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Abstract

For an edge-colored graph G, we call an edge-cut M of G monochromat-
ic if the edges of M are colored with the same color. The graph G is called
monochromatically disconnected if any two distinct vertices of G are separated
by a monochromatic edge-cut. For a connected graph G, the monochromatic dis-
connection number of G, denoted by md(G), is the maximum number of colors
that are needed in order to make G monochromatically disconnected. We show
that almost all graphs have monochromatic disconnection numbers equal to 1.
We also obtain the Nordhaus-Gaddum-type results for md(G).
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1 Introduction

Let G be a graph and let V (G), E(G) denote the vertex set and the edge set of G,

respectively. Let |G| (also v(G)) denote the number of vertices of G, called the order

of G, and let ||G|| (also e(G)) denote the number of edges of G, called the size of G. If

there is no confusion, we use n and m to denote, respectively, the number of vertices

and the number of edges of a graph, throughout this paper. For v ∈ V (G), let dG(v)

denote the degree of v. We call a vertex v a t-degree vertex of G if dG(v) = t. Let δ(G)

and ∆(G) denote the minimum and maximum degree of G, respectively. Sometimes,

we also use ∆ to denote a triangle. We use G to denote the complement graph of G.

Let S and F be a vertex subset and an edge subset of G, respectively. G − S is a

graph obtained from G by deleting the vertices of S together with the edges incident

with the vertices of S. G − F is a graph whose vertex set is V (G) and edge set is
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E(G) − F . Let G[S] and G[F ] be the vertex-induced and edge-induced subgraphs of

G, by S and F , respectively. The distance of u, v in G is denoted by dG(u, v). For all

other terminology and notation not defined here we follow Bondy and Murty [3].

Throughout this paper, let K−n be the graph obtained from Kn by deleting an arbi-

trary edge. K3 is also called a triangle. We call a cycle C a t-cycle if |C| = t. If r is a

positive integers, we use [r] to denote the set {1, 2, · · · , r} of integers. If r = 0, [r] is

an empty set.

For a graph G, let Γ : E(G) → [r] be an edge-coloring of G that allows the same

color to be assigned to adjacent edges. For an edge e of G, we use Γ(e) to denote the

color of e. If H is a subgraph of G, we also use Γ(H) to denote the set of colors on the

edges of H and use |Γ(H)| to denote the number of colors in Γ(H). An edge-coloring

Γ of G is trivial if |Γ(G)| = 1, otherwise, it is nontrivial.

The notion rainbow connection coloring was introduced by Chartrand et al. in [7].

A rainbow connection coloring of a graph G is an edge-coloring of G such that any

two distinct vertices are connected by a rainbow path (a path of G whose edges are

colored pairwise differently.) The notion rainbow disconnection coloring was introduced

by Chartrand et al. in [6]. A rainbow disconnection coloring of a graph G is an edge-

coloring of G such that any two distinct vertices are separated by a rainbow cut (a cut

of G whose edges are colored pairwise differently.)

Contrary to the concepts for rainbow connection and disconnection, monochromatic

versions of these concepts naturally appeared, as the other extremal. A monochromatic

connection coloring of a graph G, which was introduced by Caro and Yuster in [4], is

an edge-coloring of G such that any two vertices are connected by a monochromatic

path (a path of G whose edges are colored the same.)

As a counterpart of the rainbow disconnection coloring and a similar object of the

monochromatic connection coloring, we now introduce the notion of monochromatic

disconnection coloring of a graph. For an edge-colored graph G, we call an edge-cut M

a monochromatic edge-cut if the edges of M are colored with the same color. For two

distinct vertices u, v of G, a monochromatic uv-cut is a monochromatic edge-cut that

separates u and v. An edge-colored graph G is monochromatically disconnected if any

two distinct vertices of G has a monochromatic cut separating them. An edge-coloring

of G is a monochromatic disconnection coloring (MD-coloring for short) if it makes

G monochromatically disconnected. For a connected graph G, the monochromatic

disconnection number of G, denoted by md(G), is the maximum number of colors that

are needed in order to make G monochromatically disconnected. An extremal MD-

coloring of G is an MD-coloring that uses md(G) colors. If H is a subgraph of G and

Γ is an edge-coloring of G, we call Γ an edge-coloring restricted on H.

As we know that there are two ways to study the connectivity of a graph, one

way is by using paths and the other is by using cuts. Both rainbow connection and

monochromatic connection provide ways to study the colored connectivity of a graph by
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colored paths. However, both rainbow disconnection and monochromatic disconnection

can provide ways to study the colored connectivity of a graph by colored cuts. All these

parameters or numbers coming from studying the colored connectivity of a graph should

be regarded as some kinds of chromatic numbers. However, they are different from

classic chromatic numbers. These kinds of chromatic numbers come from colorings

by keeping some global structural properties of a graph, say connectivity; whereas

the classic chromatic numbers come from colorings by keeping some local structural

properties of a graph, say adjacent vertices or edges. So, the employed methods to

study them appear quite different sometimes. Of course, local structural properties

may yield global structural properties, and vice versa. But this is not always the case,

say, local connectedness of a graph cannot guarantee connectedness of the entire graph.

