
COMBINATORICS ON LATTICE PATHS IN STRIPS

NANCY S.S. GU AND HELMUT PRODINGER

Abstract. For lattice paths in strips which begin at (0, 0) and have only up steps

U : (i, j) → (i + 1, j + 1) and down steps D : (i, j) → (i + 1, j − 1), let An,k denote

the set of paths of length n which start at (0, 0), end on heights 0 or −1, and are

contained in the strip −bk+1
2 c ≤ y ≤ bk2 c of width k, and let Bn,k denote the set of

paths of length n which start at (0, 0) and are contained in the strip 0 ≤ y ≤ k. We

establish a bijection between An,k and Bn,k.

The generating functions for the subsets of these two sets are discussed as well.

Furthermore, we provide another bijection between An,3 and Bn,3 by translating the

paths to two types of trees.

1. Introduction

Throughout this paper, we consider the lattice paths in strips which begin at (0, 0)
and have only up steps U : (i, j)→ (i+1, j+1) and down steps D : (i, j)→ (i+1, j−1).
Let An,k denote the set of paths of length n which start at (0, 0), end on heights 0 or
−1, and are contained in the strip −bk+1

2
c ≤ y ≤ bk

2
c of width k. Let Bn,k denote the

set of paths of length n which start at (0, 0) and are contained in the strip 0 ≤ y ≤ k.
For example, we show A4,3 and B4,3 in Figures 1.1 and 1.2, respectively.
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Figure 1.1. The paths in A4,3
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Figure 1.2. The paths in B4,3

Using the viewpoint of the adjacency matrices of path graphs, Cigler [3] presented
that

|An,k| = |Bn,k| =
∑
j∈Z

(−1)j
(

n⌊
n+(k+2)j

2

⌋).
An interesting special case is that An,3 is enumerated by the Fibonacci number Fn+1 [13,
A000045]. For some other combinatorial objects which are related to the Fibonacci
number, one can compare [1, 5–7]. Cigler [3] showed the following identity

|An,3| =
∑
j∈Z

(−1)j
(

n⌊
n+5j
2

⌋) = Fn+1 =

bn
2
c∑

k=0

(
n− k
k

)
which is related to the first Rogers-Ramanujan identity

∞∑
k=0

qk
2

(q; q)k
=

1

(q; q5)∞(q4; q5)∞
,

where

(a; q)k :=
k−1∏
i=0

(1− aqi) and (a; q)∞ :=
∞∏
i=0

(1− aqi).

For another study of a similar type of lattice paths, Panny and Prodinger [9] con-
sidered the enumeration formulae for some types of expected height of lattice paths
and their asymptotic equivalents. In addition, one can refer to [2, 8] for some recen-
t works on treatment of walks in restricted domains. Although Cigler [3] derived the
enumeration formulae for An,k and Bn,k, he expected the existence of a simple bijection
between An,k and Bn,k. Prellberg [10] established a bijection between An,3 and Bn,3.
Until now, Cigler’s problem is still open for general k. The main purpose of this paper
is to solve the general case. The main theorem of this paper is stated as follows.

Theorem 1.1. There is a bijection between An,k and Bn,k.

This paper is organized as follows. In Section 2, we prove Theorem 1.1. In Section
3, we discuss the generating functions for the subsets of An,k and Bn,k. In Section 4,
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we show another bijection between An,3 and Bn,3 by linking the paths to two types of
trees.

2. Main results

To prove Theorem 1.1, we construct the bijection between A2n,2k (resp. A2n,2k+1,
A2n+1,2k, or A2n+1,2k+1) and B2n,2k (resp. B2n,2k+1, B2n+1,2k, or B2n+1,2k+1), where

• A2n,2k (resp. A2n+1,2k): the set of paths of length 2n (resp. 2n+ 1) which start
at (0, 0), end on height 0 (resp. −1), and are contained in the strip −k ≤ y ≤ k;
• A2n,2k+1 (resp. A2n+1,2k+1): the set of paths of length 2n (resp. 2n + 1) which

start at (0, 0), end on height 0 (resp.−1), and are contained in the strip−k−1 ≤
y ≤ k;
• B2n,2k (resp. B2n+1,2k): the set of paths of length 2n (resp. 2n+ 1) which start

at (0, 0) and are contained in the strip 0 ≤ y ≤ 2k;
• B2n,2k+1 (resp. B2n+1,2k+1): the set of paths of length 2n (resp. 2n + 1) which

start at (0, 0) and are contained in the strip 0 ≤ y ≤ 2k + 1.

