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Abstract. Rado’s theorem about permutahedra and dominance order on partitions reveals
that each Schur polynomial is M-convex, or equivalently, it has a saturated Newton polytope
and this polytope is a generalized permutahedron as well. In this paper we show that the
support of each dual k-Schur polynomial indexed by a k-bounded partition coincides with that
of the Schur polynomial indexed by the same partition, and hence the two polynomials share
the same saturated Newton polytope. The main result is based on our recursive algorithm
to generate a semistandard k-tableau for a given shape and k-weight. As consequences, we
obtain the M-convexity of dual k-Schur polynomials, affine Stanley symmetric polynomials and
cylindric skew Schur polynomials.
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1 Introduction

Given a polynomial f =
∑

α∈Nn cαx
α ∈ R[x1, x2, . . . , xn] with real coefficients, the support of

f is supp(f) = {α ∈ Nn | cα ̸= 0}. The Newton polytope of f , denoted Newton(f), is the convex
hull of its exponent vectors, namely,

Newton(f) = conv (α | α ∈ supp(f)) ⊆ Rn.

Newton polytopes have been extensively studied in various areas of mathematics since they
provide a visual tool to analyze the structure of polynomials and their associated algebraic
varieties. For nice expositions of Newton polytopes, see [37, 11, 5, 14].

Recently, the saturation of Newton polytopes has received considerable attention. Following
Monical, Tokcan and Yong [27], we say that a polynomial f has saturated Newton polytope, or
simply say f is SNP, if

supp(f) = Newton(f) ∩ Zn.

Monical, Tokcan and Yong [27] showed that various polynomials in algebraic combinatorics
have saturated Newton polytopes, including Schur polynomials, Stanley symmetric polynomials,
Hall-Littlewood polynomials and so on.

Monical, Tokcan and Yong also proposed several conjectures on the SNP property for other
polynomials, and some progress on these conjectures has been made since then. Through the
dual character of the flagged Weyl module, Fink, Mészáros, and St. Dizier [10] proved the
conjectured SNP property for key polynomials and Schubert polynomials. The conjecture on
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the SNP property for double Schubert polynomials was completely proved by Castillo, Cid-Ruiz,
Mohammadi and Montaño [4]. Monical, Tokcan, and Yong’s conjecture on the SNP property for
Grothendieck polynomials was proved by Escobar and Yong [7] for Grassmannian permutations,
by Mészáros and St. Dizier [26] for permutations of the form w = 1w′ with w′ being dominant on
{2, 3, . . . , n}, and by Castillo, Cid-Ruiz, Mohammadi, and Montaño [3] for permutations with a
zero-one Schubert polynomial. The SNP property for Kronecker products of Schur polynomials
was proved by Panova and Zhao [30] for partitions of length two and three, and the general case
is open. Monical, Tokcan, and Yong’s conjectures on the SNP property of Demazure atoms and
Lascoux atoms remains widely open.

Motivated by Monical, Tokcan and Yong’s work, the SNP property for some polynomials
not mentioned in [27] has also been studied. Based on the SNP property for Schur polynomials,
Nguyen, Ngoc, Tuan, and Do Le Hai [29] obtained the SNP property for dual Grothendieck
polynomials. Fei [9] proved the SNP property for the F -polynomial of any rigid representa-
tion. Matherne, Morales, and Selover [24] proved that the chromatic symmetric polynomials of
incomparability graphs of (3+1)-free posets are SNP, though there does exist some chromatic
symmetric polynomial which is not SNP (see [27, Example 2.33]).

M-convexity is another interesting property stronger than the SNP property. Recall that a
subset J ⊂ Nn is said to be M-convex, if for all α, β ∈ J and any index i satisfying αi > βi, there
is an index j such that αj < βj and α−ei+ej ∈ J , where ei is the i-th unit vector for any i. An
immediate consequence of this definition is that an M-convex set must lie on a hyperplane. We
say that a polynomial f is M-convex if supp(f) is M-convex. Thus an M-convex polynomial must
be homogeneous. M-convexity is essential in discrete convex analysis, which builds a connection
between convex analysis and combinatorial mathematics. We refer to [28] for a comprehensive
treatment of M-convexity. It is known that a homogeneous polynomial f is M-convex if and
only if f is SNP and Newton(f) is a generalized permutahedron [28, Theorem 1.9]. In fact,
many of the aforementioned polynomials are M-convex, such as chromatic symmetric polyno-
mials of incomparability graphs of (3+1)-free posets [24], Schur polynomials, key polynomials,
and Schubert polynomials [13]. Other progress includes Hafner, Mészáros, Setiabrata, and St.
Dizier’s work [12] on the M-convexity of homogenized Grothendieck polynomials of vexillary
permutations.

We would like to point out that the M-convexity of Schur polynomials plays an important
role in the study of the M-convexity of many other polynomials, such as Stanley symmetric
polynomials and Reutenauer’s symmetric polynomials, as shown in [27]. As remarked by Huh,
Matherne, Mészáros and St. Dizier in [13], the M-convexity of any Schur polynomial can be
deduced from its SNP property, along with the observation that its Newton polytope is a λ-
permutahedron. Recall that a λ-permutahedron for a partition λ = (λ1, λ2, . . . , λn), denoted
Pλ, is the convex hull of Sn-orbit of λ. It is known that a λ-permutahedron is a generalized
permutahedron. For more information on generalized permutahedra see [32]. As pointed out
by Monical, Tokcan and Yong [27], any Schur polynomial is SNP and its Newton polytope is
a λ-permutahedron. This fact can be easily deduced from the definition of Schur polynomials
and a result of Rado [33, Theorem 1], which is useful for analyzing the Newton polytope of each
Schur polynomial.

