Monochromatic disconnection of graphs ${ }^{1}$

Ping Li, Xueliang Li ${ }^{*}$
Center for Combinatorics and LPMC
Nankai University
Tianjin 300071, China
Email: qdli_ping@163.com, lxl@nankai.edu.cn

Abstract

For an edge-colored graph G, we call an edge-cut M of G monochromatic if the edges of M are colored with the same color. The graph G is called monochromatically disconnected if any two distinct vertices of G are separated by a monochromatic edge-cut. For a connected graph G, the monochromatic disconnection number of G, denoted by $\operatorname{md}(G)$, is the maximum number of colors that are needed in order to make G monochromatically disconnected. We show that almost all graphs have monochromatic disconnection numbers equal to 1 . We also obtain the Nordhaus-Gaddum-type results for $m d(G)$.

Keywords: monochromatic edge-cut, monochromatic disconnection number, Nordhaus-Gaddum-type results.

AMS subject classification (2010): 05C15, 05C40, 05C35.

1 Introduction

Let G be a graph and let $V(G), E(G)$ denote the vertex set and the edge set of G, respectively. Let $|G|$ (also $v(G))$ denote the number of vertices of G, called the order of G, and let $\|G\|$ (also $e(G))$ denote the number of edges of G, called the size of G. If there is no confusion, we use n and m to denote, respectively, the number of vertices and the number of edges of a graph, throughout this paper. For $v \in V(G)$, let $d_{G}(v)$ denote the degree of v. We call a vertex v a t-degree vertex of G if $d_{G}(v)=t$. Let $\delta(G)$ and $\Delta(G)$ denote the minimum and maximum degree of G, respectively. Sometimes, we also use Δ to denote a triangle. We use \bar{G} to denote the complement graph of G. Let S and F be a vertex subset and an edge subset of G, respectively. $G-S$ is a graph obtained from G by deleting the vertices of S together with the edges incident with the vertices of $S . G-F$ is a graph whose vertex set is $V(G)$ and edge set is

[^0]$E(G)-F$. Let $G[S]$ and $G[F]$ be the vertex-induced and edge-induced subgraphs of G, by S and F, respectively. The distance of u, v in G is denoted by $d_{G}(u, v)$. For all other terminology and notation not defined here we follow Bondy and Murty [3].

Throughout this paper, let K_{n}^{-}be the graph obtained from K_{n} by deleting an arbitrary edge. K_{3} is also called a triangle. We call a cycle C a t-cycle if $|C|=t$. If r is a positive integers, we use $[r]$ to denote the set $\{1,2, \cdots, r\}$ of integers. If $r=0,[r]$ is an empty set.

For a graph G, let $\Gamma: E(G) \rightarrow[r]$ be an edge-coloring of G that allows the same color to be assigned to adjacent edges. For an edge e of G, we use $\Gamma(e)$ to denote the color of e. If H is a subgraph of G, we also use $\Gamma(H)$ to denote the set of colors on the edges of H and use $|\Gamma(H)|$ to denote the number of colors in $\Gamma(H)$. An edge-coloring Γ of G is trivial if $|\Gamma(G)|=1$, otherwise, it is nontrivial.

The notion rainbow connection coloring was introduced by Chartrand et al. in [7]. A rainbow connection coloring of a graph G is an edge-coloring of G such that any two distinct vertices are connected by a rainbow path (a path of G whose edges are colored pairwise differently.) The notion rainbow disconnection coloring was introduced by Chartrand et al. in [6]. A rainbow disconnection coloring of a graph G is an edgecoloring of G such that any two distinct vertices are separated by a rainbow cut (a cut of G whose edges are colored pairwise differently.)

Contrary to the concepts for rainbow connection and disconnection, monochromatic versions of these concepts naturally appeared, as the other extremal. A monochromatic connection coloring of a graph G, which was introduced by Caro and Yuster in [4], is an edge-coloring of G such that any two vertices are connected by a monochromatic path (a path of G whose edges are colored the same.)

As a counterpart of the rainbow disconnection coloring and a similar object of the monochromatic connection coloring, we now introduce the notion of monochromatic disconnection coloring of a graph. For an edge-colored graph G, we call an edge-cut M a monochromatic edge-cut if the edges of M are colored with the same color. For two distinct vertices u, v of G, a monochromatic uv-cut is a monochromatic edge-cut that separates u and v. An edge-colored graph G is monochromatically disconnected if any two distinct vertices of G has a monochromatic cut separating them. An edge-coloring of G is a monochromatic disconnection coloring (MD-coloring for short) if it makes G monochromatically disconnected. For a connected graph G, the monochromatic disconnection number of G, denoted by $\operatorname{md}(G)$, is the maximum number of colors that are needed in order to make G monochromatically disconnected. An extremal MDcoloring of G is an $M D$-coloring that uses $m d(G)$ colors. If H is a subgraph of G and Γ is an edge-coloring of G, we call Γ an edge-coloring restricted on H.

As we know that there are two ways to study the connectivity of a graph, one way is by using paths and the other is by using cuts. Both rainbow connection and monochromatic connection provide ways to study the colored connectivity of a graph by
colored paths. However, both rainbow disconnection and monochromatic disconnection can provide ways to study the colored connectivity of a graph by colored cuts. All these parameters or numbers coming from studying the colored connectivity of a graph should be regarded as some kinds of chromatic numbers. However, they are different from classic chromatic numbers. These kinds of chromatic numbers come from colorings by keeping some global structural properties of a graph, say connectivity; whereas the classic chromatic numbers come from colorings by keeping some local structural properties of a graph, say adjacent vertices or edges. So, the employed methods to study them appear quite different sometimes. Of course, local structural properties may yield global structural properties, and vice versa. But this is not always the case, say, local connectedness of a graph cannot guarantee connectedness of the entire graph. So, many colored versions of connectivity parameters appeared in recent years, and we refer the reader to $[2,10,11,12,14,15,16,17]$ for surveys.

Let G be a graph that may have parallel edges but no loops. By deleting all parallel edges but one of them, we obtain a simple spanning subgraph of G, and call it the underling graph of G. If there are some parallel edges of an edge $e=a b$, then any monochromatic $a b$-cut contains e and its parallel edges. Therefore, the following result is obvious, which means that we only need to think about simple graphs in the sequel.

Proposition 1.1. Let G^{\prime} be the underling graph of a graph G. Then $\operatorname{md}(G)=\operatorname{md}\left(G^{\prime}\right)$.
The following result means that we only need to consider connected graphs in the sequel.

Proposition 1.2. If a simple graph G has t components D_{1}, \cdots, D_{t}, then $\operatorname{md}(G)=$ $\sum_{i \in[t]} m d\left(D_{i}\right)$.