Notice that the paths in B2n,2k and B2n,2k+1 end on even heights, and the paths in
B2n+1,2k and B2n+1,2k+1 end on odd heights.

In the following, we prove four theorems. Then the proofs of these theorems imply
Theorem 1.1. If there are no special requirements, we always look at the paths from
left to right. For a given path A starting on the line y = k, let A denote the path
which is obtained by reflecting A along y = k. Notice that in the following proofs we
only use A and A to denote the shapes of the paths and ignore their positions on the
plane. Conversely, if we flip the path A in the same manner, then we get the path A.
For convenience, in all the pictures of this section, we only draw the lines parallel to
the x-axis, and omit x-axis and y-axis.

Theorem 2.1. There is a bijection between A2n,2k and B2n,2k.

Proof. We prove the theorem by induction on k.

When k = 1, we separate A2n,2 (resp. B2n,2) into two subsets A1
2n,2 and A2

2n,2 (resp.

B1
2n,2 and B2

2n,2).

A1
2n,2 (resp. A2

2n,2): the set of paths in A2n,2 which start with an up (resp. a down)
step;

B1
2n,2 (resp. B2

2n,2): the set of paths in B2n,2 which end on height 2 (resp. 0).

For a path P1 ∈ A1
2n,2, let a denote the first step of P1, and let A denote the sub-path

after the step a which starts with a down step and ends with an up or a down step.
Here we take the picture in the upper-left corner of Figure 2.3 as an example to explain
the meaning of the rectangle. The rectangle shows the scope of the strip in which the
path A exists. In this picture, it means that A is in the strip −1 ≤ y ≤ 1. The symbol

in the upper-left corner of the rectangle represents the first down step of A starting

on height 1, and the symbol in the rectangle represents the last step of A which is
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an up or a down step ending on height 0. Since we do not care about the other steps
of A, they are omitted in the rectangle.

We show the bijection between A1
2n,2 (resp. A2

2n,2) and B1
2n,2 (resp. B2

2n,2) in Figure

2.3. The corresponding path P ′1 ∈ B1
2n,2 starts with A and ends with a, where A is

obtained by flipping A upside down. For a path P2 ∈ A2
2n,2, let a denote the first step

of P2, and let A denote the sub-path after the step a. Then we only change the order
of a and A to obtain the corresponding path P ′2 ∈ B2

2n,2.
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Figure 2.3. The bijection α2n,2 between A2n,2 and B2n,2

Suppose that there is a bijection α2n,2k−2 between A2n,2k−2 and B2n,2k−2 (k ≥ 2).
Let A′2n,2k denote the set of paths in A2n,2k which touch the lines y = k or y = −k. Let
B′2n,2k denote the set of paths in B2n,2k such that in each path there exist some steps
above the line y = 2k − 2. Since A2n,2k (resp. B2n,2k) can be divided into A2n,2k−2 and
A′2n,2k (resp. B2n,2k−2 and B′2n,2k), with the aid of the hypothesis, we only need to build
the bijection between A′2n,2k and B′2n,2k.

First, we separate A′2n,2k into three subsets A1
2n,2k, A

2
2n,2k, and A3

2n,2k, and separate

B′2n,2k into B1
2n,2k, B

2
2n,2k, and B3

2n,2k.

A1
2n,2k (resp. A2

2n,2k): the set of paths in A′2n,2k which first arrive at height k, not
height −k, such that in each path all the steps (resp. some steps) before the first point
on height k are above (resp. below) height 0.

A3
2n,2k: the set of paths in A′2n,2k which first arrive at height −k, not height k.

B1
2n,2k: the set of paths in B′2n,2k which end on height 2k.

B2
2n,2k (resp. B3

2n,2k): the set of paths in B′2n,2k which end on heights 0, 2, . . ., or
2k−2. Especially, in each path, starting from the last down step which ends on height
2k− 2, we go back from right to left until we arrive at height k for the first time. This
sub-path arrives (resp. doesn’t arrive) at height 2k.