Along this line of investigation, the present paper is devoted to the study of Newton poly-
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topes and M-convexity of dual k-Schur polynomials. These polynomials are obtained from the
dual k-Schur functions by reducing the number of variables. Throughout this paper the no-
tion of SNP or M-convexity is only defined for polynomials, other than symmetric functions in
infinitely many variables. The dual k-Schur functions appear as the dual of k-Schur functions
with respect to the ordinary scalar product of the symmetric function space Λ in which Schur
functions form an orthonormal basis. It is known that both the k-Schur functions and the dual
k-Schur functions are generalizations of Schur functions. The k-Schur functions originate from
the study of Macdonald positivity conjecture [19], and play a role in the space Q[h1, . . . , hk]

analogous to the role of Schur functions in Λ, where hi denotes the i-th complete symmetric
function. Lapointe and Morse [22] demonstrated that dual k-Schur functions form a basis for
Λ/ ⟨mλ : λ1 > k⟩, where mλ are the monomial symmetric functions. The main result of this
paper is that each dual k-Schur polynomial indexed by a k-bounded partition has the same
support with the Schur polynomial indexed by the same partition. This implies that each dual
k-Schur polynomial is M-convex and its Newton polytope is a λ-permutahedron.

We further study the Newton polytopes and M-convexity of affine Stanley symmetric poly-
nomials and cylindric skew Schur polynomials, the latter being special cases of the former.
Affine Stanley symmetric functions were defined by Lam [15], and he also showed that dual
k-Schur functions are actually affine Stanley symmetric functions indexed by affine Grassman-
nian permutations, in the same way as that Schur functions correspond to Stanley symmetric
functions indexed by Grassmannian permutations. The dual k-Schur positivity of affine Stanley
symmetric functions was first conjectured by Lam [15] and then proved in his subsequent work
[16]. Based on Lam’s work, we obtain the M-convexity of affine Stanley symmetric polynomials.

The paper is organized as follows. In Section 2 we will review some notations and facts
on dual k-Schur functions. Section 3 is devoted to the study of the Newton polytopes and
M-convexity of dual k-Schur polynomials. In Section 4, we will prove the M-convexity of affine
Stanley symmetric polynomials and cylindric skew Schur polynomials. In Section 5, we present
several problems and conjectures for further research.

2 Preliminaries

In this section, we will recall some fundamental results concerning k + 1-cores, k-bounded
partitions, and dual k-Schur functions, which will be utilized in subsequent sections. For more
information, see [17] and [20]. Let k and d be positive integers throughout this work without
explicit mention.

2.1 k + 1-cores and k-bounded partitions

Both k + 1-cores and k-bounded partitions are special integer partitions. By a partition λ of
d we mean a sequence λ = (λ1, λ2, . . .) of weakly decreasing non-negative integers satisfying
d = λ1 + λ2 + · · · . The length of λ, denoted ℓ(λ), is defined to be the number of its positive
parts. We usually use (λ1, . . . , λℓ) to represent λ if its length is ℓ. Each partition λ can be
identified with its Young diagram, which consists of boxes arranged in left-justified, with λi

boxes in the i-th row from bottom to top (following French notation). Given two partitions
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λ and µ with µ ⊆ λ (i.e., µi ≤ λi for all i), we define a skew partition λ/µ with its diagram
consisting of boxes in λ but not in µ.

A box (i, j) in the i-th row and j-th column of the diagram is referred to as a cell. The hook
length of a cell (i, j) in λ is defined as the number of cells directly to the right of and above
(i, j), counting (i, j) itself once. There are two key concepts with which we will be concerned
in this paper.

Definition 2.1. A partition is called a k+1-core if it does not contain any cell with hook length
of k + 1. The k + 1-residue of a cell (i, j) is defined as j − i mod (k + 1).

For any two cells a = (ia, ja) and b = (ib, jb) such that b is located to the southeast of a,
we use hλ(a, b) to denote the number of cells (x, ja) and (ib, y) in λ, where ib ≤ x ≤ ia and
ja + 1 ≤ y ≤ jb. We say (i, j) ∈ λ is a top cell if the cell (i + 1, j) /∈ λ. A removable corner
is a cell (i, j) ∈ λ with (i, j + 1), (i + 1, j) /∈ λ, and an addable corner is a cell (i, j) /∈ λ with
(i, j − 1), (i − 1, j) ∈ λ. Note that any removable corner is a top cell. For instance, in Figure
2.1, the cells c1, c2, c3 and c4 are top cells, the cells c1, c2, and c4 are also removable corners
and the cell s is an addable corner; the hook length of the cell a is 6 and hλ(a, b) = 5.

c1 s

c2

a c3 c4

b

Figure 2.1: The Young diagram of λ = (4, 4, 4, 2, 1).

The following excerpt from [20, Section 5] presents a fundamental result concerning cells
with the same k + 1-residues in a k + 1-core.

Proposition 2.2 ([20]). Let c and c′ be two top cells of a k+1-core γ, where c is located weakly
southeast to c′. Then c and c′ share the same k + 1-residue if and only if hγ(c′, c) is a multiple
of k + 2. Moreover, if c and c′ have the same k + 1-residue and hγ(c

′, c) > k + 2, then there
exists a top cell c′′ of λ located to the northwest of c such that hγ(c′′, c) = k + 2.

Let Ck+1 be the set of all k + 1-cores. Lapointe and Morse [20] established a bijection
between Ck+1 and a specific class of partitions known as k-bounded partitions. Recall that a
partiton λ is called a k-bounded partition if λ1 ≤ k. Denote the set of k-bounded partitions of
d by Park(d), and set Park =

⋃
d≥0 Par

k(d) with Park(0) consisting of the empty partition ∅.
Lapointe and Morse [20] defined a map p from Ck+1 to Park by letting

p(γ) = (λ1, λ2, . . . , λℓ),

where λi is the number of cells in the i-th row of γ with hook lengths not exceeding k. They
showed that p is invertible and its inverse map c can be constructed as follows: start from the
top row λℓ of the k-bounded partition λ and successively move down a row; for each running
row λi if there exists a cell with hook length greater than k, then slide this row to the right
until we reach the first position where this row has no hook lengths greater than k; continue
this process until all rows have been adjusted, and we finally obtain a skew diagram of shape
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γ/ρ (by requiring that if γ/ρ and µ/ν represent the same diagram then γ ⊆ µ); let c(λ) = γ.
Note that if the leftmost cell of λi is shifted to the j-th column, then the top cell in column
j − 1 is a removable corner of c(λ). For an illustration of the inverse map c, see the following
example.

Example 2.3. Let λ = (4, 4, 4, 2, 1) ∈ Par5(15) and γ = c(λ). Then we have the following
figure.