Let G and H be two graphs. The union of G and H is the graph $G \cup H$ with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. If G and H are vertex-disjoint, then let $G \vee H$ denote the join of G and H, which is obtained from G and H by adding an edge between each vertex of G and every vertex of H.

A block of a graph G is trivial if it is a cut-edge of G. If $e=u v$ is an edge of G with $d_{G}(v)=1$, we call e a pendent edge of G and v a pendent vertex of G.

2 Some basic results

Let G be a graph with at least two blocks. An edge-coloring of G is an $M D$-coloring if and only if it is also an $M D$-coloring restricted on each block of G. Therefore, the following result is obvious.

Remark 2.1. If a connected graph G has r blocks $B_{1}, B_{2} \cdots, B_{r}$, then $\operatorname{md}(G)=$ $\sum_{i \in[r]} m d\left(B_{i}\right)$.

From the above remark, if G is a tree, then $\operatorname{md}(G)=n-1$.
Proposition 2.2. If G is a cycle, then $\operatorname{md}(G)=\left\lfloor\frac{|G|}{2}\right\rfloor$. Furthermore, if G is a unicycle graph with cycle C, then $\operatorname{md}(G)=n-\left\lceil\frac{|C|}{2}\right\rceil$.

Proof. From Remark 2.1, we only need to prove that $\operatorname{md}(G)=\left\lfloor\frac{|G|}{2}\right\rfloor$ if G is a cycle.
Let $G=C$ be a cycle. Suppose $C=v_{1} e_{1} v_{2} e_{2} \cdots v_{n-1} e_{n-1} v_{n} e_{n} v_{1}$. Let $r=\left\lfloor\frac{n}{2}\right\rfloor$. For $i \in[r]$ and $j \in[n]$, if $j \equiv i(\bmod r)$, then color e_{j} by $i+1$. It is easy to verify that the edge-coloring of C is an $M D$-coloring, and so $m d(C) \geq r$.

For a contradiction, let Γ be an $M D$-coloring of C such that $|\Gamma(C)| \geq r+1$. Then there exists a color i of Γ that colors only one edge e of C, say $e=a b$. Since the monochromatic ab-cut must contain e and some other edges of $C-e$, a contradiction.

Since an $M D$-coloring of G separates any two vertices by a monochromatic cut, it also separates any two vertices of a subgraph of G. So the following result is obvious.

Proposition 2.3. Let D be a subgraph of a graph G. If Γ is an $M D$-coloring of G, then Γ is also an $M D$-coloring restricted on D.

Lemma 2.4. Let H be the union of graphs H_{1}, \cdots, H_{r}. If $\bigcap_{i \in[r]} E\left(H_{i}\right) \neq \emptyset$ and $\operatorname{md}\left(H_{i}\right)=1$ for each $i \in[r]$, then $\operatorname{md}(H)=1$.

Proof. We prove it by contradiction. Suppose Γ is an $M D$-coloring of H with $|\Gamma(H)| \geq$ 2. Then there are two edges e_{1}, e_{2} of H such that $\Gamma\left(e_{1}\right)=1$ and $\Gamma\left(e_{2}\right)=2$. W.l.o.g., let $e_{1} \in E\left(H_{1}\right)$ and $e_{2} \in E\left(H_{2}\right)$. Since Γ is an $M D$-coloring restricted on H_{1} (also H_{2}) and $m d\left(H_{1}\right)=m d\left(H_{2}\right)=1$, all edges of H_{1} are colored by 1 and all edges of H_{2} are colored by 2 under Γ, which contradicts that $E\left(H_{1}\right) \cap E\left(H_{2}\right) \neq \emptyset$.

Lemma 2.5. If H is a connected spanning subgraph of G, then $\operatorname{md}(H) \geq \operatorname{md}(G)$.
Proof. Let H^{\prime} be a graph obtained from G by deleting an edge $e=a b$, where e is in a cycle of G. If $m d\left(H^{\prime}\right) \leq m d(G)-1$, let Γ be an extremal $M D$-coloring of G. Then Γ is an $M D$-coloring that is restricted on H^{\prime}, and this implies that e is the only edge of G colored by $\Gamma(e)$. However, e is in a cycle of G, and the monochromatic ab-cut has at least 2 edges, a contradiction. Therefore, $\operatorname{md}\left(H^{\prime}\right) \geq \operatorname{md}(G)$.
If H is a connected proper spanning subgraph of G, H can be obtained from G by deleting some edges in cycles one by one, consecutively. Therefore, the lemma is true.

Corollary 2.6. For any connected graph G of order $n, \operatorname{md}(G) \leq n-1$, and the equality holds if and only if G is a tree.

Proof. Since each connected graph has a spanning tree T, by Lemma 2.5 we have that $m d(G) \leq m d(T)=n-1$ if G is connected. On the other hand, if G is a connected graph with $\operatorname{md}(G)=n-1$ but G is not a tree, then G has a connected unicycle spanning subgraph G^{\prime}. By Lemma 2.5 and Proposition 2.2, $\operatorname{md}(G) \leq m d\left(G^{\prime}\right)<n-1$, a contradiction.

Claim 2.7. Let G be a connected graph and $v \in V(G)$ is neither a pendent vertex nor a cut-vertex of G. Then for any $M D$-coloring Γ^{\prime} of $G, \Gamma^{\prime}(G)-\Gamma^{\prime}(G-v)=\emptyset$.

Proof. We proceed by contradiction. Let $e=v u$ be an edge of $E(G)-E(G-v)$ and $\Gamma^{\prime}(e) \notin \Gamma^{\prime}(G-v)$. Since $d_{G}(v) \geq 2$, there is another edge incident with v, say $f=v w$. Since v is not a cut-vertex, there is a cycle C of G with $E(C)-E(G-v)=\{e, f\}$. Since Γ^{\prime} is an $M D$-coloring restricted on C, there are at least two edges in the monochromatic $u v$-cut of C and the monochromatic $u v$-cut contains e. Since $\Gamma^{\prime}(G)-\Gamma^{\prime}(G-v) \neq \emptyset, f$ is in the monochromatic $u v$-cut, i.e., $\Gamma^{\prime}(e)=\Gamma^{\prime}(f)$. Then, there is no monochromatic uw-cut in C, a contradiction.

The following is a direct consequence of Claim 2.7.
Lemma 2.8. Let G be a connected graph and $v \in V(G)$. If v is neither a pendent vertex nor a cut-vertex of G, then $\operatorname{md}(G) \leq m d(G-v)$.