We present the bijections αi2n,2k between Ai2n,2k and Bi
2n,2k for i = 1, 2, 3 in Figures

2.4–2.6, respectively.
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In Figure 2.4, for a given path in A1
2n,2k, let a denote the step which first arrives at

height k. Then let A (resp. B) denote the sub-path after (resp. before) the step a. To
obtain the corresponding path in B1

2n,2k, we first flip A upside down to obtain A. Then

we put A, a, and B in order. To show the inverse map, for a given path in B1
2n,2k, by

finding the last up step a starting on height k, we divide the path into three parts A,
a, and B. Then we flip A upside down to obtain A. Finally, we put B, a, and A in
order to obtain the corresponding path in A1

2n,2k.

−k

0

k − 1
k

B

a

A

A1
2n,2k




0

k
k + 1

2k

A
a
B

B1
2n,2k

Figure 2.4. The bijection α1
2n,2k between A1

2n,2k and B1
2n,2k

In Figures 2.5, for a given path in A2
2n,2k, let a denote the step which first arrives

at height k, and let A denote the sub-path after the step a. Then let b denote the
last up step ending on height 0 in the sub-path before the step a, and let B denote
the sub-path between b and a. Next, from b, we go back from right to left to find
the step c when we first arrive at height 0. Then the sub-path between c and b is
denoted by C, and the sub-path before c is denoted by D. So we divide the path into
the parts D, c, C, b, B, a, and A. To show the map, first, since the sub-path D is in
the strip −k + 1 ≤ y ≤ k − 1, we apply the hypothetical bijection on D, and flip the
corresponding path upside down to obtain D′. Then by flipping b and A upside down,
respectively, and putting A, a, B, b, C, c, and D′ in order, we obtain the corresponding
path in B2

2n,2k. Inversely, for a given path in B2
2n,2k, let c denote the last down step

which ends on height 2k−2. Then from c, we go back from right to left until we arrive
at height k for the first time. Let a denote this step. For the sub-path between a and
c, from left to right, let b denote the last down step starting on height 2k. Then we
use A, B, C, and D′ to denote the sub-paths which are separated by the steps a, b,
and c, respectively. To obtain the corresponding path in A2

2n,2k, we first flip D′ upside
down, and then apply the hypothetical bijection to get the path D. Then as shown in
Figure 2.5, we complete the inverse map.

In Figures 2.6, for a given path in A3
2n,2k, let a denote the first down step ending

on height −k, and let A denote the sub-path after the step a. Then from a, we go
back from right to left until we find the first step ending on height 0, and let b denote
this step. Alternatively, we use B to denote the sub-path between b and a, and let C
denote the sub-path before b. To show the map from A3

2n,2k to B3
2n,2k, first, we apply

the hypothetical bijection on C, and then flip the corresponding path upside down to
obtain C ′. Next, by flipping a and B upside down, respectively, and then putting A,
a, B, b, and C ′ in order, we get the corresponding path in B3

2n,2k. Inversely, for a given

path in B3
2n,2k, first, let b denote the last down step ending on height 2k− 2, and let C ′
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Figure 2.5. The bijection α2
2n,2k between A2

2n,2k and B2
2n,2k

denote the sub-path after the step b. Then from b, we go back from right to left until we
first arrive at height k. Let a denote this step. Furthermore, let B denote the sub-path
between a and b, and let A denote the sub-path before a. To obtain the corresponding
path in A3

2n,2k, we first flip C ′ upside down, and then apply the hypothetical bijection

to obtain C. Next, by flipping a and B upside down, respectively, and then putting C,
b, B, a, and A in order, we complete the inverse map.

−k
−k + 1

−1
0

k − 1
k

C b

B
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A

A3
2n,2k




0

k
k + 1

2k − 2
2k − 1
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Figure 2.6. The bijection α3
2n,2k between A3

2n,2k and B3
2n,2k

Notice that when k = 2, the sub-path B doesn’t exist in Figure 2.6. So for any path
in B3

2n,4 the down step b starting on height 3 must follow a.