λ = p(γ)

←→

γ/ρ

←→

γ = c(λ)

Figure 2.2: The inverse map c.

The hook lengths of the cells of c(λ) have the following property.

Proposition 2.4 ([20, Lemma 4]). Let γ/ρ be the skew diagram obtained in the construction
of c. Then

(1) the hook lengths of the cells of γ/ρ are less than or equal to k;
(2) the boxes below γ/ρ have hook-lengths exceeding k + 2 in γ.

For any k + 1-core γ, if there exists a removable corner of γ with k + 1-residue i, let si(γ)

denote the partition obtained by removing all removable corners of γ with k + 1-residue i, and
if there exists no removable corner with k + 1-residue i, then let si(γ) = γ. We also need the
following result due to Lapointe and Morse in [20].

Proposition 2.5 ([20, Proposition 22]). Let λ ∈ Park and γ = c(λ) ∈ Ck+1. If there exists a
removable conner of γ with k + 1-residue i, then si(γ) = c(λ − er), where r is the highest row
of γ containing a removable corner of k + 1-residue i and λ− er denotes the partition obtained
from λ by decreasing the r-th component by one.

2.2 Dual k-Schur functions

Let us first introduce the definition of Schur functions. Schur functions can be defined in many
different ways [35], and here we use the expansion of monomial symmetric functions to define a
Schur function. Given a partition λ = (λ1, . . . , λℓ), we may identify it with the infinite sequence
λ = (λ1, . . . , λℓ, 0, 0, . . .) and define the monomial symmetric function mλ as

mλ =
∑
α

xα,

where the sum ranges over all distinct permutations α of (λ1, . . . , λℓ, 0, 0, . . .). A semistandard
Young tableau (SSYT for short) of shape λ is a filling of the Young diagram of λ with positive
integers that are weakly increasing from left to right along each row and strictly increasing from
bottom to top along each column. The weight of an SSYT T is the composition β = (β1, β2, . . .),
where βi is the number of i’s in T . The number of semistandard Young tableaux of shape λ
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and weight µ is denoted by Kλ,µ and is referred to as the Kostka number. The Schur function
indexed by partition λ, denoted sλ, is defined by

sλ =
∑
µ

Kλ,µmµ.

It is interesting that the vanishing of the term mµ in the expansion of sλ can be depicted
by the dominance order on partitions. For two partitions λ and µ of d, we say that µ is less
than or equal to λ in dominance order, denoted µ ⊴ λ, if

µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi for all i ≥ 1.

The following result related to Kostka numbers is well-known.

Proposition 2.6 ([35, Proposition 7.10.5 and Exercise 7.12]). Let λ, µ be two partitions of d.
Then the Kostka number Kλ, µ ̸= 0 if and only if µ ⊴ λ.

We proceed to introduce the definition of dual k-Schur functions. These functions are also
known as affine Schur functions. It was Lapointe and Morse who named dual k-Schur functions
in [22] by providing a definition in terms of semistandard k-tableau. Dalal and Morse gave an
alternative definition by using affine Bruhat counter-tableaux in [6]. Dual k-Schur functions
also appear as affine Schur functions, a class of affine Stanley symmetric functions indexed by
affine Grassmannian permutations, which are introduced by Lam [15]. For several equivalent
formulations, see [6] and [17]. In this paper, we will adopt the definition given by Lapointe and
Morse [22].

Given λ ∈ Park(d), let α = (α1, α2, . . .) be a composition of d. A semistandard k-tableau (k-
SSYT for short) of shape c(λ) and k-weight α is an SSYT of shape c(λ) such that the collection
of cells filled with letter i have exactly αi distinct k+1-residues. For example, for λ = (3, 2, 1, 1)

and k = 3 there are two k-SSYTs of shape c(λ) and k-weight (1, 2, 1, 2, 1), as shown in Figure
2.3, where the integer in the lower right corner of each cell indicates its k + 1-residue.

1

2

3 0 1

0 1 2 3 0 1

5
4
3 4 5
1 2 2 3 4 5

1

2

3 0 1

0 1 2 3 0 1

5
3
2 4 5
1 2 3 4 4 5

Figure 2.3: Two 3-SSYTs.
The k-Kostka number, denoted by K

(k)
λ,α, is the number of semistandard k-tableaux of shape

c(λ) and k-weight α. Using a generalization of the Bender-Knuth involution, Lapointe and
Morse [21] obtained the following result.

Proposition 2.7 ([21, Corollary 25]). Let λ ∈ Park(d) and let α be any composition of d. Then
we have K

(k)
λ,α = K

(k)
λ,p(α), where p(α) is the partition obtained by rearranging α in nonincreasing

order.

The dual k-Schur function indexed by a k-bounded partition λ, denoted S
(k)
λ , is defined as

S
(k)
λ =

∑
T

xk-weight(T ),

where T ranges over all k-SSYTs of shape c(λ). By virtue of Proposition 2.7, S(k)
λ is a symmetric

function, and it admits the following expansion in terms of monomial symmetric functions.
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Proposition 2.8 ([22, Proposition 6.1]). For any λ ∈ Park, we have

S
(k)
λ = mλ +

∑
µ◁λ

K
(k)
λ,µmµ. (2.1)

The k-Kostka numbers also satisfy a triangularity property similar to the Kostka numbers,
due to the following result.

Proposition 2.9 ([20, Theorem 65]). Let λ, µ ∈ Park(d). Then K
(k)
λ,µ ̸= 0 only if µ ⊴ λ, and

K
(k)
λ,λ = 1.

Comparing Proposition 2.6 and Proposition 2.9, we are motivated to study whether the
condition µ ⊴ λ is also sufficient for K

(k)
λ,µ ̸= 0. It seems that this sufficiency is still unknown,

which will be explored in the next section.

3 M-convexity of dual k-Schur polynomials

The objective of this section is to establish the M-convexity of dual k-Schur polynomials. The
main idea is to show that for a k-bounded partition λ the dual k-Schur polynomial S(k)

λ has
the same support with the corresponding Schur polynomial sλ. In view of Proposition 2.6 and
Proposition 2.9, it remains to prove the “if” direction of the latter proposition. Thus given two
k-bounded partitions λ and µ with µ ⊴ λ, to construct a k-SSYT of shape c(λ) and k-weight µ

will be our main task of this section.
It is known that if µ ⊴ λ then there must exist an SSYT of shape λ and weight µ. However,

unlike the classical case, the existence of a k-SSYT of shape c(λ) and k-weight µ is not so evident.
The following property on the k+1-residues of top cells of c(λ) is critical for generating such a
k-SSYT.

