Gallai-Ramsey multiplicity for rainbow small trees

Xueliang Li • Yuan Si

Received: date / Accepted: date

Abstract

Let G, H be two non-empty graphs and k be a positive integer. The Gallai-Ramsey number $\operatorname{gr}_{k}(G: H)$ is defined as the minimum positive integer N such that for all $n \geq N$, every k-edge-coloring of K_{n} contains either a rainbow subgraph G or a monochromatic subgraph H. The GallaiRamsey multiplicity $\mathrm{GM}_{k}(G: H)$ is defined as the minimum total number of rainbow subgraphs G and monochromatic subgraphs H for all k-edge-colored $K_{\mathrm{gr}_{k}(G: H)}$. In this paper, we get some exact values of the Gallai-Ramsey multiplicity for rainbow small trees versus general monochromatic graphs under a sufficiently large number of colors. We also study the bipartite Gallai-Ramsey multiplicity.

Keywords Coloring • Ramsey theory • Gallai-Ramsey number • GallaiRamsey multiplicity

Mathematics Subject Classification (2020) 05C15 •05C30 • 05C55

1 Introduction

In this paper, the graphs we consider are finite, undirected, simple and without isolated vertices. Let $V(G)$ and $E(G)$ denote the vertex set and edge set of a graph G, respectively. An edge-coloring of G is a function $c: E(G) \rightarrow$ $\{1,2, \ldots, k\}$, where $\{1,2, \ldots, k\}$ is called the set of colors. We can also use red, blue or other specific names to represent these colors. An edge-colored

Supported by NSFC No. 12131013 and 12161141006.

[^0]graph is called rainbow if all its edges have distinct colors and monochromatic if all its edges have the same color. A k-edge-coloring of a graph is exact if all the k colors are used at least once. In this paper, we only consider exact edge-colorings of graphs.

The union $G \cup H$ of two graphs G and H is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. The degree, $\operatorname{deg}_{G}(v)$ or $\operatorname{deg}(v)$ for short, of a vertex v of G is the number of edges incident to v in G. We usually say that a vertex with degree 1 is a leaf vertex, and an edge incident to a leaf vertex is called a pendent edge. A path with n vertices from v_{1} to v_{n} is denoted as $P_{n}=v_{1} v_{2} \ldots v_{n}$ or $P_{n}=e_{1} e_{2} \ldots e_{n-1}$, which is a vertex-edge alternative sequence $v_{1}, e_{1}, v_{2}, e_{2}, \ldots, v_{n-1}, e_{n-1}, v_{n}$ such that $v_{1}, v_{2}, \ldots, v_{n}$ are distinct vertices, $e_{1}, e_{2}, \ldots, e_{n-1}$ are distinct edges and $v_{i} v_{i+1}=e_{i}$ for each $i \in\{1,2, \ldots, n-1\} . S_{3}^{+}$is a the graph consisting of a triangle with one pendent edge and P_{4}^{+}is a the graph consisting of P_{4} with one pendent edge incident with an inner vertex of $P_{4} . P_{4}^{+}$can also be seen as the graph by adding an extra pendent edge to a leaf vertex of $K_{1,3}$. For convenience, we call the newly added pendent edge at $K_{1,3}$ the tail edge of P_{4}^{+}.

The automorphism group of a graph G is denoted as $\operatorname{Aut}(G)$. For the automorphism groups of some special graphs, we have the following conclusions: $\operatorname{Aut}\left(K_{n}\right) \cong S_{n}, \operatorname{Aut}\left(K_{m, n}\right) \cong S_{m} \times S_{n}$ for $m \neq n$, and $\operatorname{Aut}\left(P_{n}\right) \cong S_{2}$, where S_{n} is the n-order symmetric group. For more notation and terminology not defined here, we refer to [2].

We also define some notations to replace some text descriptions in this paper. We use $e_{1} \sim e_{2}$ to denote two adjacent edges e_{1} and e_{2}; similarly, we use $e_{1} \nsim e_{2}$ to denote two non-adjacent edges e_{1} and e_{2}. Given a subgraph H of a graph G, we define $\operatorname{Num}_{G}(H)$ to be the number of different copies of H in G. Furthermore, if $e_{1}, e_{2}, \ldots, e_{i}$ are edges of graph G, we use $\operatorname{Num}_{G}\left(H \mid e_{1}, e_{2}, \ldots, e_{i}\right)$ to denote the number of different copies of H that contain edges $e_{1}, e_{2}, \ldots, e_{i}$ in G. For the balanced complete ($k-1$)-part graph $K_{\underbrace{2,2, \ldots, 2}_{k-1}}$, we re-write it as $K_{(k-1) \times 2}$.

1.1 Gallai-Ramsey number and multiplicity

In 1930, Ramsey problems were first studied by Ramsey in [24]. Given two graphs G and H, the Ramsey number $r(G, H)$ is defined as the minimum positive integer n such that every red/blue-edge-coloring of K_{n} contains either a red subgraph G or a blue subgraph H. If $G=H$, then we simply denote $r(G, H)$ as $r(G)$. More generally, the definition of Ramsey number has been extended to multicolor and hypergraphs, and there are currently many research results available. Determining the exact value of the Ramsey numbers or improving the known upper or lower bounds on the number has always been a hot research topic in graph theory. For more results on Ramsey numbers, we refer to [23].

In 2010, Faudree, Gould, Jacobson and Magnant in [4] provided a definition of a rainbow version of the Ramsey number, called the Gallai-Ramsey number.
Definition 1 [4] Given two non-empty graphs G, H and a positive integer k, define the Gallai-Ramsey number $\operatorname{gr}_{k}(G: H)$ to be the minimum integer N such that for all $n \geq N$, every k-edge-coloring of K_{n} contains either a rainbow subgraph G or a monochromatic subgraph H.

Considering the Gallai-Ramsey number on k-edge-colored balanced complete bipartite graph $K_{n, n}$ is another research direction. In 2019, Li, Wang and Liu in [17] gave the definition of bipartite Gallai-Ramsey number.
Definition 2 [17] Given two non-empty bipartite graphs G, H and a positive integer k, define the bipartite Gallai-Ramsey number $\operatorname{bgr}_{k}(G: H)$ to be the minimum integer N such that for all $n \geq N$, every k-edge-coloring of $K_{n, n}$ contains either a rainbow subgraph G or a monochromatic subgraph H.

In the past decade, there has been a wealth of research on the GallaiRamsey numbers. In terms of current research progress, six types of rainbow graphs have been studied, which are $K_{3}, S_{3}^{+}, K_{1,3}, P_{4}, P_{5}$ and P_{4}^{+}. An edgecoloring of a complete graph without rainbow triangles is called a Gallai coloring. As early as 2010, Gyárfás, Sárközy, Sebő and Selkow studied the Ramsey problem of complete graphs under Gallai coloring in [10], although they did not use the definition of Gallai-Ramsey formally. The Gallai-Ramsey number involving rainbow triangle has received widespread attention. One of the most important conjectures was proposed by Fox, Grinshpun and Pach in their 2015 paper [6].
Conjecture 1 [6] For integers $k \geq 1$ and $n \geq 3$,

$$
\operatorname{gr}_{k}\left(K_{3}: K_{n}\right)=\left\{\begin{array}{lr}
\left(r\left(K_{n}\right)-1\right)^{k / 2}+1, & \text { if } k \text { is even }, \\
(n-1)\left(r\left(K_{n}\right)-1\right)^{(k-1) / 2}+1, & \text { if } k \text { is odd }
\end{array}\right.
$$

Conjecture 1 has been solved in some special cases. When $n=3$, Gyárfás, Sárközy, Sebő and Selkow gave a simple proof in [10]. In [18], Liu, Magnant, Saito, Schiermeyer and Shi solved the conjecture when $n=4$. In [20], Magnant and Schiermeyer studied the case of $n=5$ and concluded that only one of the conjectures of Conjecture 1 and $r\left(K_{5}\right)=43$ [22] could be true, while the other was false. In [13], Li, Broersma and Wang studied other extremal problems related to Gallai coloring.

For the research on Gallai-Ramsey number involving rainbow S_{3}^{+}, we refer to $[7,14,16]$. For rainbow subgraphs $K_{1,3}$ and P_{4}^{+}, we refer to $[1,3]$, and for rainbow subgraphs P_{4} and P_{5}, we refer to $[11,17,27,28]$. For more results about Gallai-Ramsey numbers, we refer to the monograph [19] and the survey paper [8].

Recently, a counting problem related to the Gallai-Ramsey number has been studied. Li, Broersma and Wang in [12] studied the minimum number of subgraphs H in all k-edge-colored complete graphs without rainbow triangles (also known as Gallai coloring). Later, Mao in [21] proposed the definition of Gallai-Ramsey multiplicity.

Definition 3 [21] Given two non-empty graphs G, H and a positive integer k, define the Gallai-Ramsey multiplicity $\operatorname{GM}_{k}(G: H)$ to be the minimum total number of rainbow subgraphs G and monochromatic subgraphs H for all k-edge-colored $K_{\operatorname{gr}_{k}(G: H)}$.

Based on the definitions of bipartite Gallai-Ramsey number and GallaiRamsey multiplicity, we give the definition of bipartite Gallai Ramsey multiplicity.

Definition 4 Given two non-empty bipartite graphs G, H and a positive integer k, define the bipartite Gallai-Ramsey multiplicity bi- $\mathrm{GM}_{k}(G: H)$ to be the minimum total number of rainbow subgraphs G and monochromatic subgraphs H for all k-edge-colored $K_{\operatorname{bgr}_{k}(G: H), \operatorname{bgr}_{k}(G: H)}$.
1.2 Structural theorems under rainbow-tree-free colorings

The five k-edge-colored structures of complete graphs or complete bipartite graphs given below is for convenience of describing several structural theorems. Colored Structure 1: Let $\left(V_{1}, V_{2}, \ldots, V_{k}\right)$ be a partition of $V\left(K_{n}\right)$ such that for each i, all the edges connecting two vertices in V_{i} are colored by either 1 or i and all the edges between V_{i} and V_{j} with $i \neq j$ are colored by 1.
Colored Structure 2: Let K_{n} be a k-edge-colored complete graph such that $K_{n}-v$ is monochromatic for some vertex v.
Colored Structure 3: Let (U, V) be the bipartition of complete bipartite graph $K_{n, n} . U$ can be partitioned into k non-empty parts $U_{1}, U_{2}, \ldots, U_{k}$ such that all the edges between U_{i} and V have color i for $i \in\{1,2, \ldots, k\}$.
Colored Structure 4: Let (U, V) be the bipartition of complete bipartite graph $K_{n, n}$. U can be partitioned into two parts U_{1} and U_{2} with $\left|U_{1}\right| \geq$ $1,\left|U_{2}\right| \geq 0$, and V can be partitioned into k parts $V_{1}, V_{2}, \ldots, V_{k}$ with $\left|V_{1}\right| \geq 0$ and $\left|V_{j}\right| \geq 1, j \in\{2,3, \ldots, k\}$, such that all the edges between V_{i} and U_{1} have color i and all the edges between V_{i} and U_{2} have color 1 for $i \in\{1,2, \ldots, k\}$.
Colored Structure 5: Let (U, V) be the bipartition of complete bipartite graph $K_{n, n}$. U can be partitioned into k parts $U_{1}, U_{2}, \ldots, U_{k}$ with $\left|U_{1}\right| \geq$ $0,\left|U_{j}\right| \geq 1$ and V can be partitioned into k parts $V_{1}, V_{2}, \ldots, V_{k}$ with $\left|V_{1}\right| \geq$ $0,\left|V_{j}\right| \geq 1, j \in\{2,3, \ldots, k\}$, such that only colors 1 and i can be used on the edges between U_{i} and V_{i} for $i \in\{1,2, \ldots, k\}$, and all the other edges have color 1.

