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Abstract

A graph G of order n is said to be (L)-borderenergetic if G has the same (Lapla-
cian) energy as the complete graph Kn, i.e., E(G) = 2(n − 1). In this paper,
by using a few new Nordhaus-Gaddum-type results on the (Laplacian) energies of
graphs, we obtain some upper bounds of the energy of the complement G of an (L)-
borderenergetic graph G. Then, we show that ε(G) + ε(G) < O(n), which means
that there could be graphs G for which both G and G are borderenergetic. As a
result, we obtain that for any graph G, except for three graphs (one of order 9 and
two of order 11), at most one of G and its complement G can be a borderenergetic,
and there is a unique self-complementary graph, of order 9.

1 Introduction

All graphs considered in this paper are simple and undirected. Let G be a graph with

order n and size m. The maximum degree of G is denoted by ∆(G). The complete graph
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of order n is denoted by Kn. The complement of a graph G is denoted by G, whose

order and size are n and m =
(
n
2

)
−m, respectively. Denote the degrees of G and G by

d1 ≥ d2 ≥ · · · ≥ dn and d1 ≥ d2 · · · ≥ dn, respectively. Let λ1 ≥ λ2 ≥ · · · ≥ λn and

λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrices of G and G, respectively.

For terminology and notation not given here, we refer to [1, 3].

The energy of a graph G [14, 15], denoted by E(G), is defined as

E(G) =
n∑
i=1

|λi| .

For more information on the graph energy and its applications in chemistry, we refer

to [13,16,20].

In 2015, Gong et al. [11] proposed the concept of borderenergetic graphs, i.e., graphs

of order n satisfying E(G) = 2(n− 1). More results on the borderenergetic graphs can be

seen in [4, 7, 10,17,21,22,25].

Analogously, the concept of Laplacian borderenergetic, i.e., L-borderenergetic graphs

was proposed in [28], that is, a graph G of order n is called L-borderenergetic if LE(G) =

LE(Kn) = 2(n − 1), where LE(G) is the Laplacian energy of G; see [12]. Results on the

L-borderenergetic graphs can be referred to [5, 6, 8, 9, 23,26,28,29].

In order to investigate borderenergetic graphs further with a new way different from

those before, in this paper we study the energy for the complements of borderenergetic

graphs. By using a few new Nordhaus-Gaddum-type results on the (Laplacian) energies

of graphs, some upper bounds of the energies for the complements of (L-)borderenergetic

graphs are established. Interestingly, we get that, except for three graphs of orders 9 and

11, there is no graph G for which both G and G are borderenergetic, and and there is a

unique self-complementary graph. .

2 Complements of Borderenergetic Graphs

In [30], a Nordhaus-Gaddum-type result on energies of graphs was presented. See the

following.

Theorem 1. [30] Let G be a graph with n vertices. Then

ε(G) + ε(G) <
√

2n+ (n− 1)
√
n− 1.

From this we can immediately get
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Corollary 2. If G is a borderenergetic graph with n vertices, then

ε(G) <
√

2n+ (n− 1)(
√
n− 1− 2).

Proof. If G is a borderenergetic graph with n vertices, then ε(G) = 2(n − 1). From

Theorem 1, the result follows directly.

Next a better upper bound (see Corollary 4) of the energy for the complement of any

borderenergetic graph is obtained by the following result. Let ω and ω be the clique

numbers of G and G, respectively.

Theorem 3. [30] Let G be a graph with n vertices. Then

ε(G) + ε(G) <

√
(2− 1

ω
− 1

ω
)n(n− 1) + (n− 1)

√
n− 1 .

With the same reason as Corollary 2, we immediately obtain

Corollary 4. If G is a borderenergetic graph with n vertices, then

ε(G) <

√(
2− 1

ω
− 1

ω

)
n(n− 1) + (n− 1)(

√
n− 1− 2) .

In the case of regular graphs, we have

Lemma 5. [30] Let G be a k-regular graph with n vertices. Then

ε(G) + ε(G) ≤ n− 1 +
[√

k(n− k) +
√

(k + 1)(n− k − 1)
]

< (n− 1)
(√

n+ 1 + 1
)
.

