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Abstract

The k-independence number of a graph G is the maximum size of a set of vertices
at pairwise distance greater than k. In this paper, for each positive integer k, we prove
sharp upper bounds for the k-independence number in an n-vertex connected graph
with given minimum and maximum degree.
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1 Introduction

Throughout this paper, all graphs are simple, undirected, and finite. For two vertices

u and v in a graph G, we define the distance between u and v, written dG(u, v) or simply

d(u, v), to be the length of the shortest path between u and v. For a nonnegative integer k,

a k-independent set in a graph G is a vertex set S ⊆ V (G) such that the distance between

any two vertices in S is bigger than k. Note that the 0-independent set is V (G) and an

1-independent set is an independent set. The k-independence number of a graph G, written

αk(G), is the maximum size of a k-independent set in G.

It is known that α1(G) = α(G) ≥ n
χ(G)

, where χ(G) and α(G) are the chromatic number

and independence number of a graph G, repsectively. Similarly, by finding the k-distance
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chromatic number of G, we can find a lower bound for αk(G). It will be discussed in Section

4. Other graph parameters such as the average distance [4], injective chromatic number [6],

packing chromatic number [5], and strong chromatic index [9] are also directly related to the

k-independence number. Lower bounds on the corresponding distance or packing chromatic

number can be given by finding upper bounds on the k-independence number. Alon and

Mohar [2] asked the extremal value for the distance chromatic number in graphs of a given

girth and degree.

Firby and Haviland [4] proved an upper bound for αk(G) in an n-vertex connected graph.

We give a proof of the theorem below, because with a similar idea, we prove Theorem 3.2,

which is one of the main results in this paper.

Theorem 1.1. ( [4]) For a positive integer k, if G is a non-complete n-vertex connected

graph with diam(G) ≥ k + 1, then

2 ≤ αk(G) ≤


2n

k + 2
, if k is even,

2n− 2

k + 1
, if k is odd.

Furthermore, bounds are sharp.

Proof. Let Sk be a k-independent set in G. Since diam(G) ≥ k+ 1 and G is not a complete

graph, there are two vertices u, v ∈ V (G) such that dG(u, v) = k + 1. Thus u, v ∈ Sk, which

implies αk(G) = max |Sk| ≥ 2. The graph K1 ∨Ki1 ∨ · · ·Kik ∨K1 attains equality in the

lower bound, where
∑k

j=1 ij = n− 2.

For the upper bounds, we consider two cases depending on the parity of k.

Case 1: k is even. When k = 2, for any pair of vertices u, v ∈ S2, we have dG(u, v) ≥ 3, which

means N(u)∩N(v) = ∅. Therefore, we have |N(S2)| ≥ |S2|. Since |N(S2)|+|S2| = n, we have

|S2| ≤ n
2
. The n-vertex comb H has α2(H) = n

2
, where a comb is a graph obtained by joining

a single pendant edge to each vertex to a path. For k ≥ 4 and any pair of vertices u, v ∈ Sk,
we have dG(u, v) ≥ k+ 1 and N(v)∩N(u) = ∅. Thus we have |N(Sk)| ≥ |Sk|. Simliarly, for

j = 1, . . . , k
2
, we have |N j(Sk)| ≥ |N j−1(Sk)|. Thus we have n− |Sk| − k

2
|N(Sk)| ≥ 0, which

implies αk(G) = max |Sk| ≤ 2n
k+2

. The n-vertex graph Hk obtained from a comb H with 4n
k+2

vertices by replacing each pendant edge of H with a path of length k
2

has αk(Hk) = 2n
k+2

.

Case 2: k is odd. When k = 1, for any pair of vertices u, v ∈ S1, we have dG(u, v) ≥ 2. Thus

we have n−|S1| ≥ 1. The star K1,n−1 have α1(G) = n−1. For k ≥ 3, for any pair of vertices

u, v ∈ Sk, we have dG(u, v) ≥ k + 1 and N(v) ∩ N(u) = ∅. Similarly to Case 1, we have

|N(Sk)| ≥ |Sk| and for j = 1, . . . , k−1
2

, we have |N j(Sk)| ≥ |N j−1(Sk)| and N
k+1
2 (Sk) 6= ∅.