Thomason and Wagner in [26] obtained the following results.
Theorem 1 [26] For an integer $n \geq 4$, let K_{n} be an edge-colored complete graph with at least three colors so that it contains no rainbow P_{4} if and only if $n=4$ and three colors are used, each color forming a perfect matching.

Theorem 2 [26] For integers $k \geq 5$ and $n \geq 5$, let K_{n} be a k-edge-colored complete graph so that it contains no rainbow P_{5} if and only if Colored Structure 1 or Colored Structure 2 occurs.

Bass, Magnant, Ozeki and Pyron in [1] obtained the following results. The study of this structural theorem can be traced back to the study of local k-coloring Ramsey numbers by Gyárfás, Lehel, Schelp and Tuza in [9].

Theorem 3 [1,9] For integers $k \geq 4$ and $n \geq 4$, let K_{n} be a k-edge-colored complete graph so that it contains no rainbow $K_{1,3}$ if and only if Colored Structure 1 occurs.

Bass, Magnant, Ozeki and Pyron in [1] described the colored structure of complete graphs without rainbow P_{4}^{+}. Also, Schlage-Puchta and Wagner proved this structural theorem in [25].

Theorem 4 [1,25] For integers $k \geq 5$ and $n \geq 5$, let K_{n} be a k-edge-colored complete graph so that it contains no rainbow P_{4}^{+}if and only if Colored Structure 1 occurs.

In terms of edge-colorings of complete bipartite graphs, Li, Wang and Liu in [17] first obtained the following results.

Theorem 5 [17] Let (U, V) be the bipartition of a complete bipartite graph. For integers $k \geq 3$ and $n \geq 2$, let $K_{n, n}$ be a k-edge-colored complete bipartite graph so that it contains no rainbow P_{4} if and only if Colored Structure 3 occurs.

Theorem 6 [17] Let (U, V) be the bipartition of a complete bipartite graph. For integers $k \geq 5$ and $n \geq 3$, let $K_{n, n}$ be a k-edge-colored complete bipartite graph so that it contains no rainbow P_{5} if and only if Colored Structure 4 or Colored Structure 5 occurs.

Li and Wang in [15] first described the colored structure of complete bipartite graphs without rainbow $K_{1,3}$. Recently, Chen, Ji, Mao and Wei in [3] repeoved this structural theorem on balanced complete bipartite graphs.

Theorem 7 [3,15] Let (U, V) be the bipartition of a complete bipartite graph. For integers $k \geq 5$ and $n \geq 3$, let $K_{n, n}$ be a k-edge-colored complete bipartite graph so that it contains no rainbow $K_{1,3}$ if and only if Colored Structure 5 occurs.

It should be noted that the structural theorems cited above are only a part of what is needed in this paper. For a complete survey of the structural theorems, we refer to the original references.

1.3 Main results

Due to the fact that the research in this paper is based on the exact k-edgecolorings, it is natural to require that the number of edges in the graph is at least the number of colors that we consider. From the above structural theorems, it can be seen that if there are no rainbow subgraphs $G \in$
$\left\{P_{4}, P_{5}, K_{1,3}, P_{4}^{+}\right\}$for k-edge-colored complete graphs or complete bipartite graphs, then there must be some monochromatic graphs under this colored structure. For example, a k-edge-colored complete graph without rainbow $K_{1,3}$ must contain a monochromatic $K_{(k-1) \times 2}$; a k-edge-colored balanced complete bipartite graph without rainbow P_{4} must contain a monochromatic $K_{1, k}$; a k-edge-colored balanced complete bipartite graph without rainbow P_{5} or $K_{1,3}$ must contain a monochromatic $K_{1,\left\lceil\frac{k-1}{2}\right\rceil}$. Based on these properties, we know that when the number of colors k is sufficiently large with respect to the subgraph H, the Gallai-Ramsey number $\operatorname{gr}_{k}(G: H)$ (also bipartite Gallai-Ramsey number $\left.\operatorname{bgr}_{k}(G: H)\right)$ does not depend on the subgraph H, but only on k.

In the third section of this paper, we give some exact values of the GallaiRamsey number and multiplicity when the number of colors $k=\binom{t}{2}$ is sufficiently large with respect to the subgraph H. The main results for the GallaiRamsey multiplicity are shown in the Table 1.

Table 1 Main results for Gallai-Ramsey multiplicity. The graph H is a subgraph of some graphs related to k, see Theorems $9,10,11,12,13,14,16$ and 17 for details.

	$\mathrm{GM}_{k-1}(G: H)$	$\mathrm{GM}_{k-2}(G: H)$
$G=K_{1,3}$	$\begin{gathered} 3(t=4) \\ 18(t=5) \\ (t-1)\binom{t-1}{3}+\binom{t-3}{3}+2\binom{t-3}{2}(t \geq 6) \end{gathered}$	$\begin{gathered} 1(t=4) \\ 14(t=5) \\ (t-3)\binom{t-1}{3}+3\binom{t-3}{3}+6\binom{t-3}{2}(t \geq 6) \end{gathered}$
$G=P_{4}^{+}$	$60\binom{t}{5}-5(t-3)(t-4)(t \geq 5)$	$60\binom{t}{5}-15(t-3)(t-4)(t \geq 5)$
$G=P_{4}$	$\begin{gathered} 8(t=4) \\ 12\binom{t}{4}-2(t-3)(t \geq 5) \end{gathered}$	$\begin{gathered} 4(t=4) \\ 12\binom{t}{4}-6(t-3)(t \geq 5) \end{gathered}$
$G=P_{5}$	$\begin{gathered} 60\binom{t}{5}-12(t-4)(5 \leq t \leq 6) \\ 60\binom{t}{5}-3(t-3)(t-4)(t \geq 7) \end{gathered}$	$\begin{gathered} 38(t=5) \\ 288(t=6) \\ 60\binom{t}{5}-9(t-3)(t-4)(t \geq 7) \end{gathered}$

In the fourth section of this paper, similarly, we give some exact values of the bipartite Gallai-Ramsey number and multiplicity when the number of colors $k=t^{2}$ is sufficiently large with respect to the subgraph H. The main results for the bipartite Gallai-Ramsey multiplicity are shown in the Table 2.

2 Preliminaries

Some propositions and lemmas presented in section are very helpful for the proof in the third and fourth sections of this paper. In 2008, Fox in [5] provided a result on the total number of different subgraphs G in K_{n}.
Proposition 1 [5] If G is a subgraph of K_{n}, then $\operatorname{Num}_{K_{n}}(G)=\frac{|V(G)|!\left(\begin{array}{c}n \\ n \\ \hline\end{array}\right)}{|\operatorname{Aut}(G)|}$.
Li, Wang and Liu in [17] determined the sharp bound of k such that any k-edge-colored K_{n} always has a rainbow subgraph P_{5}. Bass, Magnant, Ozeki

Table 2 Main results for bipartite Gallai-Ramsey multiplicity. The graph H is a subgraph of some graphs related to k, see Theorems 19, 20, 22, 23, 24 and 25 for details.

	$\mathrm{bi}^{2} \mathrm{GM}_{k-1}(G: H)$	$\mathrm{bi}^{2} \mathrm{GM}_{k-2}(G: H)$
	$5(t=3)$	$4(t=3)$
$G=K_{1,3}$	$30(t=4)$	$28(t=4)$
	$(2 t-1)\binom{t}{3}+\binom{t-2}{3}+2\binom{t-2}{2}(t \geq 5)$	$93(t=5)$
$G=P_{4}$	$t^{2}(t-1)^{2}-2(t-1)(t \geq 2)$	$(2 t-1)\binom{t}{3}+\binom{t-3}{3}+3\binom{t-3}{2}(t \geq 6)$
$G=P_{5}$	$t^{2}(t-1)^{2}(t-2)-3(t-1)(t-2)(t \geq 3)$	$t^{2}(t-1)^{2}(t-2)-9(t-1)(t-2)(t \geq 3)$

and Pyron in [1] obtained the sharp bound of k such that any k-edge-colored K_{n} always has a rainbow subgraph $K_{1,3}$ by studying anti-Ramsey numbers.

Proposition 2 [17] For integers $n \geq 5$ and k with $n+1 \leq k \leq\binom{ n}{2}$, there is always a rainbow subgraph P_{5} under any k-edge-colored K_{n}.

Proposition 3 [1] For integers $n \geq 4$ and k with $\left\lceil\frac{n+3}{2}\right\rceil \leq k \leq\binom{ n}{2}$, there is always a rainbow subgraph $K_{1,3}$ under any k-edge-colored K_{n}.

Also, Li, Wang and Liu in [17] determined the sharp bound of k such that any k-edge-coloring of $K_{n, n}$ always has a rainbow subgraph P_{4} or P_{5}.
Proposition 4 [17] For integers $n \geq 2$ and k with $n+1 \leq k \leq n^{2}$, there is always a rainbow subgraph P_{4} under any k-edge-colored $K_{n, n}$.

Proposition 5 [17] For integers $n \geq 3$ and k with $n+2 \leq k \leq n^{2}$, there is always a rainbow subgraph P_{5} under any k-edge-colored $K_{n, n}$.

Similarly, we can directly obtain the following result through Theorem 7.
Proposition 6 For integers $n \geq 3$ and k with $n+2 \leq k \leq n^{2}$, there is always a rainbow subgraph $K_{1,3}$ under any k-edge-colored $K_{n, n}$.

The following lemmas are very useful in the proofs of the third section.
Lemma 1 Let $t \geq 4$ be an integer and e_{1}, e_{2} be two edges in K_{t}. Then

$$
\operatorname{Num}_{K_{t}}\left(P_{4} \mid e_{1}, e_{2}\right)= \begin{cases}4, & \text { if } e_{1} \nsim e_{2} \\ 2(t-3), & \text { if } e_{1} \sim e_{2}\end{cases}
$$

Proof Assume that $e_{1} \nsim e_{2}$, and let $e_{1}=v_{1} v_{2}, e_{2}=v_{3} v_{4}$. Since P_{4} is a connected graph, there is an edge that connects e_{1} and e_{2}. In this case, there are four different P_{4}, which are $v_{1} v_{2} v_{3} v_{4}, v_{1} v_{2} v_{4} v_{3}, v_{2} v_{1} v_{3} v_{4}$ and $v_{2} v_{1} v_{4} v_{3}$.

Assume that $e_{1} \sim e_{2}$. From the structure of P_{4}, it can be seen that e_{1} and e_{2} cannot be both pendent edges of P_{4}, and one of e_{1} and e_{2} must be the pendent edge of P_{4}. If e_{1} is the pendent edge of P_{4}, then there are $t-3$ different P_{4}. By symmetry, if e_{2} is the pendent edge of P_{4}, then there are $t-3$ different P_{4}. Therefore, in this case, there are $2(t-3)$ different P_{4}.

Lemma 2 Let $t \geq 5$ be an integer and e_{1}, e_{2} be two edges in K_{t}. Then

$$
\operatorname{Num}_{K_{t}}\left(P_{5} \mid e_{1}, e_{2}\right)= \begin{cases}12(t-4), & \text { if } e_{1} \nsim e_{2} \\ 3(t-3)(t-4), & \text { if } e_{1} \sim e_{2}\end{cases}
$$

Proof Assume that $e_{1} \nsim e_{2}$. From the structure of P_{5}, it can be seen that one of e_{1} and e_{2} must be the pendent edge of P_{5}. If e_{1} is the pendent edge of P_{5} but e_{2} is not the pendent edge of P_{5}, then there are $4(t-4)$ different P_{5}. By symmetry, if e_{2} is the pendent edge of P_{5} but e_{1} is not the pendent edge of P_{5}, then there are $4(t-4)$ different P_{5}. If the e_{1} and e_{2} are both pendent edges of P_{5}, then there are $4(t-4)$ different P_{5}. Therefore, in this case, there are $12(t-4)$ different P_{5}.

