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Abstract

Let G be a graph and di be the degree of a vertex vi in G. For a symmetric

real function f(x, y), one can get an edge-weighted graph in such a way that

for each edge vivj of G, the weight of vivj is assigned by f(di, dj). Hence, we

have a weighted adjacency matrix Af (G) of G, in which the ij-entry is equal

to f(di, dj) if vivj ∈ E(G) and 0 otherwise. In this paper, we use a unified

approach to deal with the spectral properties of Af (G) for f(x, y) to be the

functions of graphical or topological function-indices. Firstly, we obtain uni-

form interlacing inequalities for the weighted adjacency eigenvalues. For the

edge-weight functions defined by almost a half of popularly used topological

indices, it can be shown that our inequalities cannot be improved. Second-

ly, we establish a uniform equivalent condition for a connected graph G to

have m distinct weighted adjacency eigenvalues. As an application, a combi-

natorial characterization for a graph to have two and three distinct weighted

adjacency eigenvalues are presented, respectively. Moreover, bipartite graphs

and unicyclic graphs with three distinct weighted adjacency eigenvalues are

characterized. This paper attempts to unify the spectral study for weighted

adjacency matrices of graphs with degree-based edge-weights.

Keywords: degree-based edge-weight, weighted adjacency matrix (eigenval-

ue); topological function index; interlacing inequality

AMS subject classification 2020: 05C50, 05C92, 05C09.

∗Supported by NSFC No.12131013 and 12161141006.

1



1 Introduction

All graphs considered in this paper are simple, finite and undirected. For notation

and terminology not defined here, we refer to [8]. Let G = (V (G), E(G)) be a graph

with vertex-set V (G) = {v1, v2, . . . , vn} and edge-set E(G). We use G + e to denote

the graph obtained from G by adding an edge e. Denote by di the degree of a

vertex vi in G. NG(vi) denotes the set of neighbors of a vertex vi in G, and let

NG[vi] = NG(vi) ∪ {vi}. If the vertex-set V (G) of G admits a partition into two

classes and the two ends of its every edge are in different classes, then G is a bipartite

graph. The complete bipartite graph denoted by Ks,t, where s + t = n. A unicyclic

graph is a connected graph such that the number of its vertices is equal to the number

of its edges. As usual, we denote by Kn, Pn, Cn and Sn, respectively, the complete

graph, the path, the cycle and the star of order n.

In molecular graph theory, graphical or topological indices are used to represent

the structural properties of molecular graphs. The general form of these indices is∑
vivj∈E(G)

f(di, dj), where f(x, y) is a symmetric real function, called the edge-weight

function, and f(di, dj) is the edge-weight of an edge vivj of G. Gutman [12] col-

lected many significant degree-based indices; see them in Table 1. Rada [23] gave

the exponentials of the well-studied degree-based indices to study the discrimination

property; see them in Table 2. If we sum up the edge-weights in a molecular graph

with edge-weights defined by the function f(x, y), then each index maps a molecular

graph into a single number.

In spectral graph theory, there are many researches on matrices associated with a

graphG. Because matrices are connected with the structure of a molecular graph with

edge-weights separately on its pairs of adjacent vertices, using a matrix to represent

graph keeps much more structural information than just a single number, the value

of an index. So, the algebraic properties of these structural matrices need intensively

study. In 2015, one of the authors Li first proposed this idea in [17]. Up to now,

there are various studies on matrices defined by topological indices from algebraic

viewpoint, such as the misbalance degree (Albertson) matrix [10], inverse sum indeg

matrix [1], ABC matrix [5], Radić matrix [19], AG matrix [24], Zagreb matrix [22]

and GA matrix [25]. From the study of these matrices, a lot of interesting properties

of graphs are reflected.

In 2018, Das et al. [9] gave the definition of the weighted adjacency matrix for a

graph with degree-based edge-weights formally. Let Af (G) be the weighted adjacency
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Edge-weight function f(x,y) The corresponding index

x+ y first Zagreb index

xy second Zagreb index

(x+ y)2 first hyper-Zagreb index

(xy)2 second hyper-Zagreb index

x−3 + y−3 modified first Zagreb index

|x− y| Albertson index

(x/y + y/x)/2 extended index

(x− y)2 sigma index

1/
√
xy Randić index

√
xy reciprocal Randić index

1/
√
x+ y sum-connectivity index

√
x+ y reciprocal sum-connectivity index

2/(x+ y) harmonic index√
(x+ y − 2)/(xy) atom-bond-connectivity (ABC) index

(xy/(x+ y − 2))3 augmented Zagreb index

x2 + y2 forgotten index

x−2 + y−2 inverse degree

2
√
xy/(x+ y) geometric-arithmetic (GA) index

(x+ y)/(2
√
xy) arithmetic-geometric (AG) index

xy/(x+ y) inverse sum index

x+ y + xy first Gourava index

(x+ y)xy second Gourava index

(x+ y + xy)2 first hyper-Gourava index

((x+ y)xy)2 second hyper-Gourava index

1/
√
x+ y + xy sum-connectivity Gourava index√
(x+ y)xy product-connectivity Gourava index√
x2 + y2 Sombor index

Table 1: Some well-studied chemical indices

3



Edge-weight function f(x,y) The corresponding index

ex+y exponential first Zagreb index

exy exponential second Zagreb index

e1/
√
xy exponential Randić index

e
√

(x+y−2)/(xy) exponential ABC index

e2
√
xy/(x+y) exponential GA index

e2/(x+y) exponential harmonic index

e1/
√
x+y exponential sum-connectivity index

e(xy/(x+y−2))3 exponential augmented Zagreb index

Table 2: Some well-known exponential chemical indices

matrix of a graph G with edge-weight function f(x, y), whose ij-entry is

(Af (G))ij =

{ f(di, dj) if vivj ∈ E(G),

0 otherwise.

Given an index, we can define the corresponding weighted adjacency matrix of a

graph edge-weighted by the edge-weight function f(x, y) of the index. As we can see,

although the matrix Af (G) was proposed in a general setting, matrix for a concrete

graphical or topological index with function f(x, y) was studied still one by one

separately. This means that the introduce of the general weighted adjacency matrix

Af (G) has no significance. In 2021, Li and Wang [18] studied the extremal spectral

radius of the weighted adjacency matrices Af (G) for a general function f(x, y). The

extremal spectral radius of weighted adjacency matrices among trees were obtained,

when the edge-weight function f(x, y) has some functional properties. This is a good

beginning of the study of spectral properties by function classification, and there are

still a lot of properties of Af (G) waiting to be explored in the future when f(x, y)

has some functional properties. This will eventually unify the approaches for spectral

properties of the weighted adjacency matrices of a graph edge-weighted by the edge-

weight function f(x, y) of graphical or topological indices.