Proposition 3.1. Suppose that λ = (λ1, . . . , λℓ) ∈ Park, and let R(i) denote the set of all
distinct k+ 1-residues of the top cells in the i-th row of c(λ). Then, for any 1 ≤ i ≤ ℓ, we have∣∣∣∣∣∣

ℓ⋃
j=i

R(j)

∣∣∣∣∣∣ = λi. (3.1)

Proof. To prove (3.1), we need to analyze the relation between the k + 1-residues of the top
cells in row i and those of the top cells above row i. To this end, let us first introduce some
notations. Assume that we slide the i-th row of λ to right by ti boxes in c(λ). Keep in mind
that we must have tℓ = 0 and ti ≥ ti+1 for each 1 ≤ i ≤ ℓ− 1 according to the construction of
c(λ). Fixing an integer 1 ≤ i ≤ ℓ, let us divide the i-th row of c(λ) into four parts:

• A(i) = {(i, j) | 1 ≤ j ≤ ti+1};

• B(i) = {(i, j) | ti+1 + 1 ≤ j ≤ ti};

• C(i) = {(i, j) | ti + 1 ≤ j ≤ ti+1 + λi+1};

• D(i) = {(i, j) | ti+1 + λi+1 + 1 ≤ j ≤ ti + λi};
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where we set tℓ+1 = 0. It is clear that the cells of C(i) ∪D(i) correspond to those in the i-th
row of the original diagram λ, and D(i) consists of all top cells in row i. We further let Â(i)

(respectively, B̂(i) and Ĉ(i)) be the set of all top cells of c(λ) which lie above the cells in A(i)

(respectively, B(i) and C(i)). Given a set P of cells in c(λ), let Res(P ) denote the set of distinct
k + 1-residues of the cells in P .

d1 d2

c1

c2

i

i+ 1

i+ 2

ℓ

A(i) B(i) C(i) D(i)

Â(i)

B̂(i)

Ĉ(i)

A(i + 1) B(i + 1) C(i + 1) D(i + 1)

Figure 3.1: The sets A, B, C, D and cells bi, ci, di for i = 1, 2 of shape c(λ).

Since |D(i)| ≤ λi < k + 1, all of its cells have distinct k + 1-residues, and hence |D(i)| =
|Res(D(i))|. By the construction of c(λ), for any two cells c, c′ ∈ Ĉ(i), we have hc(λ)(c, c′) < k+1.
From Proposition 2.2 it follows that all cells of Ĉ(i) have distinct k + 1-residues, and hence
|Ĉ(i)| = |Res(Ĉ(i))|. Thus,

λi = |C(i)|+ |D(i)| =
∣∣∣Ĉ(i)

∣∣∣+ |D(i)| =
∣∣∣Res(Ĉ(i))

∣∣∣+ |Res(D(i))| . (3.2)

Note that ∣∣∣∣∣∣
ℓ⋃

j=i

R(j)

∣∣∣∣∣∣ =
∣∣∣Res(Â(i)) ∪ Res(B̂(i)) ∪ Res(Ĉ(i)) ∪ Res(D(i))

∣∣∣ . (3.3)

By (3.2) and (3.3), we see that (3.1) is implied by the following claim.
Claim: For any 1 ≤ i ≤ ℓ, we have

(I) Res(Â(i)) ⊆ Res(B̂(i)) ∪ Res(Ĉ(i));

(II) Res(Ĉ(i)) ∩ Res(D(i)) = ∅;

(III) Res(B̂(i)) ⊆ Res(D(i)).

To prove (I) we use induction on ℓ − i. Since λℓ ≤ λ1 ≤ k, we have tℓ = 0, which implies
that |D(ℓ)| = λℓ and Â(ℓ) = B̂(ℓ) = Ĉ(ℓ) = ∅. Thus, (I) holds for i = ℓ. Now, assume that (I)
holds for i+ 1 and consider the case of i. Let us first note that

Â(i) ⊇ Â(i+ 1), (3.4)
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Â(i) = Â(i+ 1) ⊎ B̂(i+ 1), (3.5)
B̂(i) ⊎ Ĉ(i) = Ĉ(i+ 1) ⊎D(i+ 1), (3.6)

and these relations are evident from the definitions of Â(i), B̂(i), Ĉ(i) and D(i), as indicated in
Figure 3.1. By (3.5), (3.6) and the induction hypothesis, we have

Â(i) = Â(i+ 1) ⊎ B̂(i+ 1) ⊆ Ĉ(i+ 1) ⊎D(i+ 1) = B̂(i) ∪ Ĉ(i),

i.e., (I) holds for i, and the proof of (I) is complete.
We proceed to prove (II) and (III). For (II) we may assume that neither Ĉ(i) nor D(i) is

empty. For (III) we may assume that B̂(i) is not empty. In fact, we can also assume that D(i)

is not empty since if D(i) = ∅ then B̂(i) = ∅ by their definitions. From now on, we may assume
that neither of B̂(i), Ĉ(i) and D(i) is empty.

To prove (II) and (III), we introduce a few more notations. We label the leftmost cell in
D(i) as d1, and the rightmost cell in D(i) as d2. Similarly, we label the leftmost cell in Ĉ(i) as
c1, and the rightmost cell in Ĉ(i) as c2. For the relative positions of c1, c2, d1 and d2, see Figure
3.1.

Now we can prove (II). In view of the fact that hc(λ)(c1, d2) ≤ k < k+2, for any p, q ∈ Ĉ(i)∪
D(i) we have hc(λ)(p, q) < k+2. By Proposition 2.2, this means that Res(Ĉ(i))∩Res(D(i)) = ∅,
as desired.

