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Abstract. A graph is symmetric if its automorphism group acts transitively on
both the vertex and the arc sets. Stimulated by Lorimer’s work on symmetric graphs
of prime valency, we make a further investigation on the structural properties of
the automorphism groups of connected symmetric graphs with prime valency. Also,
as an application, we give a classification for symmetric graphs of prime valency
arising from a class of almost simple groups.
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1. Introduction

All graphs considered in this paper are assumed to be finite, simple and undirected.

Let Γ = (V,E) be a connected graph, and denote by Aut(Γ) the automorphism
group of Γ. An arc in Γ is an ordered pair of adjacent vertices. For a subgroup G 6
Aut(Γ), the graph Γ is called G-vertex-transitive, G-edge-transitive or G-symmetric
if G acts transitively on the vertex set, the edge set or the arc set of Γ, respectively.

Interest in symmetric graphs stems from Tutte’s work on cubic graphs [20]. Since
then, symmetric graphs have received considerable attention in the literature. There
are too many published results in this field to be adequately summarised here. What
interests us is Lorimer’s works [15, 16] on symmetric graphs of prime valency.

Let Γ = (V,E) be a connected G-symmetric graph of prime valency r, where
G 6 Aut(Γ). Assume that G contains a normal subgroup N which is intransitive on
V . Then each N -orbit on V is an independent set of Γ. The normal quotient of Γ with
respect to (G,N), denoted by Γ(G,N), is the graph with vertex set VN := {αN | α ∈ V }
and edge set EN := {{αN , βN} | {α, β} ∈ E}. Lorimer [15] proved that either Γ is
bipartite, or G has subgroups G1 and G2 such that G2 is normal in G1, G1/G2 is
simple, and either G2 is regular on V or Γ(G1,G2) is G1/G2-symmetric and of valency
r. Thus those graphs arising from simple groups play an important role in the study
of symmetric graphs of prime valency. However, we are more interested in the gap
between G and G1, or how to choose G1 in G. For simplicity, we assume further that
each minimal normal subgroup of G has at most two orbits on V . In Section 4 of this
paper, for non-bipartite Γ, we prove G1 may be chosen as the socle soc(G) of G, see
Lemma 4.1. We also give a similar version for bipartite Γ in Lemma 4.2. The first
result of this paper is summarized as follows.
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Theorem 1.1. Let Γ = (V,E) be a connected G-symmetric graph of prime valency
r > 3. Assume that each minimal normal subgroup of G has at most two orbits on
V and Γ is not isomorphic to the complete bipartite graph Kr,r. Then soc(G) is the
unique minimal normal subgroup of G, and one of the following holds.

(1) soc(G) is simple;
(2) soc(G) ∼= T k for a simple group T and integer k > 1, and either

(i) soc(G) has a normal subgroup T k−1 which is semiregular but not transitive
on each soc(G)-orbit on V ; or

(ii) (T, r) is one of (Ar, r), (PSL(n, q), q
n−1
q−1

), (PSL(2, 11), 11) or (M23, 23),

k > 4, Γ is bipartite, soc(G) = L1×L2, where L1 and L2 are isomorphic
and semiregular but intransitive on each soc(G)-orbit on V .

Suppose that Γ and G are described as in Theorem 1.1. If Γ has order a power of
2, then one can read off the graph Γ from [14, Theorem 1.1]. This stimulates us to
classify Γ under the assumption that |V | is a product of two prime powers.

Theorem 1.2. Let Γ = (V,E) be a connected G-symmetric graph of prime valency
r > 3. Assume that each minimal normal subgroup of G has at most two orbits on
V , and that one minimal normal subgroup of G has an orbit of length qapb, where
a, b are positive integers, and p, q are distinct primes. Then G is almost simple, and
Γ is isomorphic to one of the following graphs:

(1) ten of cubic graphs defined in [3]: F010 (Petersen graph), F020A, F030
(Tutte’s 8-cage), F028, F040, F056B, F056C, F110, F112A and F182D;

(2) Hoffman-Singleton graph, the point-hypeplane incidence graph of the projec-
tive geometry PG(n− 1, te), the incidence graph of the generalized quadrangle

GQ(4, 22i), where t is a prime and (n, te) = (3, 2), (3, 4), (4, t) or (6, 2), i > 1;
(3) the complete graph Kqapb, and the graphs in Examples 3.1-3.5;
(4) the standard double covers of Petersen graph, Hoffman-Singleton graph and

Kqapb.

2. Preliminaries

For a finite group G and H,K < G with |K : (H ∩ K)| = 2 and ∩g∈GHg = 1,
define a graph Cos(G,H,K) on [G : H] := {Hx | x ∈ G} such that {Hx,Hy} is an
edge if and only if yx−1 ∈ HKH \H. Then the group G can be viewed as a subgroup
of Aut(Cos(G,H,K)), where G acts on [G : H] by right multiplication. It is easily
shown that Cos(G,H,K) is G-symmetric and, for x ∈ K \ H, the edge {H,Hx}
and the arc (H,Hx) have stabilizers K and H ∩ K in G, respectively. Moreover,
Cos(G,H,K) is connected if and only if 〈H,K〉 = G.

Now let Γ = (V,E) be a connected G-symmetric graph, and {α, β} ∈ E. Then
there is some g ∈ G such that (α, β)g = (β, α). Since Γ is connected, we have
G = 〈g,Gα〉. Replacing with a power of g, the element g may be chosen as a 2-
element. Note further that such g is contained in the edge-stabilizer G{α,β} but not
in the arc-stabilizer Gαβ. Then we have a simple fact as follows.

Lemma 2.1. Let Γ = (V,E) be a connected G-symmetric graph, and {α, β} ∈ E.
Then |G{α,β} : Gαβ| = 2 and 〈Gα, G{α,β}〉 = G; in particular, Gαβ has even index in
its normalizer NG(Gαβ).
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Considering the bijection αg 7→ Gαg, ∀g ∈ G, we have an isomorphism from Γ to
Cos(G,Gα, G{α,β}). Then the following lemma holds.

Lemma 2.2. Let Γ = (V,E) be a regular graph of valency d, and G 6 Aut(Γ).
Then Γ is a connected G-symmetric graph if and only if Γ ∼= Cos(G,H,K) for some
H,K < G with ∩g∈GHg = 1, |H : (H ∩K)| = d, |K : (H ∩K)| = 2 and 〈H,K〉 = G.

In the following, we assume that Γ = (V,E) is a connected G-vertex-transitive

graph. For a vertex α ∈ V , denote by G
Γ(α)
α the permutation group induced by Gα

on Γ(α), the neighborhood of α in Γ. Let G
[1]
α be the kernel of this action. Then

G
Γ(α)
α
∼= Gα/G

[1]
α . Take an edge {α, β} of Γ, and set G

[1]
αβ = G

[1]
α ∩G[1]

β . Then

G[1]
α /G

[1]
αβ
∼= (G[1]

α )Γ(β) � (G
Γ(β)
β )α, Gαβ/G

[1]
αβ . (GΓ(α)

α )β × (G
Γ(β)
β )α,

G[1]
α = G

[1]
αβ.(G

[1]
α )Γ(β), Gα = (G

[1]
αβ.(G

[1]
α )Γ(β)).GΓ(α)

α .
(2.1)

Note, (G
Γ(β)
β )α ∼= (G

Γ(α)
α )β if Γ is G-symmetric.

Lemma 2.3. Let Γ = (V,E) be a connected G-vertex-transitive graph, and α ∈ V .

Assume that G
Γ(α)
α is soluble. Then Gα is soluble.

