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Abstract

In the study of a tantalizing symmetry on Catalan objects, Bóna et al. intro-
duced a family of polynomials {Wn,k(x)}n>k>0 defined by

Wn,k(x) =
k∑

m=0

wn,k,mxm,

where wn,k,m counts the number of Dyck paths of semilength n with k occurrences of
UD and m occurrences of UUD. They proposed two conjectures on the interlacing
property of these polynomials, one of which states that {Wn,k(x)}n>k is a Sturm
sequence for any fixed k > 1, and the other states that {Wn,k(x)}16k6n is a Sturm-
unimodal sequence for any fixed n > 1. In this paper, we obtain certain recurrence
relations for Wn,k(x), and further confirm their conjectures.

Mathematics Subject Classifications: 05A15, 26C10

1 Introduction

A Dyck path of semilength n in Z2 is a lattice path starting at the origin (0, 0), ending
at (2n, 0), and never going below the x-axis, whose permitted step types are up steps
U = (1, 1) and down steps D = (1,−1). It is well known that the set of Dyck paths
of semilength n is counted by the Catalan number Cn = 1

n+1

(
2n
n

)
, which is the sequence

A000108 in the On-line Encyclopedia of Integer Sequences of Sloane [13].
Numerous studies have been focused on the refinement of Catalan numbers by con-

sidering certain statistics over Dyck paths. It is easy to see that a Dyck path determines
a word in the alphabet {U,D} as one records the steps along the path from left to right.
One important class of statistics is defined by the appearance of various factors appearing
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in the word representation of Dyck paths. The most natural factor is the UD-factor,
which means that an up step is immediately followed by a down step in the Dyck path.
The number of Dyck paths of semilength n with exactly k occurrences of UD-factors is
given by the Narayana number N(n, k) = 1

n

(
n

k−1

)(
n
k

)
; see Sulanke [15]. The enumeration

of Dyck paths of semilength n with k occurrences of UUD-factors has been first stuided
by Sapounakis, Tasoulas, and Tsikouras [12]. Lin and Kim [9] introduced the segment
statistic, which is actually the UUD-factor, to study various classical statistics on re-
stricted inversion sequences. In their paper, Lin and Kim also proved that this statistic,
when applied to Dyck paths, is equidistributed with the descent statistic over the group of
(3, 2, 1)-avoiding permutations. Wang [17] developed a useful technique for computing rel-
evant generating functions for Dyck paths with different factors. For more information on
the enumeration of Dyck paths with respect to various factors, see [5, 6, 7, 10, 11, 16, 18]
and references therein.

This paper is much motivated by a recent work [1] due to Bóna et al., who first consid-
ered the joint distribution of UD-factors and UUD-factors over Dyck paths. Let wn,k,m

be the number of Dyck paths of semilength n with k UD-factors and m UUD-factors. For
these numbers wn,k,m, Bóna et al. [1] proved the following tantalizing symmetric property:

w2k+1,k,m = w2k+1,k,k+1−m, where 1 6 m 6 k.

To obtain this result, they derived the following explicit formula for the numbers wn,k,m

by using generating function techniques.

Theorem 1 ([1], Theorem 1.2). For all n, k and m, we have

wn,k,m =


1
k

(
n

k−1

)(
n−k−1
m−1

)(
k
m

)
, if 0 < m 6 k, and k +m 6 n,

1, if m = 0 and n = k,

0, otherwise.

(1)

With the above formula, Bóna et al. also noted that the numbers wn,k,m are closely re-
lated to the classical Narayana numbers, as well as to Callan’s generalization of Narayana
numbers [4].

Let Wn,k(x) be the generating polynomial of wn,k,m as given by

Wn,k(x) =
k∑

m=0

wn,k,mx
m. (2)

By (1), it is clear that degWn,k(x) = min{k, n − k} if n > k and degWn,k(x) = 0
otherwise. It turns out that these polynomials enjoy very interesting properties. Bóna et
al. [1] obtained the following result.