Finally, we prove (III). By Proposition 2.4, it is clear that for any p ∈ B̂(i) we have
hc(λ)(p, d2) ≥ k+2 and hc(λ)(p, d1) = hc(λ)(p, c2)+2 ≤ k+2, where the equality follows from the
relative position of d1 and c2. Thus, there exists some q ∈ D(i−1) such that hc(λ)(p, q) = k+2.
By Proposition 2.2 again, we find that the two cells p and q have the same k + 1-residue. This
implies that Res(B̂(i)) ⊆ Res(D(i)).

This completes the proof of the claim and hence that of the proposition.

Now we are almost ready to prove the existence of a k-SSYT of shape c(λ) and k-weight µ

for any pair of k-bounded partitions λ = (λ1, . . . , λℓ) and µ = (µ1, . . . , µι) satisfying µ ⊴ λ. The
fundamental principle to generate such a k-SSYT is to place the largest numbers as top and
right as possible. In some sense our construction is inspired by Fayers’ construction of an SSYT
T of shape λ and weight µ, which we recall below. As noted by Fayers [8], this construction was
first given in [38]. We use the symbol j to denote the maximal row index that satisfies λj ≥ µι.
To construct T , first fill the top cells of the first µι columns with ι’s in the Young diagram of
λ, and then slide these ι’s to the end of their respective rows. More precisely, for each i > j

the number of ι’s assigned to the end of row i is λi−λi+1 (set λℓ+1 = 0), and the number of ι’s
assigned to the end of row j is µι − λj+1. It is important to highlight that these occurrences of
ι’s are exactly positioned in the top cells of each row. Now let λ̂ denote the partition obtained
from λ by removing the cells filled by ι’s, and let µ̂ = (µ1, . . . , µι−1). Fayers noted that µ̂ ⊴ λ̂.
Then fill µι−1 top cells of λ̂ with ι − 1’s in the same manner. Iterating the above process will
eventually produce an SSYT T of shape λ and weight µ. (Note that we need not to assume
that µ and λ are k-bounded for Fayers’ construction.)

For an illustration of Fayers’ construction, see the following example.
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Example 3.2. Let λ = (4, 4, 4, 2, 1), µ = (3, 3, 3, 3, 3). The following figure describes the
procedure to generate an SSYT T of shape λ and weight µ according to Fayers’ construction:

5
5

5 −→

5
4 5
4 4 5 −→

5
4 5
3 4 4 5

3 3
−→

5
4 5
3 4 4 5
2 2 3 3

2

−→

5
4 5
3 4 4 5
2 2 3 3
1 1 1 2

= T

Figure 3.2: The construction of the SSYT T .
To generate a k-SSYT of shape c(λ) and k-weight µ for a pair of k-bounded partitions

λ = (λ1, . . . , λℓ) and µ = (µ1, . . . , µι) satisfying µ ⊴ λ, the basic operation of our algorithm
consists of the row filling of ι’s into the Young diagram c(λ), denoted by c(λ)← {ℓ(µ)}. (Note
that ℓ(µ) = ι.) The operation c(λ)← {ℓ(µ)} consists of the following steps:

R1: Find the maximal row index j such that λj ≥ µι. (Such a j always exists since µ ⊴ λ.)

R2: If j = ℓ, simply mark the rightmost µι top cells of the ℓ-th row of c(λ) with bold boundaries,
place ι’s in these marked cells, and then go to Step R3. (It is clear that all these top cells
occupied by ι have different k + 1-residues.) On the other hand, if j < ℓ, perform the
filling process from row ℓ to row j in the following way (from top to bottom):

R2-1: Begin with row ℓ, mark all the top cells of the ℓ-th row of c(λ) with bold boundaries,
and then place ι’s in these marked cells.

R2-2: If i > j and all rows above row i have been performed the filling operation, mark the
rightmost λi − λi+1 top cells of the i-th row of c(λ) with bold boundaries such that
these cells have different k + 1-residues with those cells already filled with ι’s. (This
is possible by Proposition 3.1.) Let ci denote the leftmost cell of these marked cells.
Then place ι’s in ci and all the cells to the right of ci in the i-th row.

R2-3: For row j mark the rightmost µι − λj+1 top cells of the j-th row of c(λ) with bold
boundaries such that these cells have different k+1-residues with those cells already
filled with ι’s. (Again by Proposition 3.1 this is possible.) Similarly, let cj denote
the leftmost cell of these µι − λj+1 top cells. Then place ι’s in cj and all the cells to
the right of cj in the j-th row.

R3: Find the rightmost removable corner c filled with ι among all rows above row j − 1 in
c(λ). If c has k + 1-residue y, place ι’s in all removable corners of c(λ) with k + 1-residue
y. Shade all removable corners with k + 1-residue y.

R4: Suppose that r is the highest row of c(λ) containing a removable corner with k+1-residue
y and let λ − er be the partition defined as in Proposition 2.5. (Deleting all shaded
removable corners from c(λ) will lead to a diagram of c(λ − er).) If there exists some
marked cell above row j − 1 in c(λ− er), replace λ with λ− er and then go to Step R3.
Otherwise, the filling process stops.

Remark 3.3. All cells filled with ι’s in c(λ) form a horizontal strip. Moreover, these cells have
exactly µι distinct k + 1-residues.
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We will now provide an example to illustrate the above filling process.

Example 3.4. Let λ = (4, 4, 4, 2, 1), µ = (3, 3, 3, 3, 3), and k = 5. The filling operation
c(λ)← {5} is carried out as follows:

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

−→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
5

5 5 −→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
5

5 5

5

−→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
5

5 5

5 5

−→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
5

5 5
5

5 5

Figure 3.3: The filling operation c(λ)← {5}.

There is a close relation between our filling operation and Fayers’ construction. In fact, we
have the following property, which is of great use in the construction of a k-SSYT of shape λ

and k-weight µ.

Proposition 3.5. Given a pair of k-bounded partitions λ = (λ1, . . . , λℓ) and µ = (µ1, . . . , µι)

with µ ⊴ λ, let T
{k}
ι denote the resulting partial k-SSYT of the row filling c(λ) ← {ℓ(µ)}, and

let T be the resulting SSYT of Fayers’ construction. Then the diagram obtained from T
{k}
ι by

removing all ι’s is of shape c(λ̂), where λ̂ is the shape of the tableau obtained from T by removing
all ι’s.

