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Abstract

Let f(x, y) > 0 be a real symmetric function. For a connected graph G, the

weight of edge vivj is equal to the value f(di, dj), where di is the degree of vertex

vi. The degree-based weighted adjacency matrix is defined as Af (G), in which the

(i, j)-entry is equal to f(di, dj) if vivj is an edge of G and 0 otherwise. In this paper,

we first give some bounds of the weighted adjacency eigenvalue λ1(Af (G)) in terms

of λ1(Af (H)), where H is obtained from G by some kinds of graph operations, in-

cluding deleting vertices, deleting an edge and subdividing an edge, and examples are

given to show that bounds are tight. Second, we obtain some bounds for the largest

weighted adjacency eigenvalue λ1(Af (G)) of irregular weighted graphs.

Keywords: degree-based edge-weight; weighted adjacency matrix(eigenvalue); ir-

regular weighted graph; topological function-index; graph operation
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1 Introduction

In this paper, we only concern with simple undirected connected graphs. Let G be

a graph of order n. The vertex set and the edge set of G are denoted by V (G) =

∗Supported by NSFC No.12131013 and 12161141006.
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{v1, v2, . . . , vn} and E(G), respectively. If two distinct vertices vi and vj are adjacent,

then we have vivj ∈ E(G). For vi ∈ V (G), let di and NG(vi) be the degree and the set

of neighbors of vi, respectively. The maximum degree of graph G is denoted by ∆. The

distance between two distinct vertices vi, vj ∈ V (G), denoted by dG(vi, vj), is the length

of a shortest path from vi to vj in G. The diameter D of G is the maximum value of

distances between any two vertices of V (G). For a subset S of V (G), let G − S be the

graph obtained from G by removing the vertex subset S together with all edges incident

with S. For an edge e, we use G− e to denote the graph obtained from G by removing the

edge e. Subdividing an edge e = vivj means that a new vertex v(n+1) is added to V (G) and

the edge vivj is replaced in E(G) by two edges viv(n+1) and vjv(n+1). We use Ge to denote

the graph obtained from G by subdividing the edge e. For notation and terminology not

defined here, one may refer to [6].

In chemistry, topological index is an important graph invariant. A great variety of

topological indices based on degree of vertex have been extensive researched(see [1, 3, 7,

10, 16, 23]). The general form of degree-based topological indices is as follows:

TI(G) =
∑

vivj∈E(G)

f(di, dj),

where the edge-weight function f(x, y) is a real symmetric function, and the value f(di, dj)

is the weight of the edge vivj of G. If the first partial derivative f
′
x(x, y) ≥ (≤)0, then we

say that f(x, y) is increasing(decreasing) in variable x. It is clearly that each index maps a

graph to a single number. In 2015, Li [12] put forward an idea: using a matrix to represent

the structure of an edge-weighted graph, we may keep more structural information than a

topological index. For example, the first(second) Zagreb matrix [18], Randić matrix [19],

atom-bound connectivity matrix [4], arithmetic-geometric matrix [25], extended adjacency

matrix [9] and p-Somber matrix [17] were considered separately.

In 2018, Das et al.[8] proposed the weighted adjacency matrix of a graph G of order n,

where

(Af (G))ij =

f(di, dj), if vivj ∈ E(G),

0, otherwise.

The eigenvalues of the weighted adjacency matrix Af (G) are denoted by λ1(Af (G)) ≥
λ2(Af (G)) ≥ · · · ≥ λn(Af (G)), where λ1(Af (G)) is the largest weighted adjacency eigen-

value. Let x = (x1, x2, ..., xn)
T be the eigenvector corresponding to λ1(Af (G)). We

have Af (G)x = λ1(Af (G))x. Moreover, the vector x can be regarded as a mapping

on V (G). For any vertex vi, the entry of x corresponding to vi is denoted by xi. If∑
vj∈NG(v1)

f(d1, dj) =
∑

vj∈NG(v2)

f(d2, dj) = · · · =
∑

vj∈NG(vn)

f(dn, dj), then we say that G is

regular. Otherwise, G is an irregular weighted graph. In [8], Das et al. gave some lower
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and upper bounds on the energy of the weighted adjacency matrix. Based on their results,

many earlier established results were obtained as special cases. So, it is interesting to study

the weighted adjacency matrix Af (G). This will improve work efficiency. In 2021, Li and