Proof. It suffices to show that G
[1]
α is soluble. Assume that Γ has n vertices α1 =

α, α2, . . . , αn. Since Γ is G-vertex-transitive, it is easily shown that every G
Γ(αi)
αi is

soluble. For 1 6 i 6 n, set Gα1···αi = ∩16j6iGαj and G
[1]
α1···αi = ∩16j6iG

[1]
αj . Since

Γ is connected, relabelling if necessary, we can assume that each vertex αi+1 is ad-

jacent to some αj ∈ {α1, . . . , αi}, where 1 6 i < n. Then G
[1]
α1···αi 6 Gαi+1

, and so

G
[1]
α1···αi/G

[1]
α1···αiαi+1

∼= G
[1]
α1···αiG

[1]
αi+1/G

[1]
αi+1
∼= (G

[1]
α1···αi)

Γ(αi+1) 6 G
Γ(αi+1)
αi+1 . This implies

that G
[1]
α1···αi/G

[1]
α1···αiαi+1 is soluble. Thus we have a normal series 1 = G

[1]
α1···αn � · · ·�

G
[1]
α1···αiαi+1 �G

[1]
α1···αi � · · ·�G

[1]
α1α2 �G

[1]
α1 = G

[1]
α whose factors are soluble. Then G

[1]
α

is soluble, and the Lemma follows. �

Assume that Γ is G-symmetric and of prime valency r > 3. Then G
Γ(α)
α is a

transitive permutation group of prime degree r. Thus either G
Γ(α)
α 6 AGL(1, r), or

G
Γ(α)
α is 2-transitive on Γ(α), refer to [6, p. 99, Corollary 3.5B]. For a prime s, let

Os(Gα) be the largest normal s-subgroup of Gα. Then we have the following fact.

Lemma 2.4. Let Γ = (V,E) be a connected G-symmetric graph of prime valency

r > 3, and {α, β} ∈ E. Assume that Os(Gα) 66 G
[1]
αβ for some prime s not equal to r.

Then s is a divisor of r − 1.

Proof. Since Os(Gα) is normal in Gα, all Os(Gα)-orbits on Γ(α) have equal length,

which is a power of s. It follows that Os(Gα) 6 G
[1]
α , and so Os(Gα) is a normal

subgroup of Gαβ. Since Os(Gα) 66 G
[1]
αβ, we have 1 6= (Os(Gα))Γ(β) � (Gαβ)Γ(β) =

(G
Γ(β)
β )α. Recall that G

Γ(β)
β 6 AGL(1, r) or G

Γ(β)
β is 2-transitive on Γ(β). It follows

that each (G
Γ(β)
β )α-orbit on Γ(β)\{α} has length a divisor of r−1. Then, considering

the action of (Os(Gα))Γ(β) on a given (G
Γ(β)
β )α-orbit, the lemma follows. �

For normal subgroups of G, by [15, Theorem 9] and [16, Theorem 1], we have the
following fact.
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Lemma 2.5. Assume that Γ = (V,E) is a G-symmetric graph of prime valency
r > 3, and N is a normal subgroup of G. Then either N is semiregular on V , or Nα

is transitive on Γ(α) and N has at most two orbits on V , where α ∈ V .

At the end of this section, we list a result on permutation groups. Recall that
a permutation group on a nonempty set Ω is quasiprimitive if each of its minimal
normal subgroup is transitive on Ω. Let soc(G) be the subgroup of a finite group G
generated by its minimal normal subgroups, called the socle of G. Then the following
lemma is easily shown, see also the second paragraph of Section 3 in [18].

Lemma 2.6. Let G be a quasiprimitive group on a finite set Ω. Then either soc(G) is
the minimal normal subgroup of G, or G has exactly two minimal normal subgroups.
Moreover, for the latter case, if N is a minimal normal subgroup of G then soc(G) =
N ×CG(N), N ∼= CG(N), and both N and CG(N) are insoluble and regular on Ω.

3. Examples

In this section, we present some graphs involved in Theorem 1.2.

Recall the standard double cover of a graph Σ = (U,E ′), denoted by Σ(2), which is
a bipartite graph defined on U × {1, 2} such that {(u1, 1), (u2, 2)} is an edge of Σ(2)

if and only if {u1, u2} ∈ E ′. It is well known that Σ(2) is connected if and only if Σ
is a connected non-bipartite graph. Using standard double covers, we may construct
some desired graphs.

Assume that Σ = (U,E ′) is a connected G-symmetric non-bipartite graph (of prime
valency r). Then Σ(2) is a connected (G×〈τ〉)-symmetric graph (of valency r), where
τ is defined as (u, 1)↔ (u, 2), and G acts on U ×{1, 2} by (u, i)g = (ug, i) for u ∈ U ,
i ∈ {1, 2} and g ∈ G. If G = G0:〈σ〉 for an almost simple subgroup G0 and some
involution σ ∈ G, then G0:〈στ〉 is almost simple and acts transitively on the arc set
of Σ(2). For example, the complete graph Kn has automorphism group Sn, and its

standard double cover K
(2)
n admits an Sn acting transitively on the arcs.

We next construct several examples using the coset graphs. Let G be an almost
simple group with socle T , and L < H < G such that T 66 H, |H : L| is a prime
r and |NG(L) : L| is even. Take L < K 6 NG(L) with |K : L| = 2. (Note that
such K always exists.) If G = 〈H,K〉 then, by Lemma 2.2, we have a connected
G-symmetric graph Cos(G,H,K) of valency r and order |G : H|. Further, such a
graph Cos(G,H,K) is bipartite if and only if |T : (T ∩H)| 6= |G : H|. The following
examples only involve those almost simple groups which have socle PSL(2, t) (with
t a prime) or some simple groups included in the Atlas [5]. Thus we can get the
subgroup structures of them from [2, 5] and, sometimes, computation using GAP
[19].

Example 3.1. Let G be one of the almost simple groups listed in the first column
of Table 3.1. Checking the subgroups of G, we conclude that there are H,K < G
which satisfy the conditions in Lemma 2.2. Thus, for each triple (G,H,K) listed in
Table 3.1, the coset graph Cos(G,H,K) is connected, G-symmetric and of valency r,
where r is the prime listed in the fifth column of Table 3.1. �
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G H K |G : H| r Remark

A5,S5 Z5,D10 Z2,Z4 22 · 3 5
S5 Z5 Z2 23 · 3 5 bipartite

A6,A6.Zi2 D10,Z5:[2i+1] Z4, [2i+2] 22 · 32 5 i ∈ {1, 2}
A6.Zi2 Z5:[2i] [2i+1] 23 · 32 5 i ∈ {1, 2},bipartite

A6.Zi2 Z5:[2i] [2i+1] 23 · 32 5 i ∈ {0, 1, 2}
A6.Z2 Z5 Z2 24 · 32 5 bipartite

M12,M12.2 Z11:Z5,Z11:Z10 Z10,D20 26 · 33 11
M12.2 Z11:Z5 D10 27 · 33 11 bipartite

PSL(2, 8) D14 Z2
2 22 · 32 7

PSL(3, 3).o Z13:Z3o D6o 24 · 32 13 o ∈ {1, 2}
PSL(3, 3).2 Z13:Z3 D6 25 · 32 13 bipartite
PSL(3, 3).o Z13:Zo Z2 × Zo 24 · 33 13 o ∈ {1, 2}
PSL(3, 3).2 Z13 Z2 25 · 33 13 bipartite

PSL(3, 5) Z31:Z3 Z6,D6 25 · 53 31
PSL(3, 5).2 Z31:Z6 Z12,D12 25 · 53 31
PSL(3, 5).2 Z31:Z3 D12 25 · 53 31 bipartite

PSU(3, 3) Z7 25 · 33 7

PSU(3, 4) Z13:Z3 26 · 52 13

PSU(3, 7) Z43:Z3 27 · 73 43

PGL(2, t) Dt−1 < PSL(2, t) D8 t(t+ 1) t−1
4

prime t = 2 · 3a − 1, a odd prime

PGL(2, t) Dt+1 < PSL(2, t) D8 t(t− 1) t+1
4

prime t = 2 · p2i + 1, p odd prime

PSL(2, t) Zt:Zl D2l
(t+1)(t−1)

2l
t l

∣∣ t−1
2
, t = 2a − 1, a odd prime

PGL(2, t) Zt:Z2l 66 PSL(2, t) D4l
(t+1)(t−1)

2l
t l

∣∣ t−1
2
, t = 2a − 1, a odd prime

PGL(2, t) Zt:Zl < PSL(2, t) D2l
(t+1)(t−1)

l
t l

∣∣ t−1
2
, t = 2a − 1, a odd prime

Table 3.1.