Assume that $e_{1} \sim e_{2}$. From the structure of P_{5}, it can be seen that e_{1} and e_{2} cannot be both pendent edges of P_{5}. If e_{1} is the pendent edge of P_{5} but e_{2} is not the pendent edge of P_{5}, then there are $(t-3)(t-4)$ different P_{5}. By symmetry, if e_{2} is the pendent edge of P_{5} but e_{1} is not the pendent edge of P_{5}, then there are $(t-3)(t-4)$ different P_{5}. If neither e_{1} nor e_{2} are the pendent edges of P_{5}, then there are $(t-3)(t-4)$ different P_{5}. Therefore, in this case, there are $3(t-3)(t-4)$ different P_{5}.

Lemma 3 Let $t \geq 5$ be an integer and e_{1}, e_{2} be two edges in K_{t}. Then

$$
\operatorname{Num}_{K_{t}}\left(P_{4}^{+} \mid e_{1}, e_{2}\right)= \begin{cases}8(t-4), & \text { if } e_{1} \nsim e_{2} \\ 5(t-3)(t-4), & \text { if } e_{1} \sim e_{2}\end{cases}
$$

Proof Assume that $e_{1} \nsim e_{2}$, and let $e_{1}=v_{1} v_{2}, e_{2}=v_{3} v_{4}$. Consider P_{4}^{+}with edges e_{1} and e_{2}. From the proof of Lemma 1, we know that there are four different P_{4}, which are $v_{1} v_{2} v_{3} v_{4}, v_{1} v_{2} v_{4} v_{3}, v_{2} v_{1} v_{3} v_{4}$ and $v_{2} v_{1} v_{4} v_{3}$. Since P_{4}^{+}is a graph by adding an extra pendent edge to an inner vertex of P_{4}, it follows that there are $4 \cdot 2(t-4)=8(t-4)$ different P_{4}^{+}.

Assume that $e_{1} \sim e_{2}$. If e_{1} is the tail edge of P_{4}^{+}, then there are $(t-$ $3)(t-4)$ different P_{4}^{+}. By symmetry, if e_{2} is the tail edge of P_{4}^{+}, then there are $(t-3)(t-4)$ different P_{4}^{+}. If neither e_{1} nor e_{2} are the tail edges of P_{4}^{+}, then there are $3(t-3)(t-4)$ different P_{4}^{+}. Therefore, in this case, there are $5(t-3)(t-4)$ different P_{4}^{+}.

Also, the following lemmas are very useful in the proofs of the fourth section.

Lemma 4 Let $t \geq 3$ be an integer and e_{1}, e_{2} be two edges in $K_{t, t}$. Then

$$
\operatorname{Num}_{K_{t, t}}\left(P_{4} \mid e_{1}, e_{2}\right)= \begin{cases}2, & \text { if } e_{1} \nsim e_{2} \\ 2(t-1), & \text { if } e_{1} \sim e_{2}\end{cases}
$$

Proof Assume that $e_{1} \nsim e_{2}$. Let (X, Y) be the bipartition of $K_{t, t}, e_{1}=v_{1} v_{2}$, $e_{2}=v_{3} v_{4}$ and $v_{1}, v_{3} \in X, v_{2}, v_{4} \in Y$. Since P_{4} is a connected graph, there is an edge that connects e_{1} and e_{2}. In this case, there are two different P_{4}, which are $v_{1} v_{2} v_{3} v_{4}$ and $v_{2} v_{1} v_{4} v_{3}$.

Assume that $e_{1} \sim e_{2}$. From the structure of P_{4}, it can be seen that e_{1} and e_{2} cannot be both pendent edges of P_{4}, and one of e_{1} and e_{2} must be the pendent edge of P_{4}. If e_{1} is the pendent edge of P_{4}, then there are $t-1$ different P_{4}. By symmetry, if e_{2} is the pendent edge of P_{4}, then there are $t-1$ different P_{4}. Therefore, in this case, there are $2(t-1)$ different P_{4}.

Lemma 5 Let $t \geq 3$ be an integer and e_{1}, e_{2} be two edges in $K_{t, t}$. Then

$$
\operatorname{Num}_{K_{t, t}}\left(P_{5} \mid e_{1}, e_{2}\right)= \begin{cases}6(t-2), & \text { if } e_{1} \nsim e_{2} ; \\ 3(t-1)(t-2), & \text { if } e_{1} \sim e_{2} .\end{cases}
$$

Proof Assume that $e_{1} \nsim e_{2}$. From the structure of P_{5}, it can be seen that one of e_{1} and e_{2} must be the pendent edge of P_{5}. If e_{1} is the pendent edge of P_{5} but e_{2} is not the pendent edge of P_{5}, then there are $2(t-2)$ different P_{5}. By symmetry, if e_{2} is the pendent edge of P_{5} but e_{1} is not the pendent edge of P_{5}, then there are $2(t-2)$ different P_{5}. If e_{1} and e_{2} are both pendent edges of P_{5}, then there are $2(t-2)$ different P_{5}. Therefore, in this case, there are $6(t-2)$ different P_{5}.

Assume that $e_{1} \sim e_{2}$. From the structure of P_{5}, it can be seen that e_{1} and e_{2} cannot be both pendent edges of P_{5}. If e_{1} is the pendent edge of P_{5} but e_{2} is not the pendent edge of P_{5}, then there are $(t-1)(t-2)$ different P_{5}. By symmetry, if e_{2} is the pendent edge of P_{5} but e_{1} is not the pendent edge of P_{5}, then there are $(t-1)(t-2)$ different P_{5}. If neither e_{1} nor e_{2} are the pendent edges of P_{5}, then there are $(t-1)(t-2)$ different P_{5}. Therefore, in this case, there are $3(t-1)(t-2)$ different P_{5}.

Recall that the k-edge-colorings studied in this paper are exact, meaning that each color is used at least once. Based on this, a basic principle is that the number of colors does not exceed the total number of edges in an edge-colored graph. So by solving the equations

$$
k \leq\binom{ n}{2}=\left|E\left(K_{n}\right)\right| \text { and } k \leq n^{2}=\left|E\left(K_{n, n}\right)\right|
$$

we obtain $n \geq \frac{1+\sqrt{1+8 k}}{2}$ and $n \geq \sqrt{k}$, respectively. Therefore, we directly get the following basic lower bound lemma.
Lemma 6 For integer $k \geq 4, G \in\left\{P_{4}, K_{1,3}\right\}$ and any graph H, we have

$$
\operatorname{gr}_{k}(G: H) \geq\left\lceil\frac{1+\sqrt{1+8 k}}{2}\right\rceil
$$

For integer $k \geq 5, G \in\left\{P_{4}, P_{5}, K_{1,3}\right\}$ and any bipartite graph H, we have

$$
\operatorname{bgr}_{k}(G: H) \geq\lceil\sqrt{k}\rceil
$$

in particular, this lower bound also holds when $3 \leq k \leq 4$ and $G=P_{4}$.
It is worth noting that the idea of Lemma 6 originated from the paper of Zou, Wang, Lai and Mao in [28].

3 Results for Gallai-Ramsey multiplicity

We consider four kinds of rainbow graphs $K_{1,3}, P_{4}^{+}, P_{4}, P_{5}$, respectively, in the following four subsections.

3.1 Rainbow $K_{1,3}$

Theorem 8 Let integer $k \geq 4$. If H is a subgraph of the balanced complete $(k-1)$-partite graph $K_{(k-1) \times 2}$. Then

$$
\operatorname{gr}_{k}\left(K_{1,3}: H\right)=\left\lceil\frac{1+\sqrt{1+8 k}}{2}\right\rceil
$$

Proof The lower bound follows from Lemma 6. Let $N_{k}=\left\lceil\frac{1+\sqrt{1+8 k}}{2}\right\rceil$. For the upper bound, we consider an arbitrary k-edge-coloring of $K_{N}\left(N \geq N_{k}\right)$. Noticing that $N_{k}<2 k-2$ for $k \geq 4$. If $N_{k} \leq N \leq 2 k-3$, then it follows from Proposition 3 that there is always a rainbow $K_{1,3}$, the result thus follows. Next we assume $N \geq 2 k-2$. Suppose to the contrary that K_{N} contains neither a rainbow subgraph $K_{1,3}$ nor a monochromatic subgraph H. It follows from Theorem 3 that the Colored Structure 1 occurs. From exact k-edge-coloring, we have $\left|V_{i}\right| \geq 2$ for each $i \in\{2,3, \ldots, k\}$. Since H is a subgraph of the balanced complete $(k-1)$-partite graph $K_{(k-1) \times 2}$, it follows that there is a monochromatic H, a contradiction. The result thus follows.

According to Theorem 8 and Proposition 1, the following corollary can be directly deduced.

Corollary 1 For integers k and t satisfying $k=\binom{t}{2} \geq 6$, and a subgraph H of the balanced complete $(k-1)$-partite graph $K_{(k-1) \times 2}$ with $|E(H)| \geq 2$, we have

$$
\operatorname{GM}_{k}\left(K_{1,3}: H\right)=\frac{4!\binom{t}{4}}{\left|\operatorname{Aut}\left(K_{1,3}\right)\right|}=t\binom{t-1}{3}
$$

Theorem 9 For integers k and t satisfying $k=\binom{t}{2} \geq 6$, and a subgraph H of the balanced complete $(k-2)$-partite graph $K_{(k-2) \times 2}$ with $|E(H)| \geq 3$, we have

$$
\mathrm{GM}_{k-1}\left(K_{1,3}: H\right)= \begin{cases}3, & t=4 \\ 18, & t=5 \\ (t-1)\binom{t-1}{3}+\binom{t-3}{3}+2\binom{t-3}{2}, & t \geq 6\end{cases}
$$

Proof It follows from Theorem 8 that $\operatorname{gr}_{k-1}\left(K_{1,3}: H\right)=t$. Consider any $(k-1)$-edge-coloring of K_{t}. Since $\left|E\left(K_{t}\right)\right|=\binom{t}{2}$ and each color is used at least once, it follows that there are only two edges with the same color in K_{t}. Without loss of generality, we assume that there are two red edges e_{1} and e_{2}. Since $|E(H)| \geq 3$, it follows that we do not need to consider the number of
monochromatic H in K_{t}. If $e_{1} \nsim e_{2}$, then this case is equivalent to Corollary 1. Therefore,

$$
\operatorname{GM}_{k-1}\left(K_{1,3}: H\right) \leq t\binom{t-1}{3}
$$

If $e_{1} \sim e_{2}$, then e_{1} and e_{2} form a red P_{3}. Let vertex v be incident to the edges e_{1} and e_{2}. We first investigate the number of rainbow copies of $K_{1,3}$ with center v for $t \geq 6$. Noticing that $\operatorname{deg}(v)=t-1$, the number of rainbow copies of $K_{1,3}$ with center v and without red edges is $\binom{t-3}{3}$, and number of rainbow copies of $K_{1,3}$ with center v and with a red edge is $2\binom{t-3}{2}$. In K_{t}, there are $(t-1)\binom{t-1}{3}$ rainbow copies of $K_{1,3}$ with center in $V\left(K_{t}\right) \backslash\{v\}$. Therefore,

$$
\operatorname{GM}_{k-1}\left(K_{1,3}: H\right) \leq(t-1)\binom{t-1}{3}+\binom{t-3}{3}+2\binom{t-3}{2}
$$

It is easy to verify that when $t \geq 6$,
$\min \left\{t\binom{t-1}{3},(t-1)\binom{t-1}{3}+\binom{t-3}{3}+2\binom{t-3}{2}\right\}=(t-1)\binom{t-1}{3}+\binom{t-3}{3}+2\binom{t-3}{2}$.
When $t=4$, there is no rainbow $K_{1,3}$ with center v. In K_{4}, each other vertex has one rainbow $K_{1,3}$. So there are three rainbow copies of $K_{1,3}$ in K_{4}. Since $3<4\binom{4-1}{3}$, it follows that $\operatorname{GM}_{5}\left(K_{1,3}: H\right)=3$.

