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Abstract Let G,H be two non-empty graphs and k be a positive integer.
The Gallai-Ramsey number grk(G : H) is defined as the minimum positive
integer N such that for all n ≥ N , every k-edge-coloring of Kn contains
either a rainbow subgraph G or a monochromatic subgraph H. The Gallai-
Ramsey multiplicity GMk(G : H) is defined as the minimum total number of
rainbow subgraphs G and monochromatic subgraphs H for all k-edge-colored
Kgrk(G:H). In this paper, we get some exact values of the Gallai-Ramsey mul-
tiplicity for rainbow small trees versus general monochromatic graphs under a
sufficiently large number of colors. We also study the bipartite Gallai-Ramsey
multiplicity.

Keywords Coloring · Ramsey theory · Gallai-Ramsey number · Gallai-
Ramsey multiplicity
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1 Introduction

In this paper, the graphs we consider are finite, undirected, simple and without
isolated vertices. Let V (G) and E(G) denote the vertex set and edge set of
a graph G, respectively. An edge-coloring of G is a function c : E(G) →
{1, 2, . . . , k}, where {1, 2, . . . , k} is called the set of colors. We can also use
red, blue or other specific names to represent these colors. An edge-colored
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graph is called rainbow if all its edges have distinct colors and monochromatic
if all its edges have the same color. A k-edge-coloring of a graph is exact if
all the k colors are used at least once. In this paper, we only consider exact
edge-colorings of graphs.

The union G ∪ H of two graphs G and H is the graph with vertex set
V (G) ∪ V (H) and edge set E(G) ∪ E(H). The degree, degG(v) or deg(v) for
short, of a vertex v of G is the number of edges incident to v in G. We usually
say that a vertex with degree 1 is a leaf vertex, and an edge incident to a
leaf vertex is called a pendent edge. A path with n vertices from v1 to vn
is denoted as Pn = v1v2 . . . vn or Pn = e1e2 . . . en−1, which is a vertex-edge
alternative sequence v1, e1, v2, e2, . . . , vn−1, en−1, vn such that v1, v2, . . . , vn are
distinct vertices, e1, e2, . . . , en−1 are distinct edges and vivi+1 = ei for each
i ∈ {1, 2, . . . , n−1}. S+

3 is a the graph consisting of a triangle with one pendent
edge and P+

4 is a the graph consisting of P4 with one pendent edge incident
with an inner vertex of P4. P+

4 can also be seen as the graph by adding an
extra pendent edge to a leaf vertex of K1,3. For convenience, we call the newly
added pendent edge at K1,3 the tail edge of P+

4 .
The automorphism group of a graph G is denoted as Aut(G). For the au-

tomorphism groups of some special graphs, we have the following conclusions:
Aut(Kn) ∼= Sn,Aut(Km,n) ∼= Sm × Sn for m ̸= n, and Aut(Pn) ∼= S2, where
Sn is the n-order symmetric group. For more notation and terminology not
defined here, we refer to [2].

We also define some notations to replace some text descriptions in this
paper. We use e1 ∼ e2 to denote two adjacent edges e1 and e2; similarly,
we use e1 ≁ e2 to denote two non-adjacent edges e1 and e2. Given a sub-
graph H of a graph G, we define NumG(H) to be the number of different
copies of H in G. Furthermore, if e1, e2, . . . , ei are edges of graph G, we use
NumG(H|e1, e2, . . . , ei) to denote the number of different copies of H that
contain edges e1, e2, . . . , ei in G. For the balanced complete (k−1)-part graph
K2, 2, . . . , 2︸ ︷︷ ︸

k−1

, we re-write it as K(k−1)×2.

1.1 Gallai-Ramsey number and multiplicity

In 1930, Ramsey problems were first studied by Ramsey in [24]. Given two
graphs G and H, the Ramsey number r(G,H) is defined as the minimum pos-
itive integer n such that every red/blue-edge-coloring of Kn contains either
a red subgraph G or a blue subgraph H. If G = H, then we simply denote
r(G,H) as r(G). More generally, the definition of Ramsey number has been
extended to multicolor and hypergraphs, and there are currently many re-
search results available. Determining the exact value of the Ramsey numbers
or improving the known upper or lower bounds on the number has always been
a hot research topic in graph theory. For more results on Ramsey numbers,
we refer to [23].
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In 2010, Faudree, Gould, Jacobson and Magnant in [4] provided a definition
of a rainbow version of the Ramsey number, called the Gallai-Ramsey number.
Definition 1 [4] Given two non-empty graphs G,H and a positive integer k,
define the Gallai-Ramsey number grk(G : H) to be the minimum integer N
such that for all n ≥ N , every k-edge-coloring of Kn contains either a rainbow
subgraph G or a monochromatic subgraph H.

Considering the Gallai-Ramsey number on k-edge-colored balanced com-
plete bipartite graph Kn,n is another research direction. In 2019, Li, Wang
and Liu in [17] gave the definition of bipartite Gallai-Ramsey number.

Definition 2 [17] Given two non-empty bipartite graphs G,H and a positive
integer k, define the bipartite Gallai-Ramsey number bgrk(G : H) to be the
minimum integer N such that for all n ≥ N , every k-edge-coloring of Kn,n

contains either a rainbow subgraph G or a monochromatic subgraph H.

In the past decade, there has been a wealth of research on the Gallai-
Ramsey numbers. In terms of current research progress, six types of rainbow
graphs have been studied, which are K3, S

+
3 ,K1,3, P4, P5 and P+

4 . An edge-
coloring of a complete graph without rainbow triangles is called a Gallai color-
ing. As early as 2010, Gyárfás, Sárközy, Sebő and Selkow studied the Ramsey
problem of complete graphs under Gallai coloring in [10], although they did
not use the definition of Gallai-Ramsey formally. The Gallai-Ramsey number
involving rainbow triangle has received widespread attention. One of the most
important conjectures was proposed by Fox, Grinshpun and Pach in their 2015
paper [6].
Conjecture 1 [6] For integers k ≥ 1 and n ≥ 3,

grk(K3 : Kn) =

{
(r(Kn)− 1)k/2 + 1, if k is even,
(n− 1)(r(Kn)− 1)(k−1)/2 + 1, if k is odd.

Conjecture 1 has been solved in some special cases. When n = 3, Gyárfás,
Sárközy, Sebő and Selkow gave a simple proof in [10]. In [18], Liu, Magnant,
Saito, Schiermeyer and Shi solved the conjecture when n = 4. In [20], Magnant
and Schiermeyer studied the case of n = 5 and concluded that only one of the
conjectures of Conjecture 1 and r(K5) = 43 [22] could be true, while the other
was false. In [13], Li, Broersma and Wang studied other extremal problems
related to Gallai coloring.

For the research on Gallai-Ramsey number involving rainbow S+
3 , we refer

to [7,14,16]. For rainbow subgraphs K1,3 and P+
4 , we refer to [1,3], and for

rainbow subgraphs P4 and P5, we refer to [11,17,27,28]. For more results
about Gallai-Ramsey numbers, we refer to the monograph [19] and the survey
paper [8].

Recently, a counting problem related to the Gallai-Ramsey number has
been studied. Li, Broersma and Wang in [12] studied the minimum number of
subgraphs H in all k-edge-colored complete graphs without rainbow triangles
(also known as Gallai coloring). Later, Mao in [21] proposed the definition of
Gallai-Ramsey multiplicity.
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Definition 3 [21] Given two non-empty graphs G,H and a positive integer
k, define the Gallai-Ramsey multiplicity GMk(G : H) to be the minimum
total number of rainbow subgraphs G and monochromatic subgraphs H for
all k-edge-colored Kgrk(G:H).

Based on the definitions of bipartite Gallai-Ramsey number and Gallai-
Ramsey multiplicity, we give the definition of bipartite Gallai Ramsey multi-
plicity.

Definition 4 Given two non-empty bipartite graphs G,H and a positive in-
teger k, define the bipartite Gallai-Ramsey multiplicity bi-GMk(G : H) to
be the minimum total number of rainbow subgraphs G and monochromatic
subgraphs H for all k-edge-colored Kbgrk(G:H),bgrk(G:H).

1.2 Structural theorems under rainbow-tree-free colorings

The five k-edge-colored structures of complete graphs or complete bipartite
graphs given below is for convenience of describing several structural theorems.
Colored Structure 1: Let (V1, V2, . . . , Vk) be a partition of V (Kn) such that
for each i, all the edges connecting two vertices in Vi are colored by either 1
or i and all the edges between Vi and Vj with i ̸= j are colored by 1.
Colored Structure 2: Let Kn be a k-edge-colored complete graph such that
Kn − v is monochromatic for some vertex v.
Colored Structure 3: Let (U, V ) be the bipartition of complete bipartite
graph Kn,n. U can be partitioned into k non-empty parts U1, U2, . . . , Uk such
that all the edges between Ui and V have color i for i ∈ {1, 2, . . . , k}.
Colored Structure 4: Let (U, V ) be the bipartition of complete bipartite
graph Kn,n. U can be partitioned into two parts U1 and U2 with |U1| ≥
1, |U2| ≥ 0, and V can be partitioned into k parts V1, V2, . . . , Vk with |V1| ≥ 0
and |Vj | ≥ 1, j ∈ {2, 3, . . . , k}, such that all the edges between Vi and U1 have
color i and all the edges between Vi and U2 have color 1 for i ∈ {1, 2, . . . , k}.
Colored Structure 5: Let (U, V ) be the bipartition of complete bipartite
graph Kn,n. U can be partitioned into k parts U1, U2, . . . , Uk with |U1| ≥
0, |Uj | ≥ 1 and V can be partitioned into k parts V1, V2, . . . , Vk with |V1| ≥
0, |Vj | ≥ 1, j ∈ {2, 3, . . . , k}, such that only colors 1 and i can be used on the
edges between Ui and Vi for i ∈ {1, 2, . . . , k}, and all the other edges have
color 1.