From Lemma 5, one can immediately arrive at

Theorem 6. If G is a borderenergetic regular graph with n vertices, then

ε(G) < (n− 1)
(√

n+ 1− 1
)
. (1)

In fact, the above upper bound in (1) can be improved by using Lemma 7.

Lemma 7. [2] Let G be a k-regular graph with spectrum

Spec(G) =

(
k λ2 · · · λt
1 m2 · · · mt

)
.

Then G is an (n− 1− k)-regular graph with spectrum

Spec(G) =

(
n− 1− k −λ2 − 1 · · · −λt − 1

1 m2 · · · mt

)
.

-183-



Theorem 8. If G is a k-regular borderenergetic graph with n vertices, then

ε(G) ≤ 4(n− 1)− 2k. (2)

Proof. If G is a borderenergetic graph with n vertices, then ε(G) = 2(n− 1). Since G is

regular, its spectrum has a form as follows:

Spec(G) =

(
k λ2 · · · λt
1 m2 · · · mt

)
.

Then ε(G) = 2(n− 1) = k +
∑n

i=2mi|λi|. By Lemma 7, we get

ε(G) = n− 1− k +
n∑
i=2

mi| − λi − 1|

≤ n− 1− k +
n∑
i=2

mi(|λi|+ 1)

= 4(n− 1)− 2k .

The above equality holds if and only if | − λi − 1| = |λi| + 1 is satisfied for each i with

2 ≤ i ≤ n.

For the spectral radii of a graph G and its complement G, Nikiforov [24] showed

λ1(G) + λ1(G) ≥ n− 1 +
√

2
s2(G)

n3
, (3)

where s(G) =
∑

1≤i≤n |di −
2m
n
|.

By the lemma below, another lower bound on λ1(G) + λ1(G) can be obtained. For a

real number α ∈ [0, 1), the Aα-matrix of a graph G is defined as

Aα(G) = αD(G) + (1− α)A(G) ,

where A(G) and D(G) are the adjacency matrix and diagonal degree matrix of G, respec-

tively. The Aα-spectral radius of G is denoted by ρα(G).

Lemma 9. [18] Let G be a graph of order n and size m. Then

ρα(G) + ρα(G) ≥ (n− 1) +
s2(G)

n2

√
2√

α2 n
2
(n− 1)2 + (1− α)2n(n− 1)

. (4)

When α = 0, we see that ρ0(G) = λ1, ρ0(G) = λ1, and a direct corollary of Lemma 9

is as follows.

-184-



Corollary 10. Let G be a graph of order n. Then

λ1(G) + λ1(G) ≥ n− 1 +
s2(G)

n2

√
2√

n(n− 1)
. (5)

Lemma 11. [27] Let G be a graph of order n. Then

λ1(G) + λ1(G) <
4

3
n− 1. (6)

So, the result in Theorem 1 can be improved as follows.

Theorem 12. Let G be a graph of order n. Then

ε(G) + ε(G) <
4

3
n− 1 +

√√√√2n(n− 1)2 − (n− 1)

[
n− 1 +

√
2s2(G)

n2
√
n(n− 1)

]2

. (7)

Proof. In [19], it was shown that for a graph G with n vertices and m edges,

ε(G) ≤ λ1 +
√

(n− 1)(2m− λ2
1). (8)

From the inequalities (5) , (6) and (8), we have

ε(G) + ε(G) ≤ λ1 + λ1 +
√

(n− 1)(2m− λ2
1) +

√
(n− 1)

(
2m− λ1

2
)

≤ λ1 + λ1 +

√
2(n− 1)

[
2m+ 2m−

(
λ2

1 + λ1
2
)]

≤ λ1 + λ1 +

√
2(n− 1)

[
n(n− 1)− 1

2

(
λ1 + λ1

)2
]

<
4

3
n− 1 +

√√√√2n(n− 1)2 − (n− 1)

[
n− 1 +

√
2s2(G)

n2
√
n(n− 1)

]2

.