When $t=5$, the number of rainbow copies of $K_{1,3}$ with center v and without red edges is 0 , and number of rainbow copies of $K_{1,3}$ with center v and with a red edge is 2 . In K_{5}, there are $4\binom{4}{3}=16$ rainbow copies of $K_{1,3}$ with center in $V\left(K_{5}\right) \backslash\{v\}$. Therefore, $\mathrm{GM}_{9}\left(K_{1,3}: H\right) \leq 18$. Since $18<5\binom{5-1}{3}$. It follows that $\mathrm{GM}_{9}\left(K_{1,3}: H\right)=18$.

Theorem 10 For integers k and t satisfying $k=\binom{t}{2} \geq 6$, and a subgraph H of the balanced complete $(k-3)$-partite graph $K_{(k-3) \times 2}$ with $|E(H)| \geq 4$, we have

$$
\operatorname{GM}_{k-2}\left(K_{1,3}: H\right)=\left\{\begin{array}{lr}
1, & t=4 \\
14, & t=5 \\
(t-3)\binom{t-1}{3}+3\binom{t-3}{3}+6\binom{t-3}{2}, & t \geq 6
\end{array}\right.
$$

Proof It follows from Theorem 8 that $\mathrm{gr}_{k-2}\left(K_{1,3}: H\right)=t$. Consider a $(k-2)$ -edge-coloring of K_{t}. Since $|E(H)| \geq 4$, it follows that we do not need to consider the number of monochromatic H in K_{t}. Noticing that each color needs to be used at least once. We first color any $k-2$ edges in K_{t} with $k-2$ colors, and the remaining two edges are temporarily not colored, denoted as e_{1} and e_{2}. Next, we discuss the edges e_{1} and e_{2} in two cases.
Case 1 The edges e_{1} and e_{2} have the same color.
Without loss of generality, we assume that these two edges are red. According to the structure of K_{t}, it is easy to calculate that if the red edges form a $3 P_{2}$, then there are

$$
f_{1}(t)=t\binom{t-1}{3}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the red edges form a $P_{3} \cup P_{2}$, then there are

$$
f_{2}(t)=(t-1)\binom{t-1}{3}+\binom{t-3}{3}+2\binom{t-3}{2}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the red edges form a P_{4}, then there are

$$
f_{3}(t)=(t-2)\binom{t-1}{3}+2\binom{t-3}{3}+4\binom{t-3}{2}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the red edges form a K_{3}, then there are

$$
f_{4}(t)=(t-3)\binom{t-1}{3}+3\binom{t-3}{3}+6\binom{t-3}{2}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the red edges form a $K_{1,3}$, then there are

$$
f_{5}(t)=(t-1)\binom{t-1}{3}+\binom{t-4}{3}+3\binom{t-4}{2}
$$

rainbow copies of $K_{1,3}$ in K_{t}.
Case 2 The edges e_{1} and e_{2} have different colors.
When the edges e_{1} and e_{2} form a P_{3} in K_{t}, without loss of generality, we assume that e_{1} is red and e_{2} is blue. Let $V\left(P_{3}\right)=\{u, v, w\}$ and vertex v is incident to edges e_{1} and e_{2}. According to the structure of K_{t}, it is easy to calculate that if the other red edge is not incident to vertex u or v, and the other blue edge is not incident to vertex v or w, then there are

$$
f_{1}(t)=t\binom{t-1}{3}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the other red edge is incident to vertex u or v, and the other blue edge is not incident to vertex v or w, then there are

$$
f_{2}(t)=(t-1)\binom{t-1}{3}+\binom{t-3}{3}+2\binom{t-3}{2}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the other red edge is incident to vertex u, and the other blue edge is incident to vertex w, then there are

$$
f_{3}(t)=(t-2)\binom{t-1}{3}+2\binom{t-3}{3}+4\binom{t-3}{2}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the other red edge is incident to vertex v, and the other blue edge is also incident to vertex v, then there are

$$
f_{6}(t)=(t-1)\binom{t-1}{3}+\binom{t-5}{3}+4\binom{t-5}{2}+4(t-5)
$$

rainbow copies of $K_{1,3}$ in K_{t}.

When the edges e_{1} and e_{2} form a $2 P_{2}$ in K_{t}, without loss of generality, we assume that e_{1} is red and e_{2} is blue. According to the structure of K_{t}, it is easy to calculate that if the other red edge is not adjacent to e_{1}, and the other blue edge is not adjacent to e_{2}, then there are

$$
f_{1}(t)=t\binom{t-1}{3}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the other red edge is adjacent to e_{1}, and the other blue edge is not adjacent to e_{2}, then there are

$$
f_{2}(t)=(t-1)\binom{t-1}{3}+\binom{t-3}{3}+2\binom{t-3}{2}
$$

rainbow copies of $K_{1,3}$ in K_{t}; if the other red edge is adjacent to e_{1}, and the other blue edge is adjacent to e_{2}, then there are

$$
f_{3}(t)=(t-2)\binom{t-1}{3}+2\binom{t-3}{3}+4\binom{t-3}{2}
$$

rainbow copies of $K_{1,3}$ in K_{t}.
Next, we compare the sizes of $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)$ and $f_{6}(t)$. Based on the practical significance of counting in this paper, we know that the count of rainbow copies of $K_{1,3}$ cannot be negative. For example, for $f_{6}(t)$, the expression is not applicable when $4 \leq t \leq 6$. In other words, for $4 \leq t \leq 6, f_{6}(t)$ can be written as a piecewise expression. But for the convenience of calculation, we only define in the operations of expressions for t in $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)$ and $f_{6}(t)$ that when integers $a<b$, we have $\binom{a}{b} \equiv 0$ and $a-b \equiv 0$.

For $t=4$, we have

$$
f_{1}(4)=4, f_{2}(4)=3, f_{3}(4)=2, f_{4}(4)=1, f_{5}(4)=3, f_{6}(4)=3
$$

Thus, $\min \left\{f_{1}(4), f_{2}(4), f_{3}(4), f_{4}(4), f_{5}(4), f_{6}(4)\right\}=1$.
For $t=5$, we have

$$
f_{1}(5)=20, f_{2}(5)=18, f_{3}(5)=16, f_{4}(5)=14, f_{5}(5)=16, f_{6}(5)=16
$$

Thus, $\min \left\{f_{1}(5), f_{2}(5), f_{3}(5), f_{4}(5), f_{5}(5), f_{6}(5)\right\}=14$.
For $t=6$, we have

$$
f_{1}(6)=60, f_{2}(6)=57, f_{3}(6)=54, f_{4}(6)=51, f_{5}(6)=53, f_{6}(6)=54
$$

Thus, $\min \left\{f_{1}(6), f_{2}(6), f_{3}(6), f_{4}(6), f_{5}(6), f_{6}(6)\right\}=51$.
For $t=7$, we have

$$
f_{1}(7)=140, f_{2}(7)=136, f_{3}(7)=132, f_{4}(7)=128, f_{5}(7)=130, f_{6}(7)=132
$$

Thus, $\min \left\{f_{1}(7), f_{2}(7), f_{3}(7), f_{4}(7), f_{5}(7), f_{6}(7)\right\}=128$.
For $t \geq 8$ and $1 \leq i \leq 6$, let $f_{i i}(t)=f_{i}(t)-(t-3)\binom{t-1}{3}-\frac{1}{2} t^{3}+3 t^{2}-\frac{5}{2} t$, then
$f_{11}(t)=3 t-3, f_{22}(t)=2 t, f_{33}(t)=t+3, f_{44}(t)=6, f_{55}(t)=8, f_{66}(t)=t+3$.

Therefore, for $t \geq 8$,

$$
\min \left\{f_{11}(t), f_{22}(t), f_{33}(t), f_{44}(t), f_{55}(t), f_{66}(t)\right\}=f_{44}(t)=6,
$$

and thus,
$\min \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t), f_{6}(t)\right\}=f_{4}(t)=(t-3)\binom{t-1}{3}+3\binom{t-3}{3}+6\binom{t-3}{2}$.
Based on the above discussion, we have
$\min \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t), f_{6}(t)\right\}= \begin{cases}(t-3)\binom{t-1}{3}, & t=4 ; \\ (t-3)\binom{t-1}{3}+6\binom{t-3}{2}, & t=5 ; \\ (t-3)\binom{-1}{3}+3\binom{t-3}{3}+6\binom{t-3}{2}, & t \geq 6 .\end{cases}$
The result thus follows.

3.2 Rainbow P_{4}^{+}

According to Theorems 3 and 4, we directly give the following observation.
Observation 1 For integers $k \geq 5$, if $\operatorname{gr}_{k}\left(K_{1,3}: H\right) \geq 5$, then

$$
\operatorname{gr}_{k}\left(P_{4}^{+}: H\right)=\operatorname{gr}_{k}\left(K_{1,3}: H\right) .
$$

From Observation 1 and Theorem 8, the following corollary can be directly deduced.

Corollary 2 Let integer $k \geq 5$. If H is a subgraph of the balanced complete $(k-1)$-partite graph $K_{(k-1) \times 2}$, then

$$
\operatorname{gr}_{k}\left(P_{4}^{+}: H\right)= \begin{cases}5, & 5 \leq k \leq 6 \\ \left\lceil\frac{1+\sqrt{1+8 k}}{2}\right\rceil, & k \geq 7\end{cases}
$$

Noticing that P_{4}^{+}is obtained by adding a pendent edge to a leaf vertex at $K_{1,3}$, there are $t\binom{t-1}{3} \cdot 3(t-4)$ different P_{4}^{+}in K_{t}. We can also calculate $\left|\operatorname{Aut}\left(P_{4}^{+}\right)\right|=2$ from Proposition 1. Therefore, we directly provide the following corollary.

Corollary 3 For integers k and t satisfying $k=\binom{t}{2} \geq 10$, and a subgraph H of the balanced complete $(k-1)$-partite graph $K_{(k-1) \times 2}$ with $|E(H)| \geq 2$, we have

$$
\mathrm{GM}_{k}\left(P_{4}^{+}: H\right)=\frac{5!\binom{t}{5}}{\left|\operatorname{Aut}\left(P_{4}^{+}\right)\right|}=60\binom{t}{5} .
$$

Theorem 11 For integers k and t satisfying $k=\binom{t}{2} \geq 10$, and a subgraph H of the balanced complete $(k-2)$-partite graph $K_{(k-2) \times 2}$ with $|E(H)| \geq 3$, we have

$$
\mathrm{GM}_{k-1}\left(P_{4}^{+}: H\right)=60\binom{t}{5}-5(t-3)(t-4) .
$$

Proof It follows from Corollary 2 that $\operatorname{gr}_{k-1}\left(P_{4}^{+}: H\right)=t$. Consider any $(k-1)-$ edge-coloring of K_{t}. Since $\left|E\left(K_{t}\right)\right|=\binom{t}{2}$ and each color is used at least once, it follows that there are only two edges, say e_{1} and e_{2}, with the same color in K_{t}. Since $|E(H)| \geq 3$, it follows that we do not need to consider the number of monochromatic H in K_{t}. According to Corollary 3, there are $60\binom{t}{5}$ different P_{4}^{+}in K_{t}, and we only need to find the number of different P_{4}^{+}containing the edges e_{1} and e_{2}. This is because only P_{4}^{+}containing edges e_{1} and e_{2} are not rainbow, and all other P_{4}^{+}are rainbow. If $e_{1} \nsim e_{2}$, then according to Lemma 3 that there are $8(t-4)$ different P_{4}^{+}in K_{t} that contain edges e_{1} and e_{2}. If $e_{1} \sim e_{2}$, then according to Lemma 3 that there are $5(t-3)(t-4)$ different P_{4}^{+} in K_{t} that contain edges e_{1} and e_{2}. Noticing that $8(t-4)<5(t-3)(t-4)$ for $t \geq 5$, the result thus follows.