Theorem 2.9. If G is a 2 -connected graph of order n, then $\operatorname{md}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor$.
Proof. Let $F=\left\{C, P_{1}, \cdots, P_{t}\right\}$ be an ear-decomposition of G, where C is a cycle and P_{i} is a path for $i \in[t]$. The proof proceeds by induction on $|F|$. If $|F|=1$, then G is a cycle, the theorem holds. If $|F|=t+1 \geq 2$, let Γ be an extremal $M D$-coloring of G. Then Γ is an $M D$-coloring restricted on G^{\prime}, where G^{\prime} is a graph obtained from G by deleting $E\left(P_{t}\right)$ and the internal vertices of P_{t}. By induction, we have

$$
\left|\Gamma\left(G^{\prime}\right)\right| \leq m d\left(G^{\prime}\right) \leq\left\lfloor\frac{\left|G^{\prime}\right|}{2}\right\rfloor=\left\lfloor\frac{n-\left|P_{t}\right|+2}{2}\right\rfloor
$$

Suppose that the ends of P_{t} are a, b and L is an $a b$-path of G^{\prime}. Then $C^{\prime}=L \cup P_{t}$ is a cycle of G. Since Γ is an $M D$-coloring restricted on C^{\prime}, the monochromatic ab-cut contains at least one edge of L and at least one edge of P_{t}, say e. Therefore, there are at most $\left|P_{t}\right|-2$ edges colored by colors of $\Gamma(G)-\Gamma\left(G^{\prime}\right)$. Since each color of $\Gamma(G)-\Gamma\left(G^{\prime}\right)$ colors at least two edges of $P_{t}-e,\left|\Gamma(G)-\Gamma\left(G^{\prime}\right)\right| \leq\left\lfloor\frac{\left|P_{t}\right|-2}{2}\right\rfloor$. So,

$$
m d(G)=|\Gamma(G)|=\left|\Gamma\left(G^{\prime}\right)\right|+\left|\Gamma(G)-\Gamma\left(G^{\prime}\right)\right| \leq\left\lfloor\frac{n-\left|P_{t}\right|+2}{2}\right\rfloor+\left\lfloor\frac{\left|P_{t}\right|-2}{2}\right\rfloor \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

3 Graphs with monochromatic disconnection number one

In this section we consider the monochromatic disconnection numbers for some special graphs, such as triangular graphs (i.e., graphs with each of its edges in a triangle), complete multipartite graphs, chordal graphs, square graphs and line graphs (the definitions of the last four graphs are well-known, we omit them). We denote the square graph and the line graph of a graph G by G^{2} and $L(G)$, respectively.
For a graph G, we define a relation θ on the edge set $E(G)$ as follows: for two edges e and e^{\prime} of G, we say that $e \theta e^{\prime}$ if there exists a sequence of subgraphs G_{1}, \cdots, G_{k} of G with $m d\left(G_{i}\right)=1$ for any $i \in[k]$, such that $e \in G_{1}$ and $e^{\prime} \in G_{k}$, and $\left|V\left(G_{i}\right) \cap V\left(G_{i+1}\right)\right| \geq 2$ for $i \in[k-1]$. It is easy to check that θ is symmetric, reflexive and transitive and therefore an equivalent relation on $E(G)$. We call a graph G a closure if $e \theta e^{\prime}$ for any two edges e, e^{\prime} of $E(G)$.

Lemma 3.1. If a graph G is a closure, then $\operatorname{md}(G)=1$.
Proof. Suppose that $\operatorname{md}(G) \geq 2$ and Γ is an extremal $M D$-coloring of G. Then there exist two edges, say e and e^{\prime}, of G, such that $\Gamma(e) \neq \Gamma\left(e^{\prime}\right)$. Since G is a closure, there is a sequence of subgraphs G_{1}, \cdots, G_{k} with $\operatorname{md}\left(G_{i}\right)=1$ for any $i \in[k]$, such that $e \in G_{1}$ and $e^{\prime} \in G_{k}$, and G_{i} and G_{i+1} have at least two common vertices, say a_{i}, b_{i}, for $i \in[k-1]$. Since all edges of each G_{i} must be colored with the same color under $\Gamma, \Gamma\left(G_{i}\right)=\Gamma\left(G_{i-1}\right)$. Otherwise there is no monochromatic $a_{i} b_{i}$-cut. Therefore, $\Gamma(e)=\Gamma\left(G_{1}\right)=\Gamma\left(G_{2}\right)=\cdots=\Gamma\left(G_{k}\right)=\Gamma\left(e^{\prime}\right)$, a contradiction. So, $\operatorname{md}(G)=1$.

Theorem 3.2. If G is one of the following graphs, then $\operatorname{md}(G)=1$.

1. $G=H \vee v$, where H is a connected graph and v is an additional vertex;
2. G is a complete multipartite graph other than $K_{1, n-1}$ and $K_{2,2}$;
3. G is a 2-connected chordal graph;
4. $G=H^{2}$, where H is a connected graph other than K_{1};
5. $G=L(H)$, where H is a connected triangular graph.

Proof. (1) If $H=K_{1}$, then the result holds. If $|H| \geq 2$, then let T be a spanning tree of H and u be a leaf of T. By induction, $m d((T-u) \vee v)=1$. Since $V(T \vee v)-$ $V((T-u) \vee v)=\{u\}$ and u is neither a pendent vertex nor a cut vertex of $T \vee v$, $m d(T \vee v) \leq m d((T-u) \vee v)$ by Lemma 2.8. Since $T \vee v$ is a connected spanning subgraph of $H \vee v, m d(H \vee v) \leq m d(T \vee v)$ by Lemma 2.5. Therefore, $m d(H \vee v)=1$.
(2) We prove $\operatorname{md}\left(K_{2,3}\right)=1$. Any $M D$-coloring of C_{4} can have only two cases, one is trivial and the other is to assign colors 1,2 to the four edges of C_{4} alternately. Let
$H=K_{2,3}$ and the bipartition of H be $A=\{a, c\}$ and $B=\{b, d, u\}$. If $\operatorname{md}(H) \geq 2$, then there is an $M D$-coloring Γ of $K_{2,3}$ with $|\Gamma(H)| \geq 2$. Therefore, at least one of the three 4 -cycles of H has a nontrivial $M D$-coloring. Let the three 4 -cycles of H be $H_{1}=H[a, b, c, d], H_{2}=H[a, b, c, u]$ and $H_{3}=H[a, d, c, u]$. By symmetry, suppose that H_{1} is colored nontrivially, say $\Gamma(a d)=\Gamma(b c)=1$ and $\Gamma(a b)=\Gamma(c d)=2$. Then Γ is a nontrivial $M D$-coloring restricted on H_{2} with $\Gamma(a u)=1$ and $\Gamma(c u)=2$. It is obvious that Γ is not an $M D$-coloring restricted on H_{3}, which contradicts that Γ is an $M D$-coloring of G. Therefore, $\operatorname{md}(H)=1$.