Thus we have n − |Sk| − k−1
2
|N(Sk)| ≥ 1, which implies αk(G) = max |Sk| ≤ 2(n−1)

k+1
. The
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graph Fk obtained from the star K
1,

2(n−1)
k+1

by replacing each edge with a path of length k+1
2

has αk(Fk) = 2n−2
k+1

. �

For a vertex set S ⊆ V (G), let N(S) be the neiborhood of S, and for an integer j ≥ 2,

let N j(S) = N(N j−1(S)) \ (N j−2(S) ∪ N j−1(S)), where N0(S) = S and N1(S) = N(S).

For graphs G1, . . . , Gk, the graph G1 ∨ · · · ∨ Gk is the one such that V (G1 ∨ · · · ∨ Gk) is

the disjoint union of V (G1), . . . , V (Gk) and E(G1 ∨ · · · ∨Gk) = {e : e ∈ E(Gi) for some i ∈
[k] or an unordered pair between V (Gi) and V (Gi+1) for some i ∈ [k − 1]}.

In 2000, Kong and Zhao [7] showed that for every k ≥ 2, determining αk(G) is NP-

complete for general graphs. They also showed that this problem remains NP-hard for

regular bipartite graphs when k ∈ {2, 3, 4} [8]. It is well-known that for an n-vertex r-

regular graph G, we have α1(G) ≤ n
2
. Also, for k = 2, we have α2(G) ≤ n

r+1
because for any

pair of two vertices u, v in a 2-independent set, we have N(u) ∩ N(v) = ∅, which implies

n ≥ |S2|+ |N(S2)| ≥ |S2|+ r|S2|. For each fixed integer, k ≥ 2 and r ≥ 3, Beis, Duckworth,

and Zito [3] proved some upper bounds for αk(G) in random r-regular graphs.

The remainder of the paper is organized as follows. In Subsection 2, for all positive

integers k and r ≥ 3, we provide infinitely many r-regular graphs with αk(G) attaining the

sharp upper bounds. In Section 3, we prove sharp upper bounds for αk(G) in an n-vertex

connected graph with diam(G) ≥ k+ 1 for every positive integer k with given minimum and

maximum degree. We conclude this paper with some open questions in Section 4.

For undefined terms, see West [11].

2 Construction

In this section, we construct n-vertex r-regular graphs with the k-independence number

achieving equality in the upper bounds in Theorem 3.2. For a vertex v ∈ V (G), we denote

the neighborhood of v by N(v) and N(v) ∪ {v} by N [v], respectively.

Definition 2.1. For a positive integer `, let k = 6` − 4. Let H1
r,k be the r-regular graph

with the vertex sets V1, . . . , V3`−1 satisfying the following properties:

(i) V1 is an independent set with r vertices v11, · · · , v1r such that for each i ∈ [r], the degree

of v1i is r, N(v1i) induces a copy of Kr −K2 and N(v1i) ∩N(v1j) = ∅ for j 6= i.

(ii) Let V2 = ∪rj=1N(v1j) such that for each i 6= j ∈ [r], there is no edge with endpoints in

N(v1i) and N(v1j), and for each i ∈ [r], v1
2i, v

2
2i ∈ N(v1i), and v1

2i is not adjacent to v2
2i.

(iii) For a positive integer x ∈ [`− 1], let V3x = {v(3x)1, · · · , v(3x)r} such that for each i ∈ [r],

v(3x)i is adjacent to vh(3x−1)i for h ∈ {1, 2}, N(v(3x)i) \ vh(3x−1)i induces a copy of Kr−2 (in

V3x+1), and for each i 6= j ∈ [r], N [v(3x)i] ∩N [v(3x)j] = ∅.
(iv) Let V3x+1 = {N(v(3x)1)\vh(3x−1)1, . . . , N(v(3x)r)\vh(3x−1)r} such that h ∈ {1, 2} and for each
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i 6= j ∈ [r], there is no edge with endpoints in N(v(3x)i) \ v(3x−1)i and in N(v(3x)j) \ v(3x−1)j.

(v) Let V3x+2 = {v1
(3x+2)1, v

2
(3x+2)1, . . . , v

1
(3x+2)r, v

2
(3x+2)r} such that for each i ∈ [r], v1

(3x+2)i

is adjacent to v2
(3x+2)i, and vh(3x+2)i is adjacent to all vertices in N(v(3x)i) \ v(3x−1)i, for each

i 6= j ∈ [r] and h ∈ {1, 2}, vh(3x+2)i is not adjacent to vh(3x+2)j except for x = `− 1.