Theorem 12 For integers k and t satisfy $k=\binom{t}{2} \geq 10$, if H is a subgraph of the balanced complete $(k-3)$-partite graph $K_{(k-3) \times 2}$ with $|E(H)| \geq 4$, then we have

$$
\mathrm{GM}_{k-2}\left(P_{4}^{+}: H\right)=60\binom{t}{5}-15(t-3)(t-4)
$$

Proof It follows from Corollary 2 that $\mathrm{gr}_{k-2}\left(P_{4}^{+}: H\right)=t$. Consider $(k-2)-$ edge-coloring of K_{t}. Since $|E(H)| \geq 4$, it follows that we do not need to consider the number of monochromatic H in K_{t}. Since each color is used at least once, there are only the following two cases. Due to the arbitrariness of colors, we can describe them using specific color names such as red and blue. Next, we calculate the number of different P_{4}^{+}containing two or more edges with the same color. The following counting bases are all based on Lemma 3.

Case 1 There are three red edges e_{1}, e_{2} and e_{3}. The remaining edges are not red and the colors of any two remaining edges are not the same.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $3 P_{2}$. In this subcase, there are $24(t-4)$ different P_{4}^{+}containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $P_{3} \cup P_{2}$. In this subcase, there are $5(t-3)(t-4)$ different P_{4}^{+}containing red P_{3} and $2(8(t-4)-2)$ different P_{4}^{+}without red P_{3}. So there are a total of $(5 t+1)(t-4)-4$ different P_{4}^{+}containing two or more red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $K_{1,3}$. In this subcase, there are $3\left(2(t-3)(t-4)+3(t-4)^{2}\right)$ different P_{4}^{+}containing two red edges and $3(t-4)$ different P_{4}^{+}containing three red edges. So there are a total of $3(5 t-17)(t-4)$ different P_{4}^{+}containing two or more red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red K_{3}. In this subcase, there are $15(t-3)(t-4)$ different P_{4}^{+}containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red P_{4}. In this subcase, there are $2(5(t-3)(t-4)-2(t-4))+3 \cdot 2(t-4)=2(5 t-14)(t-4)$ different P_{4}^{+} containing two red edges and $2(t-4)$ different P_{4}^{+}containing three red edges. So there are a total of $2(5 t-13)(t-4)$ different P_{4}^{+}containing two or more red edges.

Case 2 There are two red edges e_{1}, e_{2} and two blue edges e_{3}, e_{4}. The remaining edges are not red or blue and the colors of any two remaining edges are not the same.

If $e_{1} \nsim e_{2}$ and $e_{3} \nsim e_{4}$, then there are $16(t-4)$ different P_{4}^{+}containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \nsim e_{4}$, then there are at most $8(t-4)+5(t-3)(t-4)=(5 t-7)(t-4)$ different P_{4}^{+}containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \sim e_{4}$, then there are at most $10(t-3)(t-4)$ different P_{4}^{+}containing two edges with the same color.

Let

$$
\begin{gathered}
f_{1}(t)=24(t-4), f_{2}(t)=(5 t+1)(t-4)-4 \\
f_{3}(t)=15(t-3)(t-4), f_{4}(t)=2(5 t-13)(t-4), f_{5}(t)=(5 t-7)(t-4)
\end{gathered}
$$

Based on the data calculated from the eight subcases above, we need to compare the sizes of $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)$ and $f_{5}(t)$.

For $1 \leq i \leq 5$, let $f_{i i}(t)=\frac{f_{i}(t)}{t-4}$. Then
$f_{11}(t)=24, f_{22}(t)=5 t+1-\frac{4}{t-4}, f_{33}(t)=15(t-3), f_{44}(t)=2(5 t-13), f_{55}(t)=5 t-7$.
Therefore, for $t \geq 5$

$$
\max \left\{f_{11}(t), f_{22}(t), f_{33}(t), f_{44}(t), f_{55}(t)\right\}=f_{33}(t)=15(t-3)
$$

and thus,

$$
\max \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right\}=f_{3}(t)=15(t-3)(t-4) .
$$

The result thus follows.

3.3 Rainbow P_{4}

From Theorem 1, we directly obtain the following corollary.
Corollary 4 For a graph H and integer $k \geq 4$, we have

$$
\operatorname{gr}_{k}\left(P_{4}: H\right)=\left\lceil\frac{1+\sqrt{1+8 k}}{2}\right\rceil .
$$

According to Corollary 4 and Proposition 1, the following corollary can be directly deduced.

Corollary 5 For a graph H with $|E(H)| \geq 2$ and integers k and t satisfying $k=\binom{t}{2} \geq 6$, we have

$$
\operatorname{GM}_{k}\left(P_{4}: H\right)=\frac{4!\binom{t}{4}}{\left|\operatorname{Aut}\left(P_{4}\right)\right|}=12\binom{t}{4} .
$$

Theorem 13 For a graph H with $|E(H)| \geq 3$ and integers k and t satisfying $k=\binom{t}{2} \geq 6$, we have

$$
\operatorname{GM}_{k-1}\left(P_{4}: H\right)=\left\{\begin{array}{lr}
8, & t=4 \\
12\binom{t}{4}-2(t-3), & t \geq 5
\end{array}\right.
$$

Proof It follows from Corollary 4 that $\mathrm{gr}_{k-1}\left(P_{4}: H\right)=t$. Consider any $(k-1)-$ edge-coloring of K_{t}. Since $\left|E\left(K_{t}\right)\right|=\binom{t}{2}$ and each color is used at least once, it follows that there are only two edges, say e_{1} and e_{2}, with the same color in K_{t}. Since $|E(H)| \geq 3$, it follows that we do not need to consider the number of monochromatic H in K_{t}. According to Corollary 5, there are $12\binom{t}{4}$ different P_{4} in K_{t}, and we only need to find the number of different P_{4} containing the edges e_{1} and e_{2}. This is because only P_{4} containing edges e_{1} and e_{2} are not rainbow, and all other P_{4} are rainbow. If $e_{1} \nsim e_{2}$, then according to Lemma 1 that there are 4 different P_{4} in K_{t} that contain edges e_{1} and e_{2}. If $e_{1} \sim e_{2}$, then according to Lemma 1 that there are $2(t-3)$ different P_{4} in K_{t} that contain edges e_{1} and e_{2}. Noticing that $4>2(t-3)$ for $t=4$ and $4 \leq 2(t-3)$ for $t \geq 5$, the result thus follows.

Theorem 14 For a graph H with $|E(H)| \geq 4$ and integers k and t satisfying $k=\binom{t}{2} \geq 6$, we have

$$
\operatorname{GM}_{k-2}\left(P_{4}: H\right)=\left\{\begin{array}{lr}
4, & t=4 \\
12\binom{t}{4}-6(t-3), & t \geq 5
\end{array}\right.
$$

Proof It follows from Corollary 4 that $\operatorname{gr}_{k-2}\left(P_{4}: H\right)=t$. Consider $(k-2)$ -edge-coloring of K_{t}. Since $|E(H)| \geq 4$, it follows that we do not need to consider the number of monochromatic H in K_{t}. Since each color is used at least once, there are only the following two cases. Due to the arbitrariness of colors, we can describe them using specific color names such as red and blue. Next, we calculate the number of different P_{4} containing two or more edges with the same color. The following counting bases are all based on Lemma 1.

Case 1 There are three red edges e_{1}, e_{2} and e_{3}. The remaining edges are not red and the colors of any two remaining edges are not the same.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $3 P_{2}$. In this subcase, there are 12 different P_{4} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $P_{3} \cup P_{2}$. In this subcase, there are $8+2(t-3)=2(t+1)$ different P_{4} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $K_{1,3}$. In this subcase, there are $6(t-3)$ different P_{4} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red K_{3}. In this subcase, there are $6(t-3)$ different P_{4} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red P_{4}. In this subcase, there are $4+2(t-3)+2(t-4)=2(2 t-5)$ different P_{4} containing two or more red edges.

Case 2 There are two red edges e_{1}, e_{2} and two blue edges e_{3}, e_{4}. The remaining edges are not red or blue and the colors of any two remaining edges are not the same.

If $e_{1} \nsim e_{2}$ and $e_{3} \nsim e_{4}$, then there are 8 different P_{4} containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \nsim e_{4}$, then there are $4+2(t-3)=2(t-1)$ different P_{4} containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \sim e_{4}$, then there are at most $4(t-3)$ different P_{4} containing two edges with the same color.

We first consider the result when $t=4$. Noticing that there are no red $3 P_{2}$ or $P_{3} \cup P_{2}$ in a 4 -edge-colored K_{4}. Thus there are at most 8 different P_{4} in a 4-edge-colored K_{4} that contain two or more edges of the same color.

Let $f_{1}(t)=12, f_{2}(t)=2(t+1), f_{3}(t)=6(t-3), f_{4}(t)=2(2 t-5)$. Based on the data calculated from the eight subcases above, we need to compare the sizes of $f_{1}(t), f_{2}(t), f_{3}(t)$ and $f_{4}(t)$.

For $t \geq 5$, we have

$$
\max \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)\right\}=f_{3}(t)=6(t-3)
$$

The result thus follows.

3.4 Rainbow P_{5}

In 2023, Zou, Wang, Lai and Mao in [28] provided results on the Gallai-Ramsey number for rainbow P_{5}.

Theorem 15 [28] For a graph H and an integer $k \geq 5$, we have
$\operatorname{gr}_{k}\left(P_{5}: H\right)= \begin{cases}\max \left\{\left\lceil\frac{1+\sqrt{1+8 k}}{2}\right\rceil, 5\right\}, & k \geq|V(H)|+1 ; \\ |V(H)|+1, & k=|V(H)| \text { and } H \text { is not a complete graph; } \\ (|V(H)|-1)^{2}+1, & k=|V(H)| \text { and } H \text { is a complete graph. }\end{cases}$
According to Theorem 15 and Proposition 1, the following corollary can be directly deduced.

Corollary 6 For a graph H with $|E(H)| \geq 2$ and integers k and t satisfying $k=\binom{t}{2} \geq \max \{|V(H)|+1,10\}$, we have

$$
\operatorname{GM}_{k}\left(P_{5}: H\right)=\frac{5!\binom{t}{5}}{\left|\operatorname{Aut}\left(P_{5}\right)\right|}=60\binom{t}{5} .
$$

Theorem 16 For a graph H with $|E(H)| \geq 3$ and integers k and t satisfying $k=\binom{t}{2} \geq \max \{|V(H)|+2,10\}$, we have

$$
\mathrm{GM}_{k-1}\left(P_{5}: H\right)= \begin{cases}60\binom{t}{5}-12(t-4), & 5 \leq t \leq 6 ; \\ 60\binom{t}{5}-3(t-3)(t-4), & t \geq 7 .\end{cases}
$$

Proof It follows from Theorem 15 that $\operatorname{gr}_{k-1}\left(P_{5}: H\right)=t$. Consider any $(k-1)-$ edge-coloring of K_{t}. Since $\left|E\left(K_{t}\right)\right|=\binom{t}{2}$ and each color is used at least once, it follows that there are only two edges, say e_{1} and e_{2}, with the same color in K_{t}. Since $|E(H)| \geq 3$, it follows that we do not need to consider the number of monochromatic H in K_{t}. According to Corollary 6, there are $60\binom{t}{5}$ different P_{5} in K_{t}, and we only need to find the number of different P_{5} containing the edges e_{1} and e_{2}. This is because only P_{5} containing edges e_{1} and e_{2} are not rainbow, and all other P_{5} are rainbow. If $e_{1} \nsim e_{2}$, then according to Lemma 2 that there are $12(t-4)$ different P_{5} in K_{t} that contain edges e_{1} and e_{2}. If $e_{1} \sim e_{2}$, then according to Lemma 2 that there are $3(t-3)(t-4)$ different P_{5} in K_{t} that contain edges e_{1} and e_{2}. Noticing that $12(t-4)>3(t-3)(t-4)$ for $5 \leq t \leq 6$ and $12(t-4) \leq 3(t-3)(t-4)$ for $t \geq 7$, the result thus follows.