So, many colored versions of connectivity parameters appeared in recent years, and we

refer the reader to [2, 10, 11, 12, 14, 15, 16, 17] for surveys.

Let G be a graph that may have parallel edges but no loops. By deleting all parallel

edges but one of them, we obtain a simple spanning subgraph of G, and call it the

underling graph of G. If there are some parallel edges of an edge e = ab, then any

monochromatic ab-cut contains e and its parallel edges. Therefore, the following result

is obvious, which means that we only need to think about simple graphs in the sequel.

Proposition 1.1. Let G′ be the underling graph of a graph G. Then md(G) = md(G′).

The following result means that we only need to consider connected graphs in the

sequel.

Proposition 1.2. If a simple graph G has t components D1, · · · , Dt, then md(G) =∑
i∈[t]md(Di).

Let G and H be two graphs. The union of G and H is the graph G∪H with vertex

set V (G) ∪ V (H) and edge set E(G) ∪E(H). If G and H are vertex-disjoint, then let

G∨H denote the join of G and H, which is obtained from G and H by adding an edge

between each vertex of G and every vertex of H.

A block of a graph G is trivial if it is a cut-edge of G. If e = uv is an edge of G with

dG(v) = 1, we call e a pendent edge of G and v a pendent vertex of G.

2 Some basic results

Let G be a graph with at least two blocks. An edge-coloring of G is an MD-coloring

if and only if it is also an MD-coloring restricted on each block of G. Therefore, the

following result is obvious.

Remark 2.1. If a connected graph G has r blocks B1, B2 · · · , Br, then md(G) =∑
i∈[r]md(Bi).
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From the above remark, if G is a tree, then md(G) = n− 1.

Proposition 2.2. If G is a cycle, then md(G) =
⌊
|G|
2

⌋
. Furthermore, if G is a unicycle

graph with cycle C, then md(G) = n−
⌈
|C|
2

⌉
.

Proof. From Remark 2.1, we only need to prove that md(G) =
⌊
|G|
2

⌋
if G is a cycle.

Let G = C be a cycle. Suppose C = v1e1v2e2 · · · vn−1en−1vnenv1. Let r =
⌊
n
2

⌋
. For

i ∈ [r] and j ∈ [n], if j ≡ i (mod r), then color ej by i+ 1. It is easy to verify that the

edge-coloring of C is an MD-coloring, and so md(C) ≥ r.

For a contradiction, let Γ be an MD-coloring of C such that |Γ(C)| ≥ r + 1. Then

there exists a color i of Γ that colors only one edge e of C, say e = ab. Since the

monochromatic ab-cut must contain e and some other edges of C − e, a contradiction.

Since an MD-coloring of G separates any two vertices by a monochromatic cut, it

also separates any two vertices of a subgraph of G. So the following result is obvious.

Proposition 2.3. Let D be a subgraph of a graph G. If Γ is an MD-coloring of G,

then Γ is also an MD-coloring restricted on D.

Lemma 2.4. Let H be the union of graphs H1, · · · , Hr. If
⋂

i∈[r]E(Hi) 6= ∅ and

md(Hi) = 1 for each i ∈ [r], then md(H) = 1.

Proof. We prove it by contradiction. Suppose Γ is an MD-coloring of H with |Γ(H)| ≥
2. Then there are two edges e1, e2 of H such that Γ(e1) = 1 and Γ(e2) = 2. W.l.o.g.,

let e1 ∈ E(H1) and e2 ∈ E(H2). Since Γ is an MD-coloring restricted on H1 (also H2)

and md(H1) = md(H2) = 1, all edges of H1 are colored by 1 and all edges of H2 are

colored by 2 under Γ, which contradicts that E(H1) ∩ E(H2) 6= ∅.

Lemma 2.5. If H is a connected spanning subgraph of G, then md(H) ≥ md(G).

Proof. Let H ′ be a graph obtained from G by deleting an edge e = ab, where e is in a

cycle of G. If md(H ′) ≤ md(G)− 1, let Γ be an extremal MD-coloring of G. Then Γ

is an MD-coloring that is restricted on H ′, and this implies that e is the only edge of

G colored by Γ(e). However, e is in a cycle of G, and the monochromatic ab-cut has

at least 2 edges, a contradiction. Therefore, md(H ′) ≥ md(G).

If H is a connected proper spanning subgraph of G, H can be obtained from G by

deleting some edges in cycles one by one, consecutively. Therefore, the lemma is true.