Let G be a complete bipartite graph other than $K_{1, n-1}$ and $K_{2,2}$. Suppose that A, B are the bipartition of G with $A=\left\{u, v, a_{1}, \cdots, a_{s}\right\}$ and $B=\left\{u^{\prime}, v^{\prime}, b_{1}, \cdots, b_{t}\right\}$. Then at least one of s, t is not zero. Let $G_{i}=G\left[u, u^{\prime}, v, v^{\prime}, a_{i}\right]$ and $G_{j}^{\prime}=G\left[u, u^{\prime}, v, v^{\prime}, b_{j}\right]$ for $i \in[s]$ and $j \in[t]$. Since each G_{i} or G_{j}^{\prime} is a $K_{2,3}$ and $\bigcap_{i \in[s]} E\left(G_{i}\right) \cap \bigcap_{j \in[t]} E\left(G_{j}^{\prime}\right)=$ $E\left(G\left[u, u^{\prime}, v, v^{\prime}\right]\right)$, by Lemma 2.4 we have $m d\left(\bigcup_{i \in[s]} G_{i} \cup \bigcup_{j \in[t]} G_{j}^{\prime}\right)=1$. Since $\bigcup_{i \in[s]} G_{i} \cup$ $\bigcup_{j \in[t]} G_{j}^{\prime}$ is a connected spanning subgraph of $G, m d(G)=1$.

Let $G=G_{1}$ be a complete r-partite graph with $r \geq 3$ and let $V=\left\{v_{1}, \cdots, v_{t}\right\}$ be one part of G. Let $G_{i}=G-\left\{v_{1}, \cdots, v_{i-1}\right\}$ for $i \in\{2, \cdots, t\}$. Then each v_{i} is neither a pendent vertex nor a cut vertex of G_{i}, and so $m d\left(G_{1}\right) \leq m d\left(G_{2}\right) \leq \cdots \leq m d\left(G_{t}\right)$ by Lemma 2.8. However, $G_{t}=(G-V) \vee v_{t}$ and $G-V$ is a connected graph, which implies $m d\left(G_{t}\right)=1$. Therefore, $m d(G)=1$.
(3) A simplicial order of a graph H is an enumeration v_{1}, \cdots, v_{n} of its vertices such that the neighbors of v_{i} in $H\left[\left\{v_{i}, \cdots, v_{n}\right\}\right]$ induce a complete graph. A graph is chordal if and only if it has a simplicial order (see Corollary 9.22 on page 273 of [3]). Suppose that a simplicial order of G is u_{1}, \cdots, u_{n} and $G_{i}=G\left[\left\{u_{i}, \cdots, u_{n}\right\}\right]$ for $i \in[n-2]$ (then $G=G_{1}$). Let $H_{i}=G_{i}\left[N_{G_{i}}\left(u_{i}\right)\right]$. Since G is 2-connected, each H_{i} is a complete graph other than K_{1} and thus $G_{n-1}=G\left[u_{n-1}, u_{n}\right]$ is a K_{2}. Therefore, u_{i} is neither a pendent vertex nor a cut vertex of G_{i} for $i \in[n-2]$, and hence by Lemma 2.8, $m d\left(G_{i}\right) \leq m d\left(G_{i+1}\right)$. So, $m d(G) \leq m d\left(G_{n-1}\right)=1$.
(4) The result holds for $G=K_{2}$. We prove it by induction on $|G|$. If $|G| \geq 3$, let T be a spanning tree of G and v be a leaf of T. Then $T^{2}-v=(T-v)^{2}$. Since v is neither a pendent vertex nor a cut vertex of $T^{2}, m d\left(T^{2}\right) \leq m d\left((T-v)^{2}\right)=1$. Since T^{2} is a spanning subgraph of $G^{2}, \operatorname{md}\left(G^{2}\right) \leq m d\left(T^{2}\right)$. Therefore, $\operatorname{md}\left(G^{2}\right)=1$.
(5) Let A, B be two edge-induced subgraphs of G. We define

$$
d_{G}(A, B)=\min \left\{d_{G}(u, v): u \in V(A), v \in V(B)\right\}
$$

It is sufficient to show that $L(G)$ is a closure, i.e., we need to show that for every two edges l_{1}, l_{2} of $L(G), l_{1} \theta l_{2}$. For each edge e_{i} of G, we denote the corresponding vertex of $L(G)$ by u_{i}. We proceed by induction on $d_{L(G)}\left(l_{1}, l_{2}\right)$.

If $d_{L(G)}\left(l_{1}, l_{2}\right)=0$, then l_{1} and l_{2} has a common vertex. Let $l_{1}=u_{1} u_{2}$ and $l_{2}=u_{2} u_{3}$. If $G\left[e_{1}, e_{2}, e_{3}\right]$ is a triangle (denote it by Δ) of G, then $L(\Delta)$ is a triangle of $L(G)$ containing l_{1}, l_{2}, and so $l_{1} \theta l_{2}$. If just two edges of e_{1}, e_{2}, e_{3} are in a triangle Δ of G,
suppose $\Delta=G\left[e_{1}, e_{2}, e_{4}\right]$. Then $G\left[e_{2}, e_{3}, e_{4}\right]$ is a star (call the star S). Since $L(\Delta)$ and $L(S)$ are two triangles of $L(G)$ and they have a common edge $u_{2} u_{4}$, and since $L(\Delta)$ contains l_{1} and $L(S)$ contains $l_{2}, l_{1} \theta l_{2}$. If none of the triangles of G contains at least two of e_{1}, e_{2}, e_{3}, suppose that $\Delta=G\left[e_{4}, e_{2}, e_{5}\right]$ is a triangle of G, where e_{4} is adjacent to e_{3} and e_{5} is adjacent to e_{1}. Then $S_{1}=G\left[e_{1}, e_{2}, e_{5}\right]$ and $S_{2}=G\left[e_{3}, e_{2}, e_{4}\right]$ are two stars of G. Therefore, $L\left(S_{1}\right), L(\Delta)$ and $L\left(S_{2}\right)$ are three triangles of $L(G)$ such that $L\left(S_{1}\right), L(\Delta)$ have a common edge $u_{2} u_{5}$ and $L\left(S_{2}\right), L(\Delta)$ have a common edge $u_{2} u_{4}$. So, $l_{1} \theta l_{2}$.