Theorem 17 For a graph H with $|E(H)| \geq 4$ and integers k and t satisfying $k=\binom{t}{2} \geq \max \{|V(H)|+3,10\}$, we have

$$
\operatorname{GM}_{k-2}\left(P_{5}: H\right)= \begin{cases}38, & t=5 \\ 288, & t=6 \\ 60\binom{t}{5}-9(t-3)(t-4), & t \geq 7\end{cases}
$$

Proof It follows from Theorem 15 that $\operatorname{gr}_{k-2}\left(P_{5}: H\right)=t$. Consider $(k-2)$ -edge-coloring of K_{t}. Since $|E(H)| \geq 4$, it follows that we do not need to consider the number of monochromatic H in K_{t}. Since each color is used at least once, there are only the following two cases. Due to the arbitrariness of colors, we can describe them using specific color names such as red and blue. Next, we calculate the number of different P_{5} containing two or more edges with the same color. The following counting bases are all based on Lemma 2.

Case 1 There are three red edges e_{1}, e_{2} and e_{3}. The remaining edges are not red and the colors of any two remaining edges are not the same.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $3 P_{2}$. In this subcase, there are $36(t-4)$ different P_{5} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $P_{3} \cup P_{2}$. Let $P_{3}=e_{1} e_{2}$ and $P_{2}=e_{3}$. In this subcase, there are $3(t-3)(t-4)$ different P_{5} containing red edges e_{1} and $e_{2}, 12(t-4)-4$ different P_{5} only containing red edges e_{1} and e_{3}, and symmetrically $12(t-4)-4$ different P_{5} only containing red edges e_{2} and e_{3}. So there are a total of $3(t-3)(t-4)+2(12(t-4)-4)=3(t+5)(t-4)-8$ different P_{5} containing two or more red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $K_{1,3}$. In this subcase, there are $9(t-3)(t-4)$ different P_{5} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red K_{3}. In this subcase, there are $9(t-3)(t-4)$ different P_{5} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red P_{4}. In this subcase, there are $12(t-4)$ different P_{5} containing red $2 P_{2}$ and $2(3(t-3)(t-4)-2(t-$ 4)) $=2(3 t-11)(t-4)$ different P_{5} without red $2 P_{2}$. So there are a total of $12(t-4)+2(3 t-11)(t-4)=2(3 t-5)(t-4)$ different P_{5} containing two or more red edges.

Case 2 There are two red edges e_{1}, e_{2} and two blue edges e_{3}, e_{4}. The remaining edges are not red or blue and the colors of any two remaining edges are not the same.

If $e_{1} \nsim e_{2}$ and $e_{3} \nsim e_{4}$, then there are at most $24(t-4)$ different P_{5} containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \nsim e_{4}$, then there are at most $12(t-4)+3(t-3)(t-4)=3(t+1)(t-4)$ different P_{5} containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \sim e_{4}$, then there are at most $6(t-3)(t-4)$ different P_{5} containing two edges with the same color.

Let

$$
\begin{gathered}
f_{1}(t)=36(t-4), f_{2}(t)=3(t+5)(t-4)-8 \\
f_{3}(t)=9(t-3)(t-4), f_{4}(t)=2(3 t-5)(t-4), f_{5}(t)=3(t+1)(t-4)
\end{gathered}
$$

Based on the data calculated from the eight subcases above, we need to compare the sizes of $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)$ and $f_{5}(t)$.

For $1 \leq i \leq 5$, let $f_{i i}(t)=\frac{f_{i}(t)}{t-4}$. Then
$f_{11}(t)=36, f_{22}(t)=3(t+5)-\frac{8}{t-4}, f_{33}(t)=9(t-3), f_{44}(t)=2(3 t-5), f_{55}=3(t+1)$.
For $t=5$, note that there are no red $3 P_{2}$ in a 8-edge-colored K_{5}. Thus

$$
\max \left\{f_{22}(t), f_{33}(t), f_{44}(t), f_{55}(t)\right\}=f_{22}(t)=3(t+5)-\frac{8}{t-4}=22
$$

and thus

$$
\max \left\{f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right\}=f_{3}(t)=3(t+5)(t-4)-8=22
$$

For $t=6$, we have

$$
\max \left\{f_{11}(t), f_{22}(t), f_{33}(t), f_{44}(t), f_{55}(t)\right\}=f_{11}(t)=36
$$

and thus

$$
\max \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right\}=f_{1}(t)=36(t-4)=72
$$

For $t \geq 7$, we have

$$
\max \left\{f_{11}(t), f_{22}(t), f_{33}(t), f_{44}(t), f_{55}(t)\right\}=f_{33}(t)=9(t-3),
$$

and thus

$$
\max \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right\}=f_{3}(t)=9(t-3)(t-4) .
$$

The result thus follows.

4 Results for bipartite Gallai-Ramsey multiplicity

We consider three kinds of rainbow graphs P_{4}, P_{5} and $K_{1,3}$, respectively, in the following two subsections.
4.1 Rainbow P_{4}

Theorem 18 Let integer $k \geq 3$. If H is a subgraph of $K_{1, k}$, then

$$
\operatorname{bgr}_{k}\left(P_{4}: H\right)=\lceil\sqrt{k}\rceil .
$$

Proof The lower bound follows from Lemma 6. For the upper bound, we consider an arbitrary k-edge-coloring of $K_{N, N}(N \geq\lceil\sqrt{k}\rceil)$. Let (U, V) be the bipartition of $K_{N, N}$ and suppose to the contrary that $K_{N, N}$ contains neither a rainbow subgraph P_{4} nor a monochromatic subgraph H. Noticing that $\lceil\sqrt{k}\rceil \leq k-1$ for $k \geq 3$. If $\lceil\sqrt{k}\rceil \leq N \leq k-1$, then it follows from Proposition 4 that there is always a rainbow P_{4}, and the result thus follows. Next we assume $N \geq k$. It follows from Theorem 5 that the Colored Structure 3 occurs. Thus U can be partitioned into k non-empty parts $U_{1}, U_{2}, \ldots, U_{k}$ such that all the edges between U_{i} and V have color $i, i \in\{1,2, \ldots, k\}$. Since H is a subgraph of $K_{1, k}$ and $|V|=N \geq k$, it follows that there is a monochromatic H, a contradiction. The result thus follows.

It is easy to calculate that when $t \geq 2$, there are $t^{2}(t-1)^{2}$ different P_{4} in $K_{t, t}$. Therefore, the following corollary can be directly derived from Theorem 18.

Corollary 7 For integers k and t satisfying $k=t^{2} \geq 4$, and a subgraph H of $K_{1, k}$ with $|E(H)| \geq 2$, we have

$$
\operatorname{bi-GM}_{k}\left(P_{4}: H\right)=t^{2}(t-1)^{2}
$$

Theorem 19 For integers k and t satisfying $k=t^{2} \geq 4$, and a subgraph H of $K_{1, k-1}$ with $|E(H)| \geq 3$, we have

$$
\operatorname{bi-GM}_{k-1}\left(P_{4}: H\right)=t^{2}(t-1)^{2}-2(t-1)
$$

Proof It follows from Theorem 18 that $\operatorname{bgr}_{k-1}\left(P_{4}: H\right)=t$. Consider any ($k-1$)-edge-coloring of $K_{t, t}$. Since $\left|E\left(K_{t, t}\right)\right|=t^{2}$ and each color is used at least once, it follows that there are only two edges, say e_{1} and e_{2}, with the same color in $K_{t, t}$. Since $|E(H)| \geq 3$, it follows that we do not need to consider the number of monochromatic H in $K_{t, t}$. According to Corollary 7, there are $t^{2}(t-1)^{2}$ different P_{4} in $K_{t, t}$, and we only need to find the number of different P_{4} containing the edges e_{1} and e_{2}. This is because only P_{4} containing edges e_{1} and e_{2} are not rainbow, and all other P_{4} are rainbow. If $e_{1} \nsim e_{2}$, then according to Lemma 4 that there are 2 different P_{4} in $K_{t, t}$ that contain edges e_{1} and e_{2}. If $e_{1} \sim e_{2}$, then according to Lemma 4 that there are $2(t-1)$ different P_{4} in $K_{t, t}$ that contain edges e_{1} and e_{2}. Noticing that $2 \leq 2(t-1)$ for $t \geq 2$, the result thus follows.

Theorem 20 For integers k and t satisfying $k=t^{2} \geq 9$, and a subgraph H of $K_{1, k-2}$ with $|E(H)| \geq 4$, we have

$$
\operatorname{bi-GM}_{k-2}\left(P_{4}: H\right)=t^{2}(t-1)^{2}-6(t-1)
$$

Proof It follows from Theorem 18 that $\operatorname{bgr}_{k-2}\left(P_{4}: H\right)=t$. Consider $(k-2)$ -edge-coloring of $K_{t, t}$. Since $|E(H)| \geq 4$, it follows that we do not need to consider the number of monochromatic H in $K_{t, t}$. Since each color is used at least once, there are only the following two cases. Due to the arbitrariness of colors, we can describe them using specific color names such as red and blue. Next, we calculate the number of different P_{4} containing two or more edges with the same color. The following counting bases are all based on Lemma 4.

Case 1 There are three red edges e_{1}, e_{2} and e_{3}. The remaining edges are not red and the colors of any two remaining edges are not the same.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $3 P_{2}$. In this subcase, there are 6 different P_{4} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $P_{3} \cup P_{2}$. In this subcase, there are $4+2(t-1)=2(t+1)$ different P_{4} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $K_{1,3}$. In this subcase, there are $6(t-1)$ different P_{4} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red P_{4}. In this subcase, there are $2+2(t-1)+2(t-2)=4(t-1)$ different P_{4} containing two or more red edges.

Case 2 There are two red edges e_{1}, e_{2} and two blue edges e_{3}, e_{4}. The remaining edges are not red or blue and the colors of any two remaining edges are not the same.

If $e_{1} \nsim e_{2}$ and $e_{3} \nsim e_{4}$, then there are 4 different P_{4} containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \nsim e_{4}$, then there are $2+2(t-1)=2 t$ different P_{4} containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \sim e_{4}$, then there are $4(t-1)$ different P_{4} containing two edges with the same color.

Let $f_{1}(t)=6, f_{2}(t)=2(t+1), f_{3}(t)=6(t-1)$. Based on the data calculated from the seven subcases above, we need to compare the sizes of $f_{1}(t), f_{2}(t)$ and $f_{3}(t)$.

For $t \geq 3$, we have

$$
\max \left\{f_{1}(t), f_{2}(t), f_{3}(t)\right\}=f_{3}(t)=6(t-1)
$$

The result thus follows.