The eigenvalues of Af (G) are called the weighted adjacency eigenvalues of a graph

G with edge-weight function f(x, y). Because G is undirected with a symmetric real

function f(x, y), Af (G) is a real symmetric matrix, and therefore all its eigenvalues

are real numbers. Let

λmax = λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn = λmin (1.1)
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be the weighted adjacency eigenvalues of G with order n. If f(x, y) ≡ 1, then the

adjacency matrix of G is simply denoted by A(G). For two graphs G and H, if

λi+1(Af (H)) ≤ λi(Af (G)) ≤ λi(Af (H)) (1.2)

for all i, then we say that the eigenvalues of Af (G) interlace the eigenvalues of Af (H).

From the interlacing property, it clearly shows that the relation between the eigen-

values of Af (G) and Af (H). If

λi+1(Af (H)) ≤ λi(Af (G)) ≤ λi−1(Af (H)) (1.3)

for all i, we say that the eigenvalues of Af (G) and the eigenvalues of Af (H) are com-

patible. This means thatmax{λi(Af (G)), λi(Af (H))} ≤ min{λi−1(Af (G)), λi−1(Af (H))}.
It is easily seen that the interlacing property implies the compatible property, but

the converse is not true in general. As is well-known, the interlacing property and

compatible property are very popular and important properties for adjacency ma-

trix A(G). It is worth mentioning that Chudnovsky and Seymour in [7] proved that

all the roots of the independence polynomial are real if G is clawfree, by using the

compatible property. For a survey of interlacing results, we refer to Haemers [13].

Besides the study of the adjacency matrix A(G), Butler [4] got the interlacing results

for weighted graphs. In this paper, we first focus on a very familiar conclusion from

[14] about the interlacing of eigenvalues as follows.

Theorem 1.1 Let G be a graph of order n. The adjacency matrices of G and G+ e

are denoted by A(G) and A(G+ e), respectively. Then

λi+1(A(G)) ≤ λi(A(G+ e)) ≤ λi−1(A(G)), (2 ≤ i ≤ n− 1).

From this result, we can say that the eigenvalues of A(G) and the eigenvalues of

A(G + e) are compatible. A natural question is whether this property keeps to be

true in general for weighted adjacency matrices of graphs with degree-based edge-

weight function f(x, y). Unfortunately, that is not the case. For example, if f(x, y)

is the edge-weight function for the Albertson index (see Table 1), then the weighted

adjacency eigenvalues of the graphs H1 and H1 + e in Figure 1 are 4, 0, 0, 0,−4 and

3.6334, 1,−0.7685,−1,−2.8649, respectively. One can easily check that λ4(Af (H1)) =

0 > λ3(Af (H1 + e)) = −0.7685. Moreover, if f(x, y) is the edge-weight function for

the second hyper-Zagreb index, then the weighted adjacency eigenvalues of Af (K4 −
e) and Af (K4) are 123.1090, 0,−42.1090,−81 and 243,−81,−81,−81, respectively.

We then have λ3(Af (K4 − e)) = −42.1090 > λ2(Af (K4)) = −81. One can also

find that for many edge-weight functions f(x, y) in Table 1, there exist graphs such
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Figure 1: Graphs H1 and H1 + e.

that their weighted eigenvalues are not compatible and therefore not interlacing. In

the following paragraphs, we study interlacing results for the weighted adjacency

eigenvalues from the following three aspects.

(i) For the edge-weight functions f ∗(x, y) = ((x+y−α)/xy)β or the corresponding

exponential forms, where 2 ≤ α ≤ 2n−2 and β is a real number, the interlacing

result in Theorem 1.1 for weighted adjacency matrices Af (G) and Af (G + e)

keeps to be true.

(ii) For all functions f(x, y) and the weighted adjacency matrices Af (G) and Af (G+

e), we have λi+2(Af (G)) ≤ λi(Af (G+ e)) ≤ λi−2(Af (G)) with 3 ≤ i ≤ n− 2.

(iii) For functions f(x, y) of almost a half of the topological indices in Tables 1 and

2, we can not improve the gap in (ii).

Another question we are interested in this paper is the weighted adjacency matrix

Af (G) which have fewer distinct eigenvalues. This problem has been extensively

considered for the adjacency matrix A(G), for which we refer to [3, 6, 20, 26]. In fact,

for individual weighted adjacency matrix with fewer distinct eigenvalues, studies have

been done one by one matrix separately, such as the ABC matrix [5], Randić matrix

[19], GA matrix [21] and AG matrix [24]. In the following paragraphs, we give a

unified approach for the weighted adjacency matrix Af (G) to have fewer distinct

eigenvalues, which covers the weighted adjacency matrices defined by nearly all of

the topological indices in Tables 1 and 2.

The structure of this paper is arranged as follows. In the next section, we introduce

some necessary notation and terminology and list several previous known results

that will be used in the subsequent sections. In Section 3, we first establish some

interlacing results for the eigenvalues of the weighted adjacency matrices Af (G) and

Af (G + e). The interlacing result in Theorem 3.3 is good enough for the weighted

adjacency matrices defined by almost a half of the indices listed in Tables 1 and

2. Second, if f(di, dj) > 0 (this is almost always the case) for each edge vivj ∈
E(G), we get an equivalent condition for a connected graph to have m (2 ≤ m ≤
n) distinct weighted adjacency eigenvalues. As an application, we give a uniform
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combinatorial characterization for a graph to have two and three distinct weighted

adjacency eigenvalues, respectively. More generally, bipartite graphs and unicyclic

graphs with three distinct weighted adjacency eigenvalues are also characterized,

respectively.

2 Preliminaries

First, we have some results that will be used in the sequel. An n × n complex

square matrixM is called Hermitian ifM∗ = M , whereM∗ is the conjugate transpose

of M . In 1912, Weyl [27] stated a very useful result.

Lemma 2.1 ([27]) Let M ,N be Hermitian matrices of order n, and let the respective

eigenvalues of M , N , and M +N be {ρi(M)}ni=1, {ρi(N)}ni=1, and {ρi(M +N)}ni=1,

each algebraically ordered as in (1.1). Then

ρi(M +N) ≤ ρj(M) + ρi−j+1(N), (1 ≤ j ≤ i ≤ n). (2.1)

Also,

ρj(M) + ρi−j+n(N) ≤ ρi(M +N), (1 ≤ i ≤ j ≤ n). (2.2)

This is the root of a great many inequalities involving the sum of two Hermitian

matrices and their eigenvalues, for which we refer to Section 3 of Chapter 4 in [15].