Corollary 2.6. For any connected graph G of order n, md(G) ≤ n−1, and the equality

holds if and only if G is a tree.
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Proof. Since each connected graph has a spanning tree T , by Lemma 2.5 we have that

md(G) ≤ md(T ) = n − 1 if G is connected. On the other hand, if G is a connected

graph with md(G) = n − 1 but G is not a tree, then G has a connected unicycle

spanning subgraph G′. By Lemma 2.5 and Proposition 2.2, md(G) ≤ md(G′) < n− 1,

a contradiction.

Claim 2.7. Let G be a connected graph and v ∈ V (G) is neither a pendent vertex nor

a cut-vertex of G. Then for any MD-coloring Γ′ of G, Γ′(G)− Γ′(G− v) = ∅.

Proof. We proceed by contradiction. Let e = vu be an edge of E(G)− E(G− v) and

Γ′(e) /∈ Γ′(G− v). Since dG(v) ≥ 2, there is another edge incident with v, say f = vw.

Since v is not a cut-vertex, there is a cycle C of G with E(C)−E(G−v) = {e, f}. Since

Γ′ is an MD-coloring restricted on C, there are at least two edges in the monochromatic

uv-cut of C and the monochromatic uv-cut contains e. Since Γ′(G)−Γ′(G− v) 6= ∅, f
is in the monochromatic uv-cut, i.e., Γ′(e) = Γ′(f). Then, there is no monochromatic

uw-cut in C, a contradiction.

The following is a direct consequence of Claim 2.7.

Lemma 2.8. Let G be a connected graph and v ∈ V (G). If v is neither a pendent

vertex nor a cut-vertex of G, then md(G) ≤ md(G− v).

Theorem 2.9. If G is a 2-connected graph of order n, then md(G) ≤
⌊
n
2

⌋
.

Proof. Let F = {C,P1, · · · , Pt} be an ear-decomposition of G, where C is a cycle and

Pi is a path for i ∈ [t]. The proof proceeds by induction on |F |. If |F | = 1, then G is

a cycle, the theorem holds. If |F | = t + 1 ≥ 2, let Γ be an extremal MD-coloring of

G. Then Γ is an MD-coloring restricted on G′, where G′ is a graph obtained from G

by deleting E(Pt) and the internal vertices of Pt. By induction, we have

|Γ(G′)| ≤ md(G′) ≤
⌊ |G′|

2

⌋
=

⌊
n− |Pt|+ 2

2

⌋
.

Suppose that the ends of Pt are a, b and L is an ab-path of G′. Then C ′ = L ∪ Pt is

a cycle of G. Since Γ is an MD-coloring restricted on C ′, the monochromatic ab-cut

contains at least one edge of L and at least one edge of Pt, say e. Therefore, there are at

most |Pt|−2 edges colored by colors of Γ(G)−Γ(G′). Since each color of Γ(G)−Γ(G′)

colors at least two edges of Pt − e, |Γ(G)− Γ(G′)| ≤
⌊
|Pt|−2

2

⌋
. So,

md(G) = |Γ(G)| = |Γ(G′)|+ |Γ(G)− Γ(G′)| ≤
⌊
n− |Pt|+ 2

2

⌋
+

⌊ |Pt| − 2

2

⌋
≤
⌊n

2

⌋
.
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3 Graphs with monochromatic disconnection num-

ber one

In this section we consider the monochromatic disconnection numbers for some spe-

cial graphs, such as triangular graphs (i.e., graphs with each of its edges in a triangle),

complete multipartite graphs, chordal graphs, square graphs and line graphs (the def-

initions of the last four graphs are well-known, we omit them). We denote the square

graph and the line graph of a graph G by G2 and L(G), respectively.

For a graph G, we define a relation θ on the edge set E(G) as follows: for two edges e

and e′ ofG, we say that eθe′ if there exists a sequence of subgraphsG1, · · · , Gk ofG with

md(Gi) = 1 for any i ∈ [k], such that e ∈ G1 and e′ ∈ Gk, and |V (Gi) ∩ V (Gi+1)| ≥ 2

for i ∈ [k − 1]. It is easy to check that θ is symmetric, reflexive and transitive and

therefore an equivalent relation on E(G). We call a graph G a closure if eθe′ for any

two edges e, e′ of E(G).

Lemma 3.1. If a graph G is a closure, then md(G) = 1.

Proof. Suppose that md(G) ≥ 2 and Γ is an extremal MD-coloring of G. Then there

exist two edges, say e and e′, of G, such that Γ(e) 6= Γ(e′). Since G is a closure,

there is a sequence of subgraphs G1, · · · , Gk with md(Gi) = 1 for any i ∈ [k], such

that e ∈ G1 and e′ ∈ Gk, and Gi and Gi+1 have at least two common vertices, say

ai, bi, for i ∈ [k − 1]. Since all edges of each Gi must be colored with the same color

under Γ, Γ(Gi) = Γ(Gi−1). Otherwise there is no monochromatic aibi-cut. Therefore,

Γ(e) = Γ(G1) = Γ(G2) = · · · = Γ(Gk) = Γ(e′), a contradiction. So, md(G) = 1.