Example 3.2. (1) Let G = PGL(2, t), where t ∈ {19, 29, 59, 61}. Then G has a
subgroup H ∼= A5 contained in PSL(2, t). Let A4

∼= L < H and K = NG(L).
Checking the subgroups of G (refer to [2, Theorem 2]), we conclude that NG(L) ∼= S4

and G = 〈H,K〉 (also confirmed by GAP). Then Cos(G,H,K) is a connected G-

symmetric bipartite graph of valency 5 and order t(t2−1)
60

.

(2) Let G = PSL(2, 31). Then G has a maximal subgroup H and a subgroup K
with H ∼= A5, K ∼= S4, H ∩ K ∼= A4 and G = 〈H,K〉, confirmed by GAP. Thus
Cos(G,H,K) is a connected G-symmetric graph of valency 5 and order 31 · 8.

Example 3.3. Let G be an almost simple group with socle T = PSU(3, 3). Take
PSL(2, 7) ∼= H < T , S4

∼= L < H, and K = NG(L). Then K = L × Z2 and
G = 〈H,K〉, confirmed by GAP. Thus Cos(G,H,K) is a connected G-symmetric
graph of valency 7 and order 23 · 32.

Example 3.4. Let G be an almost simple group with socle T = PSU(5, 2). Take
PSL(2, 11) ∼= H < T , A5

∼= L < H and K = NG(L). Then K ∼= S5 and G =
〈H,K〉, confirmed by GAP. This yields that Cos(G,H,K) is a connectedG-symmetric
bipartite graph of valency 11 and order 29 · 34.

Example 3.5. Let X be an almost simple group with socle T = M12. Then T
has two conjugacy classes of subgroups PSL(2, 11): one of them say C1 consists of
maximal subgroups, and the other one say C2 comes from the subgroups of maximal
subgroups of T isomorphic to M11. (Confirmed by GAP.) Note that PSL(2, 11) has
two conjugacy classes of maximal subgroups isomorphic to A5. Take Hi ∈ Ci, i = 1, 2.
For each i, let Li1, Li2 < Hi such that Li1 ∼= Li2 ∼= A5 but Li1 and Li2 are not
conjugate in Hi. Computation shows that

(i) L11 and L12 are conjugate in T , L11 is self-normalizing in T and NX(L11) ∼= S5;
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(ii) L21 and L22 are not conjugate in T , NX(L2j) = NT (L2j) ∼= S5 for j = 1, 2,
and there is σ ∈ NX(H2) such that Lσ21 = L22.

(1) Let G = X and K1 = NX(L11). Then G = 〈H1, K1〉, confirmed by GAP, and so
Cos(G,H1, K1) is a connected G-symmetric bipartite graph of valency 11 and order
288.

(2) Let G = T and K2j = NT (L2j) for j = 1, 2. Confirmed by GAP, we have
that G = 〈H2, K21〉 = 〈H2, K22〉. Then we get two connected G-symmetric graph-
s Cos(G,H2, K21) and Cos(G,H2, K22), which have valency 11 and order 144. It
is easily shown that the σ in (ii) induces an isomorphism from Cos(G,H2, K21) to
Cos(G,H2, K22) by H2g 7→ H2g

σ, ∀g ∈ G. �

4. Proof of Theorem 1.1

Assume that Γ = (V,E) is a connected graph of prime valency r > 3, and let
G 6 Aut(Γ). (Note that Γ has even order.) If Γ is G-symmetric and α ∈ V then, by
[4, Lemma 1.1], r is the largest prime divisor of |Gα| and |Gα| is indivisible by r2, see
also [15, Theorem 8].

Lemma 4.1. Let Γ = (V,E) be a connected G-symmetric graph of prime valency
r > 3. Assume that G is quasiprimitive on V . Then soc(G) is a minimal normal
subgroup of G, and one of the following holds:

(1) soc(G) is either simple or regular on V ;
(2) soc(G) ∼= T k for a nonabelian simple group T and integer k > 2, Γ is soc(G)-

arc-transitive, and a normal subgroup T k−1 of soc(G) is semiregular but not
transitive on V .

Proof. By Lemma 2.6, G has at most two minimal normal subgroups. Suppose G
has two minimal normal subgroups say N and M . Then, by [18, Theorem 2], Gα

does not act 2-transitively on Γ(α), where α ∈ V . Thus G
Γ(α)
α is soluble, and so Gα

is soluble by Lemma 2.3. Note that N and M are insoluble and regular on V . Thus
N ×M 6 G = NGα, yielding M . NGα/N ∼= Gα, a contradiction. Therefore, G
has a unique minimal normal subgroup say N .

If N is regular on V or simple then part (1) of this lemma follows. Thus we assume
next that N is irregular on V , and write N = T1 × · · ·Tk for some integer k > 2 and
isomorphic nonabelian simple groups Ti. In particular, N is insoluble.

By Lemma 2.5, Γ is N -symmetric. Then r is a divisor of |N |, and so each |Ti|
is divisible by r. Let L = T2 × · · ·Tk. Suppose that L is transitive on V . Then
N = LNα, and thus T1

∼= N/L ∼= Nα/(L∩Nα). This implies that r is not a divisor of
|L∩Nα| as |Nα| is indivisible by r2. Then, by Lemma 2.5, L is regular on V , and thus

L ∩Nα = 1 and T1
∼= Nα. In particular, since T1 is insoluble, N

Γ(α)
α is a 2-transitive

group of degree r. Then, by [18, Theorem 2], G is of type III(b)(i) described as in
[18, Section 2]. This implies that Nα 6 R1 × · · · × Rk, where each Ri is properly
contained in Ti. Then we get a contradiction by noting that Nα

∼= T1. Therefore, L
is intransitive on V . Since Γ is not bipartite, by Lemma 2.5, we have part (2) of this
lemma. �
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Lemma 4.2. Let Γ = (V,E) be a connected G-symmetric bipartite graph of prime
valency r > 3. Let G+ be the subgroup of G which preserves the bipartition of Γ.
Suppose that every minimal normal subgroup of G contained in G+ is transitive on
both parts of Γ. If Γ 6∼= Kr,r, then soc(G+) is a minimal normal subgroup of G,
soc(G) = soc(G+) or soc(G+)×Z2, either soc(G+) is abelian or G+ has at most two
minimal normal subgroups, and one of the following holds.

(1) soc(G+) is either simple or semiregular on V .
(2) soc(G+) ∼= T k for some nonabelian simple group T and integer k > 2, Γ is

soc(G+)-edge-transitive, and either
(i) a normal subgroup T k−1 of soc(G+) is semiregular but not transitive on

each part of Γ; or

(ii) k = 2l for some l > 1, soc(G
Γ(α)
α ) ∼= T for α ∈ V , (T, r) is one of (Ar, r),

(PSL(n, q), q
n−1
q−1

), (PSL(2, 11), 11) or (M23, 23), soc(G+) = L1×L2, where

L1 and L2 are minimal normal subgroups of G+, which are isomorphic
and semiregular but intransitive on each part of Γ.

Proof. We assume that Γ is not a complete bipartite graph. Then G+ is faithful on
both parts U and W of Γ, see [7, Lemma 5.2].

Suppose that G+ contains two minimal normal subgroups of G, say N and M .
Then N and M centralize each other, and thus they are regular on both parts U and
W of Γ. This implies that N and M are not abelian; otherwise, we have N = M
by [6, Theorem4.2A], a contradiction. Since N is transitive on U and W , we have
G+ = NGα for α ∈ V . Then M ∼= (MN)N 6 G+/N ∼= Gα, and in particular, Gα is

insoluble. Then G
Γ(α)
α is 2-transitive on Γ(α), and thus [17, Theorem 2.1] works here.

Combining with [17, Theorem 2.3], we conclude that G+ contains a minimal normal
subgroup say L other than M and N . Then G has three minimal normal subgroups
which centralize every other and are regular on both U and W , which is impossible.
Therefore, G+ contains a unique minimal normal subgroups of G. Note that CG+(N)
is normal in G. It follows that CG+(N) = 1 or N .