Suppose M is an n × n real matrix. If P (M) = 0, then the polynomial P (t) is

said to annihilate M . The Hamilton-Caylay theorem guarantees that for a matrix

M there is a monic polynomial PM(t) of degree n (the characteristic polynomial)

such that PM(t) = 0. The unique monic polynomial p(t) of minimum degree that

annihilates M is called the minimal polynomial of M .

Lemma 2.2 ([16]) Let M be an n × n real symmetric matrix. Then the minimal

polynomial of M can be written as

p(t) =
m∏
i=1

(t− ti),

where t1, t2, . . . , tm are the distinct eigenvalues of M .

An n × n real matrix M is called nonnegative if its every entry is nonnegative.

We say that M is irreducible if it is not the 1 × 1 matrix [0] and if there does not
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exist a permutation matrix N (a matrix with 1 in every row and column, and 0 for

all other entries) such that

NMN−1 =

(
M11 M12

0 M22

)
,

where 0 denotes the zero matrix, M11 and M22 are square matrices of size greater

than zero. We now state the famous Perron–Frobenius theorem.

Lemma 2.3 ([8]) Let M be a nonnegative irreducible square matrix. Then the

largest eigenvalue ρ1(M) is simple, with a corresponding eigenvector whose entries

are all positive.

Suppose the rows and columns of

M =


M11 M12 . . . M1m

M21 M22 . . . M2m

...
...

. . .
...

Mm1 Mm2 . . . Mmm


are partitioned according to a partitioning X1, X2, . . . , Xm of {1, 2, . . . , n}. The quo-
tient matrix is the matrix B whose entries are the average row sums of the blocks of

M . The partition is called equitable if each block Mij of M has a constant row sum.

Lemma 2.4 ([28]) Let B be the equitable quotient matrix of M . The respective

eigenvalues of B and M be {ρi(B)}mi=1 and {ρi(M)}ni=1. Then

{ρ1(B), ρ2(B), . . . , ρm(B)} ⊆ {ρ1(M), ρ2(M), . . . , ρn(M)}.

Lemma 2.5 ([15]) Let M , N be nonnegative matrices of order n. If C = M − N

is a nonnegative matrix, then ρ1(M) ≥ ρ1(N).

3 Main results

In this section, we first investigate the interlacing inequalities for weighted adja-

cency eigenvalues. Because the eigenvalues of A(G) and the eigenvalues of A(G+ e)

are compatible, we study if the same property holds for some general weighted adja-

cency matrix Af (G).

Nowadays, the study of graphical or topological indices is not only limited to a

single index. For instance, to investigate the discrimination property, Rada [23] intro-

duced the exponentials of the best known degree-based topological indices. From one
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index, one can get some similar indices. In 1998, Bollobás and Erdös [2] generalized

the Randić index to general Randić index, which is defined as Rα =
∑

vivj∈E(G)

(didj)
α,

where α is a nonzero real number. In 2010, Zhou and Trinajstić [29] gave the general

sum-connectivity index χα =
∑

vivj∈E(G)

(di + dj)
α. In the same year, Furtula et al. [11]

introduced the generalized ABC index ABCα =
∑

vivj∈E(G)

(
di+dj−2

didj
)α. Here we consid-

er edge-weight function f ∗(x, y) = ((x + y − α)/xy)β, where 2 ≤ α ≤ 2n − 2 and

β is a real number. One can see that f ∗(x, y) has some good functional properties.

For example, when x = α, we get f ∗(α, y) = (1/α)β. This means that f ∗(α, y) is a

constant, no matter what y is. Besides, if β > 0 and the two numbers x, y satisfy

x+ y = α, then f ∗(x, y) = 0. Now, the first theorem of this section is given below.

Theorem 3.1 Let G be a graph of order n and the edge-weight function f ∗(x, y) =

((x+ y − α)/xy)β, where 2 ≤ α ≤ 2n− 2 and β is a real number. Adding an edge e

between v1 and v2 yields a graph G+ e. For each vertex vi ∈ NG(v2), the degree of vi

is equal to α. Then

λi+1(Af∗(G)) ≤ λi(Af∗(G+ e)) ≤ λi−1(Af∗(G)), (2 ≤ i ≤ n− 1). (3.1)

Proof. If we add an edge e between v1 and v2, then the degrees of v1 and v2 in the

graph G will be changed. By properly labelling the vertices of G, we can get a matrix

B = Af∗(G+ e)− Af∗(G) to be written as follows:

B =


0 x1 x2 . . . xn−1

x1 0 y1 . . . yn−2

x2 y1 0 . . . 0
...

...
...

. . .
...

xn−1 yn−2 0 . . . 0

 ,

where xi and yj are real numbers, 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n−2. Since the degrees

of the neighbors of v2 are α, we have f ∗(d2, dj) = f ∗(d2 + 1, dj) for each vertex vj

adjacent to v2. Hence we claim that yj = 0 for 1 ≤ j ≤ n − 2. By calculating, we

have det(ρI − B) = ρn−2(ρ2 − (x2
1 + x2

2 + · · · + x2
n−1)), and so the eigenvalues of B

are ρn(B) = −
√
x2
1 + x2

2 + · · ·+ x2
n−1, ρ1(B) =

√
x2
1 + x2

2 + · · ·+ x2
n−1 and ρ2(B) =

ρ3(B) = · · · = ρn−1(B) = 0.

Because Af∗(G) and B are real symmetric matrices, by Lemma 2.1 we can get

λi+1(Af∗(G)) ≤ λi(Af∗(G+ e)) ≤ λi−1(Af∗(G)).

Hence the theorem holds. �
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It is not difficult to see that Theorem 3.1 is suitable for weighted adjacency ma-

trices Af (G) defined by the edge-weight functions f(x, y) from the ABC index, aug-

mented Zagreb index, exponential ABC index, exponential augmented Zagreb index

and generalized ABC index.

We already knew that, for two graphs G and H, if the eigenvalues of Af (G)

interlace the eigenvalues of Af (H), then the eigenvalues of Af (G) and Af (H) are

compatible. But the converse may not be true. For adjacency matrix, the eigenvalues

of A(G) can not interlace the eigenvalues of A(G + e), that is, Inequality (1.2) does

not hold for all i, because there is no graph G such that A(G) and A(G + e) with

the same eigenvalues. However, for the weighted adjacency matrices, we can get a

theorem as below.

Theorem 3.2 Let G be a graph of order n and the edge-weight function f ∗(x, y) =

((x+ y − α)/xy)β, where 2 ≤ α ≤ 2n− 2 and β is a real number. Adding an edge e

between v1 and v2 yields graph G+ e. If the following statements hold:

(i) β > 0;

(ii) d1 + d2 = α− 2;

(iii) ∀ vi ∈ NG(v1) ∪NG(v2), di = α,

then

λi+1(Af∗(G)) ≤ λi(Af∗(G+ e)) ≤ λi(Af∗(G)), (1 ≤ i ≤ n− 1). (3.2)

Moreover, the eigenvalues of Af∗(G) are the same as the eigenvalues of Af∗(G+e).