Thomason and Wagner in [26] obtained the following results.

Theorem 1 [26] For an integer n ≥ 4, let Kn be an edge-colored complete
graph with at least three colors so that it contains no rainbow P4 if and only if
n = 4 and three colors are used, each color forming a perfect matching.

Theorem 2 [26] For integers k ≥ 5 and n ≥ 5, let Kn be a k-edge-colored
complete graph so that it contains no rainbow P5 if and only if Colored Structure
1 or Colored Structure 2 occurs.
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Bass, Magnant, Ozeki and Pyron in [1] obtained the following results. The
study of this structural theorem can be traced back to the study of local
k-coloring Ramsey numbers by Gyárfás, Lehel, Schelp and Tuza in [9].

Theorem 3 [1,9] For integers k ≥ 4 and n ≥ 4, let Kn be a k-edge-colored
complete graph so that it contains no rainbow K1,3 if and only if Colored
Structure 1 occurs.

Bass, Magnant, Ozeki and Pyron in [1] described the colored structure
of complete graphs without rainbow P+

4 . Also, Schlage-Puchta and Wagner
proved this structural theorem in [25].

Theorem 4 [1,25] For integers k ≥ 5 and n ≥ 5, let Kn be a k-edge-colored
complete graph so that it contains no rainbow P+

4 if and only if Colored Struc-
ture 1 occurs.

In terms of edge-colorings of complete bipartite graphs, Li, Wang and Liu
in [17] first obtained the following results.

Theorem 5 [17] Let (U, V ) be the bipartition of a complete bipartite graph.
For integers k ≥ 3 and n ≥ 2, let Kn,n be a k-edge-colored complete bipartite
graph so that it contains no rainbow P4 if and only if Colored Structure 3
occurs.

Theorem 6 [17] Let (U, V ) be the bipartition of a complete bipartite graph.
For integers k ≥ 5 and n ≥ 3, let Kn,n be a k-edge-colored complete bipartite
graph so that it contains no rainbow P5 if and only if Colored Structure 4 or
Colored Structure 5 occurs.

Li and Wang in [15] first described the colored structure of complete bi-
partite graphs without rainbow K1,3. Recently, Chen, Ji, Mao and Wei in [3]
repeoved this structural theorem on balanced complete bipartite graphs.

Theorem 7 [3,15] Let (U, V ) be the bipartition of a complete bipartite graph.
For integers k ≥ 5 and n ≥ 3, let Kn,n be a k-edge-colored complete bipartite
graph so that it contains no rainbow K1,3 if and only if Colored Structure 5
occurs.

It should be noted that the structural theorems cited above are only a
part of what is needed in this paper. For a complete survey of the structural
theorems, we refer to the original references.

1.3 Main results

Due to the fact that the research in this paper is based on the exact k-edge-
colorings, it is natural to require that the number of edges in the graph
is at least the number of colors that we consider. From the above struc-
tural theorems, it can be seen that if there are no rainbow subgraphs G ∈
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{P4, P5,K1,3, P
+
4 } for k-edge-colored complete graphs or complete bipartite

graphs, then there must be some monochromatic graphs under this colored
structure. For example, a k-edge-colored complete graph without rainbow K1,3

must contain a monochromatic K(k−1)×2; a k-edge-colored balanced complete
bipartite graph without rainbow P4 must contain a monochromatic K1,k; a
k-edge-colored balanced complete bipartite graph without rainbow P5 or K1,3

must contain a monochromatic K1,⌈ k−1
2 ⌉. Based on these properties, we know

that when the number of colors k is sufficiently large with respect to the sub-
graph H, the Gallai-Ramsey number grk(G : H) (also bipartite Gallai-Ramsey
number bgrk(G : H)) does not depend on the subgraph H, but only on k.

In the third section of this paper, we give some exact values of the Gallai-
Ramsey number and multiplicity when the number of colors k =

(
t
2

)
is suffi-

ciently large with respect to the subgraph H. The main results for the Gallai-
Ramsey multiplicity are shown in the Table 1.

Table 1 Main results for Gallai-Ramsey multiplicity. The graph H is a subgraph of some
graphs related to k, see Theorems 9, 10, 11, 12, 13, 14, 16 and 17 for details.

GMk−1(G : H) GMk−2(G : H)

G = K1,3

3 (t = 4)

18 (t = 5)

(t− 1)
(t−1

3

)
+

(t−3
3

)
+ 2

(t−3
2

)
(t ≥ 6)

1 (t = 4)

14 (t = 5)

(t− 3)
(t−1

3

)
+ 3

(t−3
3

)
+ 6

(t−3
2

)
(t ≥ 6)

G = P+
4 60

(t
5

)
− 5(t− 3)(t− 4) (t ≥ 5) 60

(t
5

)
− 15(t− 3)(t− 4) (t ≥ 5)

G = P4

8 (t = 4)

12
(t
4

)
− 2(t− 3) (t ≥ 5)

4 (t = 4)

12
(t
4

)
− 6(t− 3) (t ≥ 5)

G = P5

60
(t
5

)
− 12(t− 4) (5 ≤ t ≤ 6)

60
(t
5

)
− 3(t− 3)(t− 4) (t ≥ 7)

38 (t = 5)

288 (t = 6)

60
(t
5

)
− 9(t− 3)(t− 4) (t ≥ 7)

In the fourth section of this paper, similarly, we give some exact values
of the bipartite Gallai-Ramsey number and multiplicity when the number of
colors k = t2 is sufficiently large with respect to the subgraph H. The main
results for the bipartite Gallai-Ramsey multiplicity are shown in the Table 2.

2 Preliminaries

Some propositions and lemmas presented in section are very helpful for the
proof in the third and fourth sections of this paper. In 2008, Fox in [5] provided
a result on the total number of different subgraphs G in Kn.

Proposition 1 [5] If G is a subgraph of Kn, then NumKn
(G) =

|V (G)|!( n
|V (G)|)

|Aut(G)| .

Li, Wang and Liu in [17] determined the sharp bound of k such that any
k-edge-colored Kn always has a rainbow subgraph P5. Bass, Magnant, Ozeki
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Table 2 Main results for bipartite Gallai-Ramsey multiplicity. The graph H is a subgraph
of some graphs related to k, see Theorems 19, 20, 22, 23, 24 and 25 for details.

bi-GMk−1(G : H) bi-GMk−2(G : H)

G = K1,3

5 (t = 3)

30 (t = 4)

(2t− 1)
(t
3

)
+

(t−2
3

)
+ 2

(t−2
2

)
(t ≥ 5)

4 (t = 3)

28 (t = 4)

93 (t = 5)

(2t− 1)
(t
3

)
+

(t−3
3

)
+ 3

(t−3
2

)
(t ≥ 6)

G = P4 t2(t− 1)2 − 2(t− 1) (t ≥ 2) t2(t− 1)2 − 6(t− 1) (t ≥ 2)

G = P5 t2(t− 1)2(t− 2)− 3(t− 1)(t− 2) (t ≥ 3) t2(t− 1)2(t− 2)− 9(t− 1)(t− 2) (t ≥ 3)

and Pyron in [1] obtained the sharp bound of k such that any k-edge-colored
Kn always has a rainbow subgraph K1,3 by studying anti-Ramsey numbers.

Proposition 2 [17] For integers n ≥ 5 and k with n + 1 ≤ k ≤
(
n
2

)
, there is

always a rainbow subgraph P5 under any k-edge-colored Kn.

Proposition 3 [1] For integers n ≥ 4 and k with ⌈n+3
2 ⌉ ≤ k ≤

(
n
2

)
, there is

always a rainbow subgraph K1,3 under any k-edge-colored Kn.

Also, Li, Wang and Liu in [17] determined the sharp bound of k such that
any k-edge-coloring of Kn,n always has a rainbow subgraph P4 or P5.

Proposition 4 [17] For integers n ≥ 2 and k with n + 1 ≤ k ≤ n2, there is
always a rainbow subgraph P4 under any k-edge-colored Kn,n.

Proposition 5 [17] For integers n ≥ 3 and k with n + 2 ≤ k ≤ n2, there is
always a rainbow subgraph P5 under any k-edge-colored Kn,n.

Similarly, we can directly obtain the following result through Theorem 7.

Proposition 6 For integers n ≥ 3 and k with n+2 ≤ k ≤ n2, there is always
a rainbow subgraph K1,3 under any k-edge-colored Kn,n.

The following lemmas are very useful in the proofs of the third section.

Lemma 1 Let t ≥ 4 be an integer and e1, e2 be two edges in Kt. Then

NumKt
(P4|e1, e2) =

{
4, if e1 ≁ e2;
2(t− 3), if e1 ∼ e2.

Proof Assume that e1 ≁ e2, and let e1 = v1v2, e2 = v3v4. Since P4 is a
connected graph, there is an edge that connects e1 and e2. In this case, there
are four different P4, which are v1v2v3v4, v1v2v4v3, v2v1v3v4 and v2v1v4v3.

Assume that e1 ∼ e2. From the structure of P4, it can be seen that e1
and e2 cannot be both pendent edges of P4, and one of e1 and e2 must be
the pendent edge of P4. If e1 is the pendent edge of P4, then there are t − 3
different P4. By symmetry, if e2 is the pendent edge of P4, then there are t−3
different P4. Therefore, in this case, there are 2(t− 3) different P4.
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Lemma 2 Let t ≥ 5 be an integer and e1, e2 be two edges in Kt. Then

NumKt(P5|e1, e2) =
{
12(t− 4), if e1 ≁ e2;
3(t− 3)(t− 4), if e1 ∼ e2.