If $d_{L(G)}\left(l_{1}, l_{2}\right)=r>0$, let $l_{1}=u_{1} u_{2}$ and $l_{2}=u_{3} u_{4}$. Suppose that P is a shortest path of $L(G)$ connecting l_{1} and l_{2}. Then $\|P\|=r$. W.l.o.g., suppose $l_{3}=u_{3} u_{5}$ is a pendent edge of P. Then $d_{L(G)}\left(l_{1}, l_{3}\right)=r-1$ and $d_{L(G)}\left(l_{2}, l_{3}\right)=0$. By induction, $l_{1} \theta l_{3}$ and $l_{2} \theta l_{3}$. Therefore, $l_{1} \theta l_{2}$.

From Theorem $3.2(2), \operatorname{md}\left(K_{n}\right)=1$ for $n \geq 2$. Let v be a minimum degree vertex of $K_{n}^{-}(n \geq 4)$. Then $K_{n}^{-}-v=K_{n-1}$. Since v is neither a pendent vertex nor a cut vertex of $K_{n}^{-}, \operatorname{md}\left(K_{n}^{-}\right) \leq m d\left(K_{n-1}\right)=1$, i.e., $\operatorname{md}\left(K_{n}^{-}\right)=1$ for $n \geq 4$.

As we have seen, a lot of graphs have the monochromatic disconnection number equal to 1 , and this suggest us to show that following result.

Theorem 3.3. For almost all graphs $G, \operatorname{md}(G)=1$ holds.
Proof. Let $G \sim \mathcal{G}_{n, \frac{1}{2}}$, that is, G is a random graph on n vertices chosen by picking each pair of vertices as an edge randomly and independently with probability $\frac{1}{2}$. Let $\mathcal{A}_{u v}$ be the set of events that u and v have at most 2 common neighbors and $\mathcal{A}=$ $\bigcup_{u, v \in V(G)} \mathcal{A}_{u v}$. Let $\mathcal{A}_{u v}^{i}$ be the set of events that u, v have exactly i common neighbors. Then $\mathcal{A}_{u v}=\bigcup_{i=0}^{2} \mathcal{A}_{u v}^{i}$. For a vertex w of $V(G)-\{u, v\}$, since

$$
\operatorname{Pr}[w \text { is a common neighbor of } u \text { and } v]=\frac{1}{4}
$$

and

$$
\operatorname{Pr}[w \text { is not a common neighbor of } u \text { and } v]=\frac{3}{4},
$$

we get

$$
\operatorname{Pr}\left[\mathcal{A}_{u v}^{i}\right]=\binom{n-2}{i}\left(\frac{1}{4}\right)^{i}\left(\frac{3}{4}\right)^{n-i-2} .
$$

Therefore, $\operatorname{Pr}\left[\mathcal{A}_{u v}\right]<3 n^{2}\left(\frac{3}{4}\right)^{n-4}$ when n is large enough. Since

$$
\operatorname{Pr}[\mathcal{A}] \leq\binom{ n}{2} \operatorname{Pr}\left[\mathcal{A}_{u v}\right]<3 n^{4}\left(\frac{3}{4}\right)^{n-2} \rightarrow 0 \text { as } n \rightarrow \infty
$$

it follows that almost all graphs have the property that any two vertices have at least 3 common neighbors. We will complete the proof by showing that $\operatorname{md}(G)=1$ if a graph G has the property that every two vertices of G have at least three common neighbors.

For any two edges $e=a b$ and $f=u v$ of G, there is a path P of G such that the pendent edges of P are e and f. Let $e_{1}=x_{1} x_{2}$ and $e_{2}=x_{2} x_{3}$ be two adjacent edges of P. Then x_{1} and x_{3} have three common neighbors (x_{2} is one of them) and thus e_{1} and e_{2} are in a $K_{2,3}$ of G. This implies $e_{1} \theta e_{2}$. By transitivity, $e \theta f$. Therefore, G is a closure, and so $m d(G)=1$ by Lemma 3.1.

4 Nordhaus-Gaddum-type results

For a graph parameter, it is always interesting to get the Nordhaus-Gaddum-type results, see [1] and $[5,8,9,13,18,19,20]$ for more such results on various kinds of graph parameters. This section is devoted to get the Nordhaus-Gaddum-type results for our parameter $\operatorname{md}(G)$.

For a connected graph G, a vertex v is deletable if $G-v$ is connected. Let \mathcal{B} be the set of blocks of G and S be the set of cut-vertices of G. A block-tree of G is a bipartite graph $B(G)$ with bipartition \mathcal{B} and S, and a block B of G has an edge with a cut vertex v in $B(G)$ if and only if B contains v. Therefore, every pendent vertex of $B(G)$ is a block (call it a leaf-block).
Since $B(G)$ is a tree, there are at least two leaves in $B(G)$ if G has more than one block. For a leaf-block B of G, there are $|B|-1$ deletable vertices in the block. This implies that every graph has at least two deletable vertices.

Remark 4.1. If G is a connected simple graph with $|G| \geq 2$, then G has at least two deletable vertices. Furthermore, G has exactly two deletable vertices if and only if G is a path.

Proof. We only need to deal with the case that G is not a path. If $B(G)$ has at least three leaves, or $B(G)$ has two leaves with one being nontrivial, then G has at least three deletable vertices. If $B(G)$ has exactly two trivial leaf blocks, since G is not a path, there is a nontrivial block B and B has exactly two cut vertices, then B has at least $|B|-2 \geq 1$ deletable vertices. Therefore, G has at least three deletable vertices.

Since a complete graph K_{n} can be decomposed into two connected graphs if and only if $n \geq 4$, in this section we always assume $n \geq 4$.

Lemma 4.2. Suppose that G and \bar{G} are connected spanning subgraphs of K_{n} with $n \geq 5$. Then there is a vertex v of K_{n} such that v is deletable for both G and \bar{G}.

Proof. If both G and \bar{G} are 2-connected spanning subgraphs of K_{n}, then every vertex is deletable for both G and \bar{G}. So, we assume that at least one of $G_{1}=G$ and $G_{2}=\bar{G}$ has cut vertices. Let v be a cut vertex of G_{1} and let S_{1}, \cdots, S_{r} be the components of $G_{1}-v$. Then $F_{i}=G_{1}\left[v \cup S_{i}\right]$ is a connected graph. It is obvious that $G_{2}-v$ contains
a complete r-partite spanning subgraph, denote it by H. W.l.o.g., let $e=v u_{1}$ be an edge of G_{2} and $u_{1} \in S_{1}$. We distinguish the following cases to discuss.