Let G1
r,k,t be the disjoint union of t copies of H1

r,k (see Figure 1).

Figure 1: The graph H1
r,k

Observation 2.2. The graph G1
r,k,t in Definition 2.1 is an r-regular graph with n = t`r(r+1)

vertices and the k-independence number n
`(r+1)

.

Proof. By the definition of G1
r,k,t, every vertex has degree r, V1 is a k-independent set with

size n
`(r+1)

, and for any u, v ∈ V1 and for any x, y ∈ V (G1
r,k,t), we have k+1 = d(u, v) ≥ d(x, y).

Also, we have
∑3`−1

i=1 |Vi| = t`r(r + 1), which gives the desired result. �

For k = 6` − 4, we can create other r-regular graphs with the k-independence number

equal to n
`(r+1)

(see Figure 2 and 3).

Definition 2.3. For a positive integer `, let k = 6` − 3. Let H4
r,k be the r-regular graph

with the vertex sets V1, . . . , V3` satisfying the following properties:

(i) For x ∈ [`− 1], follow the definitions of V1, V2, V3x, V3x+1, V3x+2 in Definition 2.1, and

in V3`−1, for each i 6= j ∈ [r] and for h ∈ {1, 2}, vh(3`−1)i is not adjacent to vh(3`−1)j. (Note that

V3`−1 in this definition is different from the one in Definition 2.1).

(ii) Let V3` = {v(3`)1, v(3`)2} such that for each i ∈ [r], v(3`)1 is adjacent to v1
(3`−1)i and v(3`)2
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Figure 2: The graph H2
r,k

Figure 3: The graph H3
r,k

is adjacent to v2
(3`−1)i.

Let G4
r,k,t be the disjoint union of t copies of H4

r,k (see Figure 4).

Similarly to Observation 2.2, Definition 2.3 guarantees the following observation.

Observation 2.4. The graph G4
r,k,t in Definition 2.3 is an r-regular graph with n = t`r(r+

1) + 2t vertices and the k-independence number rn
`r(r+1)+2

.
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Figure 4: The graph H4
r,k

Definition 2.5. For a positive integer `, let k = 6` − 2. Let H5
r,k be the r-regular graph

with the vertex sets V1, . . . , V3` satisfying the following properties:

(i) For x ∈ [`− 1], follow the definitions of V1, V2, V3x, V3x+1, V3x+2 in Definition 2.3 except

|V1| = r − 1.

(ii) In V3`, v(3`)i is adjacent to v(3`)j for i 6= j ∈ [r − 1], i.e., the graph induced by V3` is a

copy of Kr−1.

Let G5
r,k,t be the disjoint union of t copies of H5

r,k (see Figure 5).

Observation 2.6. The graph G5
r,k,t in Definition 2.5 is an r-regular graph with n = t`(r −

1)(r + 1) + t(r − 1) vertices and the k-independence number n
`(r+1)+1

.

Definition 2.7. Let r be an odd interger at least 3, and for a positive integer `, let k = 6`−1.

Let H6
r,k be the r-regular graph with the vertex sets V1, . . . , V3`+1 satisfying the following

properties:

(i) For x ∈ [`], follow the definitions of V1, V2, V3x, V3x+1, V3x+2 in graph H2
r,k (see Figure 2),

except V3`+1.(Note that V3`−1 in this definition is different from the one in H2
r,k).

(ii) Let |V3`+1| = 1 such that all vertices in V3` are adjacent to the vertex in V3`+1.

Let G6
r,k,t be the disjoint union of t copies of H6

r,k (see Figure 6).

Definition 2.8. Let r be an even interger at least 4, and for a positive integer `, let k = 6`−1.

Let H7
r,k be the r-regular graph with the vertex sets V1, . . . , V3`+1 satisfying the following
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Figure 5: The graph H5
r,k

Figure 6: The graph H6
r,k

properties:

(i) For x ∈ [`], follow the definitions of V1, V2, V3x, V3x+1, V3x+2 in graph H3
r,k (see Figure 3),

except V3`+1.(Note that V3`−1 in this definition is different from the one in H3
r,k).

(ii) Let |V3`+1| = 2 such that all vertices in V3` are adjacent to the two vertices in V3`+1, and

V3`+1 is independent.