Let N be the minimal normal subgroups of G contained in G+. Write N = T1 ×
· · ·×Tk for isomorphic simple groups Ti and integer k > 1. Take an arbitrary minimal
normal subgroup L ofG+. Let g ∈ G\G+. Then Lg is also a minimal normal subgroup
of G+, and LLg is normal in G. By the choice of N , we have N 6 LLg. If L is abelian
then LLg 6 CG+(N) = N , and so N = LLg. If Lg = L then N 6 LLg = L, and so
N = LLg. Assume that L is nonabelian and Lg 6= L. Write L = S1 × · · · × Sl for
isomorphic nonabelian simple groups Si. Then LLg = S1×· · ·×Sl×Sg1×· · ·×S

g
l . Since

N is normal in LLg, each direct factor of N is contained in {S1, . . . , Sl, S
g
1 , . . . , S

g
l }.

Then 1 6= N = (L ∩ N) × (Lg ∩ N). It follows from the minimality of L and Lg

that L or Lg is contained in N , and then N = LLg. The above argument yields
N = soc(G+). Similarly, if N is nonabelian then it is easily shown that a minimal
normal subgroup of G+ contained in N must be L or Lg.

Suppose that N 6= soc(G+). Let M be a minimal normal subgroup of G with
N 6= M . Then M 66 G+, and M interchanges U and W . Thus M ∩ G+ has
index 2 in M . Noting that M is a product of isomorphic simple groups, it implies
that M ∼= Zm2 for some integer m > 1. On the other hand, M ∩ G+ is normal in
G, yielding M ∩ G+ = 1. Then M ∼= Z2. Noting that G = G+ × M , we have
soc(G) 6 NCG(N) = N(CG+(N)×M) = N ×M . Thus soc(G) = soc(G+)× Z2.
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To finish the proof, we assume further that N = T1×· · ·×Tk is not semiregular on
V , where k > 2 and Ti are isomorphic nonabelian simple groups. Then Γ is N -edge-
transitive, and so r is a divisor of each |Ti|. Let K = T2×· · ·×Tk. If K is intransitive
on each of U and W then, by [7, Lemma 5.1], K is semiregular on V . Now suppose
that K is transitive on U . Then N = KNα for α ∈ U , and hence T1

∼= Nα/(K ∩Nα).
Recalling that |Nα| is not divisible by r2, it follows that |K ∩Nα| is indivisible by r.
Then K is intransitive on W ; otherwise, Γ should be K-edge-transitive, and hence
|K ∩Nα| has a divisor r, a contradiction. By [7, Lemma 5.5], K has r-orbits on W .
Clearly, T1 acts transitively on these r-orbits, and hence T1 has a subgroup of index
r. By [8], (T1, r) is one of (Ar, r), (PSL(n, q), q

n−1
q−1

), (PSL(2, 11), 11) and (M23, 23).

By [7, Lemma 5.5], K ∩Nα fixes Γ(α) point-wise. Thus, since T1
∼= Nα/(K ∩Nα),

we conclude that N
[1]
α = K ∩Nα and N

Γ(α)
α
∼= T1. Since Nα is normal in Gα, we know

that N
Γ(α)
α is normal in G

Γ(α)
α , and hence soc(G

Γ(α)
α ) ∼= T1. Suppose that soc(G+) is a

minimal normal subgroup of G+. Then G+ is quasiprimitive on both U and W . By
[17, Theorem 2.3], G+ is of type III(b)(i) (given as in [18, Section 2]) on each of U
and W . In particular, Nα 6 R1×· · ·×Rk, where each Ri is properly contained in Ti,
which is impossible. Thus soc(G+) is not a minimal normal subgroup of G+, and then
soc(G+) = L×Lg, where L is a minimal normal subgroup of G+ and g ∈ G\G+. By
[17, Theorem 2.1], we conclude that neither L nor Lg is transitive on U or W . Then
by [7, Theorem 1.1], both L and Lg are semiregular on V . Without loss of generality,
we may choose L as a subgroup of the above K. Since K is transitive on U , we get
k− 1 > 1; otherwise L = K is transitive on U , a contradiction. Thus k = 2l for some
l > 1, and the lemma follows. �

Remark 4.3. Let G and Γ = (V,E) be as in Lemma 4.2 with G = G+ × Z2. Set
G = G+×〈σ〉, and take a G+-orbit U on V . Then V = U∪Uσ and U∩Uσ = ∅. Define
a graph Σ on U with edge set {{u1, u2} | {u1, u

σ
2} ∈ E}. Then Σ is G+-symmetric

and of valency r, and Γ ∼= Σ(2).

Proof of Theorem 1.1. Let Γ = (V,E) be a connected G-symmetric graph of prime
valency r > 3. Assume that Γ 6∼= Kr,r, and that each minimal normal subgroup of G
has at most two orbits on V . If Γ is not a bipartite graph then our result is true by
Lemma 4.1. Suppose that Γ is bipartite. Then |V | > 4 as Γ has valency r > 3. By
Lemma 4.2, soc(G+) is a minimal normal subgroup of G, and soc(G) = soc(G+) or
soc(G+) × Z2. If soc(G) = soc(G+) × Z2 then G has a normal subgroup of order 2,
which forces that |V | = 4, a contradiction. Thus our result follows. �.

Let (Γ, G) be a pair described as in Theorem 1.2. Clearly, Γ is not a complete
bipartite graph, and soc(G) is not a group of order a prime power. Note that a non-
abelian simple group has order divisible by three distinct primes. Then, by Lemmas
4.1 and 4.2, the following result holds.

Corollary 4.4. Assume that Γ = (V,E) and G are described as in Theorem 1.2.
Then G is almost simple.

5. The graphs

In this section, we determine the graphs in Theorem 1.2. In view of Corollary 4.4,
we shall work in this section with the following assumptions.
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Hypothesis 5.1. Let Γ = (V,E) be a connected G-symmetric graph of prime valency
r > 3, where G is an almost simple group with socle T . Let a, b be positive integers,
and let p, q be distinct primes. Assume that T has at most two orbits on V , |T :
Tα| = qapb and Tα is transitive on Γ(α), where α ∈ V . If Γ is bipartite then let G+

be the subgroup of G preserving the bipartition.

Let (T,Γ) be as in Hypothesis 5.1. Then T has a subgroup Tα of index a product of
two prime powers. Combining with the following remark, we can read off all possible
candidates for (T, Tα) from [11, Theorem 1.1].

Remark 5.2. Let T be a finite nonabelian simple group, and X < T such that
|T : X| is a product of two prime powers. In [11], the authors gave a classification
of such pairs (T,X). But their classification is not complete. We complete their
classification by listing the omissions in the following.

(1) When they deal with PSL(m, pf ) in [11, Lemma 4.1], the authors use [11,

Lemma 2.2] to estimate the number of prime divisors of pmf−1
pf−1

. Checking their proof,

we find the case, where n is a square of some prime t and f is a power of t, is ignored in
[11, Lemma 2.2]. Thus the groups PSL(t2, pt

i
) and their parabolic subgroups should

be added into [11, Table 4.1]. For example, PSL(32, 23) has a subgroup of index
827−1
8−1

= 73 · 262657. Note that the last line of [11, Table 4.1] is just a special case for

PSL(t2, pt
i
).

(2) By [11, Lemma 2.2], the pair (PSL(6, 2),Z5
2:GL(5, 2)) should be added into [11,

Table 4.1]. Checking the subgroups of H or K given in [11, Theorem 1.1], we find
that the following pairs are missing from the tables of [11]:

[11, Table 3.1]: (A9,A7), (A9,Z3
2:PSL(3, 2))

[11, Table 4.1]: (PSL(4, 3),Z4
2:S5), (PSL(3, 3),Z13), (PSL(2, 8),D14), (PSL(2, 8),Z3

2),
(PSL(2, 7),A4)

[11, Table 4.2]: (PSp(6, 2),A8), (PSp(6, 2),A7), (PSp(4, 3),A6), (PSp(4, 3),A5),
(PSp(4, 3),D10), (PSp(4, 3),Z5), (PSp(4, 3), [34]), (PSp(4, 3),Z3

3:A4),
(PSp(4, 3),Z3

3:S3), (PSp(4, 3), [33]:Z6),
[11, Table 4.3]: (PSU(3, 3), [33]), (PSU(3, 3),Z7), (PSU(4, 3),Z4

3:A6),
(PSU(3, 7), [73]:Z3), (PSU(3, 8), [29]:Z7), (PSU(5, 2),Z4

3:A5)
[11, Table 4.5]: (Ω+(8, 2), [29]:PSL(3, 2))

�

Note that Gα induces a transitive permutation group G
Γ(α)
α of prime degree r.