Proof Assume that e1 ≁ e2. From the structure of P5, it can be seen that one
of e1 and e2 must be the pendent edge of P5. If e1 is the pendent edge of P5

but e2 is not the pendent edge of P5, then there are 4(t− 4) different P5. By
symmetry, if e2 is the pendent edge of P5 but e1 is not the pendent edge of P5,
then there are 4(t − 4) different P5. If the e1 and e2 are both pendent edges
of P5, then there are 4(t − 4) different P5. Therefore, in this case, there are
12(t− 4) different P5.

Assume that e1 ∼ e2. From the structure of P5, it can be seen that e1 and
e2 cannot be both pendent edges of P5. If e1 is the pendent edge of P5 but e2
is not the pendent edge of P5, then there are (t − 3)(t − 4) different P5. By
symmetry, if e2 is the pendent edge of P5 but e1 is not the pendent edge of P5,
then there are (t− 3)(t− 4) different P5. If neither e1 nor e2 are the pendent
edges of P5, then there are (t− 3)(t− 4) different P5. Therefore, in this case,
there are 3(t− 3)(t− 4) different P5.

Lemma 3 Let t ≥ 5 be an integer and e1, e2 be two edges in Kt. Then

NumKt
(P+

4 |e1, e2) =
{
8(t− 4), if e1 ≁ e2;
5(t− 3)(t− 4), if e1 ∼ e2.

Proof Assume that e1 ≁ e2, and let e1 = v1v2, e2 = v3v4. Consider P+
4 with

edges e1 and e2. From the proof of Lemma 1, we know that there are four
different P4, which are v1v2v3v4, v1v2v4v3, v2v1v3v4 and v2v1v4v3. Since P+

4 is
a graph by adding an extra pendent edge to an inner vertex of P4, it follows
that there are 4 · 2(t− 4) = 8(t− 4) different P+

4 .
Assume that e1 ∼ e2. If e1 is the tail edge of P+

4 , then there are (t −
3)(t − 4) different P+

4 . By symmetry, if e2 is the tail edge of P+
4 , then there

are (t − 3)(t − 4) different P+
4 . If neither e1 nor e2 are the tail edges of P+

4 ,
then there are 3(t − 3)(t − 4) different P+

4 . Therefore, in this case, there are
5(t− 3)(t− 4) different P+

4 .

Also, the following lemmas are very useful in the proofs of the fourth sec-
tion.

Lemma 4 Let t ≥ 3 be an integer and e1, e2 be two edges in Kt,t. Then

NumKt,t
(P4|e1, e2) =

{
2, if e1 ≁ e2;
2(t− 1), if e1 ∼ e2.

Proof Assume that e1 ≁ e2. Let (X,Y ) be the bipartition of Kt,t, e1 = v1v2,
e2 = v3v4 and v1, v3 ∈ X, v2, v4 ∈ Y . Since P4 is a connected graph, there is
an edge that connects e1 and e2. In this case, there are two different P4, which
are v1v2v3v4 and v2v1v4v3.
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Assume that e1 ∼ e2. From the structure of P4, it can be seen that e1
and e2 cannot be both pendent edges of P4, and one of e1 and e2 must be
the pendent edge of P4. If e1 is the pendent edge of P4, then there are t − 1
different P4. By symmetry, if e2 is the pendent edge of P4, then there are t−1
different P4. Therefore, in this case, there are 2(t− 1) different P4.

Lemma 5 Let t ≥ 3 be an integer and e1, e2 be two edges in Kt,t. Then

NumKt,t
(P5|e1, e2) =

{
6(t− 2), if e1 ≁ e2;
3(t− 1)(t− 2), if e1 ∼ e2.

Proof Assume that e1 ≁ e2. From the structure of P5, it can be seen that one
of e1 and e2 must be the pendent edge of P5. If e1 is the pendent edge of P5

but e2 is not the pendent edge of P5, then there are 2(t− 2) different P5. By
symmetry, if e2 is the pendent edge of P5 but e1 is not the pendent edge of
P5, then there are 2(t − 2) different P5. If e1 and e2 are both pendent edges
of P5, then there are 2(t − 2) different P5. Therefore, in this case, there are
6(t− 2) different P5.

Assume that e1 ∼ e2. From the structure of P5, it can be seen that e1 and
e2 cannot be both pendent edges of P5. If e1 is the pendent edge of P5 but e2
is not the pendent edge of P5, then there are (t − 1)(t − 2) different P5. By
symmetry, if e2 is the pendent edge of P5 but e1 is not the pendent edge of P5,
then there are (t− 1)(t− 2) different P5. If neither e1 nor e2 are the pendent
edges of P5, then there are (t− 1)(t− 2) different P5. Therefore, in this case,
there are 3(t− 1)(t− 2) different P5.

Recall that the k-edge-colorings studied in this paper are exact, meaning
that each color is used at least once. Based on this, a basic principle is that the
number of colors does not exceed the total number of edges in an edge-colored
graph. So by solving the equations

k ≤
(
n

2

)
= |E(Kn)| and k ≤ n2 = |E(Kn,n)|,

we obtain n ≥ 1+
√
1+8k
2 and n ≥

√
k, respectively. Therefore, we directly get

the following basic lower bound lemma.

Lemma 6 For integer k ≥ 4, G ∈ {P4,K1,3} and any graph H, we have

grk(G : H) ≥
⌈
1 +

√
1 + 8k

2

⌉
.

For integer k ≥ 5, G ∈ {P4, P5,K1,3} and any bipartite graph H, we have

bgrk(G : H) ≥
⌈√

k
⌉
,

in particular, this lower bound also holds when 3 ≤ k ≤ 4 and G = P4.

It is worth noting that the idea of Lemma 6 originated from the paper of
Zou, Wang, Lai and Mao in [28].
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3 Results for Gallai-Ramsey multiplicity

We consider four kinds of rainbow graphs K1,3, P+
4 , P4, P5, respectively, in

the following four subsections.

3.1 Rainbow K1,3

Theorem 8 Let integer k ≥ 4. If H is a subgraph of the balanced complete
(k − 1)-partite graph K(k−1)×2. Then

grk(K1,3 : H) =

⌈
1 +

√
1 + 8k

2

⌉
.

Proof The lower bound follows from Lemma 6. Let Nk =
⌈
1+

√
1+8k
2

⌉
. For

the upper bound, we consider an arbitrary k-edge-coloring of KN (N ≥ Nk).
Noticing that Nk < 2k − 2 for k ≥ 4. If Nk ≤ N ≤ 2k − 3, then it follows
from Proposition 3 that there is always a rainbow K1,3, the result thus follows.
Next we assume N ≥ 2k−2. Suppose to the contrary that KN contains neither
a rainbow subgraph K1,3 nor a monochromatic subgraph H. It follows from
Theorem 3 that the Colored Structure 1 occurs. From exact k-edge-coloring,
we have |Vi| ≥ 2 for each i ∈ {2, 3, . . . , k}. Since H is a subgraph of the
balanced complete (k − 1)-partite graph K(k−1)×2, it follows that there is a
monochromatic H, a contradiction. The result thus follows.

According to Theorem 8 and Proposition 1, the following corollary can be
directly deduced.

Corollary 1 For integers k and t satisfying k =
(
t
2

)
≥ 6, and a subgraph H

of the balanced complete (k − 1)-partite graph K(k−1)×2 with |E(H)| ≥ 2, we
have

GMk(K1,3 : H) =
4!
(
t
4

)
|Aut(K1,3)|

= t

(
t− 1

3

)
.

Theorem 9 For integers k and t satisfying k =
(
t
2

)
≥ 6, and a subgraph H

of the balanced complete (k − 2)-partite graph K(k−2)×2 with |E(H)| ≥ 3, we
have

GMk−1(K1,3 : H) =


3, t = 4;
18, t = 5;

(t− 1)
(
t−1
3

)
+

(
t−3
3

)
+ 2

(
t−3
2

)
, t ≥ 6.

Proof It follows from Theorem 8 that grk−1(K1,3 : H) = t. Consider any
(k − 1)-edge-coloring of Kt. Since |E(Kt)| =

(
t
2

)
and each color is used at

least once, it follows that there are only two edges with the same color in Kt.
Without loss of generality, we assume that there are two red edges e1 and e2.
Since |E(H)| ≥ 3, it follows that we do not need to consider the number of
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monochromatic H in Kt. If e1 ≁ e2, then this case is equivalent to Corollary 1.
Therefore,

GMk−1(K1,3 : H) ≤ t

(
t− 1

3

)
.

If e1 ∼ e2, then e1 and e2 form a red P3. Let vertex v be incident to the
edges e1 and e2. We first investigate the number of rainbow copies of K1,3 with
center v for t ≥ 6. Noticing that deg(v) = t− 1, the number of rainbow copies
of K1,3 with center v and without red edges is

(
t−3
3

)
, and number of rainbow

copies of K1,3 with center v and with a red edge is 2
(
t−3
2

)
. In Kt, there are

(t− 1)
(
t−1
3

)
rainbow copies of K1,3 with center in V (Kt) \ {v}. Therefore,

GMk−1(K1,3 : H) ≤ (t− 1)

(
t− 1

3

)
+

(
t− 3

3

)
+ 2

(
t− 3

2

)
.