Theorem 2 ([1], Proposition 6.1, Theorem 6.3). For any n, k > 0 the polynomial Wn,k(x)
has only real zeros. Moreover, for all 1 6 k 6 n − 1, the polynomials Wn,k(x) and
Wn,n−k(x) have the same zeros.
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The real-rootedness of Wn,k(x) was proved by Bóna et al. [1] based on Malos result
regarding the roots of the Hadamard product of two real-rooted polynomials. It is worth
mentioning that many combinatorial polynomials have only real zeros. For excellent
surveys on this topic, we refer the readers to Stanley [14], Brenti [3], and Brändén [2]. One
useful method to prove the real-rootedness of a polynomial is to consider the interlacing
property involving its zeros.

Bóna et al. [1] further studied the interlacing property of Wn,k(x) by fixing n or k,
and proposed two interesting conjectures. Before stating these conjectures, let us recall
some related definitions following Liu and Wang [8]. Given two real-rooted polynomials
F (x) and G(x) with nonnegative real coefficients, let {αr} and {βs} be their zeros in
weakly decreasing order, respectively. We say that G(x) interlaces F (x), denoted by
G(x) 4 F (x), if degF (x) = degG(x) = n and

βn 6 αn 6 βn−1 6 αn−1 6 · · · 6 β1 6 α1,

or deg f(x) = deg g(x) + 1 = n and

αn 6 βn−1 6 αn−1 6 · · · 6 β1 6 α1.

For convenience, let a 4 bx+c for any real numbers a, b, c and F (x) 4 0, 0 4 F (x) for any
real-rooted polynomial F (x). Given a sequence {Fi(x)}i>0 of real-rooted polynomials, we
say that it is a generalized Sturm sequence if Fi(x) 4 Fi+1(x) for all i > 0. We would like
to point out that a generalized Sturm sequence is called a Sturm sequence by Bóna et al.
They also introduced the notion of Sturm-unimodal sequences. With our notation here,
a finite sequence {Fi(x)}16i6n of real-rooted polynomials is said to be Sturm-unimodal,
provided that there exists 1 6 j 6 n such that

F1(x) 4 · · · 4 Fj−1(x) 4 Fj(x) < Fj+1(x) < · · · < Fn(x).

Now the two conjectures of Bóna et al. [1] can be stated as follows.

Conjecture 3 ([1], Conjecture 6.4). For any fixed k > 1, the polynomial sequence
{Wn,k(x)}n>k is a generalized Sturm sequence.

Conjecture 4 ([1], Conjecture 6.5). For any fixed n > 1, the polynomial sequence
{Wn,k(x)}16k6n is Sturm-unimdoal.

In this paper we shall prove these two conjectures.

2 The main results

The aim of this section is to prove Conjecture 3 and Conjecture 4. In the process of proving
these two conjectures, we need the following result which provides a sufficient condition
for a polynomial sequence with three-term recurrence to be a generalized Sturm sequence.
Note that it is a special case of Liu and Wang’s criterion [8].
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Theorem 5 ([8], Corollary 2.4). Let {Fi(x)}i>0 be a sequence of polynomial with nonneg-
ative coefficients satisfying the following conditions:

1. F0(x) and F1(x) are real-rooted polynomial with F0(x) 4 F1(x).

2. degFi+1(x) = degFi(x) or degFi(x) + 1 for any i > 0.

3. There exist polynomials Aj(x) and Bj(x) with real coefficients such that

Fj+2(x) = Aj(x)Fj+1(x) +Bj(x)Fj(x). (3)

If for all x 6 0, we have Bj(x) 6 0, then {Fi(x)}i>0 is a generalized Sturm sequence.

In order to use the above theorem to prove Conjecture 3, we need to establish a
recurrence relation satisfied by the polynomials Wn,k(x) when fixing k. Let us first give a
recurrence relation of the coefficients wn,k,m for each fixed k > 1.

Lemma 6. Let wn,k,m be as given by (1). Then, for any n > k − 1 > 0, we have

wn+2,k,m =
2(n+ 2)(n− k + 1)

(n− k + 2)(n− k + 3)
wn+1,k,m −

(n+ 2)(n− 2k + 1)

(n− k + 2)(n− k + 3)
wn+1,k,m−1

+
(n+ 1)(n+ 2)(n− k)

(n− k + 2)2(n− k + 3)
(wn,k,m−1 − wn,k,m).