Observing the following two types of strongly regular graphs constructed in [30], it is

easy to check that the upper bound (7) is asymptotically tight.

Type 1. If G is a strongly regular graph with parameters (n, (n+
√
n)/2, (n+2

√
n)/4,

(n+ 2
√
n)/4), then

ε(G) + ε(G) = (n− 1)(
√
n+ 1)− 1.
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Type 2. For a Paley graph H, which is a strongly regular graph with parameters (n,

(n− 1)/2, (n− 5)/4, (n− 1)/4),

ε(H) + ε(H) = (n− 1)(
√
n+ 1) .

If G is borderenergetic, by Theorem 12 we get

Theorem 13. Let G be a borderenergetic graph. Then

ε(G) <

√√√√2n(n− 1)2 − (n− 1)

[
n− 1 +

√
2s2(G)

n2
√
n(n− 1)

]2

− 2n

3
+ 1 . (9)

From the above inequality (9), as n is large enough, it yields that

ε(G) < O(n3/2). (10)

In practical, the inequality (10) can be better improved as follows.

Theorem 14. Let G be a borderenergetic graph of order n. Then

ε(G) = O(1), (11)

as n is large enough.

Proof. In [4], an asymptotically tight bound on the size of a borderenergetic graph was

given as follows:

m ≥


[
2(n− 1)−

√
1
n

∑n
i=1 d

2
i

]2

2(n− 1)
+

∑n
i=1 d

2
i

2n

 . (12)

If G is (n− 3)-regular, then the bound in (12) is asymptotically tight.

As n is large enough, by (12) we can see that

m ≥ O(n2). (13)

As m ≤ n(n−1)
2

, we get m = O(1). From the fact that

2
√
m ≤ ε(G) ≤ 2m, (14)

we obtain ε(G) = O(1).
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What is more important, by Theorem 14 we see that, in the case of borderenergetic

graphs, the upper bound behaves much better for the Nordhaus-Gaddum-type result (i.e.,

much better than Theorem 1). That is

Theorem 15. Let G be a borderenergetic graph with n vertices. Then

ε(G) + ε(G) < O(n),

as n is large enough.

An interesting question is whether there is a graph G such that both G and its com-

plement G are borderenergetic ? In fact, if it is yes, then one will have

ε(G) + ε(G) = 4(n− 1),

which is in linear of n. Theorem 15 tells us that such graphs could exist. As a result of

our investigation, we find that there are exactly three such graphs, one with order 9 and

two with order 11; see Figure 1.

In fact, borderenergetic graphs of order n with 1 ≤ n ≤ 11 were found by using

computers in [11,21,25], and there is no borderenergetic graph of order less than 7. One

can check that among them, only three graphs have the property that both the graph and

its complement are borderenergetic. The adjacency spectra of the three graphs are given

as follows:

SpA(G1
9) = {4, 1, 1, 1, 1,−2,−2,−2,−2};

SpA(G2
11) = {5, 1, 1, 1, 1, 1,−2,−2,−2,−2,−2};

SpA(G3
11) = {6, 1, 1, 1, 1, 0,−2,−2,−2,−2,−2}.

One can see thatG1
9
∼= G1

9 andG2
11
∼= G3

11, and especially, the graphG1
9 is self-complementary.

So, we are left to deal with the case of n ≥ 12 only.

Theorem 16. Except for the three graphs G1
9, G

2
11 and G3

11, for any graph G at most one

of G and its complement G can be a borderenergetic graph.

Proof. For the case that 1 ≤ n ≤ 11, we are done in the above discussion. Next we

consider the case of n ≥ 12. Let G be a borderenergetic graph with order n ≥ 12. By

contradiction, suppose G is also borderenergetic. Then ε(G) = 2(n− 1). Due to (14), we

have

m ≥ n− 1. (15)
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G1
9

G2
11 G3

11

Figure 1. Three borderenergetic graphs: G1
9, G2

11 and G3
11.

Let f(x) be a function on x > 0, where

f(x) =

[
2(n− 1)−

√
x
n

]2
2(n− 1)

+
x

2n
.

