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ABSTRACT. Schubitopes were introduced by Monical, Tokcan and Yong as a specific
family of generalized permutohedra. It was proven by Fink, Mészáros and St. Dizier that
Schubitopes are the Newton polytopes of the dual characters of flagged Weyl modules.
Important cases of Schubitopes include the Newton polytopes of Schubert polynomials
and key polynomials. In this paper, we develop a combinatorial rule to generate the
vertices of Schubitopes. As an application, we show that the vertices of the Newton
polytope of a key polynomial can be generated by permutations in a lower interval in
the Bruhat order, settling a conjecture of Monical, Tokcan and Yong.

1 Introduction

The objective of this paper is to investigate the vertices of Schubitopes introduced by
Monical, Tokcan and Yong [18] during their study of Newton polytopes in algebraic
combinatorics. Schubitopes are a specific family of generalized permutohedra extensively
studied by Postnikov [21]. It was conjectured by Monical, Tokcan and Yong [18] and
shown by Fink, Mészáros and St. Dizier [8] that the Newton polytopes of Schubert and
key polynomials are Schubitopes. More generally, Fink, Mészáros and St. Dizier [8]
showed that Schubitopes are the Newton polytopes of the dual characters of flagged
Weyl modules.

We provide a combinatorial algorithm to generate the vertices of Schubitopes. As an
application, we prove that the vertices of the Newton polytope of a key polynomial can
be generated by permutations in a lower interval in the Bruhat order, thus confirming
a conjecture of Monical, Tokcan and Yong [18, Conjecture 3.13]. This also establishes a
connection between the Newton polytopes of key polynomials associated to permutations
and the Bruhat interval polytopes introduced by Kodama and Williams [13].

Schibitopes are polytopes associated to diagrams in an n×n grid. A diagram D is a
collection of boxes in an n× n grid. We adopt the notation [n] = {1, 2, . . . , n}. We also
abbreviate an n× n grid to [n]2, and use (i, j) to denote the box in row i and column j.
Here the rows (resp., columns) are labeled 1, 2, . . . , n from top to bottom (resp., from left
to right). The Schubitope SD associated to D can be defined as follows. For 1 ≤ j ≤ n
and a subset S of, define a string wordj,S(D) by reading the j-th column of the n × n
grid from top to bottom and recording:
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• ( if (i, j) 6∈ D and i ∈ S;

• ) if (i, j) ∈ D and i 6∈ S;

• ? if (i, j) ∈ D and i ∈ S.

Let
θjD(S) = #{paired ()’s in wordj,S(D)}+ #{?’s in wordj,S(D)},

where the pairing is by the standard “inside-out” convention. For example, for the
following diagram and S = {1, 3}, the strings wordj,S(D) along with the corresponding
values θjD(S) (which are abbreviated as θj) are illustrated below.

? ( ( ( (
) )

( ? ( ? (
)
) ) )

word1,S(D) = ?()) θ1 = 2
word2,S(D) = (? θ2 = 1
word3,S(D) = (() θ3 = 1
word4,S(D) = ()?) θ4 = 2
word5,S(D) = ()( θ5 = 1.

Set

θD(S) =
n∑
j=1

θjD(S).

The Schubitope SD is defined by

SD =

(x1, . . . , xn) ∈ Rn :
∑
i∈[n]

xi = #D and
∑
i∈S

xi ≤ θD(S) for S ( [n]

 .

By definition, SD is a generalized permutohedren parameterized by {θD(S)}, see for
example Postnikov [21].

In this paper, we characterize the vertices of the Schubitopes SD in terms of certain
fillings of D. Let Sn denote the set of permutations of [n]. Given a permutation w =
w1w2 · · ·wn ∈ Sn, define Fw(D) to be the filling of D with the entries of w as follows.
The filling is described based on an assignment of the entries of w into each column of D,
independent of the order of columns. For the j-th column Dj, fill the integers w1, . . . , wn
in turn into the empty boxes of Dj as below. From k = 1 to k = n, put wk into the first
(from top to bottom) empty box whose row index is larger than or equal to wk. If there
are no such empty boxes, then wk does not appear in the filling and skip to wk+1. For
example, Figure 1.1 illustrates the filling Fw(D) for w = 315624.

1 1 1
1
2

3 3

5
12 3 3 3

5
5 6 1 3

Figure 1.1: The filling Fw(D) for w = 315624.
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Theorem 1.1. Let D be a diagram of [n]2. Then the vertex set of the Schubitope SD is

{x(w) : w ∈ Sn},

where x(w) = (x1, x2, . . . , xn) is the vector such that xk (1 ≤ k ≤ n) is the number of
appearances of k in Fw(D).

For the running example as displayed in Figure 1.1, we have x(w) = (6, 2, 6, 0, 3, 1).

Let us use an example to demonstrate Theorem 1.1. LetD = {(1, 1), (3, 1), (3, 2), (3, 3)}
be a diagram of [3]2. The fillings Fw(D) for the six permutations w = 123, 132, 213,
231, 312, 321 are listed in Figure 1.2 in turn from left to right. These fillings gener-

1

2 1 1

1

3 1 1

1

2 2 2

1

2 2 2

1

3 3 3

1

3 3 3

Figure 1.2: The six fillings of D for D = {(1, 1), (3, 1), (3, 2), (3, 3)}.

ate four vertices: x(123) = (3, 1, 0), x(132) = (3, 0, 1), x(213) = x(231) = (1, 3, 0), and
x(312) = x(321) = (1, 0, 3). The corresponding Schubitope SD is a trapezoid as displayed
in Figure 1.3, where the lattice points in SD are signified by bullets.