Wang [13] tried to find unified methods to study the trees with extremal spectral radius of

weighted adjacency matrices. In 2022, Zheng et al.[24] further investigated trees and uni-

cyclic graphs with the largest and smallest spectral radii of weighted adjacency matrices,

respectively. In 2022, Li and Yang [14, 15] obtained uniform interlacing inequalities for

the weighted adjacency eigenvalues under some kinds of graph operations, such as deleting

a vertex, deleting an edge and subdividing an edge. Next, we consider the change of the

largest weighted adjacency eigenvalue λ1(Af (G)) under graph operations.

A classical result in the theory of nonnegative matrices states that for any nonnegative

irreducible n× n matrix A with the largest eigenvalue λ1(A) and the largest row sum S,

λ1(A) ≤ S (1)

with equality holds if and only if the row sums of A are all equal. If f(di, dj) = 1 for

every edge vivj ∈ E(G), then we get the adjacency matrix A(G). So λ1(A(G)) ≤ ∆, with

equality if and only if G is regular. It is natural to ask how small ∆ − λ1(A(G)) can be

when G is irregular. In [5], Cioabă proved that

∆− λ1(A(G)) >
1

nD
. (2)

In this paper, we consider a similar result about the weighted adjacency matrix. We also

improve the bound in (1) when G is an irregular weighted graph.

At the last of this section, we state the structure of this paper. In section 2, we give some

results that will be used in our proof. In section 3, we obtain some bounds of the largest

weighted adjacency eigenvalue λ1(Af (G)) in terms of λ1(Af (H)), where H is obtained from

G by graph operations. Moreover, some examples are given to prove that bounds are tight.

In section 4, we extend inequality (2) to the largest weighted adjacency eigenvalue and

show two other bounds of λ1(Af (G)) when G is an irregular weighted graph.

2 Preliminaries

In this section, we list several known results.

Lemma 2.1 [21] Let A,B be two real symmetric matrices of order n, and let the respective

eigenvalues of A,B and A + B be λi(A), λi(B) and λi(A + B), where 1 ≤ i ≤ n, each

algebraically ordered in nonincreasing order. Then

λi(A+B) ≤ λj(A) + λi−j+1(B), (1 ≤ j ≤ i ≤ n).
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Also,

λi(A+B) ≥ λj(A) + λi−j+n(B), (1 ≤ i ≤ j ≤ n).

The following result is the Rayleigh quotient theorem.

Lemma 2.2 [2] Let A be a real symmetric matrix of order n. Then

λ1(A) ≥
yTAy

yTy
,

for any nonzero vector y ∈ Rn.

Let A = (aij)n×m and B = (bij)n×m be two matrices. If aij ≤ bij for all i and j, then

we say that A ≤ B. If A ≤ B and A ̸= B, then we say that A < B.

Lemma 2.3 [11] Let A, B be two n× n nonnegative symmetric matrices. If A ≤ B, then

λ1(A) ≤ λ1(B).

Futhermore, if B is irreducible and A < B, then λ1(A) < λ1(B).

Now, we state the famous Perron-Frobenius theorem.

Lemma 2.4 [6] Let A be an irreducible symmetric matrix with nonnegative entries. Then

the largest eigenvalue λ1(A) is simple, with a corresponding eigenvector whose entries are

all positive.

Lemma 2.5 [20] If a, b > 0, then

a(x− y)2 + by2 ≥ abx2

a+ b
,

with equality if and only if y = ax
a+b

.

3 Some bounds for the largest weighted adjacency

eigenvalue under graph operations

In this section, if f(x, y) is a real symmetric function and decreasing in variable x, then

we first give a relation between λ1(Af (G)) and λ1(Af (G− vi)), where vi is a vertex of G.
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Theorem 3.1 Assume that f(x, y) > 0 is a real symmetric function and decreasing in

variable x. Let G be a connected graph of order n. Then

λ1(Af (G)) ≤

λ1(Af (G− vi)) +
√

λ2
1(Af (G− vi)) + 4

∑
vivj∈E(G)

f 2(di, dj)

2
.