Then, by [6, p. 99], (soc(G
Γ(α)
α ), r) is one of (Zr, r), (Ar, r), (PSL(2, 11), 11), (M11, 11),

(M23, 23) and (PSL(d, tf ), t
fd−1
tf−1

), where t and d are primes.

5.1. Graphs with insoluble vertex-stabilizers. In this subsection, we assume
that Hypothesis 5.1 holds, and that Gα is insoluble for some α ∈ V . Let β ∈ Γ(α).

Since Gα is insoluble, G
Γ(α)
α is 2-transitive. By [21], either G

[1]
αβ = 1, or G

[1]
αβ is a

non-trivial t-group and soc(G
Γ(α)
α ) = PSL(d, tf ). (Note that we deal with the group

A5 as the projective special linear group PSL(2, 4).) It follows from (2.1) that Gα

has one or two insoluble composition factors, which are given as follows:

soc(G
Γ(α)
α ) Ar PSL(2, 11) M11 M23 PSL(d, tf )

Others if exists Ar−1 A5 A6 M22 PSL(d− 1, tf )
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In particular, if Gα has two insoluble composition factors then they are not iso-
morphic. Since G is almost simple, G/T is soluble. Note that G/T > TGα/T ∼=
Gα/(T ∩ Gα) = Gα/Tα. It follows that Gα/Tα is soluble, and then Tα inherits all
insoluble composition factors of Gα. Combining with Remark 5.2, we next work out
those groups H and K listed in [11, Tables 3.1, 3.2, 4.1-4.5 and 5.1] which meet the
conditions that Tα satisfies.

Lemma 5.3. Assume that Hypothesis 5.1 holds and Gα is insoluble. If T is (isomor-
phic to) an alternating group An for some n > 5, then one of the following holds.

(1) T = An and Γ = Kn, or G ∼= Sn and Γ = K
(2)
n .

(2) G ∼= S8 and Γ is the point-plane incidence graph of the projective geometry
PG(3, 2).

Proof. Assume that T = An for some n > 5. Appealing to [11, Table 3.1] and the
Remark 5.2, we conclude that one of the following holds:

(i) T = An for n > 6, Tα = An−1 and r = n− 1;
(ii) T = A7, Tα = PSL(2, 7), |T : Tα| = 3 · 5 and r = 7;

(iii) T = A8
∼= PSL(4, 2), Tα = Z3

2:PSL(3, 2), |T : Tα| = 3 · 5 and r = 7;
(iv) T = A8, Z3 × A5 6 Tα 6 (Z3 × A5):Z2, and r = 5;

(v) T = An for n > 7, Tα = Sn−2, |T : Tα| = n(n−1)
2

and r = n− 2;
(vi) T = A9, Tα = A7, |T : Tα| = 23 · 32 and r = 7;

(vii) T = A9, Tα = Z3
2.PSL(3, 2), |T : Tα| = 33 · 5 and r = 7.

Suppose that case (iv) holds. Then Tα has a characteristic subgroup N = Z3. Since

Tα�Gα, we know that N �Gα, and so O3(Gα) 6= 1. By Lemma 2.4, O3(Gα) 6 G
[1]
αβ;

however G
[1]
αβ is a 2-group by [21], a contradiction.

Suppose that case (v) holds. Then the action of T on each T -orbit (on V ) is
equivalent to that on Ω = {{i, j} | 1 6 i < j 6 n} in the natural action of An. Thus
|Γ(α)| should be the length of some Sn−2-orbits on Ω, which is equal to 1, 2(n − 2)

or (n−2)(n−3)
2

. Noting that |Γ(α)| is a prime, we get a contradiction.

Suppose that case (vi) or (vii) holds. Then G = A9 or S9. Let {α, β} ∈ E.
Considering the natural actions of G, Gα and Gαβ on Ω = {1, 2, . . . , 9}, we conclude
that Gα has an orbit say ∆ of length 7 or 8, and Gαβ has an orbit ∆′ on ∆ of length
6 or 8 on Ω, respectively. Then each g ∈ NG(Gαβ) fixes both ∆′ and Ω \∆′ set-wise.
In particular, a 2-element in NG(Gαβ) fixes a point in Ω \ ∆. Thus G cannot be
generated by Gα and any 2-element in NG(Gαβ), a contradiction.

For cases (i)-(iii), T is 2-transitive on every T -orbit. If either Γ is not bipartite or

the actions of T on its orbits are equivalent, then we have T = An and Γ ∼= Kn or K
(2)
n .

Assume that Γ is bipartite and the actions of T on its orbits are not equivalent. For
(iii), G = S8

∼= PSL(4, 2).Z2, and the resulting graph Γ is the point-plane incidence
graph of the projective geometry PG(3, 2). Note that, for β ∈ Γ(α), the stabilizers Tα
and Tβ are isomorphic but not conjugate in T . For (ii), G = A7 and Tα ∼= PSL(3, 2),
again the resulting graph Γ is the point-plane incidence graph of PG(3, 2). If (i)
occurs then n = 6 and, similarly, Tα and Tβ do not intersect at a subgroup of index
5 in Tα, again a contradiction. �
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Lemma 5.4. Assume that Hypothesis 5.1 holds and Gα is insoluble. If T is a sporadic
simple group, then one of the following holds.

(1) G = M12 and Γ ∼= K12, or G = M12.2 and Γ ∼= K
(2)
12 , or G = M24 and Γ ∼= K24;

(2) Γ is isomorphic to one of the graphs given in Example 3.5.

Proof. Assume that T is a sporadic simple group. Then [11, Table 3.2] works here.
Combining with the restrictions on Tα, we conclude that (T, Tα) is one of (M11,PSL(2, 11)),
(M12,M11), (M12,PSL(2, 11)), (M22,A7), (M24,M23) and (M23,Z4

2:A7). First, for
(M11,PSL(2, 11)), the resulting graph is K12; for (M12,M11), the resulting graph is

K12 or K
(2)
12 ; for (M24,M23), the resulting graph is K24.

Suppose that (T, Tα) = (M12,PSL(2, 11)). Then r = 11, and Tαβ ∼= A5 for β ∈
Γ(α). Assume that Γ is bipartite. ThenG = T.2 andGα = Tα. If Tα is not maximal in
T then by Example 3.5 (ii), NG(Tαβ) < T , and thus 〈Gα, G{α,β}〉 6 〈Gα,NG(Tαβ)〉 6
T 6= G, which contradicts the connectedness of Γ. Thus Tα is maximal in T , and
Γ is isomorphic to the graph given in Example 3.5 (1). Now assume that Γ is not
bipartite. Then |G : Gα| = |T : Tα| = 144. If G 6= T then Gα = Tα.2 ∼= PGL(2, 11),
which has no transitive permutation representation of degree 11, a contradiction.
Therefore, G = T , and then Γ is isomorphic to the graph given in Example 3.5 (2).

Suppose that (T, Tα) = (M22,A7). Then r = 7, Gα = Tα and Gαβ
∼= A6 for β ∈

Γ(α). From computation by GAP, we get NG(Gαβ) = Gαβ, which contradicts Lemma

2.1. Suppose that (T, Tα) = (M23,Z4
2:A7). Then we have r = 7, and G

Γ(α)
α = A7 or

S7. By [21], G
[1]
αβ = 1 for β ∈ Γ(α). Then G

[1]
α
∼= (G

[1]
α )Γ(β) � (G

Γ(β)
β )α ∼= (G

Γ(α)
α )β and

Gα = (G
[1]
α )Γ(β).G

Γ(α)
α , see (2.1). It follows that Gα = A7, A7×A6, S7, (A7×A6):Z2 or

S6 × S7. Thus Gα has no normal subgroup of the form Z4
2:A7, a contradiction. This

completes the proof. �

Lemma 5.5. Assume that Hypothesis 5.1 holds and Gα is insoluble. If T is a pro-
jective special linear group, then one of the following holds.