Theorem 3.2. If G is one of the following graphs, then md(G) = 1.

1. G = H ∨ v, where H is a connected graph and v is an additional vertex;

2. G is a complete multipartite graph other than K1,n−1 and K2,2;

3. G is a 2-connected chordal graph;

4. G = H2, where H is a connected graph other than K1;

5. G = L(H), where H is a connected triangular graph.

Proof. (1) If H = K1, then the result holds. If |H| ≥ 2, then let T be a spanning

tree of H and u be a leaf of T . By induction, md((T − u) ∨ v) = 1. Since V (T ∨ v)−
V ((T − u) ∨ v) = {u} and u is neither a pendent vertex nor a cut vertex of T ∨ v,

md(T ∨ v) ≤ md((T − u) ∨ v) by Lemma 2.8. Since T ∨ v is a connected spanning

subgraph of H ∨ v, md(H ∨ v) ≤ md(T ∨ v) by Lemma 2.5. Therefore, md(H ∨ v) = 1.

(2) We prove md(K2,3) = 1. Any MD-coloring of C4 can have only two cases, one

is trivial and the other is to assign colors 1, 2 to the four edges of C4 alternately. Let
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H = K2,3 and the bipartition of H be A = {a, c} and B = {b, d, u}. If md(H) ≥ 2,

then there is an MD-coloring Γ of K2,3 with |Γ(H)| ≥ 2. Therefore, at least one of

the three 4-cycles of H has a nontrivial MD-coloring. Let the three 4-cycles of H be

H1 = H[a, b, c, d], H2 = H[a, b, c, u] and H3 = H[a, d, c, u]. By symmetry, suppose that

H1 is colored nontrivially, say Γ(ad) = Γ(bc) = 1 and Γ(ab) = Γ(cd) = 2. Then Γ

is a nontrivial MD-coloring restricted on H2 with Γ(au) = 1 and Γ(cu) = 2. It is

obvious that Γ is not an MD-coloring restricted on H3, which contradicts that Γ is an

MD-coloring of G. Therefore, md(H) = 1.

Let G be a complete bipartite graph other than K1,n−1 and K2,2. Suppose that A,B

are the bipartition of G with A = {u, v, a1, · · · , as} and B = {u′, v′, b1, · · · , bt}. Then

at least one of s, t is not zero. Let Gi = G[u, u′, v, v′, ai] and G′j = G[u, u′, v, v′, bj] for

i ∈ [s] and j ∈ [t]. Since each Gi or G′j is a K2,3 and
⋂

i∈[s]E(Gi) ∩
⋂

j∈[t]E(G′j) =

E(G[u, u′, v, v′]), by Lemma 2.4 we have md(
⋃

i∈[s]Gi∪
⋃

j∈[t]G
′
j) = 1. Since

⋃
i∈[s]Gi∪⋃

j∈[t]G
′
j is a connected spanning subgraph of G, md(G) = 1.

Let G = G1 be a complete r-partite graph with r ≥ 3 and let V = {v1, · · · , vt} be

one part of G. Let Gi = G− {v1, · · · , vi−1} for i ∈ {2, · · · , t}. Then each vi is neither

a pendent vertex nor a cut vertex of Gi, and so md(G1) ≤ md(G2) ≤ · · · ≤ md(Gt)

by Lemma 2.8. However, Gt = (G − V ) ∨ vt and G − V is a connected graph, which

implies md(Gt) = 1. Therefore, md(G) = 1.

(3) A simplicial order of a graph H is an enumeration v1, · · · , vn of its vertices

such that the neighbors of vi in H[{vi, · · · , vn}] induce a complete graph. A graph

is chordal if and only if it has a simplicial order (see Corollary 9.22 on page 273 of

[3]). Suppose that a simplicial order of G is u1, · · · , un and Gi = G[{ui, · · · , un}] for

i ∈ [n− 2] (then G = G1). Let Hi = Gi[NGi
(ui)]. Since G is 2-connected, each Hi is a

complete graph other than K1 and thus Gn−1 = G[un−1, un] is a K2. Therefore, ui is

neither a pendent vertex nor a cut vertex of Gi for i ∈ [n − 2], and hence by Lemma

2.8, md(Gi) ≤ md(Gi+1). So, md(G) ≤ md(Gn−1) = 1.

(4) The result holds for G = K2. We prove it by induction on |G|. If |G| ≥ 3, let

T be a spanning tree of G and v be a leaf of T . Then T 2 − v = (T − v)2. Since v is

neither a pendent vertex nor a cut vertex of T 2, md(T 2) ≤ md((T − v)2) = 1. Since

T 2 is a spanning subgraph of G2, md(G2) ≤ md(T 2). Therefore, md(G2) = 1.