Proof. For the convenience of discussion, suppose that vi = v1 andNG(v1) = {v2, v3, . . . , vt}.
By Lemma 2.4, since G is connected and f(x, y) > 0, we can get a positive unit eigenvec-

tor x = (x1, x2, . . . , xn)
T corresponding to λ1(Af (G)). The matrix A′

f (G) is obtained from

Af (G) by deleting the row and column associated with vertex v1. Because f(x, y) > 0 is a

real symmetric function and decreasing in variable x, it follows that Af (G− v1) ≥ A′
f (G).

From Lemma 2.3, we know that λ1(Af (G− v1)) ≥ λ1(A
′
f (G)). Set x′ = (x2, x3, . . . , xn)

T ̸=
0, where 0 is the zero vector, using Lemma 2.2, we have

λ1(A
′
f (G)) ≥

(x′)TA′
f (G)x′

(x′)Tx′

=

2
∑

vivj∈E(G)

f(di, dj)xixj − 2
t∑

j=2

f(d1, dj)x1xj

x2
2 + x2

3 + · · ·+ x2
n

=

λ1(Af (G))− 2
t∑

j=2

f(d1, dj)x1xj

1− x2
1

.

Since λ1(Af (G))x1 =
t∑

j=2

f(d1, dj)xj, by the Cauchy-Schwarz inequality, we obtain

λ2
1(Af (G))x2

1 =

(
t∑

j=2

f(d1, dj)xj

)2

≤
t∑

j=2

f 2(d1, dj)
t∑

j=2

x2
j

≤
t∑

j=2

f 2(d1, dj)
(
1− x2

1

)
.

Thus

x2
1 ≤

t∑
j=2

f 2(d1, dj)

t∑
j=2

f 2(d1, dj) + λ2
1(Af (G))

.
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Combining the results above, we get

λ1(Af (G− v1)) ≥ λ1(A
′
f (G)) ≥

λ1(Af (G))− 2

(
t∑

j=2

f(d1, dj)xj

)
x1

1− x2
1

=
λ1(Af (G))− 2λ1(Af (G))x2

1

1− x2
1

= 2λ1(Af (G))− λ1(Af (G))

1− x2
1

≥ 2λ1(Af (G))−

t∑
j=2

f 2(d1, dj) + λ2
1(Af (G))

λ1(Af (G))

= λ1(Af (G))−

t∑
j=2

f 2(d1, dj)

λ1(Af (G))
.

Hence λ2
1(Af (G)) − λ1(Af (G − v1))λ1(Af (G)) −

t∑
j=2

f 2(d1, dj) ≤ 0. Considering this

quadratic equation, by a simple computation, it is not difficult for us to get

λ1(Af (G)) ≤
λ1(Af (G− v1)) +

√
λ2
1(Af (G− v1)) + 4

t∑
j=2

f 2(d1, dj)

2
.

Thus we complete our proof. �

Remark 1. From the proof of Theorem 3.1, we know that the weighted function f(x, y)

is not strictly monotonically decreasing. Let f(x, y) = c, where c is a constant, and

G = K1 +H be a graph of order n obtained by joining an isolated vertex to each vertex of

a regular graph H. If G− vi = H, then we can deduce that the bound in Theorem 3.1 is

tight.

When f(x, y) > 0 is a real symmetric function and increasing in variable x, we consider

the change of the largest weighted adjacency eigenvalue of a connected graph G after

removing a subset S of V (G).

Theorem 3.2 Assume that f(x, y) > 0 is a real symmetric function and increasing in

variable x. Let G be a connected graph of order n and x = (x1, x2, . . . , xn)
T be a positive

unit eigenvector corresponding to λ1(Af (G)). If S is the subset of V (G) and δ′ is the

minimum degree of G− S, then

λ1(Af (G− S)) ≥ f(δ′, δ′)

f(∆,∆)
·

(
1− 2

∑
vi∈S

x2
i

)
λ1(Af (G)) +

∑
vi∈S

∑
vj∈S

f(di, dj)xixj

1−
∑
vi∈S

x2
i

.
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Proof. Let d′i be the degree of vi in G − S. The number of vertices in S is s. Since

x = (x1, x2, . . . , xn)
T is a positive unit eigenvector corresponding to eigenvalue λ1(Af (G)),

we have ∑
vivj∈E(G)

f(di, dj)xj = λ1(Af (G))xi.