Then the derivative of f(x) is

f
′
(x) =

n
√

x
n
− 2n+ 2

2n(n− 1)
√

x
n

.

It can be seen that f(x) is increasing as x > 4(n−1)2

n
. Assume x =

∑n
i=1 d

2
i . One can check

that

n

n∑
i=1

d2
i ≥

(
n∑
i=1

di

)2

= 4m2 > 4(n− 1)2 .

The second inequality in the above holds when a connected borderenergetic graph is not

a tree [4]. Then we have
n∑
i=1

d2
i >

4(n− 1)2

n
.

By (12), we get

m ≤ (n− 1)n

2
−


[
2(n− 1)−

√
1
n

∑n
i=1 d

2
i

]2

2(n− 1)
+

∑n
i=1 d

2
i

2n


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≤ (n− 1)n

2
−


[
2(n− 1)−

√
1
n

∑n
i=1 d

2
i

]2

2(n− 1)
+

∑n
i=1 d

2
i

2n


Combining (15), we have

n− 1 ≤ (n− 1)n

2
−


[
2(n− 1)−

√
1
n

∑n
i=1 d

2
i

]2

2(n− 1)
+

∑n
i=1 d

2
i

2n



=
(n− 1)n

2
−


[
2(n− 1)−

√
1
n
x
]2

2(n− 1)
+

x

2n

 . (16)

By direct computation, we can see that the above inequality (16) holds if x1 ≤ x ≤ x2,

where

x1 =
n4 − 8n3 + 21n2 − 22n+ 8− 4

√
n6 − 10n5 + 34n4 − 56n3 + 49n2 − 22n+ 4

n
,

x2 =
n4 − 8n3 + 21n2 − 22n+ 8 + 4

√
n6 − 10n5 + 34n4 − 56n3 + 49n2 − 22n+ 4

n
.

Now we distinguish the following two cases by considering the maximum degree ∆(G).

Case 1. ∆(G) ≤ n− 6.

Then
∑n

i=1 d
2
i ≤ n(n− 6)2. By computation, we get that

x1 − n(n− 6)2

=
n4 − 8n3 + 21n2 − 22n+ 8− 4

√
n6 − 10n5 + 34n4 − 56n3 + 49n2 − 22n+ 4

n

−n(n− 6)2

=
4n3 − 15n2 − 22n+ 8− 4

√
n6 − 10n5 + 34n4 − 56n3 + 49n2 − 22n+ 4

n
> 0 .

That is, x1 > n(n− 6)2 ≥ x, which means that the inequality (16) does not hold and this

is a contradiction.

Case 2. ∆(G) > n− 6.

Then ∆(G) ∈ {n− 5, n− 4, n− 3, n− 2, n− 1}. From (16) and that f(x) is increasing

for n ≥ 12, we have

n− 1 ≤ (n− 1)n

2
−


[
2(n− 1)−

√
1
n

∑n
i=1 d

2
i

]2

2(n− 1)
+

∑n
i=1 d

2
i

2n


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≤ (n− 1)n

2
−


[
2(n− 1)−

√
∆2(G)
n

]2

2(n− 1)
+

∆2(G)

2n

 . (17)

Then (17) holds if x1 ≤ ∆2(G) ≤ x2. But in fact we can check that x1 > ∆2(G) as

x1 −∆2(G) > x1 − n(n− 6)2 > 0,

for each ∆(G) ∈ {n− 5, n− 4, n− 3, n− 2, n− 1}, which implies that the inequality (17)

does not hold and this is a contradiction.

From the above result, one can immediately derive the following corollaries.

Corollary 17. There is a unique self-complementary borderenergetic graph, which is the

graph G1
9 on 9 vertices.

Corollary 18. There is a unique regular borderenergetic graph for which both the graph

and its complement are borderenergetic, which is the graph G1
9 on 9 vertices.