(1, 0, 3)
•

(1, 3, 0)
•

(3, 1, 0)
•

(3, 0, 1)
•

• ••

• •

Figure 1.3: The Schubitope SD for D = {(1, 1), (3, 1), (3, 2), (3, 3)}.

Given a polynomial f =
∑

α∈Zn
≥0
cαx

α ∈ R[x1, . . . , xn], the Newton polytope of f is

the convex hull of the exponent vectors of f , namely,

Newton(f) = conv({α : cα 6= 0}).

Specifying D to the Rothe diagram D(w) of a permutation w, the Schubitope SD(w) is
the Newton polytope Newton(Sw) of the Schubert polynomial Sw(x) [8, 18]. Schubert
polynomials were introduced by Lascoux and Schützenberger [15], which represent the
cohomology classes of Schubert cycles in flag varieties. Schubert polynomials can be
defined in terms of the divided difference operator ∂i, which sends a polynomial f to

∂if = (f − sif)/(xi − xi+1),

where sif is obtained from f by exchanging xi and xi+1. For the permutation w0 =
n (n− 1) · · · 1, set Sw0(x) = xn−11 xn−22 · · · xn−1. For w 6= w0, choose a position 1 ≤ i < n
such that wi < wi+1. Let w′ be the permutation obtained from w by interchanging wi
and wi+1. Set Sw(x) = ∂iSw′(x).
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The Rothe diagram D(w) of w ∈ Sn is the diagram obtained from the n× n grid by
deleting the box (i, wi) as well as the boxes to the right of (i, wi) or below (i, wi). Figure
1.4(a) illustrates the Rothe diagram of w = 1432. So, when D is the Rothe diagram
D(w), Theorem 1.1 gives a characterization of the vertices of Newton(Sw).

•
•

•
•

(a) (b)

Figure 1.4: (a) D(w) for w = 1432, (b) D(α) for α = (1, 2, 0, 1).

When D is restricted to the skyline diagram D(α) of a composition α, the Schubitope
SD(α) is the Newton polytope Newton(κα) of the key polynomial κα(x) [8, 18]. Key
polynomials, also called Demazure characters, are characters of the Demazure modules
for the general linear groups [5,6]. Key polynomials can be defined using the Demazure
operator πi = ∂ixi. If α is a partition, then set κα(x) = xα. Otherwise, choose i such
that αi < αi+1. Let α′ be the composition obtained from α by interchanging αi and
αi+1. Set κα(x) = πiκα′(x). It is known that κα(x) can be realized as a specialization
of the nonsymmetric Macdonald polynomial Eα(x; q, t) at q = t = ∞, see Ion [12].
It is also worth mentioning that every Schubert polynomial is a positive sum of key
polynomials, see for example Assaf [3], Lascoux and Schützenberger [16], or Reiner and
Shimozono [22].

The skyline diagram D(α) of a composition α is the diagram consisting of the first
αi boxes in row i, see Figure 1.4(b) for the skyline diagram of α = (1, 2, 0, 1). In this
case, Theorem 1.1 can be employed to generate the vertices of Newton(κα).

Monical, Tokcan and Yong [18, Conjecture 3.13] conjectured an alternative charac-
terization of the vertices of Newton(κα) in terms of the Bruhat order on permutations.
Let α be a composition, and λ(α) be the partition obtained by resorting the parts of α
decreasingly. Write w(α) for the (unique) permutation of shortest length that sends λ(α)
to α. Here, given a permutation w = w1 · · ·wn ∈ Sn and a vector v = (v1, . . . , vn) ∈ Rn,
the (right) action of w on v is defined as

v · w = (vw1 , . . . , vwn). (1.1)

For two compositions α, β, define

β ≤ α if λ(β) = λ(α) and w(β) ≤ w(α) in the Bruhat order. (1.2)

Searles [23] gave an alternative description of the partial order in (1.2). For i < j and
αi < αj, let ti,j(α) be obtained from α by interchanging αi and αj. Then β ≤ α if and
only if β can be obtained from α by applying a sequence of ti,j [23, Lemma 3.1].

Based on the decomposition of a key polynomial into Demazure atoms [10, 14, 17],
Monical, Tokcan and Yong [18, Theorem 3.12] showed that if β ≤ α, then β is a vertex
of Newton(κα). They [18, Conjecture 3.13] conjectured that the converse is still true,
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that is, if β is a vertex of Newton(κα), then β ≤ α. Applying Theorem 1.1 together with
some analysis on skyline diagrams, we confirm this conjecture.

Theorem 1.2. Let α be a composition. Then the vertex set of the Newton polytope
Newton(κα) is {β : β ≤ α}.

For example, let α = (1, 0, 3). The key polynomial corresponding to α is

κα(x) = x31x2 + x31x3 + x21x
2
2 + x21x2x3 + x21x

2
3 + x1x

3
2 + x1x

2
2x3 + x1x2x

2
3 + x1x

3
3.

By Theorem 1.2, it is easily checked that Newton(κα) has vertex set

{β : β ≤ α} = {(3, 1, 0), (3, 0, 1), (1, 3, 0), (1, 0, 3)}.

Notice that the skyline diagram of α is the diagram shown in Figure 1.2. Hence
Newton(κα) agrees with the Schubitope in Figure 1.3.