It is easy to verify that when t ≥ 6,

min

{
t

(
t− 1

3

)
, (t− 1)

(
t− 1

3

)
+

(
t− 3

3

)
+ 2

(
t− 3

2

)}
= (t−1)

(
t− 1

3

)
+

(
t− 3

3

)
+2

(
t− 3

2

)
.

When t = 4, there is no rainbow K1,3 with center v. In K4, each other
vertex has one rainbow K1,3. So there are three rainbow copies of K1,3 in K4.
Since 3 < 4

(
4−1
3

)
, it follows that GM5(K1,3 : H) = 3.

When t = 5, the number of rainbow copies of K1,3 with center v and
without red edges is 0, and number of rainbow copies of K1,3 with center v
and with a red edge is 2. In K5, there are 4

(
4
3

)
= 16 rainbow copies of K1,3 with

center in V (K5) \ {v}. Therefore, GM9(K1,3 : H) ≤ 18. Since 18 < 5
(
5−1
3

)
. It

follows that GM9(K1,3 : H) = 18.

Theorem 10 For integers k and t satisfying k =
(
t
2

)
≥ 6, and a subgraph H

of the balanced complete (k − 3)-partite graph K(k−3)×2 with |E(H)| ≥ 4, we
have

GMk−2(K1,3 : H) =


1, t = 4;
14, t = 5;

(t− 3)
(
t−1
3

)
+ 3

(
t−3
3

)
+ 6

(
t−3
2

)
, t ≥ 6.

Proof It follows from Theorem 8 that grk−2(K1,3 : H) = t. Consider a (k−2)-
edge-coloring of Kt. Since |E(H)| ≥ 4, it follows that we do not need to
consider the number of monochromatic H in Kt. Noticing that each color
needs to be used at least once. We first color any k− 2 edges in Kt with k− 2
colors, and the remaining two edges are temporarily not colored, denoted as
e1 and e2. Next, we discuss the edges e1 and e2 in two cases.
Case 1 The edges e1 and e2 have the same color.

Without loss of generality, we assume that these two edges are red. Ac-
cording to the structure of Kt, it is easy to calculate that if the red edges form
a 3P2, then there are

f1(t) = t

(
t− 1

3

)
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rainbow copies of K1,3 in Kt; if the red edges form a P3 ∪ P2, then there are

f2(t) = (t− 1)

(
t− 1

3

)
+

(
t− 3

3

)
+ 2

(
t− 3

2

)
rainbow copies of K1,3 in Kt; if the red edges form a P4, then there are

f3(t) = (t− 2)

(
t− 1

3

)
+ 2

(
t− 3

3

)
+ 4

(
t− 3

2

)
rainbow copies of K1,3 in Kt; if the red edges form a K3, then there are

f4(t) = (t− 3)

(
t− 1

3

)
+ 3

(
t− 3

3

)
+ 6

(
t− 3

2

)
rainbow copies of K1,3 in Kt; if the red edges form a K1,3, then there are

f5(t) = (t− 1)

(
t− 1

3

)
+

(
t− 4

3

)
+ 3

(
t− 4

2

)
rainbow copies of K1,3 in Kt.

Case 2 The edges e1 and e2 have different colors.

When the edges e1 and e2 form a P3 in Kt, without loss of generality, we
assume that e1 is red and e2 is blue. Let V (P3) = {u, v, w} and vertex v is
incident to edges e1 and e2. According to the structure of Kt, it is easy to
calculate that if the other red edge is not incident to vertex u or v, and the
other blue edge is not incident to vertex v or w, then there are

f1(t) = t

(
t− 1

3

)
rainbow copies of K1,3 in Kt; if the other red edge is incident to vertex u or
v, and the other blue edge is not incident to vertex v or w, then there are

f2(t) = (t− 1)

(
t− 1

3

)
+

(
t− 3

3

)
+ 2

(
t− 3

2

)
rainbow copies of K1,3 in Kt; if the other red edge is incident to vertex u, and
the other blue edge is incident to vertex w, then there are

f3(t) = (t− 2)

(
t− 1

3

)
+ 2

(
t− 3

3

)
+ 4

(
t− 3

2

)
rainbow copies of K1,3 in Kt; if the other red edge is incident to vertex v, and
the other blue edge is also incident to vertex v, then there are

f6(t) = (t− 1)

(
t− 1

3

)
+

(
t− 5

3

)
+ 4

(
t− 5

2

)
+ 4(t− 5)

rainbow copies of K1,3 in Kt.
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When the edges e1 and e2 form a 2P2 in Kt, without loss of generality, we
assume that e1 is red and e2 is blue. According to the structure of Kt, it is
easy to calculate that if the other red edge is not adjacent to e1, and the other
blue edge is not adjacent to e2, then there are

f1(t) = t

(
t− 1

3

)
rainbow copies of K1,3 in Kt; if the other red edge is adjacent to e1, and the
other blue edge is not adjacent to e2, then there are

f2(t) = (t− 1)

(
t− 1

3

)
+

(
t− 3

3

)
+ 2

(
t− 3

2

)
rainbow copies of K1,3 in Kt; if the other red edge is adjacent to e1, and the
other blue edge is adjacent to e2, then there are

f3(t) = (t− 2)

(
t− 1

3

)
+ 2

(
t− 3

3

)
+ 4

(
t− 3

2

)
rainbow copies of K1,3 in Kt.

Next, we compare the sizes of f1(t), f2(t), f3(t), f4(t), f5(t) and f6(t). Based
on the practical significance of counting in this paper, we know that the count
of rainbow copies of K1,3 cannot be negative. For example, for f6(t), the expres-
sion is not applicable when 4 ≤ t ≤ 6. In other words, for 4 ≤ t ≤ 6, f6(t) can
be written as a piecewise expression. But for the convenience of calculation, we
only define in the operations of expressions for t in f1(t), f2(t), f3(t), f4(t), f5(t)
and f6(t) that when integers a < b, we have

(
a
b

)
≡ 0 and a− b ≡ 0.

For t = 4, we have

f1(4) = 4, f2(4) = 3, f3(4) = 2, f4(4) = 1, f5(4) = 3, f6(4) = 3.

Thus, min{f1(4), f2(4), f3(4), f4(4), f5(4), f6(4)} = 1.
For t = 5, we have

f1(5) = 20, f2(5) = 18, f3(5) = 16, f4(5) = 14, f5(5) = 16, f6(5) = 16.

Thus, min{f1(5), f2(5), f3(5), f4(5), f5(5), f6(5)} = 14.
For t = 6, we have

f1(6) = 60, f2(6) = 57, f3(6) = 54, f4(6) = 51, f5(6) = 53, f6(6) = 54.

Thus, min{f1(6), f2(6), f3(6), f4(6), f5(6), f6(6)} = 51.
For t = 7, we have

f1(7) = 140, f2(7) = 136, f3(7) = 132, f4(7) = 128, f5(7) = 130, f6(7) = 132.

Thus, min{f1(7), f2(7), f3(7), f4(7), f5(7), f6(7)} = 128.
For t ≥ 8 and 1 ≤ i ≤ 6, let fii(t) = fi(t)− (t− 3)

(
t−1
3

)
− 1

2 t
3 + 3t2 − 5

2 t,
then

f11(t) = 3t− 3, f22(t) = 2t, f33(t) = t+ 3, f44(t) = 6, f55(t) = 8, f66(t) = t+ 3.
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Therefore, for t ≥ 8,

min{f11(t), f22(t), f33(t), f44(t), f55(t), f66(t)} = f44(t) = 6,

and thus,

min{f1(t), f2(t), f3(t), f4(t), f5(t), f6(t)} = f4(t) = (t−3)

(
t− 1

3

)
+3

(
t− 3

3

)
+6

(
t− 3

2

)
.

Based on the above discussion, we have

min{f1(t), f2(t), f3(t), f4(t), f5(t), f6(t)} =


(t− 3)

(
t−1
3

)
, t = 4;

(t− 3)
(
t−1
3

)
+ 6

(
t−3
2

)
, t = 5;

(t− 3)
(
t−1
3

)
+ 3

(
t−3
3

)
+ 6

(
t−3
2

)
, t ≥ 6.

The result thus follows.

3.2 Rainbow P+
4

According to Theorems 3 and 4, we directly give the following observation.

Observation 1 For integers k ≥ 5, if grk(K1,3 : H) ≥ 5, then

grk(P
+
4 : H) = grk(K1,3 : H).

From Observation 1 and Theorem 8, the following corollary can be directly
deduced.

Corollary 2 Let integer k ≥ 5. If H is a subgraph of the balanced complete
(k − 1)-partite graph K(k−1)×2, then

grk(P
+
4 : H) =

{
5, 5 ≤ k ≤ 6;⌈
1+

√
1+8k
2

⌉
, k ≥ 7.

Noticing that P+
4 is obtained by adding a pendent edge to a leaf vertex at

K1,3, there are t
(
t−1
3

)
· 3(t − 4) different P+

4 in Kt. We can also calculate
|Aut(P+

4 )| = 2 from Proposition 1. Therefore, we directly provide the following
corollary.

Corollary 3 For integers k and t satisfying k =
(
t
2

)
≥ 10, and a subgraph H

of the balanced complete (k − 1)-partite graph K(k−1)×2 with |E(H)| ≥ 2, we
have

GMk(P
+
4 : H) =

5!
(
t
5

)
|Aut(P+

4 )|
= 60

(
t

5

)
.