Proof. According to the filling rule in c(λ) ← {ℓ(µ)}, all cells filled with ι’s in T
{k}
ι can be

grouped into µι sets according to their k + 1-residues. Then removing all ι’s from T
{k}
ι can

be done by successively deleting these sets in the order they are shaded in Step R4, say these
ordered sets are A1, A2, . . . , Aµι .

Let j denote the maximal index such that λj ≥ µι. We first claim that, in Step R4 of the
row filling c(λ) ← {ℓ(µ)}, when we find the rightmost removable corner c with k + 1-residue
y among all rows above row j − 1 in c(λ), all filled top cells with k + 1-residue y must be
removable corners. On the one hand, the filled cells with k + 1-residue y below c clearly are
removable corners by the filling process. On the other hand, suppose there is a filled top cell
c′ with k + 1-residue y above c such that there is a cell c′′ to the right of c′. According to
Proposition 2.2, without loss of generality, let hc(λ)(c

′, c) = k + 2. Then hc(λ)(c
′′, c) = k + 1,

which contradicts the fact that c(λ) is a k + 1-core. This completes the proof of the claim.
Let c̄ denote the topmost removable corner with k + 1-residue y in Step R4. If c̄ lies in row

r, then, by Proposition 2.5 and the above claim, deleting all shaded cells with k + 1-residue y

in T
{k}
ι yields a partial SSYT of shape c(λ − er). By Step R2, we know that c̄ is the unique

marked cell with k + 1-residue y.
Based on the above arguments, only one marked cell is removed when we delete some Ai

from the diagram each time. Note that in the row filling c(λ) ← {ℓ(µ)} all marked cells have
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distinct k + 1-residues. Moreover, there are λi − λi+1 marked cells in row i for each i > j and
µι − λj+1 marked cells in row j. By Fayers’ construction λ̂ is just the partition obtained from
λ by decreasing the i-th part of λ by λi − λi+1 for each i > j and decreasing the j-th part of λ
by µι − λj+1. Thus, deleting all Ai’s from T

{k}
ι will eventually lead to a diagram of c(λ̂). The

proof is complete.

The first main result of this section is as follows, which can be considered as a refinement
of Proposition 2.6.

Theorem 3.6. Let λ = (λ1, . . . , λℓ), µ = (µ1, . . . , µι) ∈ Park(d). Then K
(k)
λ,µ ≠ 0 if and only if

µ ⊴ λ.

Proof. By Proposition 2.9, it suffices to show there exists a k-SSYT of shape c(λ) and k-weight
µ if µ ⊴ λ. Such a tableau can be produced based on the above row filling operation and Fayers’
construction.

It is well known that each SSYT of shape λ corresponds to a chain of partitions from
∅ to λ. As before, let T be the resulting SSYT of shape λ = (λ1, . . . , λℓ) and weight µ =

(µ1, . . . , µι) generated by Fayers’ construction. Suppose that T corresponds to the following
partition sequence

∅ = λ(0) ⊆ λ(1) ⊆ · · · ⊆ λ(ι−1) ⊆ λ(ι) = λ, (3.7)

namely, all cells of the skew diagram λ(i)/λ(i−1) are filled with i for all 1 ≤ i ≤ ι. For each
1 ≤ i ≤ ι let µ(i) = (µ1, . . . , µi). Then from Fayers’ construction it follows that if µ ⊴ λ then
µ(i) ⊴ λ(i) for every 1 ≤ i ≤ ι.

We associate a k-SSYT T {k} of shape c(λ) and k-weight µ as follows. Begin with T
{k}
ι+1 =

c(λ(ι)) = c(λ), the empty k-SSYT of shape c(λ). If i > 0 and T
{k}
i+1 is defined, then let T {k}i be the

partial SSYT of shape c(λ) obtained from T
{k}
i+1 by applying the row filling c(λ(i)) ← {ℓ(µ(i))}.

Moreover, by the proof of Proposition 3.5, the empty cells of T
{k}
i form a diagram of shape

c(λ(i−1)). The process ends at T
{k}
1 , and let T {k} = T

{k}
1 .

We proceed to show that T {k} is a k-SSYT of shape c(λ) and k-weight µ. Its semistandness
is ensured since for each 1 ≤ i ≤ ι all cells filled with i’s form a horizontal strip of shape
c(λ(i))/c(λ(i−1)) in c(λ), as stated in Remark 3.3. Moreover, by Remark 3.3, for each 1 ≤ i ≤ ι

the cells filled with i in T {k} have exactly µi distinct k + 1-residues, in view of that these cells
are just those filled by the row filling c(λ(i))← {ℓ(µ(i))}. This completes the proof.

We use (λ, µ, k) → T {k} to denote the algorithm for generating T {k} from λ and µ in the
above proof. For an illustration of this algorithm, see the following example.

Example 3.7. Let λ = (4, 4, 4, 2, 1), µ = (3, 3, 3, 3, 3) ∈ Par5(15). By the algorithm (λ, µ, 5)→
T {5}, we obtain a 5-SSYT of shape c(λ) and 5-weight µ based on the partition sequence: λ(1) =

(3), λ(2) = (4, 2), λ(3) = (4, 4, 1), λ(4) = (4, 4, 3, 1), λ(5) = (4, 4, 4, 2, 1).
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2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

c(λ(5))←{5}−−−−−−−→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
5

5 5
5

5 5

c(λ(4))←{4}−−−−−−−→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
4 5

4 4 5 5
4 5

4 4 5 5

c(λ(3))←{3}−−−−−−−→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
4 5
3 4 4 5 5

3 3 4 5
3 4 4 5 5

c(λ(2))←{2}−−−−−−−→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
4 5
3 4 4 5 5
2 2 3 3 4 5

2 3 4 4 5 5

c(λ(1))←{1}−−−−−−−→

2

3 4

4 5 0 1 2

5 0 1 2 3 4

0 1 2 3 4 5 0 1 2

5
4 5
3 4 4 5 5
2 2 3 3 4 5
1 1 1 2 3 4 4 5 5

Figure 3.4: The construction of the 5-SSYT of shape c(λ) and 5-weight µ.

We are now in a position to present the M-convexity of dual k-Schur polynomials.