In conclusion, combining the bijections αi2n,2k for i = 1, 2, 3 yields the bijection α2n,2k

between A2n,2k and B2n,2k. �

We use the following example to explain the bijection in Theorem 2.1. First, we give
a path P ∈ A26,6 on the left in Figure 2.7. Since P first arrives at height −3, not height
3, we have P ∈ A3

26,6. Let a denote the first down step ending on height −3. From a,
we go back from right to left until we first arrive at height 0, and let b denote this step.
Then with the aid of the steps a and b, we can mark the other three sub-paths by A,
B, and C, respectively. Applying the bijection α3

26,6 on P , we derive the corresponding
path on the right in Figure 2.7. Since C is a path in the strip −2 ≤ y ≤ 2, we need to
use the bijection α14,4, and then flip the corresponding path upside down to derive the
path C ′. Here we only use the rectangle with a down step to represent C ′, and explain
the detailed map from C to C ′ in the following.
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Figure 2.7. An example for the bijection α2n,2k

In Figure 2.8, we show how to obtain C ′ from C. For the path C ∈ A2
14,4, based on

the illustration of α2
2n,2k in Theorem 2.1, we mark the sub-paths by D, c, b, B, a and

A in the path on the left in Figure 2.8, respectively. To obtain the corresponding path
C ′, we apply the bijection α2

14,4 to get the path on the right in Figure 2.8. Especially,
we apply the bijection α4,2 on D, and then flip the corresponding path upside down to
get D′.

−2
−1
0
1
2

D c b
B

a

A

C

α2
14,4




0
1
2
3
4

A
a
B b

c
D′

C′

Figure 2.8. The bijection between C and C ′

Combining Figures 2.7 and 2.8 yields the final path P ′ ∈ B26,6 in Figure 2.9.

0
1
2
3
4
5
6

a
b

Figure 2.9. The path P ′ ∈ B26,6

Inversely, for the given path P ′ ∈ B26,6 in Figure 2.9, we first find the last down
step b ending on height 4. Then from b, we go back from right to left to find the step
a when we first arrive at height 3. Since the sub-path between a and b doesn’t arrive
at height 6, we have P ′ ∈ B3

26,6. Then based on the bijections in Figures 2.7 and 2.8,
we can derive the path P ∈ A26,6.

Theorem 2.2. There is a bijection between A2n,2k+1 and B2n,2k+1.

Proof. The set A2n,2k+1 (resp. B2n,2k+1) can be divided into two subsets A1
2n,2k+1 and

A2
2n,2k+1 (resp. B1

2n,2k+1 and B2
2n,2k+1).

A1
2n,2k+1: the set of paths in A2n,2k+1 which are in the strip −k ≤ y ≤ k.

A2
2n,2k+1: the set of paths in A2n,2k+1 which arrive at height −k − 1.

B1
2n,2k+1: the set of paths in B2n,2k+1 which are in the strip 0 ≤ y ≤ 2k.
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B2
2n,2k+1: the set of paths in B2n,2k+1 which arrive at height 2k + 1.

First, we have the bijection α2n,2k in Theorem 2.1 between A1
2n,2k+1 and B1

2n,2k+1.

Next, we establish the bijection between A2
2n,2k+1 and B2

2n,2k+1 in Figure 2.10. Since
the process of the bijection is similar to that in Theorem 2.1, we only explain some
special steps here. For the path on the left in Figure 2.10, the step a is the first step
ending on height −k − 1. Then from a, we go back from right to left until we first
arrive at height 0. Let b denote this step. For the path on the right in Figure 2.10, the
step b is the last down step ending on height 2k. Then from b, we go back from right
to left until we first arrive at height k + 1, and let a denote this step. Notice that to
obtain C ′ which corresponds to C, we first apply the bijection in Theorem 2.1 on C,
and then flip the corresponding path upside down.

−k − 1
−k

−1
0

k

C b

B

a

A

A2
2n,2k+1




0

k + 1
k + 2

2k − 1
2k

2k + 1

A
a

B

b

C ′

B2
2n,2k+1

Figure 2.10. The bijection α2
2n,2k+1 between A2

2n,2k+1 and B2
2n,2k+1

Therefore, combining the two bijections α2n,2k and α2
2n,2k+1, we prove the theorem.

�

Theorem 2.3. There is a bijection between A2n+1,2k and B2n+1,2k.

Proof. We prove the theorem by induction on k.