(5) Let A, B be two edge-induced subgraphs of G. We define

dG(A,B) = min{dG(u, v) : u ∈ V (A), v ∈ V (B)}.

It is sufficient to show that L(G) is a closure, i.e., we need to show that for every two

edges l1, l2 of L(G), l1θl2. For each edge ei of G, we denote the corresponding vertex

of L(G) by ui. We proceed by induction on dL(G)(l1, l2).

If dL(G)(l1, l2) = 0, then l1 and l2 has a common vertex. Let l1 = u1u2 and l2 = u2u3.

If G[e1, e2, e3] is a triangle (denote it by ∆) of G, then L(∆) is a triangle of L(G)

containing l1, l2, and so l1θl2. If just two edges of e1, e2, e3 are in a triangle ∆ of G,
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suppose ∆ = G[e1, e2, e4]. Then G[e2, e3, e4] is a star (call the star S). Since L(∆) and

L(S) are two triangles of L(G) and they have a common edge u2u4, and since L(∆)

contains l1 and L(S) contains l2, l1θl2. If none of the triangles of G contains at least

two of e1, e2, e3, suppose that ∆ = G[e4, e2, e5] is a triangle of G, where e4 is adjacent

to e3 and e5 is adjacent to e1. Then S1 = G[e1, e2, e5] and S2 = G[e3, e2, e4] are two

stars of G. Therefore, L(S1), L(∆) and L(S2) are three triangles of L(G) such that

L(S1), L(∆) have a common edge u2u5 and L(S2), L(∆) have a common edge u2u4. So,

l1θl2.

If dL(G)(l1, l2) = r > 0, let l1 = u1u2 and l2 = u3u4. Suppose that P is a shortest

path of L(G) connecting l1 and l2. Then ||P || = r. W.l.o.g., suppose l3 = u3u5 is a

pendent edge of P . Then dL(G)(l1, l3) = r − 1 and dL(G)(l2, l3) = 0. By induction, l1θl3
and l2θl3. Therefore, l1θl2.

From Theorem 3.2 (2), md(Kn) = 1 for n ≥ 2. Let v be a minimum degree vertex

of K−n (n ≥ 4). Then K−n − v = Kn−1. Since v is neither a pendent vertex nor a cut

vertex of K−n , md(K−n ) ≤ md(Kn−1) = 1, i.e., md(K−n ) = 1 for n ≥ 4.

As we have seen, a lot of graphs have the monochromatic disconnection number

equal to 1, and this suggest us to show that following result.

Theorem 3.3. For almost all graphs G, md(G) = 1 holds.

Proof. Let G ∼ Gn, 1
2
, that is, G is a random graph on n vertices chosen by picking

each pair of vertices as an edge randomly and independently with probability 1
2
. Let

Auv be the set of events that u and v have at most 2 common neighbors and A =⋃
u,v∈V (G)Auv. Let Ai

uv be the set of events that u, v have exactly i common neighbors.

Then Auv =
⋃2

i=0Ai
uv. For a vertex w of V (G)− {u, v}, since

Pr[w is a common neighbor of u and v] =
1

4

and

Pr[w is not a common neighbor of u and v] =
3

4
,

we get

Pr[Ai
uv] =

(
n− 2

i

)(
1

4

)i(
3

4

)n−i−2

.

Therefore, Pr[Auv] < 3n2(3
4
)n−4 when n is large enough. Since

Pr[A] ≤
(
n

2

)
Pr[Auv] < 3n4

(
3

4

)n−2

→ 0 as n→∞,

it follows that almost all graphs have the property that any two vertices have at least 3

common neighbors. We will complete the proof by showing that md(G) = 1 if a graph

G has the property that every two vertices of G have at least three common neighbors.
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For any two edges e = ab and f = uv of G, there is a path P of G such that the

pendent edges of P are e and f . Let e1 = x1x2 and e2 = x2x3 be two adjacent edges

of P . Then x1 and x3 have three common neighbors (x2 is one of them) and thus e1
and e2 are in a K2,3 of G. This implies e1θe2. By transitivity, eθf . Therefore, G is a

closure, and so md(G) = 1 by Lemma 3.1.

4 Nordhaus-Gaddum-type results

For a graph parameter, it is always interesting to get the Nordhaus-Gaddum-type

results, see [1] and [5, 8, 9, 13, 18, 19, 20] for more such results on various kinds of

graph parameters. This section is devoted to get the Nordhaus-Gaddum-type results

for our parameter md(G).

For a connected graph G, a vertex v is deletable if G− v is connected. Let B be the

set of blocks of G and S be the set of cut-vertices of G. A block-tree of G is a bipartite

graph B(G) with bipartition B and S, and a block B of G has an edge with a cut

vertex v in B(G) if and only if B contains v. Therefore, every pendent vertex of B(G)

is a block (call it a leaf-block).