4.2 Rainbow P_{5} and $K_{1,3}$

Theorem 21 Let integer $k \geq 5$. If H is a subgraph of $K_{1,\left\lceil\frac{k-1}{2}\right\rceil}$, then

$$
\operatorname{bgr}_{k}\left(P_{5}: H\right)=\operatorname{bgr}_{k}\left(K_{1,3}: H\right)=\lceil\sqrt{k}\rceil .
$$

Proof The lower bound follows from Lemma 6. For the upper bound, we consider an arbitrary k-edge-coloring of $K_{N, N}(N \geq\lceil\sqrt{k}\rceil)$. Let (U, V) be the
bipartition of $K_{N, N}$ and suppose to the contrary that $K_{N, N}$ contains neither a rainbow subgraph P_{5} nor a monochromatic subgraph H. Noticing that $\lceil\sqrt{k}\rceil \leq k-2$ for $k \geq 5$. If $\lceil\sqrt{k}\rceil \leq N \leq k-2$, then it follows from Proposition 5 that there is always a rainbow P_{5}, and the result thus follows. Next we assume $N \geq k-1$. It follows from Theorems 6 and 7 that either the Colored Structure 4 or Colored Structure 5 occurs. If Colored Structure 4 occurs, then U can be partitioned into two parts U_{1} and U_{2} with $\left|U_{1}\right| \geq 1,\left|U_{2}\right| \geq 0$, and V can be partitioned into k parts $V_{1}, V_{2}, \ldots, V_{k}$ with $\left|V_{1}\right| \geq 0$ and $\left|V_{j}\right| \geq 1$, $j \in\{2,3, \ldots, k\}$. Since $N \geq k-1$, it follows from pigeonhole principle that $\left|U_{1}\right| \geq\left\lceil\frac{k-1}{2}\right\rceil$ or $\left|U_{2}\right| \geq\left\lceil\frac{k-1}{2}\right\rceil$. Without loss of generality, we assume that $\left|U_{1}\right| \geq\left\lceil\frac{k-1}{2}\right\rceil$. Noticing that $\left|V_{2}\right| \geq 1$ and all the edges between V_{2} and U_{1} have color 2, there is a monochromatic H with color 2 , a contradiction. If the Colored Structure 5 occurs, then U can be partitioned into k parts $U_{1}, U_{2}, \ldots, U_{k}$ with $\left|U_{1}\right| \geq 0,\left|U_{j}\right| \geq 1$ and V can be partitioned into k parts $V_{1}, V_{2}, \ldots, V_{k}$ with $\left|V_{1}\right| \geq 0,\left|V_{j}\right| \geq 1, j \in\{2,3, \ldots, k\}$. Noticing that $\left\lceil\frac{k-1}{2}\right\rceil<k-2$ for $k \geq 5,\left|V_{2}\right| \geq 1$ and all the edges between V_{2} and $U_{3} \cup U_{4} \cup \ldots \cup U_{k}$ have color 1 , there is a monochromatic H with color 1 , a contradiction. The result thus follows.

It is easy to calculate that when $t \geq 3$, there are $t^{2}(t-1)^{2}(t-2)$ different P_{5} and $2 t\binom{t}{3}$ different $K_{1,3}$ in $K_{t, t}$. Therefore, the following corollary can be directly derived from Theorem 21.

Corollary 8 For integers k and t satisfying $k=t^{2} \geq 9$, and a subgraph H of $K_{1,\left\lceil\frac{k-1}{2}\right\rceil}$ with $|E(H)| \geq 2$, we have

Theorem 22 For integers k and t satisfying $k=t^{2} \geq 9$, and a subgraph H of $K_{1,\left\lceil\frac{k-2}{2}\right\rceil}$ with $|E(H)| \geq 3$, we have

$$
\operatorname{bi-GM}_{k-1}\left(P_{5}: H\right)=t^{2}(t-1)^{2}(t-2)-3(t-1)(t-2) .
$$

Proof It follows from Theorem 21 that $\operatorname{bgr}_{k-1}\left(P_{5}: H\right)=t$. Consider any ($k-1$)-edge-coloring of $K_{t, t}$. Since $\left|E\left(K_{t, t}\right)\right|=t^{2}$ and each color is used at least once, it follows that there are only two edges, say e_{1} and e_{2}, with the same color in $K_{t, t}$. Since $|E(H)| \geq 3$, it follows that we do not need to consider the number of monochromatic H in $K_{t, t}$. According to Corollary 8, there are $t^{2}(t-1)^{2}(t-2)$ different P_{5} in $K_{t, t}$, and we only need to find the number of different P_{5} containing the edges e_{1} and e_{2}. This is because only P_{5} containing edges e_{1} and e_{2} are not rainbow, and all other P_{5} are rainbow. If $e_{1} \nsim e_{2}$, then according to Lemma 5 that there are $6(t-2)$ different P_{5} in $K_{t, t}$ that contain edges e_{1} and e_{2}. If $e_{1} \sim e_{2}$, then according to Lemma 5 that there are $3(t-1)(t-2)$ different P_{5} in $K_{t, t}$ that contain edges e_{1} and e_{2}. Noticing that $6(t-2) \leq 3(t-1)(t-2)$ for $t \geq 3$, the result thus follows.

Theorem 23 For integers k and t satisfying $k=t^{2} \geq 9$, and a subgraph H of $K_{1,\left\lceil\frac{k-3}{2}\right\rceil}$ with $|E(H)| \geq 4$, we have

$$
\operatorname{bi-GM}_{k-2}\left(P_{5}: H\right)=t^{2}(t-1)^{2}(t-2)-9(t-1)(t-2) .
$$

Proof It follows from Theorem 21 that $\operatorname{bgr}_{k-2}\left(P_{5}: H\right)=t$. Consider $(k-2)-$ edge-coloring of $K_{t, t}$. Since $|E(H)| \geq 4$, it follows that we do not need to consider the number of monochromatic H in $K_{t, t}$. Since each color is used at least once, there are only the following two cases. Due to the arbitrariness of colors, we can describe them using specific color names such as red and blue. Next, we calculate the number of different P_{5} containing two or more edges with the same color. The following counting bases are all based on Lemma 5 .

Case 1 There are three red edges e_{1}, e_{2} and e_{3}. The remaining edges are not red and the colors of any two remaining edges are not the same.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $3 P_{2}$. In this subcase, there are $18(t-2)$ different P_{5} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $P_{3} \cup P_{2}$. Let $P_{3}=e_{1} e_{2}$ and $P_{2}=e_{3}$. In this subcase, there are $3(t-1)(t-2)$ different P_{5} containing red edges e_{1} and $e_{2}, 6(t-2)-2$ different P_{5} only containing red edges e_{1} and e_{3}, and symmetrically $6(t-2)-2$ different P_{5} only containing red edges e_{2} and e_{3}. So there are a total of $3(t-1)(t-2)+2(6(t-2)-2)=3(t+3)(t-2)-4$ different P_{5} containing two or more red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red $K_{1,3}$. In this subcase, there are $9(t-1)(t-2)$ different P_{5} containing two red edges.

Assume that the edges e_{1}, e_{2} and e_{3} form a red P_{4}. In this subcase, there are $6(t-2)$ different P_{5} containing red $2 P_{2}$ and $2(3(t-1)(t-2)-2(t-$ $2))=2(3 t-5)(t-2)$ different P_{5} without red $2 P_{2}$. So there are a total of $6(t-2)+2(3 t-5)(t-2)=2(3 t-2)(t-2)$ different P_{5} containing two or more red edges.

Case 2 There are two red edges e_{1}, e_{2} and two blue edges e_{3}, e_{4}. The remaining edges are not red or blue and the colors of any two remaining edges are not the same.

If $e_{1} \nsim e_{2}$ and $e_{3} \nsim e_{4}$, then there are at most $12(t-2)$ different P_{5} containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \nsim e_{4}$, then there are at most $6(t-2)+3(t-1)(t-2)=3(t+1)(t-2)$ different P_{5} containing two edges with the same color; if $e_{1} \sim e_{2}$ and $e_{3} \sim e_{4}$, then there are at most $6(t-1)(t-2)$ different P_{5} containing two edges with the same color.

Let

$$
\begin{gathered}
f_{1}(t)=18(t-2), f_{2}(t)=3(t+3)(t-2)-4 \\
f_{3}(t)=9(t-1)(t-2), f_{4}(t)=2(3 t-2)(t-2), f_{5}(t)=3(t+1)(t-2)
\end{gathered}
$$

Based on the data calculated from the seven subcases above, we need to compare the sizes of $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)$ and $f_{5}(t)$.

For $1 \leq i \leq 5$, let $f_{i i}(t)=\frac{f_{i}(t)}{t-2}$. Then

$$
f_{11}(t)=18, f_{22}(t)=3(t+3)-\frac{4}{t-2}, f_{33}(t)=9(t-1), f_{44}(t)=2(3 t-2), f_{55}=3(t+1)
$$

For $t \geq 3$, we have

$$
\max \left\{f_{11}(t), f_{22}(t), f_{33}(t), f_{44}(t), f_{55}(t)\right\}=f_{33}(t)=9(t-1)
$$

and thus

$$
\max \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right\}=f_{3}(t)=9(t-1)(t-2)
$$

The result thus follows.
Theorem 24 For integers k and t satisfying $k=t^{2} \geq 9$, and a subgraph H of $K_{1,\left\lceil\frac{k-2}{2}\right\rceil}$ with $|E(H)| \geq 3$, we have

$$
\mathrm{bi}_{\mathrm{GM}}^{k-1}\left(K_{1,3}: H\right)= \begin{cases}5, & t=3 \\ 30, & t=4 \\ (2 t-1)\binom{t}{3}+\binom{t-2}{3}+2\binom{t-2}{2}, & t \geq 5\end{cases}
$$

Proof It follows from Theorem 21 that $\operatorname{bgr}_{k-1}\left(K_{1,3}: H\right)=t$. Consider any $(k-1)$-edge-coloring of $K_{t, t}$. Since $\left|E\left(K_{t, t}\right)\right|=t^{2}$ and each color is used at least once, it follows that there are only two edges, say e_{1} and e_{2}, with the same color in $K_{t, t}$. Since $|E(H)| \geq 3$, it follows that we do not need to consider the number of monochromatic H in $K_{t, t}$. Next, we calculate the number of rainbow copies of $K_{1,3}$ in $K_{t, t}$. If $e_{1} \nsim e_{2}$, then this case is equivalent to Corollary 8. Hence there are $2 t\binom{t}{3}$ rainbow copies of $K_{1,3}$ in $K_{t, t}$. If $e_{1} \sim e_{2}$, then e_{1} and e_{2} form a monochromatic P_{3}. Without loss of generality, we assume that the edges e_{1} and e_{2} are red and vertex v is incident with the edges e_{1} and e_{2}. We first investigate the number of rainbow copies of $K_{1,3}$ with center v for $t \geq 5$. Noticing that $\operatorname{deg}(v)=t$, the number of rainbow copies of $K_{1,3}$ with center v and without red edges is $\binom{t-2}{3}$, and number of rainbow copies of $K_{1,3}$ with center v and with a red edge is $2\binom{t-2}{2}$. In $K_{t, t}$, there are $(2 t-1)\binom{t}{3}$ rainbow copies of $K_{1,3}$ with center in $V\left(K_{t, t}\right) \backslash\{v\}$. Therefore, the total number of rainbow copies of $K_{1,3}$ in $K_{t, t}$ is $(2 t-1)\binom{t}{3}+\binom{t-2}{3}+2\binom{t-2}{2}$. It is easy to verify that when $t \geq 5$,
$\min \left\{2 t\binom{t}{3},(2 t-1)\binom{t}{3}+\binom{t-2}{3}+2\binom{t-2}{2}\right\}=(2 t-1)\binom{t}{3}+\binom{t-2}{3}+2\binom{t-2}{2}$.
When $t=3$, the number of rainbow copies of $K_{1,3}$ with center v and without red edges is 0 , and number of rainbow copies of $K_{1,3}$ with center v and with a red edge is 0 . In $K_{3,3}$, there are $5\binom{3}{3}=5$ rainbow copies of $K_{1,3}$ with center in $V\left(K_{3,3}\right) \backslash\{v\}$, therefore bi-GM ${ }_{8}\left(K_{1,3}: H\right) \leq 5$. Since $5<6\binom{5}{3}$, it follows that bi-GM ${ }_{8}\left(K_{1,3}: H\right)=5$.

When $t=4$, the number of rainbow copies of $K_{1,3}$ with center v and without red edges is 0 , and number of rainbow copies of $K_{1,3}$ with center v
and with a red edge is 2 . In $K_{4,4}$, there are $7\binom{4}{3}=28$ rainbow copies of $K_{1,3}$ with center in $V\left(K_{4,4}\right) \backslash\{v\}$, and therefore bi- $\mathrm{GM}_{15}\left(K_{1,3}: H\right) \leq 30$. Since $30<8\binom{4}{3}$, it follows that bi- $\mathrm{GM}_{15}\left(K_{1,3}: H\right)=30$.