Let G7
r,k,t be the disjoint union of t copies of H7

r,k (see Figure 7).
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Figure 7: The graph H7
r,k

Observation 2.9. The graph G6
r,k,t in Definition 2.7 is an r-regular graph with n = t(`r +

1)(r + 1) vertices and the k-independence number rn
(`r+1)(r+1)

.

Also, the graph G7
r,k,t in Definition 2.8 is an r-regular graph with n = t(`r + 1)(r + 1) + t

vertices and the k-independence number rn
(`r+1)(r+1)+1

.

Definition 2.10. Let r be an odd integer at least 3, and for a positive integer `, let k = 6`.

Let H8
r,k be the r-regular graph with the vertex sets V1, . . . , V3`+1 satisfying the following

properties:

(i) For x ∈ [`], follow the definitions of V1, V2, V3x, V3x+1, V3x+2 in Definition 2.7.(Note that

V3`+1 in this definition is different from the one in Definition 2.7).

(ii) In V3`+1, v(3`+1)i is adjacent to v(3`+1)j for i 6= j ∈ [r], i.e., the graph induced by V3`+1 is

copy of Kr.

Let G8
r,k,t be the disjoint union of t copies of H8

r,k (see Figure 8).

Definition 2.11. Let r be an even integer at least 4, and for a positive integer `, let k = 6`.

Let H9
r,k be the r-regular graph with the vertex sets V1, . . . , V3`+1 satisfying the following

properties:

(i) For x ∈ [`], follow the definitions of V1, V2, V3x, V3x+1, V3x+2 in Definition 2.8, except

|V1| = r
2
.(Note that V3`+1 in this definition is different from the one in Definition 2.8).

(ii) In V3`+1, vh(3`+1)i is adjacent to vh(3`+1)j for i 6= j ∈ [r] and h ∈ {1, 2}, i.e., the graph

induced by V3`+1 is a copy of Kr.

Let G9
r,k,t be the disjoint union of t copies of H9

r,k (see Figure 9).
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Figure 8: The graph H8
r,k

Figure 9: The graph H9
r,k

Observation 2.12. The graph G8
r,k,t in Definition 2.10 is an r-regular graph with n =

t`r(r + 1) + 2tr vertices and the k-independence number n
`(r+1)+2

.

Also, the graph G9
r,k,t in Definition 2.11 is an r-regular graph with t`r(r+1)+3tr

2
vertices and

the k-independence number n
`(r+1)+3

.

Definition 2.13. Let r be an odd integer at least 3 and for a positive integer `, let k = 6`+1.

Let H10
r,k be the r-regular graph with the vertex sets V1, . . . , V3`+2 satisfying the following
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properties:

(i) For x ∈ [`], follow the definitions of V1, V2, V3x, V3x+1, V3x+2 in Definition 2.10, except

V3`+2.(Note that V3`+1 in this definition is different from the one in Definition 2.10).

(ii) Let V3`+2 = {v(3`+2)1, · · · , v(3`+2)(r−1)} such that for each i ∈ [r − 1], v(3`+2)i is adjacent

to all vertices in V3`+1.

(iii) V(3`+2) is independent.

Let G10
r,k,t be the disjoint union of t copies of H10

r,k (see Figure 10).

Figure 10: The graph H10
r,k

Definition 2.14. Let r be an even integer at least 4 and for a positive integer `, let k = 6`+1.

Let H11
r,k be the r-regular graph with the vertex sets V1, . . . , V3`+2 satisfying the following

properties:

(i) For x ∈ [`], make similiar definitions of V1, V2, V3x, V3x+1, V3x+2 as H2
r,k, but change the

positions of V3x and V3x+1 and make V3`+2 and V2 a little different.

(ii) Let V3`+2 = {v(3`+2)1, · · · , v(3`+2)(r−2)} such that for each i ∈ [r − 2], v(3`+2)i is adjacent

to all vertices in V3`+1.

(iii) V(3`+2) is independent.

Let G11
r,k,t be the disjoint union of t copies of H11

r,k (see Figure 11).

Observation 2.15. The graph G10
r,k,t in Definition 2.13 is am r-regular graph with n =

t(`r + 3)(r + 1)− 4t vertices and the k-independence number rn
(`r+3)(r+1)−4

.