Proof. From the proof of Theorem 3.1, we can conclude that xi and yj are equal to

zero for 2 ≤ i ≤ n−1 and 1 ≤ j ≤ n−2, since the degrees of the neighbors of v1 and v2

are α. In addition, when β > 0 and d1+d2+2 = α, we have x1 = f ∗(d1+1, d2+1) = 0.

Hence, matrix B = Af∗(G + e)− Af∗(G) = 0. The required result is thus obtained.

�

Similarly, Theorem 3.2 is true when the edge-weight function f(x, y) is the ABC

index, augmented Zagreb index or generalized ABC index.

From Theorems 3.1 and 3.2, the degree of the vertex vi ∈ NG[v1] ∪ NG[v2] has

some restrictions. In other words, when adding an edge e to a graph G, we need to

consider where to insert it to get the desired result. If we do not care about where to

add an edge e, and what the edge-weight function is, then the following conclusion

can be obtained.
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Theorem 3.3 Let G be a graph of order n. Then for any symmetric real function

f(x, y),

λi+2(Af (G)) ≤ λi(Af (G+ e)) ≤ λi−2(Af (G)), (3 ≤ i ≤ n− 2). (3.3)

Proof. Let B = Af (G+ e)−Af (G) be the matrix written as in the proof of Theorem

3.1. We assume that B = B1 +B2, where

B1 =


0 x1 x2 . . . xn−1

x1 0 0 . . . 0

x2 0 0 . . . 0
...

...
...

. . .
...

xn−1 0 0 . . . 0

 , B2 =


0 0 0 . . . 0

0 0 y1 . . . yn−2

0 y1 0 . . . 0
...

...
...

. . .
...

0 yn−2 0 . . . 0

 .

By calculating, we have det(ρI −B1) = ρn−2(ρ2 − (x2
1 + x2

2 + · · ·+ x2
n−1)), and so the

eigenvalues ofB1 are ρn(B1) = −
√

x2
1 + x2

2 + · · ·+ x2
n−1, ρ1(B1) =

√
x2
1 + x2

2 + · · ·+ x2
n−1

and ρ2(B1) = ρ3(B1) = · · · = ρn−1(B1) = 0. In the same way, we can get that the

eigenvalues ofB2 are ρn(B2) = −
√

y21 + y22 + · · ·+ y2n−2, ρ1(B2) =
√

y21 + y22 + · · ·+ y2n−2

and ρ2(B2) = ρ3(B2) = · · · = ρn−1(B2) = 0.

Since Af (G) and B are real symmetric matrices, using Lemma 2.1 we can obtain

that

λi+2(Af (G)) ≤ λi+1(Af (G)+B1) ≤ λi(Af (G+e)) ≤ λi−1(Af (G)+B1) ≤ λi−2(Af (G)).

The proof is thus complete. �

Theorem 3.3 holds for all weighted adjacency matrices Af (G) and Af (G + e).

In addition, this result shows that in the interval [λi+2(Af (G)), λi−2(Af (G))] we can

find the eigenvalue λi(Af (G + e)), that is, the change between λi(Af (G + e)) and

λi(Af (G)) may be at a small value when an edge e is added in a graph G. A vertex

of degree 0 is called isolated. Using Theorem 3.3, the following result can be obtained

directly.

Corollary 3.4 Let G be a graph of order n, and v2 be an isolated vertex of G. Adding

an edge e between v1 and v2 yields the graph G + e. Then for any symmetric real

function f(x, y),

λi+1(Af (G)) ≤ λi(Af (G+ e)) ≤ λi−1(Af (G)), (2 ≤ i ≤ n− 1).

For the weighted adjacency matrices Af (G) and Af (G+e), Corollary 3.4 is always

true. However, in Theorem 3.3 we are unable to improve the gap for many degree-

based edge-weighted functions f(x, y) when we add the edge e to G arbitrarily. The

following result is given to support our point of view.
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Theorem 3.5 Let G be a graph of order n and the edge-weighted function f(x, y) be

a symmetric polynomial with nonnegative coefficients and zero constant term. Then

there exist graphs G and G+ e that do not have the property that

λi+1(Af (G)) ≤ λi(Af (G+ e)) ≤ λi−1(Af (G)), (2 ≤ i ≤ n− 1).

Proof. Firstly, we assume thatG+e = Kn. SinceKn is a regular graph, it is easy to see

that Af (Kn) = f(n−1, n−1)A(Kn), and hence λi(Af (Kn)) = f(n−1, n−1)λi(A(Kn))

for 1 ≤ i ≤ n. That is, λ1(Af (Kn)) = f(n − 1, n − 1)(n − 1), λ2(Af (Kn)) =

λ3(Af (Kn)) = · · · = λn(Af (Kn)) = −f(n−1, n−1). Now, we consider the eigenvalues

of Af (G), where G = Kn − e. By properly labelling the vertices of G, we can get

Af (G) =



0 0 f(n− 1, n− 2) . . . f(n− 1, n− 2)

0 0 f(n− 1, n− 2) . . . f(n− 1, n− 2)

f(n− 1, n− 2) f(n− 1, n− 2) 0 . . . f(n− 1, n− 1)

f(n− 1, n− 2) f(n− 1, n− 2) f(n− 1, n− 1) . . . f(n− 1, n− 1)
...

...
...

. . .
...

f(n− 1, n− 2) f(n− 1, n− 2) f(n− 1, n− 1) . . . 0


.

For 1 ≤ i ≤ n − 3, let xi = (0, 0, 1, xi4, xi5, . . . , xin)
T be the vector such that

xij = −1 if j− i = 3 and 0 otherwise. Suppose x1, x2, . . . , xn−3 are linearly dependent

vectors. Then there exist real numbers c1, c2, . . . , cn−3 not all zero, such that

c1x1 + c2x2 + · · ·+ cn−3xn−3 = o,

where o denotes the zero vector. This implies that

(0, 0,
n−3∑
i=1

ci,−c1,−c2, · · · ,−cn−3) = o,

and it follows that c1 = c2 = · · · = cn−3 = 0. Therefore, the vectors x1, x2, . . . , xn−3

can not be linearly dependent. It is not difficult to verify that

Af (G)xi = −f(n− 1, n− 1)xi, (1 ≤ i ≤ n− 3).

