f (Gp) and L E +
f (Gp) under the condition

that f(D(i, j), di, dj) is only determined by D(i, j). Our main results are stated as

follows.
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Theorem 1.8. Let f(1, di, dj), f(2, di, dj) be symmetric functions satisfying that

f(1, (1 + o(1))np, (1 + o(1))np) = (1 + o(1))f(1, np, np) and f(2, (1 + o(1))np, (1 +

o(1))np) = (1 + o(1))f(2, np, np). Then for almost all graphs Gp ∈ Gn,p,
(i) if f(1, np, np)/f(2, np, np)→ ±∞, then

L E L f (Gp) =
√
|f(1, np, np)|(√p+ o(1)) · n3/2,

I E f (Gp) =
√
|f(1, np, np)|(√p+ o(1)) · n3/2;

(ii) if f(1, np, np)/f(2, np, np)→ C ∈ R, then

L E L f (Gp) =
√
|f(2, np, np)|(

√
|1 + (C − 1)p|+ o(1)) · n3/2,

I E f (Gp) =
√
|f(2, np, np)|(

√
|1 + (C − 1)p|+ o(1)) · n3/2.

Theorem 1.9. Assume that D1 = f(1, di, dj) and D2 = f(2, di, dj) are constants.

Then, for almost all graphs Gp ∈ Gn,p, we have

|D1 −D2|(
2
√

2

3

√
p(1− p) + o(1)) · n3/2 ≤ L E f (Gp)

≤ |D1 −D2|(
√

2 ·
√
p(1− p) + o(1)) · n3/2,

and the signless Laplacian energy enjoys the inequalities

|D1 −D2|[(
16

3π
−
√

2) ·
√
p(1− p) + o(1)] · n3/2 ≤ L E +

f (Gp)

≤ |D1 −D2|[(
16

3π
+
√

2) ·
√
p(1− p) + o(1)] · n3/2.

For the asymptotic value of adjacency energy of random graphs with degree-based

weights f(di, dj), Li, Li and Song in [23] obtained the following result.

Theorem 1.10. Let f(x, y) be a symmetric real function. Denote by Af (Gp) the

adjacency matrix of a random graph Gp weighted by a degree-based function f(di, dj).

If the function f satisfies that conditions that |f(di, dj)| ≤ Cnm for some constants

C,m > 0, and f((1 + o(1))np, (1 + o(1))np) = (1 + o(1))f(np, np) where p ∈ (0, 1) is

any fixed and independent of n, then for almost all graphs Gp in Gn,p,

E (Af (Gp)) = |f(np, np)|( 8

3π

√
p(1− p) + o(1)) · n3/2 a.s.

Whereas, for the asymptotic value of energy of weighted distance matrix Wf (Gp)

of graphs Gp ∈ Gn,p, Li, Li and Wang in [24] recently obtained the following result.
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Theorem 1.11. Let f(D(i, j), di, dj) be a function symmetric in i and j satisfying

the condition that f(D(i, j), (1 + o(1))np, (1 + o(1))np) = (1 + o(1))f(D(i, j), np, np).

Then for almost all graphs Gp ∈ Gn,p,

E (Wf (Gp)) = {( 8

3π

√
p(1− p) + o(1)) · |D1 −D2|+ o(|f(2, np, np)|)} · n3/2 a.s.

That is, if f(1, np, np)/f(2, np, np) 9 1,

E (Wf (Gp)) = |D1 −D2|(
8

3π

√
p(1− p) + o(1)) · n3/2 a.s.

and if f(1, np, np)/f(2, np, np)→ 1,

E (Wf (Gp)) = o(1)|f(2, np, np)| · n3/2 a.s.

Remark 1.12. Note that if one considers only adjacency but not distance matrices,

then by setting f(2, dj, dj) = 0, it is easy to check that Wf (Gp) = Af (Gp) and there-

fore Theorem 1.11 implies Theorem 1.10. So, Theorem 1.10 holds if one deletes the

condition that |f(di, dj)| ≤ Cnm for some constants C,m > 0.

Remark 1.13. Gutman et al. in [13] conjectured that for any simple graph G,

E (G) ≤ L E (G). It was disproved in literature by showing many counterexamples.

However, Du et al. confirmed in [6] that it is almost true by showing that for almost

all graphs Gp ∈ Gn,p, E (Gp) < L E (Gp). Next we will give a stronger result.

For the matrices with degree-distance-based entries, from Theorems 1.9 and 1.11

we can get the following result.