Also, the graph G11
r,k,t in Definition 2.14 is an r-regular graph with t(`r+4)(r+1)−6t vertices

and the k-independence number rn
(`r+4)(r+1)−6

.
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Figure 11: The graph H11
r,k

3 Sharp Upper Bounds

In this section, for a positive integer k, we prove sharp upper bounds for αk(G) in an n-

vertex connected graph G with diam(G) ≥ k+ 1. Before proving the bounds, we investigate

the relevant properties of a k-independent set of G.

Now, We recall the definition of N i(S), which is the subsequent neighborhood of N i−1(S),

i.e., N i(S) = N(N i−1(S)) \ (N i−2(S)∪N i−1(S)). Note that N0(S) = S and N1(S) = N(S).

For S ⊆ V (G), we denote by G[S] the graph induced by S.

Lemma 3.1. Let k be a positive integer and let G be an n-vertex connected graph with

diam(G) ≥ k+ 1. Suppose that S is a k-independent set in G. If N i−1(S), N i(S), N i+1(S)

are three consecutive sets of G as defined, where 3 ≤ i ≤ k
2
− 1, then we have

|N i−1(S)|+ |N i(S)|+ |N i+1(S)| ≥ 3|S| for anyδ, (1)

|N i−1(S)|+ |N i(S)|+ |N i+1(S)| ≥ (δ + 1)|S| for δ ≥ 2. (2)

Proof. Let vj, vh ∈ S. Note that for i ∈ {0, . . . , bk
2
c}, we have N i(vj) ∩ N i(vh) = ∅ and for

any x ∈ S, we have N i(x) 6= ∅, which implies that |N i(S)| ≥ |S|.
Note that for each u ∈ N i(vj), we have N [u] ⊆ N i−1(vj) ∪ N i(vj) ∪ N i+1(vj), which

implies |N i−1(vj)|+ |N i(vj)|+ |N i+1(vj)| ≥ 3 for any δ. If δ ≥ 2, then we have |N i−1(vj)|+
|N i(vj)|+ |N i+1(vj)| ≥ δ + 1, which gives the desired result.

�

11



Lemma 3.1 is used to prove Theorem 3.2, which gives upper bounds for αk(G) in an

n-vertex connected graph with given minimum and maximum degree.

Theorem 3.2. For positive integers k and `, let δ and ∆ be the minimum and maximum

degree of G respectively. If G is an n-vertex connected graph with diam(G) ≥ k+ 1, then we

have

1. If k = 1, then αk(G) ≤ ∆n
∆+δ

.

2. If k ≥ 2 and δ ≤ 2, then

αk(G) ≤


∆n

∆(δ+ k−1
2

)+1
if k is odd,

n
δ+ k

2

if k is even.
(3)

3. If k = 6`− 4 and δ ≥ 3, then αk(G) ≤ n
`(δ+1)

.

4. If k = 6`− 3 and δ ≥ 3, then

αk(G) ≤

{
∆n

`∆+`δ∆+1
if ∆ > δ,

∆n
`∆+`δ∆+2

if ∆ = δ.
(4)

5. If k = 6`− 2 and δ ≥ 3, then αk(G) ≤ n
`(δ+1)+1

.

6. If k = 6`− 1 and δ ≥ 3, then

αk(G) ≤

{
∆n

`∆(δ+1)+∆+2
if ∆ = δ is even,

∆n
`∆(δ+1)+∆+1

otherwise.
(5)

7. If k = 6` and δ ≥ 3, then

αk(G) ≤

{
n

`(δ+1)+3
if ∆ = δ is even,

n
`(rδ+1)+2

otherwise.
(6)

8. If k = 6`+ 1 and δ ≥ 3, then

αk(G) ≤

{
∆n

`∆(δ+1)+2∆+δ−1
if δ is odd,

∆n
`∆(δ+1)+3∆+δ−2

if δ is even.
(7)

For i ∈ {1, . . . , 11}, k ≥ 2, and δ ≥ 3, equalities hold for the graphs Gi
r,k,t.

12



Proof. Let S be a k-independent set of G. Note that |S| ≥ 1.