So, x1, x2, . . . , xn−3 are the eigenvectors of Af (G) corresponding to the eigenvalue

−f(n − 1, n − 1). From a partition of V (G), the remaining eigenvalues of Af (G)

can be obtained. Let X1 = {v1}, X2 = {v2} and X3 = {v3, v4, . . . , vn}. Then the

quotient matrix B of the matrix Af (G) is

B =

 0 0 (n− 2)f(n− 1, n− 2)

0 0 (n− 2)f(n− 1, n− 2)

f(n− 1, n− 2) f(n− 1, n− 2) (n− 3)f(n− 1, n− 1)

 .

12



Because each block of Af (G) has a constant row sum, this partition is equitable. By

Lemma 2.4, the eigenvalues of B are the eigenvalues of Af (G). By calculating, we

have det(ρI − B) = ρ(ρ2 − (n − 3)f(n − 1, n − 1)ρ − 2f 2(n − 1, n − 2)(n − 2)), and

so the eigenvalues of B are (n−3)f(n−1,n−1)+((n−3)2f2(n−1,n−1)+8f2(n−1,n−2)(n−2))1/2

2
, 0 and

(n−3)f(n−1,n−1)−((n−3)2f2(n−1,n−1)+8f2(n−1,n−2)(n−2))1/2

2
.

Recalling that the edge-weighted function f(x, y) is a symmetric polynomial, each

term of f(x, y) has three different types: (xy)α, xβ + yβ and (xy)γ(xξ + yξ), where

α, β, γ and ξ are nonnegative integers.

Now, we show that the following inequality

(n0 − 3)f(n0 − 1, n0 − 1)− ((n0 − 3)2f 2(n0 − 1, n0 − 1) + 8f 2(n0 − 1, n0 − 2)(n0 − 2))1/2

2

> −f(n0 − 1, n0 − 1)

holds for some of the integers n0, if the polynomial f(x, y) does not contain the term

x+y. Actually, by proper simplification, we only need to show that f2(n0−1,n0−1)
f2(n0−1,n0−2)

> 2,

for some of the integers n0.

Since
((n0 − 1)(n0 − 1))α

((n0 − 1)(n0 − 2))α
=

(n0 − 1)α

(n0 − 2)α
= (1 +

1

n0 − 2
)α,

we can get (1 + 1
n0−2

)2α > 2, when n0 <
1

2
1
2α−1

+ 2. Besides

(n0 − 1)β + (n0 − 1)β

(n0 − 1)β + (n0 − 2)β
=

2

1 + (n0−2
n0−1

)β
,

it is not difficult to obtain ( 2

1+(
n0−2
n0−1

)β
)2 > 2, when n0 <

1

1−(
√
2−1)

1
β
+ 1. In particular,

we assume β > 1. Let us consider the term of third type: (xy)γ(xξ + yξ) with γ > 1

and ξ > 1. Because n0−2
n0−1

< 1, we have ( 2

1+(
n0−2
n0−1

)β
)2 > 1. We can see that inequality

(
((n0 − 1)(n0 − 1))α((n0 − 1)β + (n0 − 1)β)

((n0 − 1)(n0 − 2))α((n0 − 1)β + (n0 − 2)β)

)2

=
(n0 − 1)2α

(n0 − 2)2α

(
2

1 + (n0−2
n0−1

)β

)2

> 2

is true for n0 <
1

2
1
2α−1

+ 2.

It is important to note that if we let f1(x, y) and f2(x, y) be two symmetric

polynomials, n1 and n2 be two integers, such that
f2
1 (n1−1,n1−1)

f2
1 (n1−1,n1−2)

> 2 and
f2
2 (n2−1,n2−1)

f2
2 (n2−1,n2−2)

>

13



2, then we can claim that

(f1(n0 − 1, n0 − 1) + f2(n0 − 1, n0 − 1))2

(f1(n0 − 1, n0 − 2) + f2(n0 − 1, n0 − 2))2

>
(
√
2f1(n0 − 1, n0 − 2) +

√
2f2(n0 − 1, n0 − 2))2

(f1(n0 − 1, n0 − 2) + f2(n0 − 1, n0 − 2))2
= 2,

for some of the integers n0.

Up to now, the proof of the inequality

(n0 − 3)f(n0 − 1, n0 − 1)− ((n0 − 3)2f 2(n0 − 1, n0 − 1) + 8f 2(n0 − 1, n0 − 2)(n0 − 2))1/2

2

> −f(n0 − 1, n0 − 1)

is finished for certain integer n0, when the polynomial function f(x, y) does not

contain the term x+ y. This means that

λ3(Af (G)) > λ2(Af (G+ e)).

Thus the eigenvalues of Af (G) and Af (G+ e) can not have the property that

λi+1(Af (G)) ≤ λi(Af (G+ e)) ≤ λi−1(Af (G))

for 2 ≤ i ≤ n− 1.

Next, we can also find graphs G and G+e, such that the eigenvalues of Af (G) and

Af (G+ e) are not compatible when the edge-weighted function f(x, y) must contain

the term x+ y. First of all, we get that the inequality

(2× 2)α + 2 + 2 + (2× 2)γ(2ξ + 2ξ)

2α + 2 + 1 + 2γ(1 + 2ξ)
≥ 4

3

holds when α, γ and ξ are nonnegative integers, since 2α × (3× 2α − 4) + 2γ × (3×
2γ × 2ξ − 4) + 2γ × 2ξ × (3× 2γ − 4) ≥ 0.

Now, set the graphs G = P4 ∪ P4 and G + e = P8, and let H = P4. According

to the matrices Af (H) and Af (G+ e), we have det(λI −Af (H)) = λ4 − (2f 2(2, 1) +

f 2(2, 2))λ2 + f 4(2, 1) and det(λI − Af (G + e)) = λ8 − (2f 2(2, 1) + 5f 2(2, 2))λ6 +

(f 4(2, 1) + 8f 2(2, 1)f 2(2, 2) + 6f 4(2, 2))λ4 − (3f 4(2, 1)f 2(2, 2) + 6f 2(2, 1)f 4(2, 2) +

f 6(2, 2))λ2 + f 4(2, 1)f 4(2, 2).

On the one hand, from Theorem 3.3 we know that

λ1(Af (H)) = λ1(Af (G)) =
f(2, 2) + (4f 2(2, 1) + f 2(2, 2))1/2

2
≥ λ3(Af (G+ e)).

14



On the other hand, since Af (G), Af (G+ e) and Af (G+ e)−Af (G) are nonnegative

matrices, using Lemma 2.5 we can get

λ1(Af (G+ e)) ≥ λ1(Af (G)).