When k = 1, we separate A2n+1,2 (resp. B2n+1,2) into two subsets A1
2n+1,2 and A2

2n+1,2

(resp. B1
2n+1,2 and B2

2n+1,2).

A1
2n+1,2 (resp. A2

2n+1,2): the set of paths in A2n+1,2 which start with an up (resp. a
down) step;

B1
2n+1,2 (resp. B2

2n+1,2): the set of paths in B2n+1,2 which end with a down (resp. an
up) step.

The bijections between Ai2n+1,2 and Bi
2n+1,2 for i = 1, 2 are presented in Figure 2.11.

Suppose that there is a bijection α2n+1,2k−2 between A2n+1,2k−2 and B2n+1,2k−2 (k ≥
2). Let A′2n+1,2k denote the set of paths in A2n+1,2k which touch the lines y = k or
y = −k. Let B′2n+1,2k denote the set of paths in B2n+1,2k such that in each path there
exist some steps above the line y = 2k − 2. Since A2n+1,2k (resp. B2n+1,2k) can be
divided into A2n+1,2k−2 and A′2n+1,2k (resp. B2n+1,2k−2 and B′2n+1,2k), we only need to
build the bijection between A′2n+1,2k and B′2n+1,2k. First, we separate A′2n+1,2k (resp.
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0
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B2
2n+1,2

Figure 2.11. The bijection α2n+1,2 between A2n+1,2 and B2n+1,2

B′2n+1,2k) into four subsets A1
2n+1,2k, A

2
2n+1,2k, A

3
2n+1,2k, and A4

2n+1,2k (resp. B1
2n+1,2k,

B2
2n+1,2k, B

3
2n+1,2k, and B4

2n+1,2k).

A1
2n+1,2k (resp. A2

2n+1,2k): the set of paths in A′2n+1,2k which first arrive at height k,
not height −k, such that all the steps (resp. some steps) before the first point on height
k are above (resp. below) height 0.

A3
2n+1,2k (resp. A4

2n+1,2k): the set of paths in A′2n+1,2k which first arrive at height −k,
not height k, such that all the steps (resp. some steps) before the first point on height
−k are below (resp. above) height 0.

B1
2n+1,2k (resp. B3

2n+1,2k): the set of paths in B′2n+1,2k which end on height 2k − 1
such that the sub-path between the last up step starting on height k − 1 and the last
step arrives (resp. doesn’t arrive) at height 2k.

B2
2n+1,2k (resp. B4

2n+1,2k): the set of paths in B′2n+1,2k which end on heights 1, 3, . . .,
or 2k − 3. Especially, in each path, starting from the last down step ending on height
2k − 2, we go back from right to left until we arrive at height k − 1 for the first time.
This sub-path arrives (resp. doesn’t arrive) at height 2k.

We state the bijections αi2n+1,2k between Ai2n+1,2k and Bi
2n+1,2k for i = 1, 2, 3, 4 in

Figures 2.12–2.15, respectively. Since the bijections are similar to those in Theorem
2.1, we only explain some special steps. Notice that we still establish the bijections
αi2n+1,2k for i = 2, 4 by induction on k.

For the path on the left in Figure 2.12, let a denote the first up step ending on
height k, and let b denote the last down step ending on height 0. On the other hand,
for the path on the right in Figure 2.12, the last up step starting on height k − 1 is
denoted by a, and b denotes the the first up step ending on height 2k in the sub-path
after the step a.

For the path on the left in Figure 2.13, let a denote the first up step ending on
height k, and let b denote the last down step ending on height 0. Then from the step
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−k

−1
0
1

k − 1
k

B

a

A
b

C

A1
2n+1,2k




0

k − 1
k

2k − 2
2k − 1

2k

A a
B

b
C

B1
2n+1,2k

Figure 2.12. The bijection α1
2n+1,2k between A1

2n+1,2k and B1
2n+1,2k

a, we go back from right to left until we first arrive at height −1, and let c denote this
step. For the path on the right in Figure 2.13, the last down step ending on height
2k − 2 is denoted by b. Then from b, we go back from right to left until we first arrive
at height k − 1, and let a denote this step. Furthermore, in the sub-path between a
and b, from left to right, let c denote the first up step ending on height 2k. To obtain
D′ which corresponds to D, we first use the hypothetical bijection on D. Then flip the
corresponding path upside down.