When the parts of α are weakly increasing, κα(x) is the Schur polynomial sλ(α)(x) [22].
In this case, Theorem 1.2 implies the classical result that the Newton polytope of a Schur
polynomial sλ(x) is Pλ, the permutohedron whose vertices are rearrangements of λ.

Remark. The permutations in Sn are usually redundant to generate vertices of a Schu-
bitope, as can be seen in the example illustrated in Figure 1.2. It is natural to ask which
permutations are needed to obtain all vertices of a Schubitope. In other words, for two
permutations w and w′ in Sn, find a characterization to determine whether x(w) = x(w′).
Propositions 4.4 and 4.5 seem relevant to this question. When D is a skyline diagram,
Theorem 1.2 essentially implies that permutations in a lower Bruhat interval are enough
to generate the vertices. In the case when D is a Rothe diagram, we still do not know
if Theorem 1.1 could be simplified to a version similar to Theorem 1.2 for a skyline
diagram.

Theorem 1.2 also establishes a connection between the Newton polytopes of certain
key polynomials and Bruhat interval polytopes. For two permutations u ≤ v in the
Bruhat order, the Bruhat interval polytope Qu,v is the convex hull of the permutations
in the Bruhat interval [u, v]. Bruhat interval polytopes were introduced by Kodama and
Williams [13] in the context of the Toda lattice and the moment map on the flag variety,
and their combinatorial properties were studied by Tsukerman and Williams [24]. The
following corollary is a direct consequence of Theorem 1.2.

Corollary 1.3. Let w = w1 · · ·wn ∈ Sn be a permutation. View w as a composition
(w1, . . . , wn). Then the Newton polytope Newton(κw) of κw(x) is the Bruhat interval
polytope Qw,w0

, where w0 = n · · · 21 is the largest permutation of Sn in the Bruhat order.

This paper is structured as follows. In Section 2, we review a result shown in [8] that
Schubitopes are Minkowski sums of Schubert matroid polytopes. This implies that the
Schubitope SD is a base polytope associated to some submodular function. Edmonds [7]
found a characterization of vertices of base polytopes for submodular functions. Based
on Edmonds’s characterization, we prove Theorem 1.1 in Section 3. In the final section,
we present a proof of Theorem 1.2.
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2 Schubert matroid polytopes

A matroid is a pair M = (E, I) consisting of a finite set E and a collection I of subsets
of E, called independent sets, such that

(i) ∅ ∈ I;

(ii) If J ∈ I and I ⊆ J , then I ∈ I;

(iii) If I, J ∈ I and |I| < |J |, then there exists j ∈ J \ I such that I ∪ {j} ∈ I.

By (ii), a matroid M is determined by the collection B of maximal independent sets,
called the bases of M . So we can write M = (E,B). Moreover, it follows from (iii) that
the bases have the same size. Equivalently, a matroid M = (E,B) can be defined by
means of the exchange axiom for bases:

(i’) B 6= ∅;

(ii’) If A,B ∈ B and a ∈ A\B, then there exists b ∈ B\A such that (A\{a})∪{b} ∈ B.

Let S be a subset of [n]. The Schubert matroid SMn(S) is the matroid with basis

{T ⊆ [n] : T ≤ S}.

The notation T ≤ S means that

(1) #T = #S;

(2) If we write T = {a1 < a2 < · · · < ak} and S = {b1 < b2 < · · · < bk}, then ai ≤ bi
for 1 ≤ i ≤ k.

As pointed out by an anonymous referee, Schubert matroids have been rediscovered
in different contexts, which have been called freedom matroids, generalized Catalan
matroids, PI-matroids, and shifted matroids, among others, see Ardila, Fink and Rincón
[2, Example 2.4], or the comments after [1, Theorem 4.1] by Ardila and the comments
after [4, Corollary 3.13] by Bonin, de Mier and Noy. It should also be noted that Schubert
matroids are specific families of lattice path matroids [4], or more generally transversal
matroids [1] and positroids [19, Lemma 23].

Given a matroid M = (E,B) with E = [n], the associated matroid polytope of M is
constructed as follows. Let {ei : 1 ≤ i ≤ n} be the standard basis of Rn. For a subset
B = {b1, . . . , bk} of [n], write

eB = eb1 + · · ·+ ebk .

The matroid polytope P (M) is defined by

P (M) = conv{eB : B ∈ B}.
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The matroid polytope is a generalized permutohedron parameterized by its rank function
{rM(S)}, see [8] for a reference. To be specific,

P (M) =

x ∈ Rn :
∑
i∈[n]

xi = rM([n]) and
∑
i∈S

xi ≤ rM(S) for S ( [n]

 , (2.1)

where the rank function rM of M is a map from the subsets of E to Z≥0 defined by

rM(S) = max{#(S ∩B) : B ∈ B}, for S ⊆ E.

It turns out that the Schubitope SD is the Minkowski sum of Schubert matroid
polytopes associated to the columns of D. Let D be a diagram of [n]2. Write D =
(D1, . . . , Dn), where, for 1 ≤ j ≤ n, Dj is the j-th column of D. The column Dj can be
viewed as a subset of [n]:

Dj = {1 ≤ i ≤ n : (i, j) ∈ D}.

Then the column Dj defines a Schubert matroid SMn(Dj). For two polytopes P and Q,
the Minkowski sum of P and Q is defined as

P +Q = {u+ v : u ∈ P, v ∈ Q}.