Theorem 1.14. Assume that D1 = f(1, di, dj) and D2 = f(2, di, dj) are constants.

Then for almost all graphs Gp ∈ Gn,p,

E (Wf (Gp)) < L E f (Gp),

which implies E (Af (Gp)) < L E f (Gp), and hence, E (Gp) < L E (Gp).

The result holds true because in Theorems 1.9 and 1.11 the coefficients 2
√
2

3
> 8

3π
.

2 The energies L E L f and I E f

2.1 Weighted adjacency matrices of random graphs

In this section, we deal with a particular kind of weighted-distance matrix, the

weighted adjacency matrix, before handling the general cases. A weighted adjacency
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matrix is a weighted-distance matrix in which f(D(i, j), di, dj) = 0 if D(i, j) > 1. We

use Af (G) rather than Wf (G) to represent it, and keep other notations unchanged.

First of all, we would like to introduce some properties of random graphs as pre-

liminaries of our work. As is shown in Section 1, the matrix Wf (Gp) may be rather

complicated since the diameter of a graph can be very large, and also many different

values of distance D(i, j) for pairs of vertices of G are involved. However, things are

not that disappointed from the probability point of view. In fact, there is a famous

result, stated as follows.

Lemma 2.1. [2] Almost all graphs have diameter two.

So, from this result, one can see that to study the asymptotic property, it suffices

to deal with graphs of diameter 2, whose weighted distance matrix Wf (Gp) consists

of entries with only values 0, f(1, di, dj) and f(2, di, dj).

Another fact we need to point out is that for almost all graphs Gp ∈ Gn,p, the

vertex-degrees of Gp concentrate around the value np.

Lemma 2.2. (see [2]) Let ε > 0 be fixed, and εn−3/2 ≤ p ≤ 1− εn−3/2. Let q = q(n)

be a natural number and set

µq = nB(q;n− 1, p) and νq = n{1−B(q + 1;n− 1, p)},

where

B(l;m, p) =
∑
j≥l

b(j;m, p)

in which b(j;m, p) =
(
m
j

)
pj(1 − p)m−j is subject to the binomial distribution. For a

random graph G ∈ Gn,p, denote by Yq(G) the number of vertices with degrees at least

q and Zq(G) the number of vertices with degrees at most q. Then

(i) if µq → 0, P (Yq = 0)→ 0; (ii) if νq → 0, P (Zq = 0)→ 0.

Remember that p ∈ (0, 1) is a constant. It is not difficult to check that the minimum

and maximum degrees δ and ∆ of a random graph Gp on n vertices satisfy that

np− n
3
4 < δ(Gp) ≤ ∆(Gp) < np+ n

3
4 , a.s. (1)

(i) and (ii) hold by Chernoff’s Inequality. In summary, we just need to deal with

graphs with diameter 2, in which all vertex-degrees fall in the interval (np−n 3
4 , np+

n
3
4 ).
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From now on, we start the main procedure of our proof. Let L′f =
Lf

f(np,np)
=
∑
i∼j

Qij,

where Qij is an n×n matrix with only four non-zero entries: Qij(i, i) = Qij(j, j) = aij,

and Qij(i, j) = Qij(j, i) = −aij, where every aij = 1 + o(1) > 0. Qij is semi-positive

definite, and so is L′f .

Remember that L(G) = D(G) − A(G) is the Laplacian matrix (not weighted).

Take X = (x1, . . . xn) ∈ Rn, X>L′fX = X>(
∑
i∼j

Qij)X =
∑
i∼j

aij(xi − xj)
2, and

so rank(L′f ) = rank(L) = n − 1. Assume that the spectrum of L is λ1(L) ≥
λ2(L) ≥ . . . ≥ λn−1(L) > λn(L) = 0, and the spectrum of L′f is λ1(L

′
f ) ≥ λ2(L

′
f ) ≥

. . . λn−1(L
′
f ) > λn(L′f ) = 0. From here we can say that the definitions of L E L f

and I E f are quite reasonable, since the spectrum of Lf (G) is semi-positive or semi-

negative definite, depending on the sign of f(np, np).

We regard L′f as a perturbed matrix of L and will show that the eigenvalues of

L′f approximate those of L. The main tool we count on is Weyl’s Inequality, which

performs well in this kind of problems.