(4)

Proof. We may assume that 0 6 m 6 k + 1 and n > m+ k − 2, since there is nothing to
prove for m < 0, or m > k + 1, or n < m + k − 2. Moreover, it is routine to verify the
validity of (4) for m = 0 since both sides vanish under the condition n > k − 1.

If m = 1, and n > k−1, then we divide the proof of (4) into the following three cases.
Case A1: n = k − 1. We find that

wn+1,k,m = wn,k,m−1 = wn,k,m = 0 and wn+1,k,m−1 = 1

in view of (1). Thus, (4) holds since its right-hand side simplifies to
(
k+1
2

)
, which is indeed

equal to wn+2,k,m.
Case A2: n = k. In this case, the third term on the right-hand side of (4) naturally

vanishes. Note that for m = 1 we have wn+1,k,m−1 = 0 by (1). Thus, it suffices to show
that

wk+2,k,1 =
k + 2

3
wk+1,k,1,

which can be easily verified by (1).
Case A3: n > k. Keep in mind that m = 1 throughout this case. By (1) we have

wn+1,k,m−1 = wn,k,m−1 = 0. Thus, the right-hand side of (4) turns out to be

2(n+ 2)(n− k + 1)

(n− k + 2)(n− k + 3)

(
n+ 1

k − 1

)
− (n+ 1)(n+ 2)(n− k)

(n− k + 2)2(n− k + 3)

(
n

k − 1

)
=

(
n+ 2

k − 1

)
,

which is equal to wn+2,k,m, as desired.
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If m = k + 1, then wn+2,k,m = wn+1,k,m = wn,k,m = 0. The proof of (4) can be divided
into the following two cases:

Case B1: n = 2k − 1. In this case, we have wn,k,m−1 = 0 by (1). On the other hand,
the second term on the right-hand side of (4) naturally vanishes. Hence, the right-hand
side of (4) turns out to be 0, which is equal to wn+2,k,m.

Case B2: n > 2k. Substituting (1) and the condition m = k + 1 into the right-hand
side of (4) and then simplifying, we get

n+ 2

k(n− k + 2)(n− k + 3)

(
n+ 1

k − 1

)(
(n− k)

(
n− k − 1

k − 1

)
− (n− 2k + 1)

(
n− k
k − 1

))
= 0,

which is equal to wn+2,k,m, as desired.
From now on we may assume that 2 6 m 6 k. We further divide the proof of (4) into

the following three cases.
Case C1: n = m + k − 2. In this case, we have wn+1,k,m = wn,k,m−1 = wn,k,m = 0.

Now it is sufficient to show that

wn+2,k,m = − (n+ 2)(n− 2k + 1)

(n− k + 2)(n− k + 3)
wn+1,k,m−1,

which can be verified by (1).
Case C2: n = m + k − 1. For this case we have wn,k,m = 0 by (1). Substituting (1)

and the condition m = n− k + 1 into the right-hand side of (4) and then simplifying, we
obtain that

2(n− k + 1)

k(n− k + 2)

(
n+ 2

k − 1

)(
k

n− k + 1

)
+

n− k + 1

k(n− k + 2)

(
n+ 2

k − 1

)(
k

n− k + 1

)(
n− k

n− k − 1

)
=

1

k
(n− k + 1)

(
n+ 2

k − 1

)(
k

n− k + 1

)
,

which is equal to wn+2,k,m according to (1).
Case C3: n > m + k. By substituting (1) into the right-hand side of (4) and then

simplifying, we get

n− k + 1 +m

k(n− k + 2)

(
n+ 2

k − 1

)(
k

m

)(
n− k
m− 1

)
+

m

k(n− k + 2)

(
n+ 2

k − 1

)(
k

m

)(
n− k
m− 2

)
=

1

k

(
n+ 2

k − 1

)(
k

m

)(
n− k +m+ 1

n− k + 2

(
n− k
m− 1

)
+

m

n− k + 2

(
n− k
m− 2

))
=

1

k

(
n+ 2

k − 1

)(
n− k + 1

m− 1

)(
k

m

)
,

which is equal to wn+2,k,m according to (1), as desired.
Taking into account all of the above cases, we complete the proof.
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The recurrence relation (4) satisfied by the coefficients wn,k,m is equivalent to the
following recurrence relation for polynomials Wn,k(x), which plays a key role in our proof
of Conjecture 3.