Theorem 2.1 (Fink-Mészáros-St. Dizier [8]). Let D = (D1, . . . , Dn) be a diagram of
[n]2, and let rj denote the rank function of SMn(Dj). Then

SD = P (SMn(D1)) + · · ·+ P (SMn(Dn))

=

x ∈ Rn :
∑
i∈[n]

xi = #D and
∑
i∈S

xi ≤ rD(S) for S ( [n]

 , (2.2)

where
rD(S) = r1(S) + · · ·+ rn(S). (2.3)

3 Proof of Theorem 1.1

In this section, we present a proof of Theorem 1.1. A crucial observation is that the
Schubitope SD is the base polytope associated to the function rD. Edmonds [7] obtained
a characterization of the vertices of any given base polytope. Based on Edmonds’s
characterization, we arrive at a proof of Theorem 1.1.

3.1 Schubitopes are base polytopes

Base polytopes are polytopes associated to submodular functions. A function f from
the subsets of [n] to R is called a submodular function, if, for any subsets S, T ⊆ [n],

f(S) + f(T ) ≥ f(S ∪ T ) + f(S ∩ T ).
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To a submodular function f , the associated base polytope Bf is defined by

Bf =

{
x ∈ Rn : x1 + · · ·+ xn = f([n]),

∑
i∈S

xi ≤ f(S) for S ( [n]

}
.

Using the greedy algorithm, Edmonds [7] obtain the following description of the
vertices of base polytopes for submodular functions, see also [9, Theorem 3.22].

Theorem 3.1 ( [7, 9]). Let f : 2[n] → R be a submodular function. Then the vertex set
of the base polytope Bf is precisely

{x(w) : w ∈ Sn},

where x(w) = (x1, . . . , xn) is the vector in Rn defined by

xwk
= f({w1, . . . , wk})− f({w1, . . . , wk−1}).

A fundamental property of a matroid M is that its rank function rM is submodular
[20]. Hence the function rD defined in (2.3) is submodular. By Theorem 3.1, we obtain
the following characterization of the vertex set of a Schubitope.

Theorem 3.2. Let D be a diagram of [n]2. Then the vertex set of the Schubitope SD is

{x(w) : w ∈ Sn},

where x(w) = (x1, . . . , xn) is the vector in Rn defined by

xwk
= rD({w1, . . . , wk})− rD({w1, . . . , wk−1}).

3.2 Rank function of a Schubert matroid

Throughout this subsection, we let C be a column of a diagram of [n]2. Of course, we
can regard C itself as a diagram of [n]2 such that the boxes lie in exactly one column.
Let SMn(C) be the Schubert matroid associated to C. We show that the filling Fw(C)
generated by the algorithm in Introduction can be used to compute the rank function
rC of SMn(C). This, together with Theorem 3.2, leads to a proof of Theorem 1.1.

A filling F of C is an assignment of positive integers into some of the boxes of C. A
box of F is called empty if it is not assigned any number. A filling F is called column-
strict if the numbers appearing in F are distinct, and F is called flagged if for any
nonempty box in row i, the number assigned in it does not exceed i. For a subset S
of [n], we denote by F(C, S) the set of column-strict flagged fillings F of C such that
all the integers appearing in F belong to S. We also denote F≤(C, S) to be the subset
consisting of the fillings F ∈ F(C, S) such that the numbers in F are increasing from
top to bottom. Let |F| denote the number of non-empty boxes of F .

For a permutation π of a subset S of [n], we can generate a filling Fπ(C) of C by the
algorithm given in Introduction. Notice that there may exist empty boxes in Fπ(C).
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Theorem 3.3. Let C be a column of a diagram of [n]2, and rC be the rank function
of SMn(C). For a k-subset S of [n], let π = π1π2 · · · πk be any given permutation of
elements of S. Then

rC(S) = |Fπ(C)|. (3.1)

To prove Theorem 3.3, we need the following characterization of the rank function
rC .

Theorem 3.4. For any subset S of [n], we have

rC(S) = max{|F| : F ∈ F(C, S)}. (3.2)

To prove Theorem 3.4, we define two operations acting on F(C, S) and F≤(C, S),
respectively. Let F ∈ F(C, S). The first one is the sorting operation, which transforms
F to a filling sort(F) by keeping the empty boxes of F unchanged and rearranging the
entries of F increasingly from top to bottom. Figure 3.5 gives an example to illustrate
the sorting operation.

2

6

1

3

6

3

2

1

6

3

2

1

−→
sort

−→
standard

Figure 3.5: The sorting operation and standardization operation.

Proposition 3.5. For F ∈ F(C, S), the filling sort(F) belongs to F≤(C, S).

Proof. This is trivially true by treating a Schubert matroid as a transversal matroid,
see the proof of [1, Theorem 2.1]. Here, we give a simple verification to make it self-
contained. Obviously, sort(F) is column-strict. We need to verify that sort(F) is flagged.
Let a1a2 · · · ak be the word by reading the numbers of F from top to bottom. Define the
inversion number inv(F) of F to be the number of pairs (i, j) such that ai > aj.

The proof is by induction on inv(F). If inv(F) = 0, then sort(F) = F ∈ F≤(C, S).
We now consider the case inv(F) > 0. Choose i < j such that ai > aj. Let F ′ be the
filling obtained from F by interchanging ai and aj. Clearly, inv(F ′) < inv(F ). We claim
that F ′ belongs to F(C, S). This can be seen as follows. Suppose that ai lies in the p-th
row of F , and aj lies in the q-th row of F , where p < q. Since F is flagged, we have
ai ≤ p and aj ≤ q. Combining the facts that ai > aj and p < q, we reach that ai ≤ q and
aj ≤ p. This implies that F ′ is flagged, concluding the claim. By induction, sort(F ′)
belongs to F≤(C, S). Since sort(F) = sort(F ′), we complete the proof.