Lemma 2.3. (Weyl’s Inequality, see [8]) Assume M = H + P , where M,H and P

are n× n Hermitian matrices. Suppose that M has eigenvalues

ξ1 ≥ ξ2 ≥ . . . ≥ ξn,

and H has eigenvalues

ν1 ≥ ν2 ≥ . . . ≥ νn,

and P has eigenvalues

θ1 ≥ θ2 ≥ . . . ≥ θn.

If j + k − n ≥ i ≥ r + s− 1, then we have

νj + θk ≤ ξi ≤ νr + θs.

Especially, νi + θn ≤ ξi ≤ νi + θ1.

Also, we need some information about the eigenvalues of Wigner and Markov ma-

trices to characterize the spectrum of L.

Lemma 2.4. (Bryc [3]). Suppose M is a Markov matrix whose off-diagonal entries

are i. i. d. random variables with mean zero, variance one and finite fourth moment.

Then the spectrum radius r(M) ∼
√

2n log n a.s.

9



Lemma 2.5. (Füredi et. al. [9]) Let A be an n×n Wigner matrix with EA(1, 2) > 0.

Then, with probability 1 − o(1), the eigenvalues of A are O(n1/2) except the largest

one, which is O(n).

Theorem 2.6. For almost all graphs Gp ∈ Gn,p, λi(L′f ) = (p+o(1))n, i = 1, 2, . . . , n−
1.

Proof. It is easy to see that L̄ = (p(1− p))−1/2[(D − p(n− 1)I)− (A− p(J − I))] =

(p(1− p))−1/2(L+ pJ − npI) is a Markov matrix satisfying the conditions in Lemma

2.4, where J is the n × n matrix with all ones, and r(L̄) = o(n). The eigenvalues

of pJ − npI are −pn with multiplicity n-1 and 0 with multiplicity 1. Apply Weyl’s

Inequality on L̄ and pJ − npI, we get λi(L) = (p+ o(1))n, i = 1, . . . , n− 1.

Decompose L′f = L + L̃, L̃ =
∑
i∼j

Q̃ij, Q̃ij(i, i) = Q̃ij(j, j) = ãij, and Q̃ij(i, j) =

Q̃ij(j, i) = −ãij, where ãij = aij − 1 = o(1). Assume that the spectrum of L̃ is σ1 ≥
σ2 ≥ . . . ≥ σn. By Rayleigh’s Inequality, σ1 = max

||X||=1
X>L̃X, σn = min

||X||=1
X>L̃X. So,

σ1 = o(λ1(L)) and σn = o(λ1(L)), and thus the spectrum radius of L̃ r(L̃) = o(λ1(L)).

Apply Weyl’s Inequality once again, the proof is thus complete.

Now consider the f -weighted signless Laplacian matrix L+
f . Noticing that L+ =

L+ 2A, and using Lemma 2.5 and Weyl’s Inequality, we can get that

λ1(L
+) = O(n), λn(L+) = O(n), and λi(L

+) = (p+o(1))n for i = 2, . . . , n−1.

Repeating the former process (almost the same and we omit it), we have that

λ1(L
+
f ) = O(nf(np, np)), λn(L+

f ) = O(nf(np, np)),

and

λi(L
+
f ) = f(np, np)(p+ o(1))n for i = 2, . . . , n− 1.

Then we can obtain the values of L E L f and I E f as follows.

Corollary 2.7. Let f(di, dj) be a real function symmetric on i and j with the property

that f((1 + o(1))np, (1 + o(1))np) = (1 + o(1))f(np, np). Then, for almost all graphs

Gp ∈ Gn,p,
L E L f (Gp) =

√
|f(np, np)|(√p+ o(1)) · n3/2,

I E f (Gp) =
√
|f(np, np)|(√p+ o(1)) · n3/2.
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2.2 General case

In this subsection, we deal with the general case. In chemical practice, f(1, np, np),

f(2, np, np) are often functions with a definite limit as n → ∞. In fact, the in-

dices already defined so far are all positive power functions. So, we suppose that

f(1, np, np)/f(2, np, np)→ C (may be ∞).

First of all, consider the special case f(1, np, np) ∼ f(2, np, np). Then
Lf

f(1,np,np)

can be decomposed into the sum of two matrices, one is the Laplacian matrix of the

complete graph Kn and the other is the perturbed matrix whose off-diagonal entries

are all o(1). Using the method in the former section and noticing the fact that the

Laplacian eigenvalues of Kn are n with multiplicity n − 1 and 0 with multiplicity 1,

and the signless Laplacian eigenvalues of Kn are n − 2 with multiplicity n − 1 and

2n − 2 with multiplicity 1, we get that L E L f =
√
|f(2, np, np)|(1 + o(1))n3/2 and

I E f =
√
|f(2, np, np)|(1 + o(1))n3/2.