Theorem 11 For integers k and t satisfying k =
(
t
2

)
≥ 10, and a subgraph H

of the balanced complete (k − 2)-partite graph K(k−2)×2 with |E(H)| ≥ 3, we
have

GMk−1(P
+
4 : H) = 60

(
t

5

)
− 5(t− 3)(t− 4).
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Proof It follows from Corollary 2 that grk−1(P
+
4 : H) = t. Consider any (k−1)-

edge-coloring of Kt. Since |E(Kt)| =
(
t
2

)
and each color is used at least once,

it follows that there are only two edges, say e1 and e2, with the same color in
Kt. Since |E(H)| ≥ 3, it follows that we do not need to consider the number
of monochromatic H in Kt. According to Corollary 3, there are 60

(
t
5

)
different

P+
4 in Kt, and we only need to find the number of different P+

4 containing the
edges e1 and e2. This is because only P+

4 containing edges e1 and e2 are not
rainbow, and all other P+

4 are rainbow. If e1 ≁ e2, then according to Lemma 3
that there are 8(t − 4) different P+

4 in Kt that contain edges e1 and e2. If
e1 ∼ e2, then according to Lemma 3 that there are 5(t−3)(t−4) different P+

4

in Kt that contain edges e1 and e2. Noticing that 8(t− 4) < 5(t− 3)(t− 4) for
t ≥ 5, the result thus follows.

Theorem 12 For integers k and t satisfy k =
(
t
2

)
≥ 10, if H is a subgraph

of the balanced complete (k− 3)-partite graph K(k−3)×2 with |E(H)| ≥ 4, then
we have

GMk−2(P
+
4 : H) = 60

(
t

5

)
− 15(t− 3)(t− 4).

Proof It follows from Corollary 2 that grk−2(P
+
4 : H) = t. Consider (k − 2)-

edge-coloring of Kt. Since |E(H)| ≥ 4, it follows that we do not need to
consider the number of monochromatic H in Kt. Since each color is used at
least once, there are only the following two cases. Due to the arbitrariness of
colors, we can describe them using specific color names such as red and blue.
Next, we calculate the number of different P+

4 containing two or more edges
with the same color. The following counting bases are all based on Lemma 3.

Case 1 There are three red edges e1, e2 and e3. The remaining edges are not
red and the colors of any two remaining edges are not the same.

Assume that the edges e1, e2 and e3 form a red 3P2. In this subcase, there
are 24(t− 4) different P+

4 containing two red edges.
Assume that the edges e1, e2 and e3 form a red P3 ∪ P2. In this subcase,

there are 5(t − 3)(t − 4) different P+
4 containing red P3 and 2(8(t − 4) − 2)

different P+
4 without red P3. So there are a total of (5t+1)(t−4)−4 different

P+
4 containing two or more red edges.

Assume that the edges e1, e2 and e3 form a red K1,3. In this subcase,
there are 3(2(t− 3)(t− 4) + 3(t− 4)2) different P+

4 containing two red edges
and 3(t − 4) different P+

4 containing three red edges. So there are a total of
3(5t− 17)(t− 4) different P+

4 containing two or more red edges.
Assume that the edges e1, e2 and e3 form a red K3. In this subcase, there

are 15(t− 3)(t− 4) different P+
4 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P4. In this subcase, there
are 2(5(t− 3)(t− 4)− 2(t− 4)) + 3 · 2(t− 4) = 2(5t− 14)(t− 4) different P+

4

containing two red edges and 2(t− 4) different P+
4 containing three red edges.

So there are a total of 2(5t − 13)(t − 4) different P+
4 containing two or more

red edges.
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Case 2 There are two red edges e1, e2 and two blue edges e3, e4. The remaining
edges are not red or blue and the colors of any two remaining edges are not
the same.

If e1 ≁ e2 and e3 ≁ e4, then there are 16(t − 4) different P+
4 containing

two edges with the same color; if e1 ∼ e2 and e3 ≁ e4, then there are at most
8(t−4)+5(t−3)(t−4) = (5t−7)(t−4) different P+

4 containing two edges with
the same color; if e1 ∼ e2 and e3 ∼ e4, then there are at most 10(t− 3)(t− 4)
different P+

4 containing two edges with the same color.
Let

f1(t) = 24(t− 4), f2(t) = (5t+ 1)(t− 4)− 4,

f3(t) = 15(t− 3)(t− 4), f4(t) = 2(5t− 13)(t− 4), f5(t) = (5t− 7)(t− 4).

Based on the data calculated from the eight subcases above, we need to com-
pare the sizes of f1(t), f2(t), f3(t), f4(t) and f5(t).

For 1 ≤ i ≤ 5, let fii(t) =
fi(t)
t−4 . Then

f11(t) = 24, f22(t) = 5t+1− 4

t− 4
, f33(t) = 15(t−3), f44(t) = 2(5t−13), f55(t) = 5t−7.

Therefore, for t ≥ 5

max{f11(t), f22(t), f33(t), f44(t), f55(t)} = f33(t) = 15(t− 3),

and thus,

max{f1(t), f2(t), f3(t), f4(t), f5(t)} = f3(t) = 15(t− 3)(t− 4).

The result thus follows.

3.3 Rainbow P4

From Theorem 1, we directly obtain the following corollary.

Corollary 4 For a graph H and integer k ≥ 4, we have

grk(P4 : H) =

⌈
1 +

√
1 + 8k

2

⌉
.

According to Corollary 4 and Proposition 1, the following corollary can be
directly deduced.

Corollary 5 For a graph H with |E(H)| ≥ 2 and integers k and t satisfying
k =

(
t
2

)
≥ 6, we have

GMk(P4 : H) =
4!
(
t
4

)
|Aut(P4)|

= 12

(
t

4

)
.
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Theorem 13 For a graph H with |E(H)| ≥ 3 and integers k and t satisfying
k =

(
t
2

)
≥ 6, we have

GMk−1(P4 : H) =

{
8, t = 4;
12
(
t
4

)
− 2(t− 3), t ≥ 5.

Proof It follows from Corollary 4 that grk−1(P4 : H) = t. Consider any (k−1)-
edge-coloring of Kt. Since |E(Kt)| =

(
t
2

)
and each color is used at least once,

it follows that there are only two edges, say e1 and e2, with the same color in
Kt. Since |E(H)| ≥ 3, it follows that we do not need to consider the number
of monochromatic H in Kt. According to Corollary 5, there are 12

(
t
4

)
different

P4 in Kt, and we only need to find the number of different P4 containing the
edges e1 and e2. This is because only P4 containing edges e1 and e2 are not
rainbow, and all other P4 are rainbow. If e1 ≁ e2, then according to Lemma 1
that there are 4 different P4 in Kt that contain edges e1 and e2. If e1 ∼ e2,
then according to Lemma 1 that there are 2(t − 3) different P4 in Kt that
contain edges e1 and e2. Noticing that 4 > 2(t− 3) for t = 4 and 4 ≤ 2(t− 3)
for t ≥ 5, the result thus follows.

Theorem 14 For a graph H with |E(H)| ≥ 4 and integers k and t satisfying
k =

(
t
2

)
≥ 6, we have

GMk−2(P4 : H) =

{
4, t = 4;
12
(
t
4

)
− 6(t− 3), t ≥ 5.

Proof It follows from Corollary 4 that grk−2(P4 : H) = t. Consider (k − 2)-
edge-coloring of Kt. Since |E(H)| ≥ 4, it follows that we do not need to
consider the number of monochromatic H in Kt. Since each color is used at
least once, there are only the following two cases. Due to the arbitrariness of
colors, we can describe them using specific color names such as red and blue.
Next, we calculate the number of different P4 containing two or more edges
with the same color. The following counting bases are all based on Lemma 1.

Case 1 There are three red edges e1, e2 and e3. The remaining edges are not
red and the colors of any two remaining edges are not the same.

Assume that the edges e1, e2 and e3 form a red 3P2. In this subcase, there
are 12 different P4 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P3 ∪ P2. In this subcase,
there are 8 + 2(t− 3) = 2(t+ 1) different P4 containing two red edges.

Assume that the edges e1, e2 and e3 form a red K1,3. In this subcase, there
are 6(t− 3) different P4 containing two red edges.

Assume that the edges e1, e2 and e3 form a red K3. In this subcase, there
are 6(t− 3) different P4 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P4. In this subcase, there
are 4 + 2(t− 3) + 2(t− 4) = 2(2t− 5) different P4 containing two or more red
edges.
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Case 2 There are two red edges e1, e2 and two blue edges e3, e4. The remaining
edges are not red or blue and the colors of any two remaining edges are not
the same.

If e1 ≁ e2 and e3 ≁ e4, then there are 8 different P4 containing two edges
with the same color; if e1 ∼ e2 and e3 ≁ e4, then there are 4+2(t−3) = 2(t−1)
different P4 containing two edges with the same color; if e1 ∼ e2 and e3 ∼ e4,
then there are at most 4(t−3) different P4 containing two edges with the same
color.

We first consider the result when t = 4. Noticing that there are no red 3P2

or P3 ∪ P2 in a 4-edge-colored K4. Thus there are at most 8 different P4 in a
4-edge-colored K4 that contain two or more edges of the same color.

Let f1(t) = 12, f2(t) = 2(t + 1), f3(t) = 6(t − 3), f4(t) = 2(2t − 5). Based
on the data calculated from the eight subcases above, we need to compare the
sizes of f1(t), f2(t), f3(t) and f4(t).

For t ≥ 5, we have

max{f1(t), f2(t), f3(t), f4(t)} = f3(t) = 6(t− 3).

The result thus follows.

3.4 Rainbow P5

In 2023, Zou, Wang, Lai and Mao in [28] provided results on the Gallai-Ramsey
number for rainbow P5.

Theorem 15 [28] For a graph H and an integer k ≥ 5, we have

grk(P5 : H) =


max

{⌈
1+

√
1+8k
2

⌉
, 5
}
, k ≥ |V (H)|+ 1;

|V (H)|+ 1, k = |V (H)| and H is not a complete graph;
(|V (H)| − 1)2 + 1, k = |V (H)| and H is a complete graph.