Since f(x, y) is increasing in variable x, it is not difficult for us to get

λ1(Af (G)) = 2
∑
vi∈S

xi

∑
vivj∈E(G)

f(di, dj)xj −
∑
vi∈S

∑
vj∈S

f(di, dj)xixj + 2
∑

vivj∈E(G−S)

f(di, dj)xixj

= 2
∑
vi∈S

λ1(Af (G))x2
i −

∑
vi∈S

∑
vj∈S

f(di, dj)xixj + 2
∑

vivj∈E(G−S)

f(di, dj)

f(d′i, d
′
j)
f(d′i, d

′
j)xixj

≤ 2
∑
vi∈S

λ1(Af (G))x2
i −

∑
vi∈S

∑
vj∈S

f(di, dj)xixj +
f(∆,∆)

f(δ′, δ′)
· 2

∑
vivj∈E(G−S)

f(d′i, d
′
j)xixj.

Set x′ = (xp1 , xp2 , . . . , xp(n−s)
)T ̸= 0, where vpi ∈ V (G−S) for 1 ≤ i ≤ n− s, using Lemma

2.2, we obtain

λ1(Af (G− S)) ≥ (x′)TAf (G− S)x′

(x′)Tx′ =

2
∑

vivj∈E(G−S)

f(d′i, d
′
j)xixj

1−
∑
vi∈S

x2
i

.

This means that

2
∑

vivj∈E(G−S)

f(d′i, d
′
j)xixj ≤

(
1−

∑
vi∈S

x2
i

)
λ1(Af (G− S)).

Combining the inequalities above, we get

λ1(Af (G)) ≤ 2
∑
vi∈S

λ1(Af (G))x2
i −

∑
vi∈S

∑
vj∈S

f(di, dj)xixj +
f(∆,∆)

f(δ′, δ′)
·

(
1−

∑
vi∈S

x2
i

)
λ1(Af (G− S)).

This completes the proof. �

Remark 2. For a real symmetric function f(x, y) > 0, which is increasing in variable x,

if G is a complete graph of order n, deleting a subset S of V (G), then we can prove the

equality holds in Theorem 3.2.

A subset S of V (G) is independent if no two of its vertices are adjacent. When we delete

an independent set from G, using Theorem 3.2, the following conclusion can be obtained.

Corollary 3.3 Assume that f(x, y) > 0 is a real symmetric function and increasing in

variable x. Let G be a connected graph of order n and x = (x1, x2, . . . , xn)
T be a positive
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unit eigenvector corresponding to λ1(Af (G)). If S is an independent set of V (G) and δ′ is

the minimum degree of G− S, then

λ1(Af (G− S)) ≥ f(δ′, δ′)

f(∆,∆)
·

2− 1

1−
∑
vi∈S

x2
i

λ1 (Af (G)) .

Next, we study the relation between λ1(Af (G)) and λ1(Af (G− e)).

Theorem 3.4 Assume that f(x, y) > 0 is a real symmetric function. Let G be a connected

graph of order n and e = vivj be an edge of G. Then

λ1(Af (G− e)) ≥ λ1(Af (G))− 2
∑

vivk∈E(G)

k ̸=j

(f(di, dk)− f(di − 1, dk))xixk

−
√√√√ ∑

vjvk∈E(G)

k ̸=i

(f(dj, dk)− f(dj − 1, dk))2 − 2f(di, dj)xixj.

Proof. For convenience, let the edge e be v1v2. There are two n × n matrices B and C,

written as follows:

B =


0 0 f(d1 − 1, d3) · · · f(d1 − 1, dn)

0 0 f(d2, d3) · · · f(d2, dn)

f(d1 − 1, d3) f(d2, d3) 0 · · · f(d3, dn)
...

...
...

. . .
...

f(d1 − 1, dn) f(d2, dn) f(d3, dn) · · · 0

 ,

C =


0 0 0 · · · 0

0 0 f(d2, d3)− f(d2 − 1, d3) · · · f(d2, dn)− f(d2 − 1, dn)

0 f(d2, d3)− f(d2 − 1, d3) 0 · · · 0
...