From now on, we reckon f(1, np, np)/f(2, np, np) 9 1. Decompose Lf into two

matrices Lf = L1 + L2, where

L1(i, j) =


−(f(1, di, dj)− f(2, di, dj)), i and j are adjacent,

0, i and j are nonadjacent,

−
∑
k 6=i

L1(i, k), i = j,

and

L2(i, j) =

−f(2, di, dj), i 6= j,

−
∑
k 6=i

L2(i, k), i = j.

For convenience, denote F (di, dj) = f(1, di, dj) − f(2, di, dj), with the property

that F ((1 + o(1))np, (1 + o(1))np) = (1 + o(1))F (np, np). According to the proof

in the former section, the spectrum of L1

F (np,np)
is u′1 ≥ . . . ≥ u′n−1 > u′n = 0, with

u′i = (p+o(1))n for 1 ≤ i < n; and thus the spectrum of L2

f(2,np,np)
is v′1 ≥ . . . ≥ v′n−1 >

v′n = 0, with v′i = (1+o(1))n for 1 ≤ i < n. As the signs of F (np, np) and f(2, np, np)

determine the spectrum of L1 and L2, we distinguish four cases to discuss, in each of

which the Weyl’s Inequality is applied.

Case 1. F (np, np) > 0, f(2, np, np) ≥ 0.

Then, λi(Lf ) = F (np, np)(p+ o(1))n+ f(2, np, np)(1 + o(1))n for i = 1, . . . , n− 2,

λn−1 = O(nF (np, np)).

Case 2. F (np, np) > 0, f(2, np, np) < 0.
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Then, λ1(Lf ) = O(nF (np, np)), λn(Lf ) = O(nF (np, np)) and λi(Lf ) = F (np, np)(p+

o(1))n+ f(2, np, np)(1 + o(1))n for i = 2, . . . , n− 1.

Case 3. F (np, np) < 0, f(2, np, np) ≥ 0.

Then, λ1(Lf ) = O(nF (np, np)), λn(Lf ) = O(nF (np, np)) and λi(Lf ) = F (np, np)(p+

o(1))n+ f(2, np, np)(1 + o(1))n for i = 2, . . . , n− 1.

Case 4. F (np, np) < 0, f(2, np, np) < 0.

Then, λn(Lf ) = O(nF (np, np)) and λi(Lf ) = F (np, np)(p+o(1))n+f(2, np, np)(1+

o(1))n for i = 2, . . . , n− 1.

For the signless Laplacian matrix L+
f , the method is the same. Let L+

f = L+
1 +L+

2 ,

where

L+
1 (i, j) =


f(1, di, dj)− f(2, di, dj), i and j are adjacent,

0, i and j are nonadjacent,∑
k 6=i

L+
1 (i, k), i = j,

and

L+
2 (i, j) =

f(2, di, dj), i 6= j,∑
k 6=i

L+
2 (i, k), i = j.

The spectrum of
L+
1

F (np,np)
is u′+1 ≥ . . . ≥ u′+n−1 ≥ u′+n , with u′+1 = O(n), u′+n = O(n), and

u′+i = (p+ o(1))n for 1 < i < n. The spectrum of
L+
2

f(2,np,np)
is v′+1 ≥ . . . ≥ v′+n−1 ≥ v′+n ,

with v′+1 = (2 + o(1))n and v′+i = (1 + o(1))n for 1 < i ≤ n. The following two cases

are distinguished.

Case 1. f(2, np, np) ≥ 0.

Then, λ1(L
+
f ) = O(nF (np, np)), λ2(L

+
f ) = O(nF (np, np)), λn(L+

f ) = O(nF (np, np)),

and λi(L
+
f ) = F (np, np)(p+ o(1))n+ f(2, np, np)(1 + o(1))n for i = 3, . . . , n− 1.

Case 2. f(2, np, np) < 0.

Then, λ1(L
+
f ) = O(nF (np, np)), λn−1(L

+
f ) = O(nF (np, np)), λn(L+

f ) = O(nF (np, np))

and λi(L
+
f ) = F (np, np)(p+ o(1))n+ f(2, np, np)(1 + o(1))n for i = 2, . . . , n− 2.