Case 1. $r=2$ and $\left|S_{2}\right| \geq 2$, or $r \geq 3$.
By Remark 4.1, there is a deletable vertex u_{2} of F_{2} and $u_{2} \neq v$. Then $G_{1}-u_{2}$ is connected. If $r=2$ and $\left|S_{2}\right| \geq 2$, then $G_{2}-u_{2}$ is connected, since H is a complete bipartite graph with $\left|S_{2}\right| \geq 2$ and $v u_{1}$ is an edge of G_{2} with $u_{1} \in S_{1}$. If $r \geq 3$, then $G_{2}-u_{2}$ is also connected. Therefore, u_{2} is deletable for both G and \bar{G}.

Case 2. $r=2$ and $\left|S_{2}\right|=1$.
Let $S_{2}=\left\{u_{2}\right\}$. If F_{1} is not a path, by Remark $4.1 F_{1}$ has a deletable vertex w different from v and u_{1}. Then $G_{1}-w$ is connected. Since u_{2} connects to all vertices of S_{1} and $v u_{1}$ is not affected in $G_{2}-w, G_{2}-w$ is also connected. Therefore, w is deletable for both G and \bar{G}.

If F_{1} is a path, then let y be a leaf of F_{1} other than v and let x be adjacent to y in F_{1}. Since $n \geq 5, v$ is not connected to both x and y in F_{1}. Therefore, $v x$ and $v y$ are edges of G_{2}, both $G_{1}-y$ and $G_{2}-y$ are connected. Therefore, y is deletable for both G and \bar{G}.

Theorem 4.3. Suppose that G and \bar{G} are connected spanning subgraphs of K_{n}. Then $m d(G)+m d(\bar{G}) \leq n+1$ for $n \geq 5$, and $m d(G)+m d(\bar{G}) \geq 2$ for $n \geq 8$. Furthermore, the upper bound and the lower bound are sharp.

Proof. Since both G and \bar{G} are nonempty graphs, $\operatorname{md}(G)+m d(\bar{G}) \geq 2$ is obvious for $n \geq 8$. So, we need to show that $m d(G)+m d(\bar{G}) \leq n+1$ for $n \geq 5$.

If $n=5$, there are five cases to consider for the graphs G and \bar{G}, and all of the five cases imply that $\operatorname{md}(G)+m d(\bar{G}) \leq 6=n+1$ (see Figure 2).

We proceed by induction on n. The theorem holds for $n=5$. If $n>5$, by Lemma 4.2 there is a deletable vertex v for both G and \bar{G}. Let $G^{\prime}=G-v$. Then G^{\prime} and $\overline{G^{\prime}}$ are connected subgraphs of K_{n-1}. By induction, $m d\left(G^{\prime}\right)+m d\left(\overline{G^{\prime}}\right) \leq n$. Let Γ be an extremal $M D$-coloring of G.

Since $n>5$, at least one of $d_{G}(v)$ and $d_{\bar{G}}(v)$ is greater than 1 (say $d_{G}(v)=r \geq 2$). Then v is neither a pendent vertex nor a cut vertex of G, and so by Lemma 2.8, $m d(G) \leq m d\left(G^{\prime}\right)$. If $d_{\bar{G}}(v) \geq 2$, we also have $m d(\bar{G}) \leq m d\left(\overline{G^{\prime}}\right)$. If $d_{\bar{G}}(v)=1$, then $m d(\bar{G})=m d\left(\overline{G^{\prime}}\right)+1$. Therefore, $m d(G)+m d(\bar{G}) \leq m d\left(G^{\prime}\right)+m d\left(\overline{G^{\prime}}\right)+1 \leq n+1$.

Now we show that the upper bound is sharp for $n \geq 5$. Let B_{n} be a tree with $\left|B_{n}\right|=n$ and $\Delta\left(B_{n}\right)=n-2$. Then $\overline{B_{n}}$ is a graph obtained by joining a pendent edge to one of the vertices of K_{n-1}^{-}with minimum degree. Since B_{n} and $\overline{B_{n}}$ are connected graphs and $m d\left(B_{n}\right)=n-1, \operatorname{md}\left(\overline{B_{n}}\right)=2, \operatorname{md}\left(B_{n}\right)+m d\left(\overline{B_{n}}\right)=n+1$.

We prove that the lower bound is sharp for $n \geq 8$. Let $V\left(K_{n}\right)=A \cup B \cup\{a, b, u, v\}$, where both $|A|$ and $|B|$ are greater than 1 . Let J be a complete bipartite graph with bipartition $A \cup\{a, u\}$ and $B \cup\{b, v\}$. Then $C=J[a, b, u, v]$ is a C_{4}. Let G be a graph
obtained from J by deleting the edges of C. Let $G_{a}=J-\{b, u, v\}, G_{b}=J-\{a, u, v\}$, $G_{u}=J-\{a, b, v\}$ and $G_{v}=J-\{a, b, u\}$. Then G is the union of G_{a}, G_{b}, G_{u} and G_{v}. Since G_{a}, G_{b}, G_{u} and G_{v} are complete bipartite graphs other than $K_{2,2}$ and stars, by Theorem 3.2 (2) we have $m d\left(G_{a}\right)=m d\left(G_{b}\right)=m d\left(G_{u}\right)=m d\left(G_{v}\right)=1$. Thus, $m d(G)=1$ (see Figure 1) by Lemma 2.4. Since $H_{1}=\bar{G}[A \cup a \cup u], H_{2}=\bar{G}[a, b, u, v]$ and $H_{3}=\bar{G}[B \cup b \cup v]$ are complete graphs, and $E\left(H_{i}\right) \cap E\left(H_{i+1}\right) \neq \emptyset$ for $i=1,2$, $m d(\bar{G})=1$ (see Figure 1). Therefore, the lower bound is sharp for $n \geq 8$.

G

\bar{G}

Figure 1: Extremal graphs for $m d(G)+m d(\bar{G})=2$ when $|G| \geq 5$.
In Theorem 4.3, the lower bound of $\operatorname{md}(G)+m d(\bar{G})$ for $4 \leq n \leq 7$ and the upper bound of $m d(G)+m d(\bar{G})$ for $n=4$ are not considered. We discuss them below.
(I) For $n=4$, since K_{4} can only be decomposed into two Hamiltonian paths, $m d(G)+m d(\bar{G})=6=n+2$.

Figure 2: The five cases of G and \bar{G} when $n=5$.
(II) For $n=5$, there are ten cases for G and \bar{G} to deal with. However, by symmetry we only need to discuss the five cases depicted in Figure 2. Among all the five cases, (3) implies that the lower bound of $\operatorname{md}(G)+m d(\bar{G})$ is 4 .
(III) For $n=6, e\left(K_{6}\right)=15$. Since G and \bar{G} are connected spanning subgraphs of K_{6}, both $e(G)$ and $e(\bar{G})$ are greater than or equal to 5 .