...
...

. . .
...

0 f(d2, dn)− f(d2 − 1, dn) 0 · · · 0

 .

By calculating, we obtain det(λI−C) = λn−2

λ2 −
∑

v2vk∈E(G)

k ̸=1

(f(d2, dk)− f(d2 − 1, dk))
2

,

and so the largest eigenvalue of C is
√ ∑

v2vk∈E(G)

k ̸=1

(f(d2, dk)− f(d2 − 1, dk))2. Since B =

Af (G− e) + C, from Lemma 2.1, we obtain

λ1(B) ≤ λ1(Af (G− e)) + λ1(C)
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= λ1(Af (G− e)) +

√√√√ ∑
v2vk∈E(G)

k ̸=1

(f(d2, dk)− f(d2 − 1, dk))2.

By Lemma 2.4, since G is connected and f(x, y) > 0, we get a positive unit eigenvector

x = (x1, x2, . . . , xn)
T of Af (G) corresponding to λ1(Af (G)). From Lemma 2.2, we have

λ1(B) ≥ xTBx

xTx

= 2
∑

v1vk∈E(G)

k ̸=2

f(d1 − 1, dk)x1xk + 2
∑

v2vk∈E(G)

k ̸=1

f(d2, dk)x2xk + 2
∑

vkvl∈E(G−{v1,v2})

f(dk, dl)xkxl

= λ1(Af (G))− 2f(d1, d2)x1x2 − 2
∑

v1vk∈E(G)

k ̸=2

(f(d1, dk)− f(d1 − 1, dk))x1xk.

Combining the inequalities above, we get

λ1(Af (G))− 2f(d1, d2)x1x2 − 2
∑

v1vk∈E(G)

k ̸=2

(f(d1, dk)− f(d1 − 1, dk))x1xk

≤ λ1(Af (G− e)) +

√√√√ ∑
v2vk∈E(G)

k ̸=1

(f(d2, dk)− f(d2 − 1, dk))2.

This completes the proof. �

Remark 3. Considering f(x, y) = (x+y−α
xy

)β, where β > 0 and 2 ≤ α ≤ 2n− 2, if we delete

an edge vivj satisfying di + dj = α and dk = α for every vertex vk ∈ (NG(vi) ∪ NG(vj)) \
{vi, vj}, then the bound in Theorem 3.4 is tight.

At last, we give the bound of the largest weighted adjacency eigenvalue λ1(Af (Ge)).

Theorem 3.5 Assume that f(x, y) > 0 is a real symmetric function. Let G be a connected

graph of order n and e = vivj be an edge of G. Then

λ1(Af (G))− f(di, dj) < λ1(Af (Ge)) <
λ1(Af (G)) +

√
λ2
1(Af (G)) + 4(f 2(di, 2) + f 2(dj, 2))

2
.

Proof. For convenience, let the edge e be v1v2 and v(n+1) be a new vertex to subdivide the

edge e. The weighted adjacency matrix Af (Ge) can be obtained from Af (G) by adding

the row and column associated with the vertex v(n+1) and changing the (Af (G))12 and

(Af (G))21 into 0s. Removing the row and column associated with vertex v(n+1) from
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Af (Ge), we get an n× n matrix A′
f (Ge). Let B = Af (G)− A′

f (Ge), written as follows:

B =



0 f(d1, d2) 0 0 · · · 0

f(d1, d2) 0 0 0 · · · 0

0 0 0 0 · · · 0

0 0 0 0 · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · 0


.

A short computation reveals that det(λI − B) = λn−2(λ2 − f 2(d1, d2)). Thus the largest

eigenvalue of B is f(d1, d2).

On the one hand, according to Lemma 2.1, since Af (G) = A′
f (Ge) + B, we get

λ1(Af (G)) ≤ λ1(A
′
f (Ge))+λ1(B). That is, λ1(A

′
f (Ge)) ≥ λ1(Af (G))−λ1(B) = λ1(Af (G))−

f(d1, d2). We know that A′
f (Ge) is a principal submatrix of Af (Ge). From Lemma 2.3,

because G is connected, Ge is connected, and f(x, y) > 0, we obtain λ1(Af (Ge)) >

λ1(A
′
f (Ge)). Therefore, the lower bound of λ1(Af (Ge)) holds.