Theorem 7. Fixing k > 1, for any n > k − 1 we have

Wn+2,k(x) =
(n+ 2) (2(n− k + 1)− (n− 2k + 1)x)

(n− k + 2)(n− k + 3)
Wn+1,k(x)

+
(n+ 1)(n+ 2)(n− k)(x− 1)

(n− k + 2)2(n− k + 3)
Wn,k(x).

(5)

Proof. Due to the fact that degWn,k(x) = min{k, n − k}, it suffices to compare the
coefficients of xm for 0 6 m 6 k. For the right-hand side of (5), the coefficient of xm is

2(n+ 2)(n− k + 1)

(n− k + 2)(n− k + 3)
wn+1,k,m −

(n+ 2)(n− 2k + 1)

(n− k + 2)(n− k + 3)
wn+1,k,m−1

+
(n+ 1)(n+ 2)(n− k)

(n− k + 2)2(n− k + 3)
(wn,k,m−1 − wn,k,m),

which is equal to wn+2,k,m by (4). This is just the coefficient of xm on the left-hand side
of (5). The proof is complete.

We proceed to prove Conjecture 3. Using Theorem 7 and Theorem 5, we obtain the
first main result of this section.

Theorem 8. For any fixed k > 1, the polynomial sequence {Wn,k(x)}n>k is a generalized
Sturm sequence.

Proof. Taking Fi(x) in Theorem 5 to be the polynomial Wk+i,k(x) for each i > 0, it is
clear that each Fi(x) is a polynomial with nonnegative coefficients. By (1) and (2), we
have degFi(x) = i if i 6 k and degFi(x) = k otherwise. Note that

F0(x) = Wk,k(x) = 1, F1(x) = Wk+1,k(x) =

(
k + 1

k − 1

)
x,

and hence F0(x) 4 F1(x). Now the recurrence relation (5) can be restated as in the
form (3) with

Aj(x) =
(k + j + 2)

(j + 2)(j + 3)
(2(j + 1)− (j − k + 1)x) ,

and

Bj(x) =
(k + j + 1)(k + j + 2)j

(j + 2)2(j + 3)
(x− 1).

Clearly, for any j > 0 and x 6 0, we have Bj(x) 6 0. From Theorem 5 it follows that the
sequence {Fi(x)}i>0, and hence {Wn,k(x)}n>k, is a generalized Sturm sequence.
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In order to prove Conjecture 4, we present the following recurrence relation of the
coefficients wn,k,m for each fixed n > 1.

Lemma 9. Let wn,k,m be as given by (1). Then, for any 1 6 k 6 bn+1
2
c − 2, we have

wn,k+2,m = a(n, k)wn,k+1,m−1 + b(n, k)wn,k+1,m − c(n, k)wn,k,m, (6)

where 

a(n, k) =
(n− k)(n− 2k − 2)(n− 2k − 3)

(k + 1)(k + 2)(n− k − 2)
,

b(n, k) =
2(n− k)(n− k − 1)(n− 2k − 2)

(k + 2)(n− k − 2)(n− 2k − 1)
,

c(n, k) =
(n− k + 1)(n− k)2(n− 2k − 3)

(k + 1)(k + 2)(n− k − 2)(n− 2k − 1)
.

Proof. By similar arguments as in the proof of Lemma 6, we may assume that 1 6 m 6 k,
and hence 2 6 m+ k 6 n− 2 by the condition 1 6 k 6 bn+1

2
c − 2.