For convenience, let f(2, 1) = a1, f(2, 2) = b1 and g(λ) = λ8 − (2a21 + 5b21)λ
6 + (a41 +

8a21b
2
1 + 6b41)λ

4 − (3a41b
2
1 + 6a21b

4
1 + b61)λ

2 + a41b
4
1. Hence, for the value g(λ1(Af (G))) =

g(
b1+(4a21+b21)

1/2

2
), there are three cases.

Case 1. If λ1(Af (G)) = λi(Af (G+ e)) with i = 1, 2 or 3, then

g

(
b1 + (4a21 + b21)

1/2

2

)
= 0.

Case 2. If λ1(Af (G+ e)) > λ1(Af (G)) > λ2(Af (G+ e)), then

g

(
b1 + (4a21 + b21)

1/2

2

)
< 0.

Case 3. If λ2(Af (G+ e)) > λ1(Af (G)) > λ3(Af (G+ e)), then

g

(
b1 + (4a21 + b21)

1/2

2

)
> 0.

We claim that g(
b1+(4a21+b21)

1/2

2
) > 0. Because, by calculating, we have

g(
b1 + (4a21 + b21)

1/2

2
) = (

b1 + (4a21 + b21)
1/2

2
)8 − (2a21 + 5b21)(

b1 + (4a21 + b21)
1/2

2
)6

+(a41+8a21b
2
1+6b41)(

b1 + (4a21 + b21)
1/2

2
)4−(3a41b

2
1+6a21b

4
1+b61)(

b1 + (4a21 + b21)
1/2

2
)2+a41b

4
1

=
b81
2
+

b71(4a
2
1 + b21)

1/2

2
− a21b

5
1(4a

2
1 + b21)

1/2 − 5a41b
4
1

2
+

a41b
3
1(4a

2
1 + b21)

1/2

2
+ a61b

2
1

=
a61b

2
1

2

(
(4 + (

b1
a1

)2)1/2((
b1
a1

)5 +
b1
a1

− 2(
b1
a1

)3) + (
b1
a1

)6 + 2− 5(
b1
a1

)2
)
.

Let b1
a1

= t and h(t) = (4 + t2)1/2(t5 + t − 2t3) + t6 − 5t2 + 2. Then the first-order

derivative h
′
(t) = (4 + t2)1/2(5t4 + 1 − 6t2) + t

(4+t2)1/2
(t5 + t − 2t3) + 6t5 − 10t =

(4+ t2)1/2(5t2−1)(t2−1)+ t2

(4+t2)1/2
(t2−1)2+ t(6t4−10). Recall that b1

a1
= f(2,2)

f(2,1)
≥ 4

3
.

Hence, h
′
(t) > 0 and h(t) is an increasing function. It is easy to get h(4

3
) ≈ 0.6686 > 0.
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So, we finally get that g(
b1+(4a21+b21)

1/2

2
) > 0 when the symmetric polynomial function

f(x, y) has the term x+ y. This means that,

λ2(Af (G+ e)) > λ1(Af (G)).

Hence the eigenvalues of Af (G) and Af (G+ e) do not satisfy the property that

λi+1(Af (G)) ≤ λi(Af (G+ e)) ≤ λi−1(Af (G))

for 2 ≤ i ≤ n− 1. Our proof is thus complete. �

This theorem covers the edge-weight functions f(x, y) of nine indices from Table

1, including the first Zagreb index, second Zagreb index, first hyper-Zagreb index,

second hyper-Zagreb index, forgotten index, first Gourava index, second Gourava

index, first hyper-Gourava index and second hyper-Gourava index.

In fact, from the proof of Theorem 3.5, one can see that the edge-weight functions

of some other indices listed in Tables 1 and 2 can also be covered. Let us consider

the following two situations.

(i) If there exists an n0 such that f2(n0−1,n0−1)
f2(n0−1,n0−2)

> 2, we can deduce that the complete

graph Kn0 is a counterexample. By calculating, we can find that this is also

the case for some other indices such as the product-connectivity Gourava index,

augmented Zagreb index, inverse sum index, exponential first Zagreb index,

exponential second Zagreb index and exponential augmented Zagreb index.

(ii) Moreover, assume that f(2,2)
f(2,1)

≥ 4
3
. Then the eigenvalues of Af (P4 ∪ P4) and

Af (P8) are not compatible. It is not difficult to verify that this also holds for

the reciprocal Randić index, inverse sum index, exponential first Zagreb index

and exponential second Zagreb index.

Denote by I the identity matrix and J the square matrix with all the entries being

ones for appropriate sizes. Any column vector x = (x1, x2, . . . , xn)
T can be regarded

as a function defined on V (G) which relates every vi to xi, that is, x(vi) = xi for all

1 ≤ i ≤ n.

Next, a uniform equivalent condition for a connected graph to havem (2 ≤ m ≤ n)

distinct weighted adjacency eigenvalues is established. As an application, we get a

uniform combinatorial characterization for a graph to have two and three distinct

weighted adjacency eigenvalues, respectively. Note that in the remainder of this

paper, we always assume that the edge-weight f(di, dj) > 0 for any edge vivj ∈ E(G).
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Theorem 3.6 Let G be a connected graph of order n ≥ 2 and the edge-weight

f(di, dj) > 0 for any edge vivj ∈ E(G). Let λ1 be the largest eigenvalue of Af (G)

and x be a corresponding unit eigenvector. Then Af (G) has m (2 ≤ m ≤ n) distinct

eigenvalues if and only if there exist m− 1 real numbers λ2, λ3, . . . , λm such that

m∏
i=2

(Af (G)− λiI) =
m∏
i=2

(λ1 − λi)xx
T . (3.4)

Moreover, λ1 > λ2 > · · · > λm are exactly the m distinct eigenvalues of Af (G).

Proof. We first prove the sufficiency. Multiplying Af (G) − λ1I for both sides of

Equation (3.4) on the left, we get that

(Af (G)− λ1I)
m∏
i=2

(Af (G)− λiI) =
m∏
i=2

(λ1 − λi)(Af (G)− λ1I)xx
T = 0.

Hence, the polynomial P (λ) = (λ − λ1)(λ − λ2) · · · (λ − λm) annihilates Af (G).

However, by Formula (3.4) the polynomial P (λ)/(λ− λ1) can not annihilate Af (G).

From the definition of minimal polynomial of a matrix, we get that the minimal

polynomial of Af (G) is

p(λ) = (λ− λ1)(λ− λ2) · · · (λ− λm).

Since Af (G) is a real symmetric matrix, using Lemma 2.2 we get that Af (G) has m

distinct eigenvalues λ1, λ2, . . . , λm.