Theorem 3.8. Let λ ∈ Park. Then the dual k-Schur polynomial S(k)
λ has SNP and its Newton

polytope is a λ-permutahedron Pλ. Moreover, Sk
λ has M-convex support.

Proof. Combining Proposition 2.6, Proposition 2.8, Theorem 3.6 and the definition of sλ it is
clear that the support of S

(k)
λ is the same as that of sλ for any fixed k-bounded partition λ.

Thus, the statement of the theorem immediately follows from the above arguments, together
with the SNP property of Schur polynomials implied by Rado’s inequalities [33, Theorem 1]:

Pµ ⊆ Pλ ⇐⇒ µ ⊴ λ.

Moreover, the M-convexity part follows from [28, Theorem 1.9].

4 M-convexity of affine Stanley symmetric polynomials

In this section, we further obtain the M-convexity of affine Stanley symmetric polynomials.
As a corollary, we also derive M-convexity of the cylindric skew Schur polynomials, a special
subclass of the affine Stanley symmetric polynomials.

The affine Stanley symmetric functions were introduced by Lam [15] analogous to the Stanley
symmetric functions [34]. These functions turn out to have a natural geometric interpretation:
they represent Schubert classes of the cohomology of the affine Grassmannian [16]. There
are several ways to define the affine Stanley symmetric functions; for more information see
[15, 16, 18, 39]. In this paper we adopt one combinatorial definition given in [15].

Let S̃k+1 be the affine symmetric group with generators s0, s1, . . . , sk satisfying the affine
Coxeter relations:

s2i = id for all i,
sisi+1si = si+1sisi+1 for all i,

sisj = sjsi for |i− j| ̸= 1 mod (k + 1).

Note that the symmetric group Sk+1 embeds in S̃k+1 as the subgroup generated by the elements
s1, . . . , sk. For an affine permutation w ∈ S̃k+1, a shortest expression of w is called a reduced
word. The length of w, denoted by ℓ(w), is the length of its reduced word.
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We would like to remark that each generator si can be considered as an action on a k+1-core
γ by removing its removable corners with k + 1-residue i, or adding all addable corners with
k+1-residue i, or doing nothing if there are no removable or addable corners with k+1-residue
i.

The affine symmetric group can be realized as the set of all bijections w : Z→ Z such that
w(i+ k+1) = w(i) + k+1 for all i, and

∑k+1
i=1 w(i) =

∑k+1
i=1 i. The code of w, denoted as c(w),

is a sequence (c1, c2, . . . , ck+1) of non-negative integers, where ci is the number of indices j such
that j > i and w(j) < w(i).

An affine permutation w ∈ S̃k+1 is called cyclically decreasing if there exists a reduced
word si1si2 · · · sil of w such that each generator is distinct, and whenever si and si+1 both
occur, si+1 precedes si. A cyclically decreasing decomposition of w ∈ S̃k+1 is an expression of
w = w1w2 · · ·wr such that each wi is cyclically decreasing and ℓ(w) =

∑r
i=1 ℓ(w

i). Now we give
the definition of affine Stanley symmetric function.

Given an affine permutation w ∈ S̃k+1, the affine Stanley symmetric function F̃w is defined
by

F̃w =
∑

w=w1w2···wn

x
ℓ(w1)
1 x

ℓ(w2)
2 · · ·xℓ(wr)

r , (4.1)

where the summation is taken over all cyclically decreasing decomposition of w. When w is
an affine Grassmannian permutation, F̃w is called an affine Schur function by Lam [15], who
pointed out that these affine Schur functions are just the dual k-Schur functions defined by
Lapointe and Morse [22]. When w ∈ Sk+1, F̃w is the usual Stanley symmetric function [15].

It is worth mentioning that the M-convexity of Stanley symmetric polynomials can be ob-
tained from their Schur positivity and the following theorem.

Theorem 4.1 ([27, Proposition 2.5]). Let f =
∑

µ cµsµ be a homogeneous symmetric polynomial
with degree d. If there exists a partition λ such that cλ ̸= 0 and cµ ̸= 0 only if µ ⊴ λ, then
Newton(f) = Pλ. Moreover, if cµ ≥ 0 for all µ, then f has SNP, and hence it is M-convex.

We want to use Theorem 4.1 to establish the M-convexity of the affine Stanley symmetric
polynomials. Unfortunately, the affine Stanley symmetric polynomials are not always Schur
positive, and the following gives such an example.

Example 4.2. Let w = s2s1s0s2 ∈ S̃3. Since w only has a reduced word s2s1s0s2, all cyclically
decreasing decompositions of w are

(s2)(s1)(s0)(s2), (s2s1)(s0)(s2), (s2)(s1s0)(s2), (s2)(s1)(s0s2), (s2s1)(s0s2).

Thus, we have
F̃w = m1111 +m211 +m22 = s22 − s1111.

Fortunately, Lam [16] showed that any affine Stanley symmetric function can be expressed
as a non-negative linear combination of dual k-Schur functions.

Theorem 4.3 ([16, Corollary 8.5]). For any w ∈ S̃k+1, the affine Stanley symmetric functions
F̃w expand positively in terms of dual k-Schur functions.
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Lam [15] also proved the existence of a dominant term in the expansion of F̃w in terms of
dual k-Schur functions.

Theorem 4.4 ([15, Theorem 21]). Suppose that w ∈ S̃k+1 and F̃w =
∑

λ awλS
(k)
λ . If awλ ̸= 0

then λ ⊴ µ(w), where µ(w) is the partition conjugate to the partition obtained by rearranging
the parts of c(w−1) in weakly decreasing order. Moreover, awµ(w) = 1.

In order to obtain the M-convexity of affine Stanley polynomials, we now give a criterion
for determining whether the linear combinations of dual k-Schur polynomials are SNP or not.

Theorem 4.5. Suppose that f is a homogeneous symmetric polynomial of degree d in n variables
and it has the following expansion

f =
∑
µ⊴λ

cµS
(k)
µ , (4.2)

where λ is a k-bounded partition of d. If there exists a partition λ such that cλ ̸= 0 and cµ ̸= 0

only if µ ⊴ λ, then Newton(f) = Pλ. Moreover, if cµ ≥ 0 for all µ, then f has SNP and hence
it is M-convex.