Theorem 25 For integers k and t satisfying $k=t^{2} \geq 9$, and a subgraph H of $K_{1,\left\lceil\frac{k-3}{2}\right\rceil}$ with $|E(H)| \geq 4$, we have

$$
\operatorname{bi-GM}_{k-2}\left(K_{1,3}: H\right)=\left\{\begin{array}{lr}
4, & t=3 \\
28, & t=4 \\
93, & t=5 \\
(2 t-1)\binom{t}{3}+\binom{t-3}{3}+3\binom{(-3}{2}, & t \geq 6
\end{array}\right.
$$

Proof It follows from Theorem 21 that $\operatorname{bgr}_{k-2}\left(K_{1,3}: H\right)=t$. Consider $(k-2)-$ edge-coloring of $K_{t, t}$. Since $|E(H)| \geq 4$, it follows that we do not need to consider the number of monochromatic H in $K_{t, t}$. Noticing that each color needs to be used at least once. We first color any $k-2$ edges in $K_{t, t}$ with $k-2$ colors, and the remaining two edges are temporarily not colored, denoted as e_{1} and e_{2}. Next, we discuss the edges e_{1} and e_{2} in two cases.

Case 1 The edges e_{1} and e_{2} have the same color.
Without loss of generality, we assume that these two edges are red. According to the structure of $K_{t, t}$, it is easy to calculate that if the red edges form a $3 P_{2}$, then there are

$$
f_{1}(t)=2 t\binom{t}{3}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$; if the red edges form a $P_{3} \cup P_{2}$, then there are

$$
f_{2}(t)=(2 t-1)\binom{t}{3}+\binom{t-2}{3}+2\binom{t-2}{2}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$; if the red edges form a P_{4}, then there are

$$
f_{3}(t)=(2 t-2)\binom{t}{3}+2\binom{t-2}{3}+4\binom{t-2}{2}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$; if the red edges form a $K_{1,3}$, then there are

$$
f_{4}(t)=(2 t-1)\binom{t}{3}+\binom{t-3}{3}+3\binom{t-3}{2}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$.
Case 2 The edges e_{1} and e_{2} have different colors.
When the edges e_{1} and e_{2} form a P_{3} in $K_{t, t}$, without loss of generality, we assume that e_{1} is red and e_{2} is blue. Let $V\left(P_{3}\right)=\{u, v, w\}$ and vertex v be incident with the edges e_{1} and e_{2}. According to the structure of $K_{t, t}$, it is easy
to calculate that if the other red edge is not incident with vertex u or v, and the other blue edge is not incident with vertex v or w, then there are

$$
f_{1}(t)=2 t\binom{t}{3}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$; if the other red edge is incident with vertex u or v, and the other blue edge is not incident with vertex v or w, then there are

$$
f_{2}(t)=(2 t-1)\binom{t}{3}+\binom{t-2}{3}+2\binom{t-2}{2}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$; if the other red edge is incident with vertex u, and the other blue edge is incident with vertex w, then there are

$$
f_{3}(t)=(2 t-2)\binom{t}{3}+2\binom{t-2}{3}+4\binom{t-2}{2}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$; if the other red edge is incident with vertex v, and the other blue edge is also incident with vertex v, then there are

$$
f_{5}(t)=(2 t-1)\binom{t}{3}+\binom{t-4}{3}+4\binom{t-4}{2}+4(t-4)
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$.
When the edges e_{1} and e_{2} form a $2 P_{2}$ in $K_{t, t}$, without loss of generality, we assume that e_{1} is red and e_{2} is blue. According to the structure of $K_{t, t}$, it is easy to calculate that if the other red edge is not adjacent to e_{1}, and the other blue edge is not adjacent to e_{2}, then there are

$$
f_{1}(t)=2 t\binom{t}{3}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$; if the other red edge is adjacent to e_{1}, and the other blue edge is not adjacent to e_{2}, then there are

$$
f_{2}(t)=(2 t-1)\binom{t}{3}+\binom{t-2}{3}+2\binom{t-2}{2}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$; if the other red edge is adjacent to e_{1}, and the other blue edge is adjacent to e_{2}, then there are

$$
f_{3}(t)=(2 t-2)\binom{t}{3}+2\binom{t-2}{3}+4\binom{t-2}{2}
$$

rainbow copies of $K_{1,3}$ in $K_{t, t}$.
Next, we compare the sizes of $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)$ and $f_{5}(t)$. Based on the practical significance of counting in this paper, we only define in the operations of expressions for t in $f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t)$ and $f_{5}(t)$ that when integers $a<b$, we have $\binom{a}{b} \equiv 0$ and $a-b \equiv 0$.

For $t=3$, we have

$$
f_{1}(3)=6, f_{2}(3)=5, f_{3}(3)=4, f_{4}(3)=5, f_{5}(3)=5
$$

Thus, $\min \left\{f_{1}(3), f_{2}(3), f_{3}(3), f_{4}(3), f_{5}(3)\right\}=4$.
For $t=4$, we have

$$
f_{1}(4)=32, f_{2}(4)=30, f_{3}(4)=28, f_{4}(4)=28, f_{5}(4)=28 .
$$

Thus, $\min \left\{f_{1}(4), f_{2}(4), f_{3}(4), f_{4}(4), f_{5}(4)\right\}=28$.
For $t=5$, we have

$$
f_{1}(5)=100, f_{2}(5)=97, f_{3}(5)=94, f_{4}(5)=93, f_{5}(5)=94
$$

Thus, $\min \left\{f_{1}(5), f_{2}(5), f_{3}(5), f_{4}(5), f_{5}(5)\right\}=93$.
For $t=6$, we have

$$
f_{1}(6)=240, f_{2}(6)=236, f_{3}(6)=232, f_{4}(6)=230, f_{5}(6)=232 .
$$

Thus, $\min \left\{f_{1}(6), f_{2}(6), f_{3}(6), f_{4}(6), f_{5}(6)\right\}=230$.
For $t \geq 7$ and $1 \leq i \leq 5$, let $f_{i i}(t)=f_{i}(t)-(2 t-2)\binom{t}{3}-\frac{1}{3} t^{3}+t^{2}+\frac{1}{3} t$, then

$$
f_{11}(t)=t, f_{22}(t)=2, f_{33}(t)=-t+4, f_{44}(t)=-2 t+8, f_{55}(t)=-t+4 .
$$

Therefore, when $t \geq 7$ we have

$$
\min \left\{f_{11}(t), f_{22}(t), f_{33}(t), f_{44}(t), f_{55}(t)\right\}=f_{44}(t)=-2 t+8
$$

and thus
$\min \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right\}=f_{4}(t)=(2 t-1)\binom{t}{3}+\binom{t-3}{3}+3\binom{t-3}{2}$.
Based on the above discussion, we have

$$
\min \left\{f_{1}(t), f_{2}(t), f_{3}(t), f_{4}(t), f_{5}(t)\right\}= \begin{cases}(2 t-2)\binom{t}{3}, & t=3 ; \\ (2 t-1)\binom{t}{3}, & t=4 ; \\ (2 t-1)\binom{t}{3}+3\binom{t-3}{2}, & t=5 ;\binom{t-3}{3}+3\binom{t-3}{2}, \\ (2 t \geq 6\end{cases}
$$

The result thus follows.

Acknowledgements The authors would like to thank the anonymous referees very much for their careful reading and helpful comments and suggestions, which improved the clarity of this work.

Conflict of interest

The authors declare that they have no conflict of interest.

References

1. Bass, R., Magnant, C., Ozeki, K., Pyron, B.: Characterizations of edge-colorings of complete graphs that forbid certain rainbow subgraphs. Manuscript.
2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, GTM 244 (2008)
3. Chen, W.Z., Ji, M., Mao, Y.P., Wei, M.Q.: Complete bipartite graphs without small rainbow stars. Discrete Appl. Math. 340, 14-20 (2023)
4. Faudree, R.J., Gould, R., Jacobson, M., Magnant, C.: Ramsey numbers in rainbow triangle free colorings. Australas. J. Combin. 46, 269-284 (2010)
5. Fox, J.: There exist graphs with super-exponential Ramsey multiplicity constant. J. Graph Theory 57, 89-98 (2008)
6. Fox, J., Grinshpun, A., Pach, J.: The Erdős-Hajnal conjecture for rainbow triangles. J. Combin. Theory Ser. B 111, 75-125 (2015)
7. Fujita, S., Magnant, C.: Extensions of Gallai-Ramsey results. J. Graph Theory 70, 404426 (2012)
8. Fujita, S., Magnant, C., Ozeki, K.: Rainbow generalizations of Ramsey theory: a dynamic survey. Theo. Appl. Graphs 0, Article 1 (2014)
9. Gyárfás, A., Lehel, J., Schelp, R.H., Tuza, Z.: Ramsey numbers for local colorings. Graphs Combin. 3, 267-277 (1987)
10. Gyárfás, A., Sárközy, G.N., Sebő, A., Selkow, A.: Ramsey-type results for Gallai colorings. J. Graph Theory 64, 233-243 (2010)
11. Li, X.H., Besse, P., Magnant, C., Wang, L.G., Watts, N.: Gallai-Ramsey numbers for rainbow paths. Graphs Combin. 36, 1163-1175 (2020)
12. Li, X.H., Broersma, H., Wang, L.G.: Extremal problems and results related to Gallaicolorings. Discrete Math. 344, 112567 (2021)
13. Li, X.H., Broersma, H., Wang, L.G.: The Erdős-Gyárfás function with respect to Gallaicolorings. J. Graph Theory 101, 242-264 (2022)
14. Li, X.H., Wang, L.G.: Monochromatic stars in rainbow K_{3}-free and S_{3}^{+}-free colorings. Discrete Math. 343, 112131 (2020)
15. Li, X.H., Wang, L.G.: Forbidden rainbow subgraphs that force large monochromatic or multicolored k-connected subgraphs. Discrete Appl. Math. 285, 18-29 (2020)
16. Li, X.H., Wang, L.G.: Gallai-Ramsey numbers for rainbow S_{3}^{+}and monochromatic paths. Discuss. Math. Graph Theory 42, 349-362 (2022)
17. Li, X.H., Wang, L.G., Liu, X.X.: Complete graphs and complete bipartite graphs without rainbow path. Discrete Math. 342, 2116-2126 (2019)
18. Liu, H., Magnant, C., Saito, A., Schiermeyer, I., Shi, Y.T.: Gallai-Ramsey number for K_{4}. J. Graph Theory 94, 192-205 (2020)
19. Magnant, C., Nowbandegani, P.S.: Topics in Gallai-Ramsey Theory. Springer, (2020)
20. Magnant, C., Schiermeyer, I.: Gallai-Ramsey number for K_{5}. J. Graph Theory 101, 455-492 (2022)
21. Mao, Y.P.: Gallai-Ramsey multiplicity. Graphs Combin. Accepted for publication.
22. McKay, B.D., Radziszowski, S.P.: Subgraph counting identities and Ramsey numbers.
J. Combin. Theory Ser. B 69, 193-209 (1997)
23. Radziszowski S.P.: Small Ramsey numbers. Electron. J. Combin., DS1 (2021)
24. Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30, 264-286 (1930)
25. Schlage-Puchta, J.C., Wagner, P.: Complete graphs with no rainbow tree. J. Graph Theory 93, 157-167 (2020)
26. Thomason, A., Wagner, P.: Complete graphs with no rainbow path. J. Graph Theory 54, 261-266 (2007)
27. Zhou, J.N., Li, Z.H., Mao, Y.P., Wei, M.Q.: Ramsey and Gallai-Ramsey numbers for the union of paths and stars. Discrete Appl. Math. 325, 297-308 (2023)
28. Zou, J.Y., Wang, Z., Lai, H.J., Mao, Y.P.: Gallai-Ramsey numbers involving a rainbow 4-path. Graphs Combin. 39, 54 (2023)

[^0]: Xueliang Li
 Center for Combinatorics, Nankai University, Tianjin 300071, China
 E-mail: lxl@nankai.edu.cn
 Yuan Si
 Center for Combinatorics, Nankai University, Tianjin 300071, China
 E-mail: yuan_si@aliyun.com