Case 1: k = 1. Note that |S1|δ ≤ |[S,S1]| ≤ ∆(n−|S1|), where [S, T ] is the set of edges with

endpoints in both S and T . Thus we have α1(G) ≤ ∆n
∆+δ

. Equality in the bound requires that

G is a (δ,∆)-biregular, where a graph is (a, b)-biregular if it is bipartite with the vertices of

one part all having degree a and the others all having degree b.

Case 2: k ≥ 2 and δ ≤ 2. If k is odd, then we have |N(S)| ≥ δ|S| and |N i(S)| ≥ |S|, where

i ∈ {2, 3, · · · , t − 1} and t = k+1
2

. Since N t(u) ∩ N t(v) may not be empty for u, v ∈ S, we

have |N t(S)| ≥ |S|
∆

. Thus we have |S| + δ|S| + (t − 2)|S| + |S|
∆
≤ n, which gives the desired

result. If δ = 1 and ∆ = n−1
t

, we have |S| ≤ 2n−1
k+1

, which gives the bound in Theorem 1.1.

Similiarly to the proof of odd k, for even k, we have |N(S)| ≥ δ|S| and |N i(S)| ≥ |S|, where

i ∈ {2, 3, · · · , t− 1} and t = k
2
. However, N t(u)∩N t(v) = ∅ for any u, v ∈ S. Thus we have

|N t(S)| ≥ |S|. Then we have |S| + δ|S| + (t − 1)|S| ≤ n, which gives the desired result. If

δ = 1, we have |S| ≤ 2n
2+k

, which gives the bound in Theorem 1.1.

From Case 3, we assume that δ ≥ 3.

Case 3: k = 6`− 4. For any pair of vertices u, v ∈ S, we have d(u, v) ≥ 6`− 3.

Assume that u and v are two distinct vertices in S with d(u, v) = 6`−3. Then there is a path

P = {u, x1, . . . , x3`−2, y3`−2, . . . , y1, v} with legnth 6` − 3. Note that since d(u, v) = 6` − 3,

which is odd, we have N3`−3(u) ∩ N3`−3(v) = ∅ and there are edges between N3`−2(u) and

N3`−2(v).

Note that |N1(S)| ≥ δ|S| and S is k-independent. For a positive integer h ∈ [` − 1], by

considering N3h−1(S), N3h(S), N3h+1(S) as a unit, we have at least (` − 1) units since S is

a (6`− 4)-independent set.

Thus by Lemma 3.1 (2), we have |S|+ δ|S|+ (`− 1)(δ + 1)|S| ≤ n, which gives the desired

result. Equality holds for the graphs Gi
r,k,t for all i ∈ {1, 2, 3} when δ = r.

Case 4: k = 6` − 3. The proof is similar to that of Case 3. Since there are two vertices u

and v in S such that d(u, v) = 6`−2, there is a path P = {u, x1, . . . , x3`−2, z, y3`−2, . . . , y1, v}
with legnth 6`− 2. Note that N3`−1(u) ∩N3`−1(v) can be non-empty.

Since there are (`− 1) units and |N3`−1(S)| ≥ |S|
∆

for ∆ > δ, we have |S|+ δ|S|+ (`− 1)(δ+

1)|S|+ |S|
∆
≤ n. Since |N3`−1(S)| ≥ 2|S|

∆
for ∆ = δ, we have |S|+δ|S|+(`−1)(δ+1)|S|+ 2|S|

∆
≤

n, which gives the desired results. Equality holds for the graph G4
r,k,t when δ = ∆ = r.

Case 5: k = 6` − 2. In this case, we consider N3h(S), N3h+1(S), N3h+2(S) as a unit. Then

by Lemma 3.1 (2), we have |S| + δ|S| + |S| + (` − 1)(δ + 1)|S| ≤ n since |N2(S)| ≥ |S|.
Equality holds for the graph G5

r,k,t when δ = r.

Case 6: k = 6` − 1. Similarly to Case 5, we consider N3h(S), N3h+1(S), N3h+2(S) as a

unit. Since N3`(u) ∩ N3`(v) can be non-empty for two vertices u and v with d(u, v) =

6`, we have |S| + δ|S| + |S| + (` − 1)(δ + 1)|S| + 2|S|
∆
≤ n for even ∆ = δ and we have

|S|+ δ|S|+ |S|+ (`− 1)(δ+ 1)|S|+ |S|
∆
≤ n for odd ∆ = δ or ∆ > δ. Equalities hold for the
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graphs G6
r,k,t and G7

r,k,t for δ = ∆ = r depending on the parity of r.