(1) Γ is isomorphic to one of the graphs in Example 3.2;
(2) Γ is the point-hyperplane incidence graph of PG(n− 1, te), where t is a prime

and (n, te) = (3, 4), (4, t) or (6, 2).

Proof. Assume that T is a projective special linear group PSL(n, se), where s is a
prime. Then [11, Table 4.1] is applicable. If n = 2 then, combining with [9, Theorem
1.1], we get part (1) of this lemma.

Assume that n > 2 in the following. Then either (T, Tα) is one of (PSL(5, 2),Z6
2:(S3×

PSL(3, 2))) and (PSL(4, 3),Z4
2:S5), or soc(T

Γ(α)
α ) = PSL(n − 1, se). For (T, Tα) =

(PSL(5, 2),Z6
2:(S3 ×PSL(3, 2))), we have r = 7 and |V | = 5 · 31 or 2 · 5 · 31; however,

by [13, Theorem 1.1], no desired graph exists in this case.

Suppose that (T, Tα) = (PSL(4, 3),Z4
2:S5). Then |T : Tα| = 35 · 13 is odd, and so

Γ is bipartite and G 6= T . Note that Tα is contained in a maximal subgroup of G+

of odd index. By the Atlas [5], we conclude that G = PGO+
6 (3), G+ = T and Gα =

Tα 6M ∼= PSU4(2):Z2×Z2. Since |NG(Tαβ) : Tαβ| is even and |T : Tαβ| = 35 · 5 · 13,
we know that |G : NG(Tαβ)| is odd. Then NG(Tαβ) 6 M ∼= PSU4(2):Z2 × Z2. Thus
NG(Tαβ) = NM(Tαβ) ∼= NL(Tαβ) × Z2

∼= Tαβ × Z2, where L ∼= PSU4(2):Z2. On the
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other hand, NG(Tαβ) > NM(Tαβ) & Tαβ × Z2. It follows that NG(Tαβ) = NM(Tαβ),
and then 〈Tα,NG(Tαβ)〉 6M 6= G, a contradiction.

Suppose next that n > 3 and soc(T
Γ(a)
α ) = PSL(n − 1, se). Then either n = 3,

se ∈ {5, 7, 11} and r = s, or s = t and r = te(n−1)−1
te−1

. Suppose that the former case
holds. Then, by [11, Table 4.1] and Remark 5.2, we conclude that Os(Tα) 6= 1. Noting

that T
Γ(α)
α is almost simple, it follows that Os(Tα) 6 T

[1]
α . Since T

Γ(α)
α
∼= Tα/T

[1]
α , we

know that |Tα| has a divisor r2, which contradicts [4, Lemma 1.1]. Therefore, s = t

and r = te(n−1)−1
te−1

. In particular, n− 1 is a prime as r is a prime. Then either n = 3
or n is even.

By [11, Table 4.1] and Remark 5.2, without loss of generality, we may assume that
Tα is contained in the stabilizer M in T of some projective point. Suppose that
Tα 6= M . Then ten−1

te−1
is a power of some prime by [11, Table 4.1]. It follows that

n is a prime, and hence n = 3. Then r = te(n−1)−1
te−1

= te + 1. Since r is a prime,

we get t = 2 and e = 2i for some positive integer i. Thus ten−1
te−1

= 22e + 2e + 1 =

(2e +
√

2e + 1)(2e−
√

2e + 1), which is not a prime power, a contradiction. Therefore,
Tα = M , and |T : Tα| = ten−1

te−1
. In particular, T is 2-transitive on each orbit of T .

Suppose that T is transitive on V . Then T is 2-transitive on V , and so Γ is a complete
graph. Thus Γ has valency ten−1

te−1
− 1, and then ten−1

te−1
− 1 is a prime. This yields that

e = 1 and n = 2, a contradiction as n > 3. Therefore, T has two orbits on V , and
Γ is bipartite. If the actions of T on its orbits are equivalent, then Γ is the standard
double cover of the complete graph of valency ten−1

te−1
− 1, which leads to a similar

contradiction as above. Thus Γ the actions of T on its orbits are not equivalent. It
follows that Γ is the point-hyperplane incidence graph of PG(n− 1, te).

Recalling that either n = 3 or n is even, by [11, Lemme 2.2] and Remark 5.2, either
n 6 4 or (n, te) = (6, 2). Assume that n = 3. Then r = te + 1 and, since r is a prime,

t = 2 and e = 2i for some positive integer i. In this case, |T : Tα| = (22i + 22i−1
+

1)(22i − 22i−1
+ 1). If i > 1 then 22i + 22i−1

+ 1 = (22i−1
+ 22i−2

+ 1)(22i−1 − 22i−2
+ 1),

yielding that |T : Tα| has at least three distinct prime divisors, a contradiction. Thus
i = 1, and Γ is the point-line incidence graph of PG(2, 4). Assume that n = 4. Then
r = t2e + te + 1. If e is even then r = t2e + te + 1 = (te +

√
te + 1)(te −

√
te + 1),

yielding a contradiction. By [11, Lemme 2.2], we have e = 1. It follows that Γ is the
point-plane incidence graph of PG(3, t). �

Lemma 5.6. Assume that Hypothesis 5.1 holds and Gα is insoluble. If T is a pro-
jective symplectic group, then Γ is the point-line incidence graph of the generalized
quadrangle GQ(4, 22i) associated with PSp(4, 22i), where i > 1.

Proof. Assume that T is a projective symplectic group. Check the subgroups H
and K in [11, Table 4.2] which have an almost quotient with socle Ar, PSL(2, 11),
M11, M23 or PSL(d, tf ). Then, recalling that Tα has no two isomorphic insoluble
composition factors, we conclude that one of the following holds:

(i) (T, Tα) is one of (PSp(n, t), Sn+1), (PSp(n, t),An+1) and (PSp(6, 2),Z6
2:PSL(3, 2)),

where (n, t) ∈ {(4, 3), (6, 2)};
(ii) T = PSp(4, tf ), |T : Tα| = (tf + 1)(t2f + 1), Tα is a point or (isotropic) line

stabilizer, soc(T
Γ(α)
α ) = PSL(2, tf ) and r = tf + 1.
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For the last pair in (i), we have G = T , and then |V | = |T : Tα| = 135, which is
impossible as Γ has odd valency. For the other pairs in (i), we have G = PSp(n, t).o
and Gα = Tα or Tα.o, where o ∈ {1, 2} and o = 1 if n = 6. Confirmed by GAP,
〈Gα,NG(Gαβ)〉 < G, a contradiction.

Assume that (ii) holds. Since |T : Tα| is a product of two prime powers, f is a
power of 2. Further, either f = 1 and r = t ∈ {5, 7, 11}, or r = tf + 1. The former
yields that |Tα| is divisible by r2, a contradiction. Thus r = tf +1, yielding t = 2 and
f = 2i for some i > 1 as r is a prime. In particular, |T : Tα| is odd, and Γ is bipartite.
Suppose the actions of T on its orbits are equivalent. Then |Γ(α)| should be one of
the subdegrees of T as a primitive rank three group of degree (tf + 1)(t2f + 1). Thus
|Γ(α)| = t3f or tf (tf + 1), which is not a prime, a contradiction. Then those two
actions of T are not equivalent. It follows that Γ is the point-line incidence graph of
the generalized quadrangle associated with PSp(4, tf ). �

Lemma 5.7. Assume that Hypothesis 5.1 holds and Gα is insoluble. If T is a pro-
jective special unitary group, then one of the following holds.

(1) Γ is isomorphic to the graphs in Examples 3.3 and 3.4.
(2) Γ is isomorphic to the Hoffman-Singleton graph or its standard double cover,

and G = PSU(3, 5).2 for the latter.