On the other hand, by Lemma 2.4, since Ge is connected and f(x, y) > 0, we get a

positive unit eigenvector x = (x1, x2, . . . , x(n+1))
T of Ge corresponding to λ1(Af (Ge)), that

is, Af (Ge)x = λ1(Af (Ge))x. Set x
′ = (x1, x2, . . . , xn)

T ̸= 0, from Lemma 2.2, we have

λ1(A
′
f (Ge)) ≥

(x′)TA′
f (Ge)x

′

(x′)Tx′

=

2
∑

vivj∈E(Ge)

f(di, dj)xixj − 2f(d1, 2)x1x(n+1) − 2f(d2, 2)x2x(n+1)

x2
1 + x2

2 + · · ·+ x2
n

=
λ1(Af (Ge))− 2λ1(Af (Ge))x

2
(n+1)

1− x2
(n+1)

= 2λ1(Af (Ge))−
λ1(Af (Ge))

1− x2
(n+1)

≥ 2λ1 (Af (Ge))−
λ2
1 (Af (Ge)) + f 2(d1, 2) + f 2(d2, 2)

λ1(Af (Ge))
. (3)

Since λ1(Af (Ge))x(n+1) = f(d1, 2)x1+f(d2, 2)x2, by the Cauchy-Schwarz inequality, we

obtain

λ2
1(Af (Ge))x

2
(n+1) = (f(d1, 2)x1 + f(d2, 2)x2)

2

≤
(
f 2(d1, 2) + f 2(d2, 2)

) (
x2
1 + x2

2

)
≤
(
f 2(d1, 2) + f 2(d2, 2)

) (
1− x2

(n+1)

)
.

This means that

x2
(n+1) ≤

f 2(d1, 2) + f 2(d2, 2)

λ2
1(Af (Ge)) + f 2(d1, 2) + f 2(d2, 2)

,
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it follows that the inequality (3) above holds.

Note that B = Af (G)−A′
f (Ge) is a nonnegative nonzero matrix. According to Lemma

2.3, since G is connected, we get λ1(Af (G)) > λ1(A
′
f (Ge)). Until now, we have

λ2
1(Af (Ge))− λ1(Af (G))λ1 (Af (Ge))−

(
f 2(d1, 2) + f 2(d2, 2)

)
< 0.

By computing, we conclude that λ1(Af (Ge)) <
λ1(Af (G))+

√
λ2
1(Af (G))+4(f2(d1,2)+f2(d2,2))

2
. This

proof is complete. �

4 Some bounds for the largest weighted adjacency

eigenvalue of irregular weighted graphs

First, using (2), we give a result of the largest weighted adjacency eigenvalue about

diameter.

Theorem 4.1 Assume that f(x, y) > 0 is a real symmetric function. Let G be a con-

nected irregular weighted graph with order n, maximum degree ∆ and diameter D. If

Ω = max{f(di, dj) : vivj ∈ E(G)}, then

∆Ω− λ1(Af (G)) >
Ω

nD
.

Proof. Since Ω = max{f(di, dj) : vivj ∈ E(G)}, for the adjacency matrix A(G) and

the weighted adjacency matrix Af (G), we have Af (G) ≤ ΩA(G). By Lemma 2.3, we

get λ1(Af (G)) ≤ Ωλ1(A(G)). Because G is irregular, from (2), it follows that ∆Ω −
λ1(Af (G)) > Ω

nD
. �

Next, we give a bound of the largest weighted adjacency eigenvalue by taking minimum

degree and diameter into account.

Theorem 4.2 Assume that f(x, y) > 0 is a real symmetric function. Let G be a con-

nected irregular weighted graph with order n, minimum degree δ and diameter D. If

ω = min{f(di, dj) : vivj ∈ E(G)} and Θ = max

{ ∑
vj∈NG(vi)

f(di, dj) : 1 ≤ i ≤ n

}
, then

Θ− λ1(Af (G)) >
(nΘ− 2TI(G))ω

((n− δ − 1)D + 1)(nΘ− 2TI(G)) + nω
.