Since B(G) is a tree, there are at least two leaves in B(G) if G has more than one

block. For a leaf-block B of G, there are |B| − 1 deletable vertices in the block. This

implies that every graph has at least two deletable vertices.

Remark 4.1. If G is a connected simple graph with |G| ≥ 2, then G has at least two

deletable vertices. Furthermore, G has exactly two deletable vertices if and only if G is

a path.

Proof. We only need to deal with the case that G is not a path. If B(G) has at least

three leaves, or B(G) has two leaves with one being nontrivial, then G has at least

three deletable vertices. If B(G) has exactly two trivial leaf blocks, since G is not a

path, there is a nontrivial block B and B has exactly two cut vertices, then B has at

least |B| − 2 ≥ 1 deletable vertices. Therefore, G has at least three deletable vertices.

Since a complete graph Kn can be decomposed into two connected graphs if and

only if n ≥ 4, in this section we always assume n ≥ 4.

Lemma 4.2. Suppose that G and G are connected spanning subgraphs of Kn with

n ≥ 5. Then there is a vertex v of Kn such that v is deletable for both G and G.

Proof. If both G and G are 2-connected spanning subgraphs of Kn, then every vertex

is deletable for both G and G. So, we assume that at least one of G1 = G and G2 = G

has cut vertices. Let v be a cut vertex of G1 and let S1, · · · , Sr be the components of

G1 − v. Then Fi = G1[v ∪ Si] is a connected graph. It is obvious that G2 − v contains
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a complete r-partite spanning subgraph, denote it by H. W.l.o.g., let e = vu1 be an

edge of G2 and u1 ∈ S1. We distinguish the following cases to discuss.

Case 1. r = 2 and |S2| ≥ 2, or r ≥ 3.

By Remark 4.1, there is a deletable vertex u2 of F2 and u2 6= v. Then G1 − u2 is

connected. If r = 2 and |S2| ≥ 2, then G2 − u2 is connected, since H is a complete

bipartite graph with |S2| ≥ 2 and vu1 is an edge of G2 with u1 ∈ S1. If r ≥ 3, then

G2 − u2 is also connected. Therefore, u2 is deletable for both G and G.

Case 2. r = 2 and |S2| = 1.

Let S2 = {u2}. If F1 is not a path, by Remark 4.1 F1 has a deletable vertex w

different from v and u1. Then G1 − w is connected. Since u2 connects to all vertices

of S1 and vu1 is not affected in G2 − w, G2 − w is also connected. Therefore, w is

deletable for both G and G.

If F1 is a path, then let y be a leaf of F1 other than v and let x be adjacent to y in

F1. Since n ≥ 5, v is not connected to both x and y in F1. Therefore, vx and vy are

edges of G2, both G1 − y and G2 − y are connected. Therefore, y is deletable for both

G and G.

Theorem 4.3. Suppose that G and G are connected spanning subgraphs of Kn. Then

md(G) +md(G) ≤ n+ 1 for n ≥ 5, and md(G) +md(G) ≥ 2 for n ≥ 8. Furthermore,

the upper bound and the lower bound are sharp.

Proof. Since both G and G are nonempty graphs, md(G) + md(G) ≥ 2 is obvious for

n ≥ 8. So, we need to show that md(G) +md(G) ≤ n+ 1 for n ≥ 5.

If n = 5, there are five cases to consider for the graphs G and G, and all of the five

cases imply that md(G) +md(G) ≤ 6 = n+ 1 (see Figure 2).

We proceed by induction on n. The theorem holds for n = 5. If n > 5, by Lemma

4.2 there is a deletable vertex v for both G and G. Let G′ = G − v. Then G′ and G′

are connected subgraphs of Kn−1. By induction, md(G′) + md(G′) ≤ n. Let Γ be an

extremal MD-coloring of G.

Since n > 5, at least one of dG(v) and dG(v) is greater than 1 (say dG(v) = r ≥ 2).

Then v is neither a pendent vertex nor a cut vertex of G, and so by Lemma 2.8,

md(G) ≤ md(G′). If dG(v) ≥ 2, we also have md(G) ≤ md(G′). If dG(v) = 1, then

md(G) = md(G′) + 1. Therefore, md(G) +md(G) ≤ md(G′) +md(G′) + 1 ≤ n+ 1.

Now we show that the upper bound is sharp for n ≥ 5. Let Bn be a tree with

|Bn| = n and ∆(Bn) = n− 2. Then Bn is a graph obtained by joining a pendent edge

to one of the vertices of K−n−1 with minimum degree. Since Bn and Bn are connected

graphs and md(Bn) = n− 1,md(Bn) = 2, md(Bn) +md(Bn) = n+ 1.