The second operation is the standardization operation acting on F≤(C, S). Let F ∈
F≤(C, S). The standardization of F is the filling standard(F) obtained by moving
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upwards the numbers in F as high as possible subject to the flag condition. More
precisely, let a1 < a2 < · · · < ak be the integers appearing in F . Construct a sequence of
fillings F = F (0),F (1), . . . ,F (k) as follows. For 1 ≤ t ≤ k, F (t) is generated from F (t−1)

according to the following two cases.

(1) The row indices of empty boxes in F (t−1) above at are all strictly smaller than at.
In this case, let F (t) = F (t−1);

(2) There exist empty boxes in F (t−1) above at with row indices greater than or equal
to ak. Let it be the smallest such row index. Then F (t) is obtained from F (t−1) by
moving at up to the box in row it.

Define standard(F) = F (k). By construction, it is easily seen that standard(F) belongs
to F≤(C, S). See Figure 3.5 for an illustration of the standardization operation.

We can now give a proof of Theorem 3.4.

Proof of Theorem 3.4. Let

rC(S) = max{|F| : F ∈ F(C, S)}. (3.3)

We first show that rC(S) ≤ rC(S). Suppose that F0 ∈ F(C, S) attains the maximal
cardinality among all fillings in F(C, S), namely, rC(S) = |F0|. Set

F ′0 = standard(sort(F0)).

By Proposition 3.5, F ′0 belongs to F≤(C, S). Let F ′′0 be the filling of C obtained from F ′0
by assigning each empty box with its row index. By the construction of the standard-
ization operator, it is easily checked that F ′′0 is a column-strict flagged filling of C such
that the integers in F ′′0 are increasing from top to bottom. Hence the set of integers in
F ′′0 forms a base, say B0, of the Schubert matroid SMn(C). Moreover,

#(S ∩B0) ≥ |F0|,

which implies that
rC(S) = |F0| ≤ #(S ∩B0) ≤ rC(S).

We now verify the reverse direction rC(S) ≥ rC(S). Let B0 be a base of the Schubert
matroid SMn(C) such that S ∩B0 has the maximal cardinality, that is, rC(S) = #(S ∩
B0). Define a filling FB0 of C as follows: Assign the elements of B0 into the boxes of C
such that the integers are increasing from top to bottom, and then delete the integers
not belonging to S. Since B0 ≤ C, FB0 is a filling in F≤(C, S). As |FB0| = #(S ∩ B0),
we see that

rC(S) ≥ |FB0| = rC(S).

This completes the proof.

Using Theorem 3.4, we can finish the proof of Theorem 3.3.

Proof of Theorem 3.3. We make induction on the cardinality of S = {π1, . . . , πk}.
Consider the initial case k = 1. It is obvious that rC(S) = 1 or 0, depending on whether
C has a box with row index greater than or equal to π1. So the equality (3.1) holds.

10



Assume now that k ≥ 2 and (3.1) is true for k − 1. Let

S ′ = S \ {πk} = {π1, . . . , πk−1}

and π′ = π1π2 · · · πk−1. Recall that

rC(S ′) = max{#(S ′ ∩B) : B ∈ B} and rC(S) = max{#(S ∩B) : B ∈ B},

where B is the basis of the Schubert matroid SMn(C). So we see that

rC(S) = rC(S ′) or rC(S) = rC(S ′) + 1. (3.4)

Keep in mind that Fπ(C) is obtained from Fπ′(C) by putting πk into the topmost
empty box of Fπ′(C) subject to the flag condition. We conclude the proof by considering
the following cases.

Case 1. Fπ(C) 6= Fπ′(C). In this case, |Fπ(C)| = |Fπ′(C)|+ 1. Since Fπ(C) ∈ F(C, S),
it follows from Theorem 3.4 that

rC(S) ≥ |Fπ(C)| = |Fπ′(C)|+ 1.

By induction, rC(S ′) = |Fπ′(C)|. So rC(S) ≥ rC(S ′) + 1. In view of (3.4), we have

rC(S) = rC(S ′) + 1 = |Fπ(C)|,

as desired.

Case 2. Fπ(C) = Fπ′(C). In this case, there are no allowable empty boxes in Fπ′(C) to
place πk. There are two subcases.

Case I. There are no empty boxes in Fπ′(C). By induction, we have rC(S ′) =
|Fπ′(C)| = #C. Since rC(S) ≤ #C, it follows from (3.4) that rC(S) = rC(S ′) = #C,
and hence rC(S) = |Fπ(C)|.

Case II. There exist empty boxes in Fπ′(C), but we cannot put πk into any of these
empty boxes. Suppose that l is the largest row index of the empty boxes. Assume that
there are b boxes of C lying strictly below row l. By the construction of Fπ′(C), each
integer filled in those b boxes below row l is strictly larger than l. As the box in row l is
empty, by the construction of Fπ(C), we have πk > l.

Assume that rC(S ′) = m. Let πi1 , . . . , πim be the elements of S ′ that are filled in
Fπ′(C). Again, as the box in row l is empty, by the construction of Fπ′(C), it is clear
that each integer in the set S ′ \ {πi1 , πi2 , . . . , πim} is strictly larger than l.