If $e(G)=5$ and $e(\bar{G})=10$, then $\operatorname{md}(G)+m d(\bar{G}) \geq 6$.
If $e(G)=6$ and $e(\bar{G})=9$, then G is a unicycle graph and the length of the cycle is at most 6 . By Proposition 2.2, we have $\operatorname{md}(G) \geq 3$. So, $\operatorname{md}(G)+m d(\bar{G}) \geq 4$.

If $e(G)=7$ and $e(\bar{G})=8$, we assume that G has t blocks. If $t \geq 3$, by Remark 2.1 we have $m d(G) \geq 3$. Thus, $\operatorname{md}(G)+m d(\bar{G}) \geq 4$. If $t=2, G$ is isomorphic to

(1)

(2)

(3)

(4)

Figure 3: The four cases of graph G when $t=2$.
one of the four graphs in Figure 3. Since every graph F in Figure 3 has $\operatorname{md}(F)=3$, $m d(G)+m d(\bar{G}) \geq 4$. If $t=1$, there are three cases to consider. In Figure 4, we give an extremal $M D$-coloring for each graph. Since the last two cases of Figure 4 imply that $m d(G)+m d(\bar{G})=4$, the lower bound of $m d(G)+m d(\bar{G})$ is 4 .

Figure 4: The three cases of G and \bar{G} when $t=1$.
(IV) For $n=7$, the lower bound of $\operatorname{md}(G)+m d(\bar{G})$ is 2 . In fact, we only need to construct a graph G (see in Figure $5(1))$ and \bar{G} (see in Figure 5 (2)) such that $m d(G)=m d(\bar{G})=1$.

Figure 5: Extremal graphs for $n=7$.
Let Γ be an extremal $M D$-coloring of G. Since $G_{1}=G[g, f, c, d, h]$ and $G_{2}=$ $G[g, f, c, d, b]$ are isomorphic to $K_{2,3}$, and since G_{1} and G_{2} have common edges, by Lemma 2.4 we have $\operatorname{md}\left(G_{1} \cup G_{2}\right)=1$. Since a is neither a cut vertex nor a pendent vertex of $G, m d(G) \leq m d(G-a)=1$.

Since $\bar{G}[g, b, c, a]$ and $\bar{G}[a, f, h, d]$ are isomorphic to K_{4}^{-}, all the edges of $\bar{G}[g, b, c, a]$ $(\bar{G}[a, f, h, d])$ are colored the same under any $M D$-coloring of \bar{G}. Then, the 5 -cycle $\bar{G}[g, a, f, h, b]$ just has one trivial $M D$-coloring. Therefore, $\operatorname{md}(\bar{G})=1$.

For ease of reading, the lower bounds and upper bounds of $\operatorname{md}(G)+\operatorname{md}(\bar{G})$ for $n \geq 4$ are summarized in the following table.

	$n=4$	$n=5$	$n=6$	$n \geq 7$
Lower bound	6	4	4	2
Upper bound	6	6	7	$n+1$

Table 1: The bounds of $m d(G)+m d(\bar{G})$.

Theorem 4.4. If both G and \bar{G} are connected and $|G|=n \geq 4$, then $\operatorname{md}(G) \cdot \operatorname{md}(\bar{G})=9$ for $n=4 ; 4 \leq m d(G) \cdot m d(\bar{G}) \leq 9$ for $n=5 ; 3 \leq m d(G) \cdot m d(\bar{G})=10$ for $n=6$ and $1 \leq m d(G) \cdot m d(\bar{G}) \leq 2(n-1)$ for $n \geq 7$. Furthermore, the bounds are sharp.

Proof. We first consider the upper bounds.
If $n=4$, then $G=\bar{G}=P_{3}$, and so $m d(G) \cdot m d(\bar{G})=9$. If $n=5$, then since $m d(G)+m d(\bar{G})=6$, we have $m d(G) \cdot m d(\bar{G}) \leq 9$. The graphs G and \bar{G} are shown in Figure $2(4)$, implying that $m d(G) \cdot m d(\bar{G})=9$.

For upper bounds, whenever $n \geq 6$, we proceed by induction on n. We prove the inductive base $n=6$ and the inductive step $n>6$ simultaneously. Let G and \bar{G} be connected graphs with $n \geq 6$. By Lemma 4.2 , there is a vertex v such that both $G-v$ and $\bar{G}-v$ are connected.

Case 1. $d_{G}(v) \geq 2$ and $d_{\bar{G}}(v) \geq 2$.
Then, v is neither a pendent vertex nor a cut vertex of G and \bar{G}. By Lemma 2.8, $m d(G) \leq m d(G-v)$ and $\operatorname{md}(\bar{G}) \leq m d(\bar{G}-v)$. Therefore, $\operatorname{md}(G) \cdot m d(\bar{G}) \leq$ $m d(G-v) \cdot m d(\bar{G}-v)$. If $n=6$, then $m d(G) \cdot m d(\bar{G}) \leq 9<2(n-1)$. If $n>6$, then by induction on $n, m d(G) \cdot m d(\bar{G}) \leq m d(G-v) \cdot m d(\bar{G}-v) \leq 2(n-2)<2(n-1)$.

Case 2. $d_{G}(v)=1$ and $d_{\bar{G}}(v)=n-2$.
Let u be the neighbor of v in G. Then, v connects every vertex of $V(\bar{G})-\{u, v\}$ in \bar{G}.
If u is not a cut vertex of $\bar{G}-v$, then $\bar{G}-u=v \vee(\bar{G}-\{u, v\})$ and thus $m d(\bar{G}-u)=1$. Therefore, $\operatorname{md}(\bar{G}) \leq 2$.