According to Theorem 15 and Proposition 1, the following corollary can
be directly deduced.

Corollary 6 For a graph H with |E(H)| ≥ 2 and integers k and t satisfying
k =

(
t
2

)
≥ max{|V (H)|+ 1, 10}, we have

GMk(P5 : H) =
5!
(
t
5

)
|Aut(P5)|

= 60

(
t

5

)
.

Theorem 16 For a graph H with |E(H)| ≥ 3 and integers k and t satisfying
k =

(
t
2

)
≥ max{|V (H)|+ 2, 10}, we have

GMk−1(P5 : H) =

{
60
(
t
5

)
− 12(t− 4), 5 ≤ t ≤ 6;

60
(
t
5

)
− 3(t− 3)(t− 4), t ≥ 7.
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Proof It follows from Theorem 15 that grk−1(P5 : H) = t. Consider any (k−1)-
edge-coloring of Kt. Since |E(Kt)| =

(
t
2

)
and each color is used at least once,

it follows that there are only two edges, say e1 and e2, with the same color in
Kt. Since |E(H)| ≥ 3, it follows that we do not need to consider the number
of monochromatic H in Kt. According to Corollary 6, there are 60

(
t
5

)
different

P5 in Kt, and we only need to find the number of different P5 containing the
edges e1 and e2. This is because only P5 containing edges e1 and e2 are not
rainbow, and all other P5 are rainbow. If e1 ≁ e2, then according to Lemma 2
that there are 12(t − 4) different P5 in Kt that contain edges e1 and e2. If
e1 ∼ e2, then according to Lemma 2 that there are 3(t− 3)(t− 4) different P5

in Kt that contain edges e1 and e2. Noticing that 12(t − 4) > 3(t − 3)(t − 4)
for 5 ≤ t ≤ 6 and 12(t− 4) ≤ 3(t− 3)(t− 4) for t ≥ 7, the result thus follows.

Theorem 17 For a graph H with |E(H)| ≥ 4 and integers k and t satisfying
k =

(
t
2

)
≥ max{|V (H)|+ 3, 10}, we have

GMk−2(P5 : H) =


38, t = 5;
288, t = 6;
60
(
t
5

)
− 9(t− 3)(t− 4), t ≥ 7.

Proof It follows from Theorem 15 that grk−2(P5 : H) = t. Consider (k − 2)-
edge-coloring of Kt. Since |E(H)| ≥ 4, it follows that we do not need to
consider the number of monochromatic H in Kt. Since each color is used at
least once, there are only the following two cases. Due to the arbitrariness of
colors, we can describe them using specific color names such as red and blue.
Next, we calculate the number of different P5 containing two or more edges
with the same color. The following counting bases are all based on Lemma 2.

Case 1 There are three red edges e1, e2 and e3. The remaining edges are not
red and the colors of any two remaining edges are not the same.

Assume that the edges e1, e2 and e3 form a red 3P2. In this subcase, there
are 36(t− 4) different P5 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P3∪P2. Let P3 = e1e2 and
P2 = e3. In this subcase, there are 3(t − 3)(t − 4) different P5 containing red
edges e1 and e2, 12(t− 4)− 4 different P5 only containing red edges e1 and e3,
and symmetrically 12(t− 4)− 4 different P5 only containing red edges e2 and
e3. So there are a total of 3(t− 3)(t− 4)+2(12(t− 4)− 4) = 3(t+5)(t− 4)− 8
different P5 containing two or more red edges.

Assume that the edges e1, e2 and e3 form a red K1,3. In this subcase, there
are 9(t− 3)(t− 4) different P5 containing two red edges.

Assume that the edges e1, e2 and e3 form a red K3. In this subcase, there
are 9(t− 3)(t− 4) different P5 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P4. In this subcase, there
are 12(t − 4) different P5 containing red 2P2 and 2(3(t − 3)(t − 4) − 2(t −
4)) = 2(3t − 11)(t − 4) different P5 without red 2P2. So there are a total of
12(t− 4) + 2(3t− 11)(t− 4) = 2(3t− 5)(t− 4) different P5 containing two or
more red edges.
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Case 2 There are two red edges e1, e2 and two blue edges e3, e4. The remaining
edges are not red or blue and the colors of any two remaining edges are not
the same.

If e1 ≁ e2 and e3 ≁ e4, then there are at most 24(t − 4) different P5

containing two edges with the same color; if e1 ∼ e2 and e3 ≁ e4, then there
are at most 12(t− 4)+ 3(t− 3)(t− 4) = 3(t+1)(t− 4) different P5 containing
two edges with the same color; if e1 ∼ e2 and e3 ∼ e4, then there are at most
6(t− 3)(t− 4) different P5 containing two edges with the same color.

Let
f1(t) = 36(t− 4), f2(t) = 3(t+ 5)(t− 4)− 8,

f3(t) = 9(t− 3)(t− 4), f4(t) = 2(3t− 5)(t− 4), f5(t) = 3(t+ 1)(t− 4).

Based on the data calculated from the eight subcases above, we need to com-
pare the sizes of f1(t), f2(t), f3(t), f4(t) and f5(t).

For 1 ≤ i ≤ 5, let fii(t) =
fi(t)
t−4 . Then

f11(t) = 36, f22(t) = 3(t+5)− 8

t− 4
, f33(t) = 9(t−3), f44(t) = 2(3t−5), f55 = 3(t+1).

For t = 5, note that there are no red 3P2 in a 8-edge-colored K5. Thus

max{f22(t), f33(t), f44(t), f55(t)} = f22(t) = 3(t+ 5)− 8

t− 4
= 22,

and thus

max{f2(t), f3(t), f4(t), f5(t)} = f3(t) = 3(t+ 5)(t− 4)− 8 = 22.

For t = 6, we have

max{f11(t), f22(t), f33(t), f44(t), f55(t)} = f11(t) = 36,

and thus

max{f1(t), f2(t), f3(t), f4(t), f5(t)} = f1(t) = 36(t− 4) = 72.

For t ≥ 7, we have

max{f11(t), f22(t), f33(t), f44(t), f55(t)} = f33(t) = 9(t− 3),

and thus

max{f1(t), f2(t), f3(t), f4(t), f5(t)} = f3(t) = 9(t− 3)(t− 4).

The result thus follows.

4 Results for bipartite Gallai-Ramsey multiplicity

We consider three kinds of rainbow graphs P4, P5 and K1,3, respectively, in
the following two subsections.
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4.1 Rainbow P4

Theorem 18 Let integer k ≥ 3. If H is a subgraph of K1,k, then

bgrk(P4 : H) =
⌈√

k
⌉
.

Proof The lower bound follows from Lemma 6. For the upper bound, we con-
sider an arbitrary k-edge-coloring of KN,N (N ≥

⌈√
k
⌉
). Let (U, V ) be the

bipartition of KN,N and suppose to the contrary that KN,N contains nei-
ther a rainbow subgraph P4 nor a monochromatic subgraph H. Noticing that⌈√

k
⌉
≤ k − 1 for k ≥ 3. If

⌈√
k
⌉
≤ N ≤ k − 1, then it follows from Propo-

sition 4 that there is always a rainbow P4, and the result thus follows. Next
we assume N ≥ k. It follows from Theorem 5 that the Colored Structure 3
occurs. Thus U can be partitioned into k non-empty parts U1, U2, . . . , Uk such
that all the edges between Ui and V have color i, i ∈ {1, 2, . . . , k}. Since H is
a subgraph of K1,k and |V | = N ≥ k, it follows that there is a monochromatic
H, a contradiction. The result thus follows.

It is easy to calculate that when t ≥ 2, there are t2(t − 1)2 different P4

in Kt,t. Therefore, the following corollary can be directly derived from Theo-
rem 18.
Corollary 7 For integers k and t satisfying k = t2 ≥ 4, and a subgraph H of
K1,k with |E(H)| ≥ 2, we have

bi-GMk(P4 : H) = t2(t− 1)2.

Theorem 19 For integers k and t satisfying k = t2 ≥ 4, and a subgraph H
of K1,k−1 with |E(H)| ≥ 3, we have

bi-GMk−1(P4 : H) = t2(t− 1)2 − 2(t− 1).

Proof It follows from Theorem 18 that bgrk−1(P4 : H) = t. Consider any
(k − 1)-edge-coloring of Kt,t. Since |E(Kt,t)| = t2 and each color is used at
least once, it follows that there are only two edges, say e1 and e2, with the
same color in Kt,t. Since |E(H)| ≥ 3, it follows that we do not need to consider
the number of monochromatic H in Kt,t. According to Corollary 7, there are
t2(t−1)2 different P4 in Kt,t, and we only need to find the number of different
P4 containing the edges e1 and e2. This is because only P4 containing edges
e1 and e2 are not rainbow, and all other P4 are rainbow. If e1 ≁ e2, then
according to Lemma 4 that there are 2 different P4 in Kt,t that contain edges
e1 and e2. If e1 ∼ e2, then according to Lemma 4 that there are 2(t − 1)
different P4 in Kt,t that contain edges e1 and e2. Noticing that 2 ≤ 2(t − 1)
for t ≥ 2, the result thus follows.