We aim to show that rC(S) = m. Suppose to the contrary that rC(S) 6= m. By
(3.4), we have rC(S) = m + 1. By Theorem 3.4, there is a filling F ∈ F(C, S) such
that |F| = m + 1. Notice that πk must belong to F , since otherwise F is a filling in
F(C, S ′) which, together with Theorem 3.4, would imply that rC(S ′) ≥ m + 1, leading
to a contradiction.

Assume that πj1 , . . . , πjm , πk ∈ S are the integers filled in F . Notice that each integer
in the set

{πj1 , . . . , πjm} \ {πi1 , . . . , πim}
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is strictly larger than l. Recall that the integers filled in those b boxes of Fπ′(C) below
row l are strictly larger than l. So {πi1 , . . . , πim} contains exactly b integers strictly larger
than l. Thus {πj1 , . . . , πjm} contains at least b integers strictly larger than l. Combining
the fact that πk > l, the set {πj1 , . . . , πjm , πk} contains at least b + 1 integers strictly
larger than l. However, there are exactly b boxes of C with row indices strictly larger
than l. This means the m + 1 integers πj1 , . . . , πjm , πk cannot be filled into the boxes
of C to form a flagged filling, leading to a contradiction. Thus the assumption that
rC(S) = m+ 1 is false. So we have rC(S) = m = |Fπ(C)|. This finishes the proof.

3.3 Proof of Theorem 1.1

Using Theorem 3.2 and Theorem 3.3, we can now present a proof of Theorem 1.1, which
we restate below.

Theorem 1.1. Let D be a diagram of [n]2. Then the vertex set of the Schubitope SD is

{x(w) : w ∈ Sn},

where x(w) = (x1, x2, . . . , xn) is the vector such that xk (1 ≤ k ≤ n) is the number of
appearances of k in Fw(D).

Proof. By Theorem 3.2 and Theorem 3.3, we find that

xwk
= rD({w1, . . . , wk})− rD({w1, . . . , wk−1})

=
n∑
j=1

rj({w1, . . . , wk})−
n∑
j=1

rj({w1, . . . , wk−1})

=
n∑
j=1

|Fw1···wk
(Dj)| −

n∑
j=1

|Fw1···wk−1
(Dj)|

= |Fw1···wk
(D)| − |Fw1···wk−1

(D)|.

Thus xwk
is equal to the number of appearances of wk in Fw1···wk

(D). It is obvious that
the numbers of appearances of wk in Fw1···wk

(D) and in Fw(D) are the same, and so xwk

is equal to the number of appearances of wk in Fw(D). This completes the proof.

4 Proof of Theorem 1.2

Let us begin by reviewing the Bruhat order. We view a permutation w = w1w2 · · ·wn ∈
Sn as a bijection on [n], that is, w maps i to w(i) = wi. As usual, for 1 ≤ i ≤ n − 1,
let si = (i, i+ 1) denote the adjacent transposition. So wsi is the permutation obtained
from w by interchanging wi and wi+1, while siw is obtained by interchanging the values
i and i+ 1. For example, for w = 2143, we have ws2 = 2413 but s2w = 3142.

Each permutation can be written as a product of adjacent transpositions. The length
`(w) of a permutation w is the minimum k such that w = si1si2 · · · sik , and in this case,

12



si1si2 · · · sik is called a reduced expression of w. The (strong) Bruhat order ≤ on Sn is
the closure of the following covering relation. For w,w′ ∈ Sn, we say that w covers w′ if
there exists a transposition tij = (i, j) such that w = w′ tij and `(w) = `(w′) + 1. The
Bruhat order can also be characterized by the Subword Property, see for example [11].

Theorem 4.1 (Subword Property). Let si1si2 · · · sik be any given reduced expression
of a permutation w. Then w′ ≤ w in the Bruhat order if and only if there exists a
subexpression of si1si2 · · · sik that is a reduced expression of w′.

4.1 A decomposition of the set {β : β ≤ α}

Recall that for a composition α = (α1, . . . , αn), λ(α) is the partition obtained by resorting
the parts of α decreasingly, and w(α) is the shortest length permutation such that

λ(α) · w(α) = α,

where the action of a permutation on a vector is as defined in (1.1). The permutation
w(α) can be read off directly from α as follows. Let t1 be the largest part of α appearing
in α at positions l1 < l2 < · · · < la1 from left to right. Then put 1, 2, . . . , a1 in increasing
order at the positions l1, l2, . . . , la1 . Let t2 be the second largest part of α, and t2 appears
in α at positions l′1 < l′2 < · · · < l′a2 . Then put a1 + 1, a1 + 2, . . . , a1 + a2 in increasing
order at the positions l′1, l

′
2, . . . , l

′
a2

. Repeat the same process for the third largest part
of α, etc. For example, for α = (2, 0, 1, 3, 2, 0, 1), we have w(α) = 2641375. We can also
construct w(α) by a recursive procedure. If α is a partition, then w(α) is the identity
permutation. Otherwise, choose a position r such that αr < αr+1. Let α′ = α · sr. Then

w(α) = w(α′) sr.

The above recursive construction eventually leads to a reduced expression of w(α).

Let V (α) denote the set appearing in Theorem 1.2:

V (α) = {β : β ≤ α}.

Lemma 4.2. For any composition α, we have

V (α) = {λ(α) · σ : σ ≤ w(α)}.