−k
−k + 1

−1
0
1

k − 1
k

D c
B

a

A
b

C

A2
2n+1,2k




0

k − 1
k

2k − 2
2k − 1

2k

A a
B

c

C
b

D′

B2
2n+1,2k

Figure 2.13. The bijection α2
2n+1,2k between A2

2n+1,2k and B2
2n+1,2k

For the path on the left in Figure 2.14, let a denote the first down step ending on
height −k. Alternatively, for the path on the right, the first up step starting on k − 1
is denoted by a.

−k
−k + 1

−1
0

k

B
a

A

A3
2n+1,2k




0

k − 1
k

2k − 1
2k

A a
B

B3
2n+1,2k

Figure 2.14. The bijection α3
2n+1,2k between A3

2n+1,2k and B3
2n+1,2k

For the path on the left in Figure 2.15, let a denote the first down step ending on
height −k, and let b denote the last down step ending on height 0 in the sub-path
before the step a. For the path on the right in Figure 2.15, the last down step ending
on height 2k − 2 is denoted by b. Then from b, we go back from right to left until
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we first arrive at height k − 1, and let a denote this step. Furthermore, to obtain C ′

which corresponds to C, we first use the hypothetical bijection on C, and then flip the
corresponding paths upside down.

−k
−k + 1

−1
0
1

k − 1
k

C
b

B
a

A

A4
2n+1,2k




0

k − 1
k

2k − 2
2k − 1

2k

A
a

B
b

C ′

B4
2n+1,2k

Figure 2.15. The bijection α4
2n+1,2k between A4

2n+1,2k and B4
2n+1,2k

Notice that when k = 2, the sub-path D which belongs to the path on the left in
Figure 2.13 must end with a down step, and the sub-path C belonging to the path on
the left in Figure 2.15 must end with an up step.

Combining the above bijections, we complete the proof. �

Theorem 2.4. There is a bijection between A2n+1,2k+1 and B2n+1,2k+1.

Proof. The setA2n+1,2k+1 (resp.B2n+1,2k+1) can be divided into three subsetsA1
2n+1,2k+1,

A2
2n+1,2k+1, and A3

2n+1,2k+1 (resp. B1
2n+1,2k+1, B

2
2n+1,2k+1, and B3

2n+1,2k+1).

A1
2n+1,2k+1: the set of paths in A2n+1,2k+1 which are in the strip −k ≤ y ≤ k.

A2
2n+1,2k+1: the set of paths in A2n+1,2k+1 which arrive at height −k − 1 such that

all the steps before the first point on height −k − 1 are below height 0.

A3
2n+1,2k+1: the set of paths in A2n+1,2k+1 which arrive at height −k − 1 such that

some steps before the first point on height −k − 1 are above height 0.

B1
2n+1,2k+1: the set of paths in B2n+1,2k+1 which are in the strip 0 ≤ y ≤ 2k.

B2
2n+1,2k+1: the set of paths in B2n+1,2k+1 which end on height 2k + 1.

B3
2n+1,2k+1: the set of paths in B2n+1,2k+1 which arrive at height 2k + 1, and end on

heights 1, 3, . . ., or 2k − 1.

First, we have the bijection α2n+1,2k in Theorem 2.3 betweenA1
2n+1,2k+1 andB1

2n+1,2k+1.

Next, we build the bijections αi2n+1,2k+1 between Ai2n+1,2k+1 and Bi
2n+1,2k+1 for i = 2, 3

in Figures 2.16 and 2.17, respectively. In the following, we again only explain some
special steps.

For the path on the left in Figure 2.16, let a denote the first down step ending on
height −k − 1. For the path on the right, the last up step starting on height k is
denoted by a.

For the path on the left in Figure 2.17, let a denote the first down step ending on
height −k − 1, and let b denote the last down step ending on height 0 in the sub-path
before the step a. For the path on the right, the last down step ending on height 2k is
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−k − 1
−k
−1
0

k

B
a

A

A2
2n+1,2k+1




0

k
k + 1

2k + 1

A a

B

B2
2n+1,2k+1

Figure 2.16. The bijection α2
2n+1,2k+1 between A2

2n+1,2k+1 and B2
2n+1,2k+1

denoted by b. Then from b, we go back from right to left until we first arrive at height
k, and let a denote this step. Furthermore, to obtain C ′ which corresponds to C, we
first apply the bijection in Theorem 2.3 on C, and then flip the corresponding path
upside down.