Case 7: k = 6`. In this case, we have N3`(u) ∩ N3`(v) = ∅ for two vertices u and v

with d(u, v) = 6` + 1. Thus for even ∆ = δ, we have |N3`(S)| ≥ 2|S|, which implies

|S| + δ|S| + |S| + (` − 1)(δ + 1)|S| + 2|S| ≤ n, and for odd ∆ = δ or ∆ > δ, we have

|N3`(S)| ≥ |S|, which implies |S| + δ|S| + |S| + (`− 1)(δ + 1)|S| + |S| ≤ n. Equalties hold

for the graphs G8
r,k,t and G9

r,k,t when δ = ∆ = r depending on the parity of r.

Case 8: k = 6` + 1. Like Case 3, we consider N3h−1(S), N3h(S), N3h+1(S) as a unit. Note

that N3`+1(u) ∩N3`+1(v) can be non-empty for two vertices u and v with d(u, v) = 6` + 2.

Thus for odd δ, we have |N3`−1(S)| ≥ |S|, |N3`(S)| ≥ |S| and |N3`+1(S)| ≥ (δ−1)|S|
∆

, which

implies |S| + δ|S| + (` − 1)(δ + 1)|S| + |S| + |S| + (δ−1)|S|
∆

≤ n, and for even δ, we have

|N3`−1(S)| ≥ 2|S|, |N3`(S)| ≥ |S| and |N3`+1(S)| ≥ (δ−2)|S|
∆

, which implies |S| + δ|S| + (`−
1)(δ + 1)|S| + 2|S| + |S| + (δ−2)|S|

∆
≤ n. Equalties hold for the graphs G10

r,k,t and G11
r,k,t when

δ = ∆ = r depending on the parity of r. �

4 Questions

Aida, Cioabá, and Tait [1] obtained two spectral upper bounds for the k-independence

number of a graph. They constructed graphs that attain equality for their first bound

and showed that their second bound compares favorably to previous bounds on the k-

independence number. We may ask whether given an independence number, there is an

upper or lower bound for the spectral radius (the largest eigenvalue of a graph) in an n-

vertex regular graph.

Question 4.1. Given a positive integer t, what is the best lower bound for the spectral radius

in an n-vertex r-regular graph to guarantee that αk(G) ≥ t+ 1?

If for r ≥ 3, G is an n-vertex r-regular graph, which is not a complete graph, then

α1(G) ≥ n
χ(G)
≥ n

r
by Brooks’ Theorem. For k ≥ 2, it is natural to ask a lower bound for

αk(G) in an n-vertex r-regular graph.

Question 4.2. For r ≥ 3, what is the best lower bound for αk(G) in an n-vertex r-regular

graph?

The k-th power of the graph G, denoted by Gk, is a graph on the same vertex set as

G such that two vertices are adjacent in Gk if and only if their distance in G is at most k.

The k-distance t-coloring, also called distance (k, t)-coloring, is a k-coloring of the graph Gk

(that is, any two vertices within distance k in G receive different colors). The k-distance

chromatic number of G, written χk(G), is exactly the chromatic number of Gk. It is easy to

see that χ(G) = χ1(G) ≤ χk(G) = χ(Gk).

14



It was noted by Skupień that the well-known Brooks’ theorem can provide the following

upper bound:

χk(G) ≤ 1 + ∆(Gk) ≤ 1 + ∆
k∑
i=1

(∆− 1)k−1 = 1 + ∆
(∆− 1)k − 1

∆− 2
, (8)

for ∆ ≥ 3. Let M =: 1+∆ (∆−1)k−1
∆−2

. Consider a (k, χk(G))-coloring. Let Vi be the vertex set

with the color i for i ∈ [χk(G)]. Then we have χk(G)αk(G) ≥ n. Thus for r ≥ 3, if G is an

n-vertex r-regular graph, then we have αk(G) ≥ n
χk(G)

≥ n
M

. Since equality in inequality (8)

holds only when G is a Moore graph, the lower bound is not tight. Thus, we might be

interested in answering Question 4.2.
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[10] Z. Skupień, Some maximum multigraphs and edge-vertex distance colourings, Discuss.

Math. Graph Theory, 15 (1995), 89–106.

[11] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River,

NJ, 2001.

16