We prove that the lower bound is sharp for n ≥ 8. Let V (Kn) = A∪B ∪{a, b, u, v},
where both |A| and |B| are greater than 1. Let J be a complete bipartite graph with

bipartition A∪ {a, u} and B ∪ {b, v}. Then C = J [a, b, u, v] is a C4. Let G be a graph
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obtained from J by deleting the edges of C. Let Ga = J −{b, u, v}, Gb = J −{a, u, v},
Gu = J − {a, b, v} and Gv = J − {a, b, u}. Then G is the union of Ga, Gb, Gu and

Gv. Since Ga, Gb, Gu and Gv are complete bipartite graphs other than K2,2 and stars,

by Theorem 3.2 (2) we have md(Ga) = md(Gb) = md(Gu) = md(Gv) = 1. Thus,

md(G) = 1 (see Figure 1) by Lemma 2.4. Since H1 = G[A ∪ a ∪ u], H2 = G[a, b, u, v]

and H3 = G[B ∪ b ∪ v] are complete graphs, and E(Hi) ∩ E(Hi+1) 6= ∅ for i = 1, 2,

md(G) = 1 (see Figure 1). Therefore, the lower bound is sharp for n ≥ 8.

A

B

ua

b v

a
u

b v

A ∪ a ∪ u

B ∪ b ∪ v

G G

Figure 1: Extremal graphs for md(G) +md(G) = 2 when |G| ≥ 5.

In Theorem 4.3, the lower bound of md(G) + md(G) for 4 ≤ n ≤ 7 and the upper

bound of md(G) +md(G) for n = 4 are not considered. We discuss them below.

(I) For n = 4, since K4 can only be decomposed into two Hamiltonian paths,

md(G) +md(G) = 6 = n+ 2.

G

G

(1) (2) (3) (4) (5)

Figure 2: The five cases of G and G when n = 5.

(II) For n = 5, there are ten cases for G and G to deal with. However, by symmetry

we only need to discuss the five cases depicted in Figure 2. Among all the five cases,

(3) implies that the lower bound of md(G) +md(G) is 4.

(III) For n = 6, e(K6) = 15. Since G and G are connected spanning subgraphs of

K6, both e(G) and e(G) are greater than or equal to 5.

If e(G) = 5 and e(G) = 10, then md(G) +md(G) ≥ 6.

If e(G) = 6 and e(G) = 9, then G is a unicycle graph and the length of the cycle is

at most 6. By Proposition 2.2, we have md(G) ≥ 3. So, md(G) +md(G) ≥ 4.
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If e(G) = 7 and e(G) = 8, we assume that G has t blocks. If t ≥ 3, by Remark

2.1 we have md(G) ≥ 3. Thus, md(G) + md(G) ≥ 4. If t = 2, G is isomorphic to

(1) (2) (3) (4)

Figure 3: The four cases of graph G when t = 2.

one of the four graphs in Figure 3. Since every graph F in Figure 3 has md(F ) = 3,

md(G) + md(G) ≥ 4. If t = 1, there are three cases to consider. In Figure 4, we give

an extremal MD-coloring for each graph. Since the last two cases of Figure 4 imply

that md(G) +md(G) = 4, the lower bound of md(G) +md(G) is 4.

1

1 1

1

1

1

1

1 12

2

3

3

2

2

1

1

1

1

1

2

2

1

1

1
1

1
2

2

2

1

1

2

2

2 2

2

2 2

2

2 2

2

1

1

G

G

Figure 4: The three cases of G and G when t = 1.

(IV) For n = 7, the lower bound of md(G) + md(G) is 2. In fact, we only need

to construct a graph G (see in Figure 5 (1)) and G (see in Figure 5 (2)) such that

md(G) = md(G) = 1.

a

a

b

bc c
d

d

f
fg g

h

h
(1) (2)

Figure 5: Extremal graphs for n = 7.

Let Γ be an extremal MD-coloring of G. Since G1 = G[g, f, c, d, h] and G2 =

G[g, f, c, d, b] are isomorphic to K2,3, and since G1 and G2 have common edges, by

Lemma 2.4 we have md(G1 ∪ G2) = 1. Since a is neither a cut vertex nor a pendent

vertex of G, md(G) ≤ md(G− a) = 1.
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Since G[g, b, c, a] and G[a, f, h, d] are isomorphic to K−4 , all the edges of G[g, b, c, a]

(G[a, f, h, d]) are colored the same under any MD-coloring of G. Then, the 5-cycle

G[g, a, f, h, b] just has one trivial MD-coloring. Therefore, md(G) = 1.

For ease of reading, the lower bounds and upper bounds of md(G)+md(G) for n ≥ 4

are summarized in the following table.

n = 4 n = 5 n = 6 n ≥ 7
Lower bound 6 4 4 2
Upper bound 6 6 7 n+ 1

Table 1: The bounds of md(G) +md(G).