−k − 1
−k
−1
0
1

k

C
b

B

a

A

A3
2n+1,2k+1




0

k
k + 1

2k
2k + 1

A a
B

b

C ′

B3
2n+1,2k+1

Figure 2.17. The bijection α3
2n+1,2k+1 between A3

2n+1,2k+1 and B3
2n+1,2k+1

With the aid of the above bijections, we complete the proof. �

Therefore, combining Theorems 2.1–2.4, we prove Theorem 1.1.

3. Generating functions

Although the emphasis of this paper is on bijections, we want to briefly demonstrate
how the relevant identities can be seen via generating functions. We only do this for
the instance |A2n,2k| = |B2n,2k|, but the other instances are similar.

Lattice paths living in a strip have been treated in [9], so we can be brief. The series

ϕ0(z) =
∑
n≥0

|An,2k|zn,

where ϕ0(z) is defined via the linear system (of 2k + 1 equations)
1 −z 0 . . .
−z 1 −z 0 . . .

. . .
−z 1 −z

−z 1



ϕ−k
ϕ−k+1

. . .
ϕk−1
ϕk

 =


0
. . .
1
. . .
0

 .
The system can be solved using Cramer’s rule, and one finds

ϕ0(z) =
d2k
d2k+1

,
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where dj is the determinant of the matrix with j rows and columns. This provides the
initial conditions d1 = 1, d2 = 1− z2, or, simpler d0 = 1. Expanding the determinant,
along the first row, say, one finds the recursion dj = dj−1 − z2dj−2, with the solution

dj =
1− v2j+2

1− v2
1

(1 + v2)j
,

using the substitution z = v
1+v2

for convenience. This substitution is convenient, as no

square root expressions
√

1− 4z2 occur. One can always switch back via v = 1−
√
1−4z2
2z

.
It is perhaps useful to note that computer algebra systems tend to choose the ‘wrong’
root.

For k = 1, we get

ϕ0(z) =
(1 + v2)2

1 + v4
=

1

1− 2z2
= 1 + 2z2 + 4z4 + 8z6 + · · · ;

for k = 2, we get

ϕ0(z) =
1 + v2 + v4

1− v2 + v4
=

1− z2

1− 3z2
= 1 + 2z2 + 6z4 + 18z6 + · · · .

For the paths related to Bn,k, there is a similar system:
1 −z 0 . . .
−z 1 −z 0 . . .

. . .
−z 1 −z

−z 1




ψ0

ψ1

. . .
ψ2k−1
ψ2k

 =


1
. . .
0
. . .
0

 .
One finds with a similar argument that

ψj(z) =
zjd2k−j
d2k+1

,

so that we are left to show that

(1− v2k+2)2

(1− v2)2
1

(1 + v2)2k
= d2k =

k∑
j=0

z2jd2k−2j =
k∑
j=0

v2j

(1 + v2)2j
1− v4k−4j+2

1− v2
1

(1 + v2)2k−2j
,

or, simplified

(1− v2k+2)2

1− v2
=

k∑
j=0

(v2j − v4k−2j+2),

which is easy to check directly.

4. Paths of width 3 and bijections to certain families of trees

We come back to the instance of An,3 and Bn,3 [12] (which is already covered by our
previous analysis), since Cigler [4] asked this question independently and since it leads
to surprising bijections with other mathematical objects.

We write A(n, 3|i) for the subfamily of An,3 ending on height i, and similarly for
B(n, 3|i).
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It is straightforward to prove that |B(2n, 3|0)| = F2n−1, |B(2n, 3|2)| = F2n, |B(2n+
1, 3|1)| = F2n+1, and |B(2n+ 1, 3|3)| = F2n, with Fibonacci numbers Fk.

It is likewise straightforward to prove that |A(2n, 3|0)| = F2n+1, |A(2n, 3|−2)| = F2n,
|A(2n+ 1, 3|1)| = F2n+1, and |A(2n+ 1, 3| = −1)| = F2n+2.