Proof. By definition (1.2), it is clear that {β : β ≤ α} ⊆ {λ(α) · σ : σ ≤ w(α)}. We next
verify the reverse inclusion. Assume that σ ≤ w(α) and β = λ(α) · σ. We aim to show
that β ≤ α. In other words, we need to verify w(β) ≤ w(α).

Let us first give a description of w(β). Suppose that α has m distinct parts, and
that for 1 ≤ i ≤ m, the number of appearances of the i-th largest part is equal to ai.
Set b0 = 0, and bi = a1 + · · · + ai for 1 ≤ i ≤ m. It is easy to check that w(β) can be
obtained from σ by rearranging the integers in the interval [bi + 1, bi+1] (0 ≤ i ≤ m− 1)
increasingly from left to right.

13



The above description of w(β) leads to an equivalent characterization of w(β). It is
well known that Sn is the Coxeter group of type An−1, where n = bm, with generating
set {s1, s2, . . . , sn−1}. Let

J = {s1, s2, . . . , sn−1} \ {sb1 , sb2 , . . . , sbm}.

Let (Sn)J denote the parabolic subgroup of Sn generated by J , and let (Sn)J σ be the right
coset of (Sn)J with respect to σ. Then w(β) is the (unique) minimal coset representative
of (Sn)J σ, that is, `(sj w(β)) > `(w(β)) for any sj ∈ J . Hence there is a unique
τ ∈ (Sn)J satisfying that σ = τ w(β) and `(σ) = `(τ) + `(w(β)) [11, Chapter 1.10]. This
implies that the concatenation of any two reduced expressions of τ and w(β) is a reduced
expression of σ, which, combined with the Subword Property in Theorem 4.1, yields that
w(β) ≤ σ. Since σ ≤ w(α), we have w(β) ≤ w(α). This completes the proof.

By Lemma 4.2, we obtain the following decomposition of V (α).

Proposition 4.3. Let α = (α1, . . . , αn) be a composition. Assume that there exists
1 ≤ r ≤ n− 1 such that αr < αr+1. Let α′ = α · sr. Then

V (α) = V (α′) ∪ {v · sr : v ∈ V (α′)}. (4.1)

Proof. To conclude (4.1), by Lemma 4.2 it suffices to show that

{σ : σ ≤ w(α)} = {τ : τ ≤ w(α′)} ∪ {τsr : τ ≤ w(α′)}.

This can be easily deduced from the Subword Property. Since αr < αr+1, from the argu-
ments above Lemma 4.2 it follows that that w(α) = w(α′)sr and `(w(α)) = `(w(α′))+1.
Let si1 · · · sik be a reduced expression of w(α′). Then si1 · · · siksr is a reduced expression
of w(α).

We first show that

{σ : σ ≤ w(α)} ⊆ {τ : τ ≤ w(α′)} ∪ {τsr : τ ≤ w(α′)}. (4.2)

There are two cases.

Case 1. sr is not a (right) descent of σ, that is, `(σ) = `(σsr) − 1. In this case,
any reduced expression of σ does not end with sr. This means that we can choose a
subexpression from si1 · · · sik to from a reduced expression of σ, which, by the Subword
Property, implies σ ≤ w(α′).

Case 2. sr is a (right) descent of σ, that is, `(σ) = `(σsr) + 1. Then sr is not a (right)
descent of σsr. As σsr ≤ σ ≤ w(α), it follows from Case 1 that σsr ≤ w(α′). Since
σ = (σsr)sr, we have σ ∈ {τsr : τ ≤ w(α′)}. This verifies (4.2).

The reverse set inclusion can be checked in a similar manner, and thus is omitted.

4.2 Properties on vertices of Newton(κα)

In this subsection, we use Theorem 1.1 to give two relationships on the vertices of
Newton(κα), which will be used in the proof of Theorem 1.2.
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Proposition 4.4. Let α = (α1, . . . , αn) be a composition. Assume that there exists
1 ≤ r ≤ n − 1 such that αr < αr+1, and that w is a permutation in Sn such that r
appears before r + 1 in w. Then

x(w) = x(srw) · sr. (4.3)

Proof. Write x(w) = (x1, . . . , xn). By Theorem 1.1, xk is the number of appearances of
k in Fw(D(α)). Let Dj be the j-th column of D(α), which is here viewed as a subset
{i : (i, j) ∈ Dj} of [n]. It suffices to prove the following claim.

Claim. The numbers of appearances of r and r+1 in Fw(Dj) and Fsrw(Dj) are exchanged,
while, for k 6= r, r+ 1, the number of appearances of k in Fw(Dj) is the same as the the
number of appearances of k in Fsrw(Dj).

For ease of description, for any filling F , we use i ∈ F to mean that the integer i
appears in F . To verify the Claim, since αr < αr+1, we have the following three cases.

Case 1. r 6∈ Dj and r+1 6∈ Dj. In this case, it is easy to check that Fsrw(Dj) is obtained
from Fw(Dj) by replacing r (if any) by r + 1, and replacing r + 1 (if any) by r.

Case 2. r 6∈ Dj and r + 1 ∈ Dj. This case is essentially the same as Case 1.

Case 3. r ∈ Dj and r + 1 ∈ Dj. This case is divided into the following subcases.

Subcase I. r 6∈ Fw(Dj) and r+ 1 6∈ Fw(Dj). It is easy to check that Fw(Dj) = Fsrw(Dj).

Subcase II. r /∈ Fw(Dj) and r+ 1 ∈ Fw(Dj). Since r appears before r+ 1 in w, this case
is impossible to occur.