For the necessity, let λ1, λ2, ..., λm be m distinct eigenvalues of Af (G). Because

Af (G) is a real symmetric matrix, from Lemma 2.2 we can get the minimal polynomial

p(λ) = (λ − λ1)(λ − λ2) · · · (λ − λm) directly. The minimal polynomial p(λ) can

annihilate Af (G). This means that

(Af (G)− λ1I)(Af (G)− λ2I) · · · (Af (G)− λmI) = 0,

that is,

(Af (G)− λ1I)
m∏
i=2

(Af (G)− λiI) = 0.

Recall that G is connected, and for each vivj ∈ E(G) we have f(di, dj) > 0. So,

Af (G) is nonnegative and irreducible. From Lemma 2.3, we get that λ1 is simple.

Let x = (x1, x2, . . . , xn)
T be a corresponding unit eigenvector. Then

m∏
i=2

(Af (G)− λiI) = x(c1, c2, . . . , cn),

17



where c1, c2, . . . , cn are nonzero real numbers. Multiplying xT to both sides of the

above equality on the left, we get
m∏
i=2

(λ1 − λi)x
T = (c1, c2, . . . , cn).

For 1 ≤ i ≤ n, it is easy to see that

ci =
m∏
i=2

(λ1 − λi)xi.

We obtain the required result. �

Since G is connected, and f(di, dj) ̸= 0 for vivj ∈ E(G), Theorem 3.6 is suitable

for the edge-weight functions f(x, y) from nearly all of the indices in Tables 1 and 2,

apart from the ABC index(when n = 2), Albertson index and sigma index. From the

proof of Theorem 3.6, the result is true for any nonnegative irreducible symmetric

matrix M , indexed by the vertices of a graph G, in which the ij entry is greater than

zero if and only if vivj ∈ E(G). So, from our result, the results for the ABC matrix

[5], Randić matrix [19], GA matrix [21] and AG matrix [24] follow directly. There is

no need to prove them one by one separately. The following result is an immediate

consequence of Theorem 3.6.

Corollary 3.7 Let G be a connected graph of order n ≥ 2 and the edge-weight

f(di, dj) > 0 for any edge vivj ∈ E(G). Then the weighted adjacency matrix Af (G)

has two distinct eigenvalues if and only if G is the complete graph.

Proof. By Theorem 3.6, Af (G) has two distinct eigenvalues if and only if there are

two real numbers λ1, λ2, such that

Af (G)− λ2I = (λ1 − λ2)xx
T ,

that is

Af (G) = (λ1 − λ2)xx
T + λ2I.

Since Af (G) is nonnegative and irreducible, from Lemma 2.3 we get that all the

entries of x are not equal to 0, which means that each nondiagonal entry of Af (G) is

not equal to 0. So, the graph G is the complete graph. �

Apart from the ABC index(when n = 2), Albertson index and sigma index,

Corollary 3.7 holds for the weighted adjacency matrices from all of the indices in

Tables 1 and 2. There is no doubt that we can uniformly get the results for the

ABC matrix [5], Randić matrix [19], GA matrix [21] and AG matrix [24]. Another

immediate consequence is the next one.
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Corollary 3.8 Let G be a connected graph of order n ≥ 3 and the edge-weight

f(di, dj) > 0 for any edge vivj ∈ E(G). Let λ1 be the largest eigenvalue of Af (G)

and x = (x1, x2, . . . , xn)
T be the corresponding unit eigenvector. Then the weighted

adjacency matrix Af (G) has three distinct eigenvalues if and only if the following

three properties hold:

(i) For any vertex vi,∑
vivj∈E(G)

f 2(di, dj) = (λ1 − λ2)(λ1 − λ3)x
2
i − λ2λ3;

(ii) For any two adjacent vertices vi and vj,∑
vivk∈E(G)
vjvk∈E(G)

f(di, dk)f(dj, dk) = (λ1 − λ2)(λ1 − λ3)xixj + f(di, dj)(λ2 + λ3);

(iii) For any two nonadjacent vertices vi and vj,∑
vivk∈E(G)
vjvk∈E(G)

f(di, dk)f(dj, dk) = (λ1 − λ2)(λ1 − λ3)xixj.

Proof. From Theorem 3.6, Af (G) has three distinct eigenvalues if and only if there

are three real numbers λ1, λ2, λ3, such that

(Af (G)− λ2I)(Af (G)− λ3I) = (λ1 − λ2)(λ1 − λ3)xx
T .

Considering the diagonal entries and off-diagonal entries for both sides of the above

equality, the result then immediately follows. �

Corollary 3.8 holds for the weighted adjacency matrices from nearly all of the

indices in Tables 1 and 2 except for the Albertson index and sigma index. This result

can directly imply the results for the ABC matrix [5], Randić matrix [19], GA matrix

[21] and AG matrix [24].

The distance between two vertices vi and vj in a graph G is the length of a shortest

vivj-path in G. The diameter of graph G is the maximum distance between any pair

of vertices of G. Let G be a connected graph with three distinct weighted adjacency

eigenvalues. By Corollary 3.8 (iii), any two nonadjacent vertices of G have at least

one common neighbor. Immediately, we have a relation between the eigenvalues of

Af (G) and the diameter of a graph G.
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Corollary 3.9 Let G be a connected graph of order n ≥ 3 and the edge-weight

f(di, dj) > 0 for any edge vivj ∈ E(G). If the weighted adjacency matrix Af (G)

has three distinct eigenvalues, then the diameter of G is two.

Furthermore, we can prove the following more general result.

Corollary 3.10 Let G be a connected graph of order n ≥ 3 and the edge-weight

f(di, dj) > 0 for any edge vivj ∈ E(G). If the weighted adjacency matrix Af (G) has

m distinct eigenvalues, then the diameter of G is less than m.

Proof. First, it is not difficult for us to have

m∏
i=2

(Af (G)−λiI) = Am−1
f (G)−(λ2+λ3+· · ·+λm)A

m−2
f (G)+· · ·+(−1)m−1λ2λ3 · · ·λmI.

By Theorem 3.6, Af (G) has m (2 ≤ m ≤ n) distinct eigenvalues if and only if

there exist m− 1 real numbers λ2, λ3, . . . , λm such that

m∏
i=2

(Af (G)− λiI) =
m∏
i=2

(λ1 − λi)xx
T .

From Lemma 2.3, we can have a positive eigenvector x about λ1, thus every entry

in
m∏
i=2

(Af (G) − λiI) has a positive number. This means that for i ̸= j, there is a

positive integer r with 1 ≤ r ≤ m − 1 such that (Ar
f (G))ij > 0. By calculating, we

get that

(Ar
f (G))ij =

∑
f(di, di1)f(di1 , di2) · · · f(dir−1 , dj).

Because the edge-weight f(di, dj) > 0 for any edge vivj ∈ E(G), it follows that there

exists a path between vi and vj of length r. Then the diameter of G is at most m−1.