Proof. Assume that T is a projective special unitary group. Inspecting [11, Table
4.3] and Remark 5.2, one of the following holds:

(i) (T, Tα) is one of (PSU(3, 3),PSL(2, 7)), (PSU(3, 5),A7), (PSU(5, 2),PSL(2, 11))
and (PSU(4, 3),A7);

(ii) (T, Tα) is one of (PSU(5, 2), [28]:(3×A5), (PSU(5, 2), [28]:A5), (PSU(5, 2),Z4
3:S5)

and (PSU(5, 2),Z4
3:A5);

(iii) (T, Tα) = (PSU(3, tf ), tf+1
(tf+1,3)

.PSL(2, tf ).(2, tf + 1)), tf 6= 2 and t2f − tf + 1 is

a power of some prime;
(iv) T = PSU(4, tf ), Tα is contained in the stabilizer of a totally singular 2-space,

|Ot(Tα)| = t4f and soc(T
Γ(α)
α ) = PSL(2, t2f );

Assume that (T, Tα) = (PSU(3, 3),PSL(2, 7)). Then r = 7 and Tαβ ∼= S4. Con-
firmed by GAP, NT (Tαβ) = Tαβ. By Lemma 2.1, Γ is not T -symmetric, and then
G = T.2 and Γ is bipartite. Thus Gα = Tα and Gαβ = Tαβ. Again by GAP,
NG(Tαβ) ∼= S4 × Z2. It follows that Γ is isomorphic to the graph in Example 3.3.

Assume that (T, Tα) = (PSU(3, 5),A7). If Γ is not bipartite then Γ is isomorphic
to the Hoffman-Singleton graph which has order 50 and valency 7 (see [5, pp. 34]),
and either G = T or (G,Gα) = (PSU(3, 5).2, S7). Suppose that Γ is bipartite. Then
G = T.2 and Gα = Tα ∼= A7. By the Atlas [5], T has three conjugacy classes of
subgroups A7, and the subgroups A6 from these A7 form three conjugacy classes of
subgroups in T . Thus two non-conjugate subgroups A7 do not intersect at a subgroup
A6. It follows that the actions of T on its orbits are equivalent. This implies that Γ
is in fact the standard double cover of the Hoffman-Singleton graph.

Assume that (T, Tα) = (PSU(5, 2),PSL(2, 11)). Then r = 11 and Tαβ ∼= A5.
Computation shows that NT (Tαβ) = Tαβ. It follows from 2.1 that G 6= T . Thus
G = T.2, and Gα = Tα or Gα = Tα.2 = PGL(2, 11). Noting that PGL(2, 11) has



14 J.J. LI, H.C. LIAO, Z.P. LU, AND W.Y. ZHU

no subgroup of index 11, we have Gα = Tα. Then Γ is isomorphic to the graph in
Example 3.4.

We next exclude the remaining cases. First, for the last pair in (i), Tα is maximal
in T and Tαβ ∼= A6 for β ∈ Γ(α). Let X = T.D8 with socle T . Computation by GAP
shows that NX(Tα) ∼= S7 and NX(Tαβ) ∼= S6, yielding NX(Tαβ) 6 NX(Tα). Noting
that A6

∼= Tαβ � Gαβ 6 NX(Tαβ) ∼= S6, it follows that Tαβ is characteristic in Gαβ,
and then Tαβ is normal in NG(Gαβ). Thus NG(Gαβ) 6 NX(Tαβ) 6 NX(Tα). Noting
that Gα 6 NX(Tα), we have 〈Gα,NG(Gαβ)〉 6 NX(Tα) 6= G, a contradiction.

For the first two pairs in (ii), we have G = T or T.2, and thus |O2(Gα)| = 28 or 29.
In this case, r = 5 and, by [13, Theorem 3.4], either |O2(Gα)| 6 26 or |O2(Gα)| = 220,
a contradiction. For the second two pairs in (ii), we have r = 5 and O3(Gα) 6= 1. By

Lemma 2.4, O3(Gα) 6 G
[1]
αβ; however G

[1]
αβ is a 2-group by [21], a contradiction.

Suppose that (iii) holds. Then soc(T
Γ(α)
α ) = PSL(2, tf ), and either r = tf ∈

{5, 7, 11} or r = tf + 1. If r = tf + 1 then |Tα| has a divisor r2, a contradiction. If
r = tf ∈ {5, 11} then t2f − tf + 1 is not a prime power. Thus we have r = tf = 7,

and then G
Γ(α)
α = T

Γ(α)
α = PSL(2, 7). By [21], G

[1]
αβ = 1 for β ∈ Γ(α). Then G

[1]
α
∼=

(G
[1]
α )Γ(β), which is a normal subgroup of S4. It follows that O2(Tα) 6 O2(Gα) 6 Z2

2.
However, case (iii) says that |O2(Tα)| > 8, a contradiction.

Suppose that (iv) holds. Then soc(T
Γ(α)
α ) = PSL(2, t2f ), and r = t2f + 1. Since r

is a prime, t = 2 and f = 2i. In this case, by [11, Table 4.3], Tα has index a divisor
of tf + 1 in a maximal subgroup [t4f ]:PSL(2, t2f ):(tf − 1) of T . This forces Tα =
[t4f ]:PSL(2, t2f ):(tf−1), and then T is primitive on each of its orbits. Take β ∈ Γ(α).

If G
[1]
αβ = 1 then, since (G

[1]
α )Γ(β) � (G

Γ(β)
β )α ∼= (G

Γ(α)
α )β and Gα = (G

[1]
α )Γ(β).G

Γ(α)
α

(see (2.1), we have |Ot(Gα)| = |Ot((G
[1]
α )Γ(β))| 6 t2f , which is impossible as [t4f ] =

Ot(Tα) 6 Ot(Gα). Thus G
[1]
αβ 6= 1. Then, by [21, Theorem 4.6], G acts transitively on

the set of 4-arcs of Γ. This implies that Γ is a graph listed in [10, Tables 1 and 2],
which is impossible. �

Lemma 5.8. Assume that Hypothesis 5.1 holds and Gα is insoluble. Then T is not
a simple orthogonal group of dimension no less than 7.

Proof. Suppose that T is a simple orthogonal group of dimension no less than 7. By
[11, Lemma 4.4, 4.5] and Remark 5.2, recalling the limitations on Tα, we have

(i) (T, Tα) = (Ω(7, 3),Z6
2:A7); or

(ii) (T, Tα) = (Ω(7, 3), [25]:S5); or
(iii) (T, Tα) = (Ω+(8, 2), [29]:PSL(3, 2)); or
(iv) (T, Tα) = (Ω(7, tf ),Z2 × PSL(4, tf )).

For (iv), we have r = t4f−1
tf−1

= (tf + 1)(t2f + 1), which is not a prime. For (i), we

have r = 7 and G
[1]
αβ = 1, and so we get O2(Gα) = 1 by (2.1), a contradiction as

O2(Gα) > O2(Tα) ∼= Z6
2. Thus case (ii) or (iii) holds. Then G = T or T.2. Noting

that |T : Tα| is odd and Γ has odd valency, we have G = T.2 and Gα = Tα. In
particular, r = 5 or 7 and O2(Gα) = [25] or [29] respectively, which is impossible by
[13, Theorem 3.4].

�
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Lemma 5.9. Assume that Hypothesis 5.1 holds and Gα is insoluble. Then T is not
a simple exceptional group of Lie type.

Proof. Suppose that T is a simple exceptional group of Lie type. Then, inspecting
[11, Table 5.1], we have (T, Tα) = (G2(3),Z3

2:PSL(3, 2)). Thus r = 7 and Tαβ ∼= Z3
2:S4

for some β ∈ Γ(α). In this case, |T : Tα| = 35 · 13, and thus Γ is bipartite. It follows
that G = T.2, Gα = Tα and Gαβ = Tαβ. Computation by GAP, we get NG(Tαβ) 6
NG(Tα). This implies that 〈Gα,NG(Gαβ)〉 6 NG(Tα) 6= G, a contradiction. �

5.2. Graphs with soluble vertex-stabilizers. Let Γ = (V,E) be a connected G-
symmetric graph of prime valency r > 3. Assume that Hypothesis 5.1 holds, and Gα

is soluble. Note that Tα is transitive on Γ(α), see Lemma 2.5. By [12, Lemma 7],

T
Γ(α)
α = Zr if and only if Tα = Zr. In particular, if r = 3 then T

Γ(α)
α 6∼= A4 or A4×Z2.