Subcase III. r ∈ Fw(Dj) and r + 1 /∈ Fw(Dj). In this case, we still have two situations
to consider.

(1) r is not filled in the box (r, j). In this case, it easy to check that Fsrw(Dj) is
obtained from Fw(Dj) by replacing r with r + 1.

(2) r is filled in the box (r, j). Since r+1 does not appear in Fw(Dj), the box (r+1, j)
is filled with an integer, say wi, which is smaller than r. By the construction of
Fw(Dj), wi must appear after r, but before r + 1. Hence, when we construct
Fsrw(Dj), the box (r + 1, j) is occupied by r + 1, the box (r, j) is occupied by
wi, and each box other than (r, j) and (r + 1, j) is filled with the same integer as
Fw(Dj). This implies that Fsrw(Dj) is obtained from Fw(Dj) by replacing r with
r+ 1, and then exchanging the values r+ 1 and wi. The above arguments are best
understood by an example as given in Figure 4.6, where w = 324615, r = 4 and
srw = 325614.

Subcase IV. r ∈ Fw(Dj) and r + 1 ∈ Fw(Dj). This case is similar to Subcase III.

(1) r is not filled in the box (r, j). In this case, it easy to check that Fsrw(Dj) is
obtained from Fw(Dj) by interchanging r and r + 1.

(2) r is filled in the box (r, j), and r + 1 is filled in the box (r + 1, j). In this case, it
is easy to check that Fsrw(Dj) = Fw(Dj).
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Figure 4.6: An illustration of the proof of Subcase (III)(2).

(3) r is filled in the box (r, j), but r + 1 is filled in a box below (r + 1, j). Since r + 1
is filled in a box below (r+ 1, j), the box (r+ 1, j) is filled with an integer, say wi,
which is smaller than r. By the same arguments as those in Subcase III(2), we see
that Fsrw(Dj) is obtained from Fw(Dj) by interchanging r with r + 1, and then
interchanging r + 1 and wi.

The above analysis allows us to conclude the Claim, and so the proof is complete.

Proposition 4.5. Let α = (α1, . . . , αn) be a composition. Assume that there exists
1 ≤ r ≤ n − 1 such that αr < αr+1, and that w is a permutation in Sn such that r
appears before r+ 1 in w. Let α′ = α · sr, and let x′(w) denote the vertex of Newton(κα′)
labeled by w. Then

x(w) = x′(w). (4.4)

Proof. Let Dj be the j-th column of D(α). Write D′ = D(α · sr), and let D′j be the
j-th column of D(α′). If Dj = D′j, it is clear that Fw(Dj) = Fw(D′j). If Dj 6= D′j, since
αr < αr+1, we must have (r, j) /∈ Dj, (r + 1, j) ∈ Dj and (r, j) ∈ D′j, (r + 1, j) /∈ D′j.
Keeping in mind that r appears before r + 1 in w, it is readily checked that Fw(D′j) is
obtained from Fw(Dj) by moving the box (r + 1, j), together with the integer filled in
the box, up to row r. This, along with Theorem 1.1, completes the proof.

4.3 Proof of Theorem 1.2

Based on Propositions 4.3, 4.4 and 4.5, we can now provide a proof of Theorem 1.2.

Theorem 1.2. Let α be a composition. Then the vertex set of the Newton polytope
Newton(κα) is {β : β ≤ α}.

Proof. Denote by U(α) the vertex set of Newton(κα). By Theorem 1.1,

U(α) = {x(w) : w ∈ Sn}. (4.5)

As mentioned in Introduction, Monical, Tokcan and Yong [18, Theorem 3.12] showed
that V (α) ⊆ U(α). We finish the proof of Theorem 1.2 by proving

U(α) ⊆ V (α). (4.6)
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The proof is by induction on the “reverse” inversion number of α:

rinv(α) = #{1 ≤ i < j ≤ n : αi < αj}.

We first verify (4.6) for the case rinv(α) = 0. In this case, α is a partition. So w(α) is
the identity permutation, and thus V (α) = {α}. On the other hand, it is easy to see
that for any permutation w ∈ Sn, Fw(D) is the filling with boxes in row k (1 ≤ k ≤ n)
filled with k. By Theorem 1.1, we have U(α) = {α}. This verifies (4.6) for the case
rinv(α) = 0.

We next consider the case rinv(α) > 0. Assume that r is a row index such that
αr < αr+1. Let α′ = α · sr. It is obvious that rinv(α′) = rinv(α)− 1. Let S<n denote the
subset consisting of the permutations w of Sn such that r appears before r + 1. Let S>n
denote the complement of S<n , namely,

S>n = {srw : w ∈ S<n } .

Write
U<(α) = {x(w) : w ∈ S<n } and U>(α) = {x(w) : w ∈ S>n }.

Then
U(α) = U<(α) ∪ U>(α).

By Proposition 4.4, we have

U>(α) = {v · sr : v ∈ U<(α)}. (4.7)

By Proposition 4.5, we have

U<(α) = U<(α′) ⊆ U(α′). (4.8)

Therefore,

U(α) = U<(α) ∪ U>(α)

= U<(α) ∪ {v · sr : v ∈ U<(α)} (by (4.7))

⊆ U(α′) ∪ {v · sr : v ∈ U(α′)} (by (4.8))

⊆ V (α′) ∪ {v · sr : v ∈ V (α′)} (by induction)

= V (α), (by Proposition 4.3)

which proves (4.6), as desired.
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