Thus we have that∣∣∣ 3⋃
i=0

B(n, 3|i)
∣∣∣ = |A(n, 3|0)|+ |A(n, 3| − 1)|.

We are going to link these problems to a tree structure named Elena trees, introduced
in [11]; compare also [6]. The bijection presented in this early paper can be used to
explain the equality.

If we want that the paths are in correspondence with trees, we require an even
number of steps.

Paths in B(2n, 3|0) and height restricted plane trees. The translation of such
a path of length 2n into a plane tree of height ≤ 3 (counting edges) is direct and
sometimes called glove bijection. The following example in Figure 4.18 will be sufficient.

3
2

0
1
• •

•
• • • •
• •• •

• •

Figure 4.18. A path of length 20, and the corresponding height re-
stricted plane tree with 11 nodes

Paths in A(2n, 3|0) and Elena trees. Elena trees were introduced in [11]; they
consist of some nodes labelled a, and a sequence of paths of various lengths (possibly
empty) emanating from all of them, except for the last one. An example in Figure 4.19
describes this readily:

•
•
•
•
•

•
•

•
• • •
•

•
• •

• a
a

a
a

a

Figure 4.19. An Elena tree described by ap3ap1p1p4aap2a

Typically, an Elena tree can be described by api1pi2 . . . apj1pj2 . . . a . . . a. For the
set (language) of Elena trees, we might write a symbolic expression (ap∗)∗a.
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It is perhaps surprising that the paths in A(2n, 3|0) are suitable to describe Elena
trees. For each sequence of steps (2i, 0)→ (2i+ 1, 1)→ (2i+ 2, 0), we write a symbol
a. In Figure 4.20 such pairs of steps are depicted in boldface.

Thus, a path can be decomposed as w0aw1a . . . aws, where each w is a path from
level 0 to level 0 that “lives” on levels 0,−1,−2. Now we add a symbol a both, to the
left and to the right.

What is still left to be seen is how such a w can be interpreted as a sequence of
paths: Each return to the level 0 marks the end of a path, and the translation of the
sojourns is as follows:

corresponds to p1, corresponds to p2, corresponds to p3,
corresponds to p4, and so forth.

Note that in this way a path of length 2n is (bijectively) mapped to an Elena tree
of size (= number of nodes) n+ 2; the Elena tree consisting only of one node will not
be considered.

−1
−2

0
1
• •

Figure 4.20. A path of length 28, described by p3ap1p1p4aap2

•
•
•
•
•

•
•

•
• • •
•

•
• •

•

Figure 4.21. The Elena tree with 16 nodes corresponding to
(a)p3ap1p1p4aap2(a)

Elena trees and height restricted plane trees. We will establish a bijection be-
tween A(2n, 3|0) and B(2n, 3|0)∪B(2n, 3|2); note, however that the latter set may be
replaced by B(2n+ 2, 3|0), by distinguishing the two cases of the last two steps.

So we would be done once we would know how to map (bijectively) an Elena tree
of size n+ 2 to a height restricted plane tree of the same size.

This was documented already in [11], but will be repeated here to make this descrip-
tion self contained. The set of operations will be described as a sequence of pictures,
which require no additional explanation.

We start with our running example of an Elena tree of size 16 and gradually trans-
form it in Figure 4.22.
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•
•
•
•
•

•
•

•
• • •
•

•
• •

•

• • • • •
•
•
•

•

•
•

•

• •
•
•

• • • •
•

•
•
•

•

•
•

•

• •
•
•

• • • •
•

•
• • ••

•
•

• •
•
•

• • • •
•

•
• • ••

•
•

• •
•
•

Figure 4.22. Transforming an Elena tree into a height restricted plane tree

Paths with an odd number of steps. Let us consider A(2n−1, 3|−1), enumerated
by F2n. If we augment one up-step at the end, we have Elena trees, but with the special
property that the last group of paths is non-empty.

One the other hand, if we consider B(2n−1, 3|1)∪B(2n−1, 3|3), which is equivalent
to B(2n, 3|2), then we augment it with 2 down-steps. The resulting height restricted
tree has the property that the rightmost leaf is on a level ≥ 2.

A short reflection convinces us that the bijection described earlier also works bijec-
tively on the two respective subclasses.
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