If $\bar{G}-\{u, v\}$ has two components S_{1} and S_{2}, then u is a cut vertex of $\bar{G}-\{v\}$ and $\bar{G}-u=\left(v \vee S_{1}\right) \cup\left(v \vee S_{2}\right)$. Since $m d\left(v \vee S_{1}\right)=m d\left(v \vee S_{2}\right)=1, m d(\bar{G}-u)=2$. Since u is neither a pendent vertex nor a cut vertex of $\bar{G}, \operatorname{md}(\bar{G}) \leq m d(\bar{G}-u) \leq 2$ by Lemma 2.8.
If $\bar{G}-\{u, v\}$ has components S_{1}, \cdots, S_{k}, where $k \geq 3$, let w_{i} be a vertex connecting u in S_{i} for $i \in[k]$. Then $\operatorname{md}\left(v \vee S_{i}\right)=1$ for $i \in[k]$. If $\operatorname{md}(\bar{G}) \neq 1$, then there is
an $M D$-coloring Γ of \bar{G} with $|\Gamma(\bar{G})| \geq 2$. Since u is neither a pendent vertex nor a cut vertex of $\bar{G}, \Gamma(\bar{G}-u)=\Gamma(\bar{G})$ by Claim 2.7. Then there are two edges e_{1} and e_{2} of $\bar{G}-u$ such that $\Gamma\left(e_{1}\right) \neq \Gamma\left(e_{2}\right)$. Since $m d\left(v \vee S_{i}\right)=1$ for $i \in[k]$, w.l.o.g., let $e_{1}=v w_{1}$ and $e_{2}=v w_{2}$, then $\bar{G}\left[u, v, w_{1}, w_{2}, w_{3}\right] \cong K_{2,3}$. This contradicts that Γ is an $M D$-coloring restricted on the subgraph $\bar{G}\left[u, v, w_{1}, w_{2}, w_{3}\right]$. Therefore, $m d(\bar{G})=1$. Since $m d(G) \leq n-1, m d(G) \cdot m d(\bar{G}) \leq 2(n-1)$ for $n \geq 6$.
The graphs B_{n} and $\overline{B_{n}}$ defined in the proof of Theorem 4.3 show that $\operatorname{md}\left(B_{n}\right)$. $m d\left(\overline{B_{n}}\right)=2(n-1)$. So, the upper bound is sharp for $n \geq 6$.

Now we show the lower bounds. If $n=4, \operatorname{md}(G) \cdot \operatorname{md}(\bar{G})=9$. If $n \geq 7$, since there are graphs G and \bar{G} such that $m d(G)+m d(\bar{G})=2, \operatorname{md}(G) \cdot m d(\bar{G})=1$, i.e., the lower bound is sharp. If $n=5, \operatorname{md}(G) \cdot \operatorname{md}(\bar{G})$ is minimum when G and \bar{G} are graphs shown in Figure $2(3)$, which implies that $m d(G) \cdot m d(\bar{G})=4$. If $n=6$, since $m d(G)+m d(\bar{G}) \geq 4, m d(G) \cdot m d(\bar{G}) \geq 3$. Let G be a graph obtained by connecting an additional vertex w to a vertex u of a 5 -cycle (which implies $m d(G)=3$). Then \bar{G} is a graph obtained by connecting w to every vertex of $\overline{C_{5}}$ except u. Then u is neither a pendent vertex nor a cut vertex of $\bar{G}, \operatorname{md}(\bar{G}) \leq \operatorname{md}(\bar{G}-u)$. Since $\bar{G}-\{w, u\}$ is a path and $\bar{G}-u=v \vee(\bar{G}-\{w, u\}), \operatorname{md}(\bar{G}-u)=1$. Therefore, $\operatorname{md}(\bar{G})=1$, the lower bound is sharp for $n=6$.

For ease of reading, the lower bounds and upper bounds of $\operatorname{md}(G) \cdot m d(\bar{G})$ for $n \geq 4$ are summarized in the following table.

	$n=4$	$n=5$	$n=6$	$n \geq 7$
Lower bound	9	4	3	1
Upper bound	9	9	10	$2(n-1)$

Table 2: The bounds of $m d(G) \cdot m d(\bar{G})$.
Acknowledgement. The authors are very grateful to the reviewers and editor for their very useful suggestions and comments, which helped to improving the presentation of the paper.

References

[1] M. Aouchiche, P. Hansen, A survey of Nordhaus-Gaddum type relations, Discrete Appl. Math. 161(4-5)(2013), 466-546.
[2] X. Bai, X. Li, Graph colorings under global structural conditons, arXiv:2008.07163.
[3] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
[4] Y. Caro, R. Yuster, Colorful monochromatic connectivity, Discrete Math. 311(2011), 1786-1792.
[5] H. Chang, Z. Huang, X. Li, Y. Mao, H. Zhao, On conflict-free connection of graphs, Discrete Appl. Math. 255(2019), 167-182.
[6] G. Chartrand, S. Devereaux, T.W. Haynes, S.T. Hedetniemi, P. Zhang, Rainbow disconnection in graphs, Discuss. Math. Graph Theory 38(4)(2018), 1007-1021.
[7] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133(2008), 85-98.
[8] F. Harary, T. Haynes, Nordhaus-Gaddum inequalities for domination in graphs, Discrete Math. 155(1996), 99-105.
[9] D. Li, B. Wu, X. Yang, X. An, Nordhaus-Gaddum-type theorem for Wiener index of gaphs when decomposing into three parts, Discrete Appl. Math. 159(15)(2011), 1594-1600.
[10] P. Li, X. Li, Monochromatic k-edge-connection colorings of graphs, Discrete Math. 343(2020), 111679. https://doi.org/10.1016/j.disc.2019.111679.
[11] X. Li, C. Magnant, Properly colored notions of connectivity - a dynamic survey, Theory and Applications of Graphs $0(1)(2015)$, Article 2, 1-30
[12] X. Li, C. Magnant, Z. Qin, Properly Colored Connectivity of Graphs, Springer Briefs in Mathematics, Springer, Switzerland, 2018.
[13] X. Li, Y. Mao, Nordhaus-Gaddum type results for the generalized edgeconnectivity of graphs, Discrete Appl. Math. 185(2015), 102-112.
[14] X. Li, Y. Shi, Y. Sun, Rainbow connections of graphs: A survey, Graphs \& Combin. 29(1)(2013), 1-38.
[15] X. Li, Y. Sun, Rainbow Connections of Graphs, Springer Briefs in Mathematics, Springer, New York, 2012.
[16] X. Li, Y. Sun, An updated survey on rainbow connections of graphs- a dynamic survey, Theory and Applications of Graphs 0(1)(2017), Article 3, 1-67.
[17] X. Li, D. Wu, A survey on monochromatic connections of graphs, Theory and Applications of Graphs $0(1)(2018)$, Article 4, 1-21.
[18] E. Nordhaus, J. Gaddum, On complementary graphs, Amer. Math. Monthly 63(1956), 175-177.
[19] E. Shan, C. Dang, L. Kang, A note on Nordhaus-Gaddum inequalities for domination, Discrete Appl. Math. 136(2004), 83-85.
[20] L. Zhang, B. Wu, The Nordhaus-Gaddum type inequalities of some chemical indices, MATCH Commun. Math. Comput. Chem. 54(2005), 189-194.

[^0]: ${ }^{1}$ Supported by NSFC No. 11871034 and 11531011. *Corresponding author.