Proof. Because G is connected and f(x, y) > 0, from Lemma 2.4, we get a positive unit

eigenvector x = (x1, x2, . . . , xn)
T corresponding to the eigenvalue λ1(Af (G)). Let vs be

11



a vertex of V (G) such that xs = max{xi : vi ∈ V (G)} and vt be a vertex such that

xt = min{xi : vi ∈ V (G)}. Hence,

Θ− λ1(Af (G)) = Θ
n∑

i=1

x2
i − 2

∑
vivj∈E(G)

f(di, dj)xixj

= Θ
n∑

i=1

x2
i −

∑
vivj∈E(G)

f(di, dj)(x
2
i + x2

j) +
∑

vivj∈E(G)

f(di, dj)(xi − xj)
2

= Θ
n∑

i=1

x2
i −

n∑
i=1

 ∑
vj∈NG(vi)

f(di, dj)

 x2
i +

∑
vivj∈E(G)

f(di, dj)(xi − xj)
2

=
n∑

i=1

Θ−
∑

vj∈NG(vi)

f(di, dj)

x2
i +

∑
vivj∈E(G)

f(di, dj)(xi − xj)
2

≥ (nΘ− 2TI(G))x2
t +

∑
vivj∈E(G)

f(di, dj)(xi − xj)
2. (4)

Let P : vs = vw0vw1 · · · vwp = vt be a shortest path from vs to vt. Then p ≤ D. Therefore,

by the Cauchy-Schwarz inequality and Lemma 2.5, we have

Θ− λ1(Af (G)) ≥ (nΘ− 2TI(G))x2
t +

∑
vivj∈E(P )

f(di, dj)(xi − xj)
2

≥ (nΘ− 2TI(G))x2
t +

ω

p
(xs − xt)

2

≥ (nΘ− 2TI(G))ω

p(nΘ− 2TI(G)) + ω
x2
s

≥ (nΘ− 2TI(G))ω

D(nΘ− 2TI(G)) + ω
x2
s. (5)

Note that the minimum degree of G is δ. Let vy1 , vy2 , . . . , vyδ be the neighbors of vt.

Using the Cauchy-Schwarz inequality and Lemma 2.5 again, we have

Θ− λ1(Af (G)) ≥ (nΘ− 2TI(G))x2
t +

δ∑
i=1

f(dyi , dt)(xyi − xt)
2

≥
δ∑

i=1

(
nΘ− 2TI(G)

δ
x2
t + ω(xyi − xt)

2

)

≥
δ∑

i=1

(nΘ− 2TI(G))ω

nΘ− 2TI(G) + δω
x2
yi
.

That is,

δ∑
i=1

x2
yi
≤ nΘ− 2TI(G) + δω

(nΘ− 2TI(G))ω
(Θ− λ1(Af (G))).
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Since G is irregular and f(x, y) > 0, it follows that
∑

vivj∈E(G)

f(di, dj)(xi − xj)
2 > 0. Thus,

from (4), we get

x2
t <

Θ− λ1(Af (G))

nΘ− 2TI(G)
.

In addition, we know that δ + 1 ≤ ∆ ≤ n− 1, so n ≥ δ + 2. Recall that x is a positive

unit eigenvector, then we have
δ∑

i=1

x2
yi
+ x2

t + (n− δ − 1)x2
s ≥ 1. Thus

x2
s ≥

1− x2
t −

δ∑
i=1

x2
yi

n− δ − 1

>
1

n− δ − 1
− nΘ− 2TI(G) + (δ + 1)ω

(n− δ − 1)(nΘ− 2TI(G))ω
(Θ− λ1(Af (G))).

From (5), we get

(1 +
nΘ− 2TI(G)) + (δ + 1)ω

(D(nΘ− 2TI(G)) + ω)(n− δ − 1)
)(Θ− λ1(Af (G))) >

(nΘ− 2TI(G))ω

(D(nΘ− 2TI(G)) + ω)(n− δ − 1)

By calculation, it is not difficult for us to have

Θ− λ1(Af (G)) >
(nΘ− 2TI(G))ω

((n− δ − 1)D + 1)(nΘ− 2TI(G)) + nω
,

as desired. �

If G is k-connected irregular weighted graph, we obtain the following bound.