From the discussion above, we can see that almost all eigenvalues of Lf (L+
f ) are

equal to F (np, np)(p+ o(1))n+ f(2, np, np)(1 + o(1))n. So, we can calculate L E L f

and I E f directly by discussing two cases: C = ±∞ and C ∈ R. Finally, we can get

Theorem 1.8.
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3 (Signless) Laplacian energy of distance-based ma-

trices

On the whole, the calculation of (signless) Laplacian energy of weighted distance

matrices, or even degree-weighted adjacency matrices are much more complicated

than L E L f and I E f . We can only give a magnitude at present, which is far from

satisfactory. However, if we restrict the study to distance-based matrices, that is,

f(D(i, j), di, dj) is a function depending only on D(i, j), nice lower and upper bounds

can be neatly obtained.

Denote f(1, di, dj) = D1 and f(2, di, dj) = D2. We continue to adopt the notations

in Section 2, but replace Lf with LD to emphasize the object we are studying. Let

LD = L1 + L2, here L1 = (D1 − D2)L and L2 = D2L0, where L0 is the Laplacian

matrix of Kn. The eigenvalues of L2 are D2n with multiplicity n − 1 and 0 with

multiplicity 1. It is clear that we only need to consider the case that D1 − D2 > 0;

otherwise, replace LD with −LD. So, we set it as a premise of this section.

First, assume D2 ≥ 0. Using Weyl’s Inequality, we get

(D1 −D2)λi+1(L) +D2n ≤ λi(LD) ≤ (D1 −D2)λi(L) +D2n, i = 1, . . . n− 1,

and λn(LD) = 0, from which we have

(D1−D2)
n∑
i=2

λi(L) +D2n(n− 1) ≤
n−1∑
i=1

λi(LD) ≤ (D1−D2)
n−1∑
i=1

λi(L) +D2n(n− 1).

We use λ̄ to represent the average value of the eigenvalues. That is,

λ̄(LD) = (D1 −D2)λ̄(L) +D2n+O(1).

Let Λ = (D1 − D2)λ̄(L) + D2n, and let s be the integer such that λs(L) ≥ λ̄(L) >

λs+1(L). Then,

L E D(Gp) =
n∑
i=1

| λi(LD)−

∑
i 6=j

f(D(i, j), di, dj)

n
|=

n∑
i=1

| λi(LD)− λ̄(LD) | (2)

=
n∑
i=1

| λi(LD)− Λ | +O(n) =
s−1∑
i=1

| λi(LD)− Λ | +
n−1∑
i=s+1

| λi(LD)− Λ | +O(n).

(3)

Noticing that (D1 −D2)(λi+1(L) − λ̄(L)) ≤ λi(LD) − Λ ≤ (D1 −D2)(λi(L) − λ̄(L))

for i = 1, . . . n− 1, we get

s∑
i=2

(D1 −D2)(λi(L)− λ̄(L)) ≤
s−1∑
i=1

| λi(LD)− Λ |≤
s−1∑
i=1

(D1 −D2)(λi(L)− λ̄(L)),
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n−1∑
i=s+1

(D1 −D2)(λ̄(L)− λi(L)) ≤
n−1∑
i=s+1

| λi(LD)− Λ |≤
n∑

i=s+2

(D1 −D2)(λ̄(L)− λi(L)).

Thus,
n∑
i=1

| λi(LD)− Λ |= (D1 −D2)
n∑
i=1

| λi(L)− λ̄(L) | +O(n).

Recall from Theorem 1.3 that the magnitude of the asymptotic Laplacian energy is

O(n
3
2 ). Thus, L E D(Gp) is essentially |D1 − D2| times L E (Gp). As for the case

D2 < 0, the interlacing relationship between λi(LD) and λi(L) becomes

(D1 −D2)λi(L) +D2n ≤ λi(LD) ≤ (D1 −D2)λi−1(L) +D2n, i = 2, . . . , n.

Repeating the process above, the identical conclusion can be reached.

L E +
f (Gp) can be calculated in the same way. Let L+

f = L+
1 + L+

2 , where L+
1 =

(D1−D2)L
+ and L+

2 = D2L
+
0 . The eigenvalues of L+

2 are 2D2(n−1) with multiplicity

1 and D2(n − 2) with multiplicity n − 1. Using Weyl’s Inequality, the two relations

can be obtained, respectively, as follows.

If D2 ≥ 0, then λ+1 (LD) = O(n) and

(D1−D2)λ
+
i (L)+D2(n−2) ≤ λ+i (LD) ≤ (D1−D2)λ

+
i−1(L)+D2(n−2), i = 2, . . . , n.