3 Complements of Laplacian borderenergetic graphs

In this section, two upper bounds of the Laplacian energies for the complements of L-

borderenergetic graphs are established. The auxiliary quantity M(G) of G [12] is defined

as

M(G) = m+
1

2

n∑
i=1

(
di −

2m

n

)2

.

Similarly,

M(G) = m+
1

2

n∑
i=1

(
di −

2m

n

)2

.

These two kinds of inequalities below can be found in [12].

The Koolen–Moulton type of inequality on the Laplacian energy is

LE(G) ≤ 2m

n
+

√√√√(n− 1)

[
2M −

(
2m

n

)2
]
. (18)

The McClelland type of inequality on the Laplacian energy is

LE(G) ≤
√

2nM. (19)
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Denote the maximum degrees of G and G by ∆ and ∆, respectively. Suppose ∆0 =

max{∆,∆}. We get a Nordhaus-Gaddum-Type bound for the Laplacian energy as follows.

Theorem 19. Let G be a graph of order n. Then

LE(G) + LE(G) < n− 1 + 2(n− 1)

√
n

2
(∆0 + 1)− 1− 1

n
. (20)

Proof. By surveying the quality M(G) +M(G), we have

M(G) +M(G) = m+m+
1

2

n∑
i=1

(
di −

2m

n

)2

+
1

2

n∑
i=1

(
di −

2m

n

)2

=
1

2
n(n− 1) +

1

2

(
n∑
i=1

d2
i −

4m2

n

)
+

1

2

(
n∑
i=1

di
2 − 4m2

n

)

=
1

2
n(n− 1) +

1

2

n∑
i=1

d2
i −

2m2

n
+

1

2

n∑
i=1

di
2 − 2m2

n

≤ 1

2
n(n− 1) +m∆ +m∆− 2

n

(
m2 +m2

)

<
1

2
n(n− 1) + (m+m)∆0 −

2

n
(m+m)

=
1

2
n(n− 1)

(
∆0 + 1− 2

n

)
Then by the Koolen-Moulton type of inequality, i.e., (18), we obtain

LE(G) + LE(G) ≤ 2m

n
+

√
(n− 1)

[
2M − 4m2

n2

]
+

2m

n
+

√
(n− 1)

[
2M − 4m2

n2

]

= n− 1 +
√
n− 1

(√
2M − 4m2

n2
+

√
2M − 4m2

n2

)

≤ n− 1 + 2
√
n− 1

√
M +M − 2(m2 +m2)

n2

≤ n− 1 + 2
√
n− 1

√
M +M − 2(m+m)

n2

= n− 1 + 2
√
n− 1

√
M +M − n− 1

n
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< n− 1 + 2
√
n− 1

√
1

2
n(n− 1)

(
∆0 + 1− 2

n

)
− n− 1

n

= n− 1 + 2(n− 1)

√
n

2
(∆0 + 1)− 1− 1

n
.

By Theorem 19, it easy to see that

Corollary 20. Let G be an L-borderenergetic graph of order n. Then

LE(G) < 2(n− 1)

√
n

2
(∆0 + 1)− 1− 1

n
− n+ 1. (21)

On the other hand, from the McClelland type of inequality on the Laplacian energy,

a better bound on LE(G) + LE(G) is presented.

Theorem 21. Let G be a graph of order n. Then

LE(G) + LE(G) < n

√
2(n− 1)

(
∆0 + 1− 2

n

)
. (22)

Proof. Note that

M(G) +M(G) <
1

2
n(n− 1)

(
∆0 + 1− 2

n

)
.

Then by applying the McClelland type of inequality on the Laplacian energy, i.e., (19),

we have

LE(G) + LE(G) ≤
√

2nM +
√

2nM

=
√

2n
(√

M +
√
M
)

≤
√

2n

√
2(M +M)

=
√

4n
(
M +M

)
< n

√
2(n− 1)

(
∆0 + 1− 2

n

)
.

From Theorem 21, it directly yields that

Theorem 22. Let G be an L-borderenergetic graph with n vertices. Then

LE(G) ≤ n

√
2(n− 1)

(
∆0 + 1− 2

n

)
− 2(n− 1) . (23)
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