Proof. The proof of Theorem 4.5 is analogous to that of Theorem 4.1. Notice that Theorem 3.6
will play the same role as Proposition 2.6 in the proof of Theorem 4.1. We omit the details, for
which see [27].

We are now in a position to present the main result of this section.

Theorem 4.6. For any w ∈ S̃k+1, the affine Stanley symmetric polynomial F̃w is M-convex.

Proof. The statements of the theorem immediately follow from Theorem 4.3, Theorem 4.4 and
Theorem 4.5.

The above theorem also enables us to obtain the M-convexity of cylindric skew Schur func-
tions, which were introduced by Postnikov [31]. To be self-contained, we also give an overview
of related definitions following [15].

A cylindric shape λ is an infinite lattice path in Z2, consisting only of steps upwards and to
the left, invariant under shifts (m−n,m) where 1 ≤ m ≤ n−1. Let Cn,m be the set of cylindric
shapes. For any two cylindric shapes λ, µ ∈ Cn,m, we say that µ ⊆ λ, if µ always lies weakly to
the left of λ. If µ ⊆ λ, then we call λ/µ a cylindric skew shape.

Given a cylindric skew shape λ/µ, a semistandard cylindric skew tableau of shape λ/µ and
weight α = (α1, α2, . . . , αℓ) is a chain of cylindric shapes in Cn,m, i.e,

µ = λ0 ⊆ λ1 ⊆ · · · ⊆ λℓ = λ,

such that the cylindric skew shape λi/λi−1 (1 ≤ i ≤ ℓ) contains at most one box in each column
and αi boxes in any n−m consecutive columns.

Example 4.7. Let n = 5, m = 2 and α = (1, 2, 1, 2). Putting i into the boxes of λi/λi−1, we
obtain a semistandard cylindric skew tableau of weight (1, 2, 1, 2), as shown in Figure 4.1.
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. . .
2 3 4
1 2 4

2 3 4
1 2 4

2 3 4
1 2 4 . . .

Figure 4.1: A semistandard cylindric skew tableau with weight α.

For a cylindric skew shape λ/µ, the cylindric skew Schur function scλ/µ is defined as

scλ/µ =
∑
T

xweight(T ),

summing over all semistandard cylindric skew tableaux of shape λ/µ.
The cylindric skew Schur functions generalizes usual Schur functions. McNamara proved in

[25] that, with the exception of trivial cases, the cylindric skew Schur functions are not Schur
positive in general.

Lam [15] demonstrated that the cylindric skew Schur functions are indeed special cases
of the affine Stanley symmetric functions indexed by 321-avoiding affine permutations. This
conclusion was later reproved by Lee [23].

Theorem 4.8 ([23, Corollary 5]). For a cylindric shape λ/µ ∈ Cn,m, there exists a 321-avoiding
affine permutation w ∈ S̃n such that scλ/µ = F̃w.

Combining Theorem 4.6 and 4.8, we immediately obtain the M-convexity of the cylindric
skew Schur polynomials.

Corollary 4.9. The cylindric skew Schur polynomial scλ/µ is M-convex for any cylindric skew
shape λ/µ.

5 Future directions

In this section we present some open problems and conjectures for further research.
As shown in Section 4, we obtain the M-convexity of affine Stanley symmetric polynomials

based on the M-convexity of dual k-Schur polynomials. One of the key ingredients of our
approach is Theorem 4.3, a deep result obtained by Lam [16]. It would be interesting to find a
direct proof of Theorem 4.6 based on the definition given by (4.1).

Problem 5.1. Find a combinatorial proof of the M-convexity of affine Stanley symmetric
polynomials.

In this paper we obtain the M-convexity of cylindric skew Schur polynomials as a direct
consequence of the M-convexity of affine Stanley symmetric polynomials. Thus, we may ask a
question for cylindric skew Schur polynomials similar to Problem 5.1.

Problem 5.2. Find a combinatorial proof of the M-convexity of cylindric skew Schur polyno-
mials based on their tableau interpretation.
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Once the M-convexity of dual k-Schur polynomials is established, it is natural to ask whether
k-Schur polynomials are M-convex. Form Proposition 2.9, we know that the inverse of the matrix
∥K(k)∥λ,µ∈Park exists. The k-Schur functions, indexed by k-bounded partitions, are defined by
inverting the unitriangular system:

hλ = s
(k)
λ +

∑
µ▷λ

K
(k)
µ,λs

(k)
µ for all λ1 ≤ k.

Here we use the definition in [20]. It is known that s
(k)
λ is always Schur positive [1]. For any

1 ≤ d ≤ 25, 1 ≤ k ≤ 25, and any partition λ ∈ Park(d), we find that there always exists
a dominant term in the Schur expansion of s

(k)
λ by using SageMath [36], which implies the

M-convexity of s(k)λ by Theorem 4.1. We have the following conjecture.

Conjecture 5.3. For any λ ∈ Park(d) the k-Schur polynomials s
(k)
λ are M-convex.

We can also study the M-convexity of homogeneous polynomials by using the theory of
Lorentzian polynomials, developed by Brändén and Huh [2], who showed that the support
of any Lorentzian polynomial is M-convex. Given a polynomial f =

∑
α∈Nn cαx

α, define its
normalization by

N(f) =
∑
α∈Nn

cα
xα1
1

α1!
· · · x

αn
n

αn!
.

It is known that the normalization of Schur polynomials sλ for any partition λ is a Lorentzian
polynomial [13]. As a generalization of Schur polynomials, it is natural to ask whether the
normalized k-Schur polynomials and dual k-Schur polynomials are Lorentzian polynomials. We
propose the following conjectures.

Conjecture 5.4. For any λ ∈ Park(d) the polynomial N(s
(k)
λ ) is a Lorentzian polynomial.

Conjecture 5.5. For any λ ∈ Park(d) the polynomial N(S
(k)
λ ) is a Lorentzian polynomial.

By using SageMath [36], we verify Conjecture 5.4 for 1 ≤ k ≤ 9 and all k-bounded partitions
of size less than or equal to 9, and we verify Conjecture 5.5 for 1 ≤ k ≤ 9 and all k+ 1-cores of
size less than or equal to 9. All functions are restricted to 9 variables.
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