Theorem 20 For integers k and t satisfying k = t2 ≥ 9, and a subgraph H
of K1,k−2 with |E(H)| ≥ 4, we have

bi-GMk−2(P4 : H) = t2(t− 1)2 − 6(t− 1).
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Proof It follows from Theorem 18 that bgrk−2(P4 : H) = t. Consider (k − 2)-
edge-coloring of Kt,t. Since |E(H)| ≥ 4, it follows that we do not need to
consider the number of monochromatic H in Kt,t. Since each color is used at
least once, there are only the following two cases. Due to the arbitrariness of
colors, we can describe them using specific color names such as red and blue.
Next, we calculate the number of different P4 containing two or more edges
with the same color. The following counting bases are all based on Lemma 4.

Case 1 There are three red edges e1, e2 and e3. The remaining edges are not
red and the colors of any two remaining edges are not the same.

Assume that the edges e1, e2 and e3 form a red 3P2. In this subcase, there
are 6 different P4 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P3 ∪ P2. In this subcase,
there are 4 + 2(t− 1) = 2(t+ 1) different P4 containing two red edges.

Assume that the edges e1, e2 and e3 form a red K1,3. In this subcase, there
are 6(t− 1) different P4 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P4. In this subcase, there
are 2 + 2(t− 1) + 2(t− 2) = 4(t− 1) different P4 containing two or more red
edges.

Case 2 There are two red edges e1, e2 and two blue edges e3, e4. The remaining
edges are not red or blue and the colors of any two remaining edges are not
the same.

If e1 ≁ e2 and e3 ≁ e4, then there are 4 different P4 containing two edges
with the same color; if e1 ∼ e2 and e3 ≁ e4, then there are 2 + 2(t − 1) = 2t
different P4 containing two edges with the same color; if e1 ∼ e2 and e3 ∼ e4,
then there are 4(t− 1) different P4 containing two edges with the same color.

Let f1(t) = 6, f2(t) = 2(t+1), f3(t) = 6(t−1). Based on the data calculated
from the seven subcases above, we need to compare the sizes of f1(t), f2(t) and
f3(t).

For t ≥ 3, we have

max{f1(t), f2(t), f3(t)} = f3(t) = 6(t− 1).

The result thus follows.

4.2 Rainbow P5 and K1,3

Theorem 21 Let integer k ≥ 5. If H is a subgraph of K1,⌈ k−1
2 ⌉, then

bgrk(P5 : H) = bgrk(K1,3 : H) =
⌈√

k
⌉
.

Proof The lower bound follows from Lemma 6. For the upper bound, we con-
sider an arbitrary k-edge-coloring of KN,N (N ≥

⌈√
k
⌉
). Let (U, V ) be the
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bipartition of KN,N and suppose to the contrary that KN,N contains nei-
ther a rainbow subgraph P5 nor a monochromatic subgraph H. Noticing that⌈√

k
⌉
≤ k − 2 for k ≥ 5. If

⌈√
k
⌉
≤ N ≤ k − 2, then it follows from Proposi-

tion 5 that there is always a rainbow P5, and the result thus follows. Next we
assume N ≥ k − 1. It follows from Theorems 6 and 7 that either the Colored
Structure 4 or Colored Structure 5 occurs. If Colored Structure 4 occurs, then
U can be partitioned into two parts U1 and U2 with |U1| ≥ 1, |U2| ≥ 0, and
V can be partitioned into k parts V1, V2, . . . , Vk with |V1| ≥ 0 and |Vj | ≥ 1,
j ∈ {2, 3, . . . , k}. Since N ≥ k − 1, it follows from pigeonhole principle that
|U1| ≥

⌈
k−1
2

⌉
or |U2| ≥

⌈
k−1
2

⌉
. Without loss of generality, we assume that

|U1| ≥
⌈
k−1
2

⌉
. Noticing that |V2| ≥ 1 and all the edges between V2 and U1 have

color 2, there is a monochromatic H with color 2, a contradiction. If the Col-
ored Structure 5 occurs, then U can be partitioned into k parts U1, U2, . . . , Uk

with |U1| ≥ 0, |Uj | ≥ 1 and V can be partitioned into k parts V1, V2, . . . , Vk

with |V1| ≥ 0, |Vj | ≥ 1, j ∈ {2, 3, . . . , k}. Noticing that
⌈
k−1
2

⌉
< k − 2 for

k ≥ 5, |V2| ≥ 1 and all the edges between V2 and U3 ∪U4 ∪ . . .∪Uk have color
1, there is a monochromatic H with color 1, a contradiction. The result thus
follows.

It is easy to calculate that when t ≥ 3, there are t2(t− 1)2(t− 2) different
P5 and 2t

(
t
3

)
different K1,3 in Kt,t. Therefore, the following corollary can be

directly derived from Theorem 21.

Corollary 8 For integers k and t satisfying k = t2 ≥ 9, and a subgraph H of
K1,⌈ k−1

2 ⌉ with |E(H)| ≥ 2, we have

bi-GMk(G : H) =

{
t2(t− 1)2(t− 2), G = P5;
2t
(
t
3

)
, G = K1,3.

Theorem 22 For integers k and t satisfying k = t2 ≥ 9, and a subgraph H
of K1,⌈ k−2

2 ⌉ with |E(H)| ≥ 3, we have

bi-GMk−1(P5 : H) = t2(t− 1)2(t− 2)− 3(t− 1)(t− 2).

Proof It follows from Theorem 21 that bgrk−1(P5 : H) = t. Consider any
(k − 1)-edge-coloring of Kt,t. Since |E(Kt,t)| = t2 and each color is used at
least once, it follows that there are only two edges, say e1 and e2, with the
same color in Kt,t. Since |E(H)| ≥ 3, it follows that we do not need to consider
the number of monochromatic H in Kt,t. According to Corollary 8, there are
t2(t− 1)2(t− 2) different P5 in Kt,t, and we only need to find the number of
different P5 containing the edges e1 and e2. This is because only P5 containing
edges e1 and e2 are not rainbow, and all other P5 are rainbow. If e1 ≁ e2,
then according to Lemma 5 that there are 6(t − 2) different P5 in Kt,t that
contain edges e1 and e2. If e1 ∼ e2, then according to Lemma 5 that there are
3(t− 1)(t− 2) different P5 in Kt,t that contain edges e1 and e2. Noticing that
6(t− 2) ≤ 3(t− 1)(t− 2) for t ≥ 3, the result thus follows.
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Theorem 23 For integers k and t satisfying k = t2 ≥ 9, and a subgraph H
of K1,⌈ k−3

2 ⌉ with |E(H)| ≥ 4, we have

bi-GMk−2(P5 : H) = t2(t− 1)2(t− 2)− 9(t− 1)(t− 2).

Proof It follows from Theorem 21 that bgrk−2(P5 : H) = t. Consider (k − 2)-
edge-coloring of Kt,t. Since |E(H)| ≥ 4, it follows that we do not need to
consider the number of monochromatic H in Kt,t. Since each color is used at
least once, there are only the following two cases. Due to the arbitrariness of
colors, we can describe them using specific color names such as red and blue.
Next, we calculate the number of different P5 containing two or more edges
with the same color. The following counting bases are all based on Lemma 5.

Case 1 There are three red edges e1, e2 and e3. The remaining edges are not
red and the colors of any two remaining edges are not the same.

Assume that the edges e1, e2 and e3 form a red 3P2. In this subcase, there
are 18(t− 2) different P5 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P3∪P2. Let P3 = e1e2 and
P2 = e3. In this subcase, there are 3(t − 1)(t − 2) different P5 containing red
edges e1 and e2, 6(t− 2)− 2 different P5 only containing red edges e1 and e3,
and symmetrically 6(t − 2) − 2 different P5 only containing red edges e2 and
e3. So there are a total of 3(t− 1)(t− 2)+ 2(6(t− 2)− 2) = 3(t+3)(t− 2)− 4
different P5 containing two or more red edges.

Assume that the edges e1, e2 and e3 form a red K1,3. In this subcase, there
are 9(t− 1)(t− 2) different P5 containing two red edges.

Assume that the edges e1, e2 and e3 form a red P4. In this subcase, there
are 6(t − 2) different P5 containing red 2P2 and 2(3(t − 1)(t − 2) − 2(t −
2)) = 2(3t − 5)(t − 2) different P5 without red 2P2. So there are a total of
6(t − 2) + 2(3t − 5)(t − 2) = 2(3t − 2)(t − 2) different P5 containing two or
more red edges.

Case 2 There are two red edges e1, e2 and two blue edges e3, e4. The remaining
edges are not red or blue and the colors of any two remaining edges are not
the same.

If e1 ≁ e2 and e3 ≁ e4, then there are at most 12(t − 2) different P5

containing two edges with the same color; if e1 ∼ e2 and e3 ≁ e4, then there
are at most 6(t− 2) + 3(t− 1)(t− 2) = 3(t+ 1)(t− 2) different P5 containing
two edges with the same color; if e1 ∼ e2 and e3 ∼ e4, then there are at most
6(t− 1)(t− 2) different P5 containing two edges with the same color.

Let
f1(t) = 18(t− 2), f2(t) = 3(t+ 3)(t− 2)− 4,

f3(t) = 9(t− 1)(t− 2), f4(t) = 2(3t− 2)(t− 2), f5(t) = 3(t+ 1)(t− 2).

Based on the data calculated from the seven subcases above, we need to com-
pare the sizes of f1(t), f2(t), f3(t), f4(t) and f5(t).
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For 1 ≤ i ≤ 5, let fii(t) =
fi(t)
t−2 . Then

f11(t) = 18, f22(t) = 3(t+3)− 4

t− 2
, f33(t) = 9(t−1), f44(t) = 2(3t−2), f55 = 3(t+1).

For t ≥ 3, we have

max{f11(t), f22(t), f33(t), f44(t), f55(t)} = f33(t) = 9(t− 1),

and thus

max{f1(t), f2(t), f3(t), f4(t), f5(t)} = f3(t) = 9(t− 1)(t− 2).