Lemma 5.10. Assume that Hypothesis 5.1 holds and r = 3. Then Γ is isomorphic to

one of O3, O
(2)
3 , Tutte’s 8-cage, F020A, F040, F028, F056B, F056C, F110, F112A

and F182D.

Row T Tα |T : Tα|
1 A5 Z3 22 · 5

S3 2 · 5
2 A6 S4 3 · 5
3 PSL(2, 25) S4 52 · 13
4 PSL(2, 7) Z3 23 · 7

S3 22 · 7
5 PSL(2, 13) D12 13 · 7
6 PSL(2, 11) D12 11 · 5

Table 5.2.

Proof. Note that Gα
∼= Z3, S3, D12, S4 or S4×Z2, refer to [1]. Noting Tα is normal in

Gα, it follows that Tα ∼= Z3, S3, D12, S4 or S4×Z2. Checking those soluble subgroups
of T given in [11, Tables 3.1, 3.2, 4.1-4.5 and 5.1] and Remark 5.2, (T, Tα) is listed
in Table 5.2. Note that A6

∼= PSL(2, 9). By [9, Theorem 1.1], the graph Γ exists for
each case except the case where (T, Tα) ∼= (A5,Z3) or (PSL(2, 7),Z3). For these two
exceptions, (G,Gα) ∼= (S5,Z3), (A5,Z3), (S5, S3), (PSL(2, 7),Z3), (PSL(2, 7).Z2, S3)
or (PSL(2, 7).Z2,Z3). With the help of GAP, every above case gives rise to graphs
except the first case. Then the lemma follows from checking those graphs in [3] which
has order |T : Tα| or 2|T : Tα|. Note that the pair (A5, S3) gives Petersen graph or
its standard double cover, and (A6, S4) gives the Tutte’s 8-cage which is isomorphic
to the incidence graph of GQ(4, 2). �

Lemma 5.11. Assume that Hypothesis 5.1 holds, Gα is soluble and r > 5. Then Γ

is isomorphic to one of Kn, K
(2)
n and the graphs given in Example 3.1.

Proof. In this case, Zr 6 G
Γ(α)
α 6 AGL(1, r) and G

[1]
αβ = 1. By [22, Proposition 2.7],

we may write Gα = Zr:(Zk × Zl), where l is a divisor of r − 1 and k is a divisor
of l. Checking those soluble subgroups in [11, Tables 3.1, 3.2, 4.1-4.5 and 5.1] and
Remark 5.2 which have a normal Sylow r-subgroup and abelian Hall r′-subgroups,
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Row T Tα |T : Tα| r

1 A5 D10 2 · 3 5
Z5 22 · 3 5

2 A6 D10 22 · 32 5

Z5 23 · 32 5

3 M11 Z11:Z5 24 · 32 11

4 M12 Z11:Z5 26 · 33 11

5 PSL(2, 8) D14 22 · 32 7

6 PSL(3, 3) Z13:Z3 24 · 32 13
Z13 24 · 33 13

7 PSL(3, 5) Z31:Z3 25 · 53 31

8 PSp(4, 3) Z5:Z4 24 · 34 5
D10 25 · 34 5

Z5 26 · 34 5

9 PSU(3, 3) Z7:Z3 25 · 32 7

Z7 25 · 33 7

10 PSU(3, 4) Z13:Z3 26 · 52 13

11 PSU(3, 7) Z43:Z3 27 · 73 43

12 PSU(5, 2) Z11:Z5 210 · 35 11

Table 5.3.

either (T, Tα) is given as in Table 5.3, or T = PSL(2, tf ) and one of the following
holds:

(i) t = 2, f = 2i > 4, Z2f−1 6 Tα 6 D2(2f−1);
(ii) t = 2, f is an odd prime, Z2f+1 6 Tα 6 D2(2f+1);

(iii) f = 1, Tα = Dt−1, t+1
2

is a prime power;

(iv) f = 1, Tα = Dt+1, t−1
2

is a prime power;

(v) f = 1, t = r, Tα = Zr:Zl, where l is a divisor of r−1
2

.

Assume that (T, Tα) is one of the pairs in Table 5.3. For the pair (A5,D10), the

graph Γ is K6 or K
(2)
6 . Let (T, Tα) 6= (A5,D10), and let X be an almost simple group

with socle T . With the help of GAP and the Atlas [5], we first search the subgroups
H of X such that T 66 H, Tα � H and H has a subgroup L of index r, and then
compute NX(L). If |NX(L) : L| is even and NX(L) 66 H then choose K 6 NX(L)
with |K : L| = 2 and T 6 〈H,K〉. By such a process, the pairs in Rows 3, 8 and 12
are excluded, and the remaining pairs produce the scattered graphs in Example 3.1.

Now we deal with the cases (i)-(v). Case (i) yields that r = 22i − 1, and thus r is
divisible by 3, a contradiction. For case (ii), we have r = 2f + 1, since f is an odd
prime, r is divisible by 3, a contradiction.

Assume that case (iii) occurs. Then r = t−1
2

or t−1
4

. Suppose that r = t−1
2

.

Then t+1
2

= 2e for some integer e > 1, and t = 2e+1 − 1. Thus r = t−1
2

= 2e − 1,
and since r is a prime no less than 5, it follows that e is an odd prime. Then
t = 2e+1 − 1 = (2

e+1
2 − 1)(2

e+1
2 + 1), which contradicts that t is a prime. Therefore,

r = t−1
4

, and hence t+1
2

= sa for some odd prime s and integer a > 1. Then t = 2sa−1,

and r = sa−1
2

. It follows that s = 3 and a is an odd prime, in particular, t 6≡ ±1 (
mod 8). Noting that Tαβ ∼= Z2

2 for β ∈ Γ(α), we have NT (Tαβ) ∼= A4 by checking the
subgroups of PSL(2, t). It follows from Lemma 2.1, G 6= T . Then G = PGL(2, t) and
NG(Tαβ) ∼= D8. This implies that Γ is a bipartite graph and isomorphic one of the
graphs given in Example 3.1.
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Assume that case (iv) occurs. Then r = t+1
2

or t+1
4

. Suppose that r = t+1
2

. Then
t−1

2
= 2e for some integer e > 1, and t = 2e+1 + 1. Since t is a prime, e + 1 is a

power of 2. Noting that r = t+1
2

= 2e + 1, since r is a prime, e is a power of 2. It

follows that e = 1, and so r = 3, which is not the case. Therefore, r = t+1
4

, and then
t−1

2
= pe for some odd prime p and integer e > 1. Thus r = pe+1

2
. Since r is a prime,

e is a power of 2. In particular, t 6≡ ±1 (mod 8). Then a similar argument as above
yields that Γ is constructed as in Example 3.1.

Finally, assume that case (v) holds. If l = r−1
2

then |T : Tα| = t + 1, yielding

t = 2apb − 1 for some odd prime p, and Γ ∼= Kt+1 or K
(2)
t+1. Assume l < r−1

2
. Then

r + 1 = 2a and, since r is a prime, a is an odd prime. Checking the subgroups of
PSL(2, t) and PGL(2, t), we conclude that Γ ∼= (G,H,K) with (G,H,K) described
as in the last three lines of Table 3.1. �

5.3. The proof of Theorem 1.2. Assume that Γ and G satisfy the assumptions
in Theorem 1.2. Then, by Corollary 4.4, G is almost simple. Thus we may let Γ,
G and T be as in Hypothesis 5.1. Take an edge {α, β} of Γ. If Tα is soluble then
Theorem 1.2 is true by Lemmas 5.10 and 5.11. Suppose that Tα is insoluble. By
Lemmas 5.8 and 5.9, T is neither an orthogonal group of dimension no less than 7
nor an exceptional group of Lie type. Combining with [11, Theorem 1.2], we know
that T is one of alternating, sporadic and classical groups (of dimension less than
7). Noting the isomorphisms among finite simple groups, Theorem 1.2 follows from
Lemmas 5.3-5.7.
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