The proof is thus complete. �

Except for the Albertson index and sigma index, Corollaries 3.9 and 3.10 hold true

for the weighted adjacency matrices from all of the indices in Tables 1 and 2. The

results for the ABC matrix [5], Randić matrix [19], GA matrix [21] and AG matrix

[24] can be obtained directly. Therefore, to unify the spectral study of weighted

adjacency matrices saves us lots of energy. Now we apply Corollary 3.9 to bipartite

graphs and unicyclic graphs.

Corollary 3.11 Let G be a bipartite graph of order n ≥ 3 and the edge-weight

f(di, dj) > 0 for any edge vivj ∈ E(G). Then the weighted adjacency matrix Af (G)

has three distinct eigenvalues if and only if G is the complete bipartite graph Ks,t.
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Proof. If G is a complete bipartite graph Ks,t, where s+ t = n, then we can easily get

Af (Ks,t) = f(s, t)A(Ks,t). Hence, the distinct eigenvalues of Af (Ks,t) are 0, f(s, t)
√
st

and −f(s, t)
√
st.

Conversely, assume that G is a bipartite graph of diameter two having three

distinct weighted adjacency eigenvalues. Then, any two nonadjacent vertices must

have the same neighbour set. If vivj /∈ E(G) and vi has a neighbor not adjacent to vj,

then this neighbor along with vi, vj path induce P4 as subgraph. This contradicts the

fact that the diameter of G is two. It follows that G is a complete bipartite graph. �

Corollary 3.11 holds for the weighted adjacency matrices from nearly all of the

indices in Tables 1 and 2 except for that Albertson index and sigma index. This

result can deduce the results for the ABC matrix [5], Randić matrix [19], GA matrix

[21] and AG matrix [24].

Corollary 3.12 Let G be a unicyclic graph of order n ≥ 3 and the edge-weight

f(di, dj) > 0 for any edge vivj ∈ E(G). Then the weighted adjacency matrix Af (G)

has three distinct eigenvalues if and only if G is either C4 or C5.

Proof. Suppose G is either C4 or C5. It is easy to see that Af (G) = f(2, 2)A(G). So,

the distinct weighted adjacency eigenvalues of C4 are 2f(2, 2), 0 and −2f(2, 2), and

the distinct weighted adjacency eigenvalues of C5 are 2f(2, 2), 2f(2, 2) cos 2π
5

and

2f(2, 2) cos 4π
5
.

Conversely, if G is a unicyclic graph with diameter two, then G must be one

of the graphs: C4, C5, Sn + e. We show that the graph Sn + e has more than

three distinct weighted adjacency eigenvalues. For the convenience of discussion,

we index the vertices in the graph Sn + e as shown in Figure 2. If we let the vector

v1

v2

v3

v4

v5

vn

Figure 2: The graph Sn + e.

x = (0, x2,−x2, 0, 0, 0, . . . , 0)
T , then it is not difficult to get that Af (G)x = −f(2, 2)x.

So, −f(2, 2) is a weighted adjacency eigenvalue of the graph Sn+e. If we let the vector
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y = (0, 0, 0, y4,−y4, 0, . . . , 0)
T , then we have Af (G)y = 0y = o. Thus 0 is a weighted

adjacency eigenvalue of the graph Sn+ e. Next, we give a partition {v1, v2, . . . , vn} =

X1 ∪X2 ∪X3, where X1 = {v1}, X2 = {v2, v3}, and X3 = {v4, v5, . . . vn}. Then the

quotient matrix B of matrix Af (G) is

B =

 0 2f(n− 1, 2) (n− 3)f(n− 1, 1)

f(n− 1, 2) f(2, 2) 0

f(n− 1, 1) 0 0

 .

It is not difficult to check that this partition is equitable. From Lemma 2.4, each the

eigenvalue of B is the eigenvalue of Af (G).

Let f(n− 1, 2) = a, f(n− 1, 1) = b and f(2, 2) = c, we can get

f(ρ) = det(ρI −B) = ρ3 − cρ2 − ((n− 3)b2 + 2a2)ρ+ (n− 3)b2c.

It is clear that f(0) ̸= 0, because b > 0 and c > 0. For the value f(−c), there are two

cases as follows:

Case 1. If f(−c) ̸= 0, then f(ρ) has at least two distinct eigenvalues. Suppose

the polynomial f(ρ) has exactly one eigenvalue ρ1. Then we have f(ρ) = (ρ− ρ1)
3 =

ρ3 − 3ρ1ρ
2 + 3ρ21ρ− ρ31 = ρ3 − cρ2 − ((n− 3)b2 + 2a2)ρ+ (n− 3)b2c. This means that

ρ1 = c
3
. But 3ρ21 = c2

3
> 0, −((n − 3)b2 + 2a2) < 0, which is a contradiction, and

hence Sn + e has at least four distinct weighted adjacency eigenvalues.

Case 2. If f(−c) = 0, that is f(−c) = −2c3 + 2(n− 3)b2c + 2a2c = 2c(a2 + (n−
3)b2−c2) = 0, then by calculating f(ρ)

ρ+c
, we get h(ρ) = ρ2−2cρ+2c2−(n−3)b2−2a2 =

ρ2−2cρ+(n−3)b2. Because (−2c)2−4×1×(n−3)b2 = 4a2 > 0, we know that h(ρ) has

two distinct eigenvalues. In addition, h(−c) = c2+2c2+(n−3)b2 = 3c2+(n−3)b2 > 0,

and thus −c is not an eigenvalue of h(ρ). This means that f(ρ) has two distinct

eigenvalues apart from −c. Hence, we can also conclude that Sn + e has at least four

distinct weighted adjacency eigenvalues. Our proof is thus complete. �

Corollary 3.12 is suitable for the weighted adjacency matrices from nearly all of

the indices in Tables 1 and 2 apart from the Albertson index and sigma index. Using

this result, we can directly get the results for the ABC matrix [5], Randić matrix

[19], GA matrix [21] and AG matrix [24].

4 Concluding remarks

In this paper we are trying to uniformly study the spectral results for the weighted

adjacency matrices of graphs with edge-weight function f(x, y), but not separately
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one by one for concrete topological indices. As one can see, many of them share the

same conclusions. For those spectral properties not shared by all the weighted adja-

cency matrices, one may consider them by groups to deal with. This will save a lot

of energy for the study of the spectral properties of the weighted adjacency matrices

defined by all kinds of existing degree-based topological function-indices and also for

future invented indices that are useful in practical real world, especially in chemistry

and biology. This work is aiming to throw a stone in order to induce jades. In the

future, we will try to further study what kinds of spectral properties are shared by all

or many of them, and which property is unique for some single weighted adjacency

matrix defined by a specific index.
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