If m = 1, then we have wn,k+1,m−1 = 0 by (1), and the right-hand side of (6) turns out
to be

b(n, k)

(
n

k

)
− c(n, k)

(
n

k − 1

)
=

(
n

k + 1

)
= wn,k+2,m,

as desired.
The proof for the case of 2 6 m 6 k is very similar to that of Case B3 in the proof of

Lemma 6, and is omitted here.

Fixing an integer n > 1, the above lemma immediately leads to a recurrence relation
for the polynomial sequence {Wn,k(x)}16k6bn+1

2
c.

Theorem 10. Let a(n, k), b(n, k) and c(n, k) be as given in Lemma 9. Then, for any
1 6 k 6 bn+1

2
c − 2, we have

Wn,k+2(x) = (a(n, k)x+ b(n, k))Wn,k+1(x)− c(n, k)Wn,k(x). (7)

Proof. The desired recurrence immediately follows by comparing the coefficients of xm on
both sides of (7) for each m and then using (6).

Based on the recurrence relation (7) and Theorem 5, we obtain the following result,
which provides an affirmative answer to Conjecture 4.

Theorem 11. For any fixed n > 1, the polynomial sequence {Wn,k(x)}16k6n is Sturm-
unimodal.

Proof. By (1) and (2), one can check that

Wn,n(x) = 1, for n > 1,

Wn,1(x) = x, for n > 2,

Wn,2(x) =
n

2

(
2x+ (n− 3)x2

)
, for n > 3.

(8)
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Thus we always have Wn,n−1(x) < Wn,n(x) by convention. On the other hand, Theorem 2
implies that Wn,k(x) 4 Wn,k+1(x) if and only if Wn,n−k−1(x) < Wn,n−k(x) for any 1 6 k 6
bn+1

2
c. Therefore, it suffices to show that the polynomial sequence {Wn,k(x)}16k6bn+1

2
c is

a generalized Sturm sequence. For 1 6 n 6 5 this can be directly verified by (8).
Now suppose that n > 6 for the remainder of the proof. For 0 6 i 6 bn+1

2
c − 1, take

each Fi(x) in Theorem 5 to be the polynomial Wn,i+1(x). Clearly, Fi(x) is a polynomial
with nonnegative coefficients. By (1) and (2), we have

degFi(x) =


i+ 1, if 0 6 i 6 bn+1

2
c − 2,

i+ 1, if n is even and i = bn+1
2
c − 1,

i, if n is odd and i = bn+1
2
c − 1.

(9)

It is also clear that F0(x) 4 F1(x). Now the recurrence relation (7) can be restated as in
the form (3) with

Aj(x) =
(n− j − 1)(n− 2j − 4)(n− 2j − 5)

(j + 2)(j + 3)(n− j − 3)
x+

2(n− j − 1)(n− j − 2)(n− 2j − 4)

(i+ 3)(n− j − 3)(n− 2j − 3)
,

and

Bj(x) = − (n− j)(n− j − 1)2(n− 2j − 5)

(j + 2)(j + 3)(n− j − 3)(n− 2j − 3)
6 0

for any 0 6 j 6 bn+1
2
c − 3. We conclude from Theorem 5 that the polynomial sequence

{Fi(x)}06i6bn+1
2
c−1, and hence {Wn,k(x)}16k6bn+1

2
c, is a generalized Sturm sequence. This

completes the proof.

Remark 12. Theorem 11 (namely, Conjecture 4) can also be proved by using the recurrence
relation

Wn,k(x) =
(n− k + 2)(n− k + 1) ((n− 2k + 1)x+ k − 1)

(n− k)k(k − 1)
Wn,k−1(x)

− (n− k + 2)(n− 2k + 1)(x− 1)x

(n− k)k(k − 1)
W ′

n,k−1(x),

together with the original form of Theorem 5 in [8]. This proof is similar to the above
proof, so we omit it here.

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities
and the National Science Foundation of China (Grant No. 11971249). The authors thank
the reviewers for their valuable suggestions on this paper.

the electronic journal of combinatorics 31(1) (2024), #P1.63 8



References
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