The result thus follows.

Theorem 24 For integers k and t satisfying k = t2 ≥ 9, and a subgraph H
of K1,⌈ k−2

2 ⌉ with |E(H)| ≥ 3, we have

bi-GMk−1(K1,3 : H) =


5, t = 3;
30, t = 4;

(2t− 1)
(
t
3

)
+
(
t−2
3

)
+ 2

(
t−2
2

)
, t ≥ 5.

Proof It follows from Theorem 21 that bgrk−1(K1,3 : H) = t. Consider any
(k−1)-edge-coloring of Kt,t. Since |E(Kt,t)| = t2 and each color is used at least
once, it follows that there are only two edges, say e1 and e2, with the same
color in Kt,t. Since |E(H)| ≥ 3, it follows that we do not need to consider the
number of monochromatic H in Kt,t. Next, we calculate the number of rainbow
copies of K1,3 in Kt,t. If e1 ≁ e2, then this case is equivalent to Corollary 8.
Hence there are 2t

(
t
3

)
rainbow copies of K1,3 in Kt,t. If e1 ∼ e2, then e1 and

e2 form a monochromatic P3. Without loss of generality, we assume that the
edges e1 and e2 are red and vertex v is incident with the edges e1 and e2. We
first investigate the number of rainbow copies of K1,3 with center v for t ≥ 5.
Noticing that deg(v) = t, the number of rainbow copies of K1,3 with center
v and without red edges is

(
t−2
3

)
, and number of rainbow copies of K1,3 with

center v and with a red edge is 2
(
t−2
2

)
. In Kt,t, there are (2t− 1)

(
t
3

)
rainbow

copies of K1,3 with center in V (Kt,t) \ {v}. Therefore, the total number of
rainbow copies of K1,3 in Kt,t is (2t−1)

(
t
3

)
+
(
t−2
3

)
+2

(
t−2
2

)
. It is easy to verify

that when t ≥ 5,

min

{
2t

(
t

3

)
, (2t− 1)

(
t

3

)
+

(
t− 2

3

)
+ 2

(
t− 2

2

)}
= (2t−1)

(
t

3

)
+

(
t− 2

3

)
+2

(
t− 2

2

)
.

When t = 3, the number of rainbow copies of K1,3 with center v and
without red edges is 0, and number of rainbow copies of K1,3 with center v
and with a red edge is 0. In K3,3, there are 5

(
3
3

)
= 5 rainbow copies of K1,3

with center in V (K3,3) \ {v}, therefore bi-GM8(K1,3 : H) ≤ 5. Since 5 < 6
(
5
3

)
,

it follows that bi-GM8(K1,3 : H) = 5.
When t = 4, the number of rainbow copies of K1,3 with center v and

without red edges is 0, and number of rainbow copies of K1,3 with center v
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and with a red edge is 2. In K4,4, there are 7
(
4
3

)
= 28 rainbow copies of K1,3

with center in V (K4,4) \ {v}, and therefore bi-GM15(K1,3 : H) ≤ 30. Since
30 < 8

(
4
3

)
, it follows that bi-GM15(K1,3 : H) = 30.

Theorem 25 For integers k and t satisfying k = t2 ≥ 9, and a subgraph H
of K1,⌈ k−3

2 ⌉ with |E(H)| ≥ 4, we have

bi-GMk−2(K1,3 : H) =


4, t = 3;
28, t = 4;
93, t = 5;

(2t− 1)
(
t
3

)
+
(
t−3
3

)
+ 3

(
t−3
2

)
, t ≥ 6.

Proof It follows from Theorem 21 that bgrk−2(K1,3 : H) = t. Consider (k−2)-
edge-coloring of Kt,t. Since |E(H)| ≥ 4, it follows that we do not need to
consider the number of monochromatic H in Kt,t. Noticing that each color
needs to be used at least once. We first color any k−2 edges in Kt,t with k−2
colors, and the remaining two edges are temporarily not colored, denoted as
e1 and e2. Next, we discuss the edges e1 and e2 in two cases.

Case 1 The edges e1 and e2 have the same color.

Without loss of generality, we assume that these two edges are red. Ac-
cording to the structure of Kt,t, it is easy to calculate that if the red edges
form a 3P2, then there are

f1(t) = 2t

(
t

3

)
rainbow copies of K1,3 in Kt,t; if the red edges form a P3 ∪ P2, then there are

f2(t) = (2t− 1)

(
t

3

)
+

(
t− 2

3

)
+ 2

(
t− 2

2

)
rainbow copies of K1,3 in Kt,t; if the red edges form a P4, then there are

f3(t) = (2t− 2)

(
t

3

)
+ 2

(
t− 2

3

)
+ 4

(
t− 2

2

)
rainbow copies of K1,3 in Kt,t; if the red edges form a K1,3, then there are

f4(t) = (2t− 1)

(
t

3

)
+

(
t− 3

3

)
+ 3

(
t− 3

2

)
rainbow copies of K1,3 in Kt,t.

Case 2 The edges e1 and e2 have different colors.

When the edges e1 and e2 form a P3 in Kt,t, without loss of generality, we
assume that e1 is red and e2 is blue. Let V (P3) = {u, v, w} and vertex v be
incident with the edges e1 and e2. According to the structure of Kt,t, it is easy
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to calculate that if the other red edge is not incident with vertex u or v, and
the other blue edge is not incident with vertex v or w, then there are

f1(t) = 2t

(
t

3

)
rainbow copies of K1,3 in Kt,t; if the other red edge is incident with vertex u
or v, and the other blue edge is not incident with vertex v or w, then there are

f2(t) = (2t− 1)

(
t

3

)
+

(
t− 2

3

)
+ 2

(
t− 2

2

)
rainbow copies of K1,3 in Kt,t; if the other red edge is incident with vertex u,
and the other blue edge is incident with vertex w, then there are

f3(t) = (2t− 2)

(
t

3

)
+ 2

(
t− 2

3

)
+ 4

(
t− 2

2

)
rainbow copies of K1,3 in Kt,t; if the other red edge is incident with vertex v,
and the other blue edge is also incident with vertex v, then there are

f5(t) = (2t− 1)

(
t

3

)
+

(
t− 4

3

)
+ 4

(
t− 4

2

)
+ 4(t− 4)

rainbow copies of K1,3 in Kt,t.
When the edges e1 and e2 form a 2P2 in Kt,t, without loss of generality,

we assume that e1 is red and e2 is blue. According to the structure of Kt,t, it
is easy to calculate that if the other red edge is not adjacent to e1, and the
other blue edge is not adjacent to e2, then there are

f1(t) = 2t

(
t

3

)
rainbow copies of K1,3 in Kt,t; if the other red edge is adjacent to e1, and the
other blue edge is not adjacent to e2, then there are

f2(t) = (2t− 1)

(
t

3

)
+

(
t− 2

3

)
+ 2

(
t− 2

2

)
rainbow copies of K1,3 in Kt,t; if the other red edge is adjacent to e1, and the
other blue edge is adjacent to e2, then there are

f3(t) = (2t− 2)

(
t

3

)
+ 2

(
t− 2

3

)
+ 4

(
t− 2

2

)
rainbow copies of K1,3 in Kt,t.

Next, we compare the sizes of f1(t), f2(t), f3(t), f4(t) and f5(t). Based on
the practical significance of counting in this paper, we only define in the opera-
tions of expressions for t in f1(t), f2(t), f3(t), f4(t) and f5(t) that when integers
a < b, we have

(
a
b

)
≡ 0 and a− b ≡ 0.
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For t = 3, we have

f1(3) = 6, f2(3) = 5, f3(3) = 4, f4(3) = 5, f5(3) = 5.

Thus, min{f1(3), f2(3), f3(3), f4(3), f5(3)} = 4.
For t = 4, we have

f1(4) = 32, f2(4) = 30, f3(4) = 28, f4(4) = 28, f5(4) = 28.

Thus, min{f1(4), f2(4), f3(4), f4(4), f5(4)} = 28.
For t = 5, we have

f1(5) = 100, f2(5) = 97, f3(5) = 94, f4(5) = 93, f5(5) = 94.

Thus, min{f1(5), f2(5), f3(5), f4(5), f5(5)} = 93.
For t = 6, we have

f1(6) = 240, f2(6) = 236, f3(6) = 232, f4(6) = 230, f5(6) = 232.

Thus, min{f1(6), f2(6), f3(6), f4(6), f5(6)} = 230.
For t ≥ 7 and 1 ≤ i ≤ 5, let fii(t) = fi(t)− (2t−2)

(
t
3

)
− 1

3 t
3+ t2+ 1

3 t, then

f11(t) = t, f22(t) = 2, f33(t) = −t+ 4, f44(t) = −2t+ 8, f55(t) = −t+ 4.

Therefore, when t ≥ 7 we have

min{f11(t), f22(t), f33(t), f44(t), f55(t)} = f44(t) = −2t+ 8,

and thus

min{f1(t), f2(t), f3(t), f4(t), f5(t)} = f4(t) = (2t−1)

(
t

3

)
+

(
t− 3

3

)
+3

(
t− 3

2

)
.

Based on the above discussion, we have

min{f1(t), f2(t), f3(t), f4(t), f5(t)} =


(2t− 2)

(
t
3

)
, t = 3;

(2t− 1)
(
t
3

)
, t = 4;

(2t− 1)
(
t
3

)
+ 3

(
t−3
2

)
, t = 5;

(2t− 1)
(
t
3

)
+
(
t−3
3

)
+ 3

(
t−3
2

)
, t ≥ 6.

The result thus follows.
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