Theorem 4.4. If both G and G are connected and |G| = n ≥ 4, then md(G)·md(G) = 9

for n = 4; 4 ≤ md(G) ·md(G) ≤ 9 for n = 5; 3 ≤ md(G) ·md(G) = 10 for n = 6 and

1 ≤ md(G) ·md(G) ≤ 2(n− 1) for n ≥ 7. Furthermore, the bounds are sharp.

Proof. We first consider the upper bounds.

If n = 4, then G = G = P3, and so md(G) · md(G) = 9. If n = 5, then since

md(G) +md(G) = 6, we have md(G) ·md(G) ≤ 9. The graphs G and G are shown in

Figure 2 (4), implying that md(G) ·md(G) = 9.

For upper bounds, whenever n ≥ 6, we proceed by induction on n. We prove the

inductive base n = 6 and the inductive step n > 6 simultaneously. Let G and G be

connected graphs with n ≥ 6. By Lemma 4.2, there is a vertex v such that both G− v
and G− v are connected.

Case 1. dG(v) ≥ 2 and dG(v) ≥ 2.

Then, v is neither a pendent vertex nor a cut vertex of G and G. By Lemma

2.8, md(G) ≤ md(G − v) and md(G) ≤ md(G − v). Therefore, md(G) · md(G) ≤
md(G− v) ·md(G− v). If n = 6, then md(G) ·md(G) ≤ 9 < 2(n− 1). If n > 6, then

by induction on n, md(G) ·md(G) ≤ md(G− v) ·md(G− v) ≤ 2(n− 2) < 2(n− 1).

Case 2. dG(v) = 1 and dG(v) = n− 2.

Let u be the neighbor of v in G. Then, v connects every vertex of V (G)− {u, v} in

G.

If u is not a cut vertex of G−v, then G−u = v∨(G−{u, v}) and thus md(G−u) = 1.

Therefore, md(G) ≤ 2.

If G− {u, v} has two components S1 and S2, then u is a cut vertex of G− {v} and

G − u = (v ∨ S1) ∪ (v ∨ S2). Since md(v ∨ S1) = md(v ∨ S2) = 1, md(G − u) = 2.

Since u is neither a pendent vertex nor a cut vertex of G, md(G) ≤ md(G− u) ≤ 2 by

Lemma 2.8.

If G−{u, v} has components S1, · · · , Sk, where k ≥ 3, let wi be a vertex connecting

u in Si for i ∈ [k]. Then md(v ∨ Si) = 1 for i ∈ [k]. If md(G) 6= 1, then there is
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an MD-coloring Γ of G with |Γ(G)| ≥ 2. Since u is neither a pendent vertex nor a

cut vertex of G, Γ(G − u) = Γ(G) by Claim 2.7. Then there are two edges e1 and

e2 of G − u such that Γ(e1) 6= Γ(e2). Since md(v ∨ Si) = 1 for i ∈ [k], w.l.o.g., let

e1 = vw1 and e2 = vw2, then G[u, v, w1, w2, w3] ∼= K2,3. This contradicts that Γ is

an MD-coloring restricted on the subgraph G[u, v, w1, w2, w3]. Therefore, md(G) = 1.

Since md(G) ≤ n− 1, md(G) ·md(G) ≤ 2(n− 1) for n ≥ 6.

The graphs Bn and Bn defined in the proof of Theorem 4.3 show that md(Bn) ·
md(Bn) = 2(n− 1). So, the upper bound is sharp for n ≥ 6.

Now we show the lower bounds. If n = 4, md(G) · md(G) = 9. If n ≥ 7, since

there are graphs G and G such that md(G) + md(G) = 2, md(G) · md(G) = 1, i.e.,

the lower bound is sharp. If n = 5, md(G) · md(G) is minimum when G and G are

graphs shown in Figure 2 (3), which implies that md(G) ·md(G) = 4. If n = 6, since

md(G) + md(G) ≥ 4, md(G) ·md(G) ≥ 3. Let G be a graph obtained by connecting

an additional vertex w to a vertex u of a 5-cycle (which implies md(G) = 3). Then G

is a graph obtained by connecting w to every vertex of C5 except u. Then u is neither

a pendent vertex nor a cut vertex of G, md(G) ≤ md(G − u). Since G − {w, u} is a

path and G− u = v ∨ (G− {w, u}), md(G− u) = 1. Therefore, md(G) = 1, the lower

bound is sharp for n = 6.

For ease of reading, the lower bounds and upper bounds of md(G) ·md(G) for n ≥ 4

are summarized in the following table.

n = 4 n = 5 n = 6 n ≥ 7
Lower bound 9 4 3 1
Upper bound 9 9 10 2(n− 1)

Table 2: The bounds of md(G) ·md(G).
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