If D2 < 0, then λ+n (LD) = O(n) and

(D1−D2)λ
+
i+1(L)+D2(n−2) ≤ λ+i (LD) ≤ (D1−D2)λ

+
i (L)+D2(n−2), i = 1, . . . , n−1.

Similarly, L E +
D is essentially |D1 −D2|L E +

D. Combining Theorems 1.3 and 1.4, we

eventually get the asymptotic value of the (signless) Laplacian energy, which is stated

in Theorem 1.9.

4 Applications for matrices with distance-based

and degree-distance-based weights of chemical

use

As once proposed in [22] and commented in [24], if we use a matrix to represent the

structure of a molecular graph with weights separately on its pairs of vertices, it will

completely keep the structural information of the graph, i.e., a matrix keeps much

more structural information than a numeral of an index. So, it is significant to study

the properties of these chemical-index-weighted matrices. Here we use three tables to
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list our results, in terms of three different kinds of indices, that is, the degree-based

only [23], distance-based only, and the degree-distance-based mixed [24]. One can

easily calculate these results from the formulas given in the above sections, details of

which are omitted.

Table 1: Degree-based indices

Index f(di, dj) L E L f and I E f

First Zagreb di + dj (
√

2p+ o(1)) · n2

Second Zagreb didj (p
√
p+ o(1)) · n5/2

Randić 1√
didj

(1 + o(1))n

General Randić (didj)
α (pα+

1
2 + o(1)) · nα+ 3

2

ABC

√
di+dj−2√
didj

((2p)
1
4 + o(1)) · n5/4

AZI (
didj

di+dj−2)3 ( p2

2
√
2

+ o(1)) · n3

AG
2
√
didj

di+dj
(
√
p+ o(1)) · n3/2

Harmonic 2
di+dj

(1 + o(1))n

SCI 1√
di+dj

((p
2
)
1
4 + o(1)) · n5/4

First multiple Zagreb log di
di

+
log dj
dj

(
√

2 + o(1))n
√

log n

Modified multiple Zagreb log(di + dj) (
√
p+ o(1)) · n3/2

√
log n

Second multiple Zagreb log di + log dj (
√

2p+ o(1)) · n3/2
√

log n

Lanzhou (n− 1)(di + dj)− (d2i + d2j) (p
√

2(1− p) + o(1)) · n5/2

Table 2: Distance-based indices

Index f(D(i, j)) L E L f and I E f

Harary [27, 18] 1/D(i, j) (
√

1+p
2

+ o(1)) · n3/2

Hyper-Wiener 1
2
(D(i, j) +D2(i, j)) (

√
3− 2p+ o(1)) · n3/2

Reciprocal complementary Wiener [19] 1
diam(G)∗+1−D(i,j)

(
√

1− p
2

+ o(1)) · n3/2

Reverse Wiener [30] diam(G)−D(i, j) (
√
p+ o(1)) · n3/2

∗diam(G) is the diameter of graph G.
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Table 3: Degree-distance-based indices

Index f(D(i, j), di, dj) L E L f and I E f

degree-distance-index [5] (di + dj)D(i, j) (
√

4p− 2p2 + o(1)) · n2

Gutman [12] didjD(i, j) (
√

2p2 − p3 + o(1)) · n5/2

Additively weighted Harary [1, 17]
di+dj
D(i,j)

(
√
p+ p2 + o(1)) · n2

Multiplicatively weighted Harary [1, 17]
didj
D(i,j)

(
√

p2+p3

2
+ o(1)) · n5/2

Remark 4.1. From the above three tables, one can see the following facts. (1) It

seems that some values, say (1 + o(1))n, do not depend on the probability p. However

within the term o(1), p will plays a role, though not in the first domination term. (2)

Most of the values are monotonic when p gets large. But, some of the values get their

extremal at nontrivial points, say the Gutman index.
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[27] D. Plavs̆ić, S. Nikolić, N. Trinajstić, Z. Mihalić, On the Harary index for the

characterization of chemical graphs, J. Math. Chem. 12 (1993), 235-250.

[28] E.P. Wigner, On the distribution of the roots of certain symmetric matrices,

Ann. Math. 67 (1958), 325-327.

[29] E.P. Wigner, Characteristic vectors of bordered matrices with infinite dimen-

sions, Ann. Math. 62 (1955), 548-564.

[30] A.W. van der Vaart, Asymototic Statistics, Cambridge Series in Statistical and

Probablistic Mathematics Book 3, Cambridge University Press, 2000.

18