Theorem 4.3 Assume that f(x, y) > 0 is a real symmetric function. Let G be a k-

connected irregular weighted graph with order n and minimum degree δ. If ω = min{f(di, dj) :

vivj ∈ E(G)} and Θ = max

{ ∑
vj∈NG(vi)

f(di, dj) : 1 ≤ i ≤ n

}
, then

Θ− λ1(Af (G)) >
(nΘ− 2TI(G))k2ω

((n− δ − 1)(n+ k − 2) + k2)(nΘ− 2TI(G)) + nk2ω
.

Proof. Let x = (x1, x2, . . . , xn)
T be a positive unit eigenvector of Af (G) corresponding to

λ1(Af (G)). We assume that vs and vt are two vertices, such that xs = max{xi : vi ∈ V (G)}
and xt = min{xi : vi ∈ V (G)}, respectively. Then by the proof of Theorem 4.2, we have

Θ− λ1(Af (G)) = Θ
n∑

i=1

x2
i − 2

∑
vivj∈E(G)

f(di, dj)xixj

13



≥ (nΘ− 2TI(G))x2
t +

∑
vivj∈E(G)

f(di, dj)(xi − xj)
2. (6)

Note that G is k-connected. Suppose that P1, P2, . . . , Pk are internally vertex disjoint vsvt-

paths, then
k∑

l=1

|V (Pl)| ≤ n+ 2k − 2. Thus according to the Cauchy-Schwarz inequality, it

follows that∑
vivj∈E(G)

f(di, dj)(xi − xj)
2 ≥

k∑
l=1

∑
vivj∈E(Pl)

f(di, dj)(xi − xj)
2

≥ ω
k∑

l=1

(|V (Pl)| − 1)

 k∑
l=1

∑
vivj∈E(Pl)

(xi − xj)

2

≥ k2ω
k∑

l=1

(|V (Pl)| − 1)

(xs − xt)
2

≥ k2ω

n+ k − 2
(xs − xt)

2.

Now, by Lemma 2.5 and from (6), we get

Θ− λ1(Af (G)) ≥ (nΘ− 2TI(G))x2
t +

k2ω

n+ k − 2
(xs − xt)

2

≥ (nΘ− 2TI(G))k2ω

(n+ k − 2)(nΘ− 2TI(G)) + k2ω
x2
s. (7)

About vertex vt, we assume that vy1 , vy2 , . . . , vyδ are the neighbors of it. Using Lemma

2.5 and from (6) again, we have

Θ− λ1(Af (G)) ≥ (nΘ− 2TI(G))x2
t +

δ∑
i=1

f(dyi , dt)(xyi − xt)
2

≥
δ∑

i=1

(
nΘ− 2TI(G)

δ
x2
t + ω(xyi − xt)

2

)

≥
δ∑

i=1

(nΘ− 2TI(G))ω

nΘ− 2TI(G) + δω
x2
yi

=
(nΘ− 2TI(G))ω

nΘ− 2TI(G) + δω

δ∑
i=1

x2
yi
.

That is,

δ∑
i=1

x2
yi
≤ nΘ− 2TI(G) + δω

(nΘ− 2TI(G))ω
(Θ− λ1(Af (G))).
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Since G is irregular, it follows that
∑

vivj∈E(G)

f(di, dj)(xi − xj)
2 > 0. Hence, (6) means

x2
t <

Θ− λ1(Af (G))

nΘ− 2TI(G)
.

Furthermore, it is not difficult for us to have

x2
s ≥

1− x2
t −

δ∑
i=1

x2
yi

n− δ − 1

>
1

n− δ − 1
− nΘ− 2TI(G) + (δ + 1)ω

(n− δ − 1)(nΘ− 2TI(G))ω
(Θ− λ1(Af (G))).

Thus, (7) yields

Θ− λ1(Af (G)) >
(nΘ− 2TI(G))k2ω

((n− δ − 1)(n+ k − 2) + k2)(nΘ− 2TI(G)) + nk2ω
.

This completes the proof. �

In [22], Xie et al. considered a upper bound on the spectral radius of k-connected

irregular weighted graphs in which the edge weights are positive numbers.

Theorem 4.4 Let G be a k-connected irregular weighted graph with order n and minimum

degree δ. If Ã(G) is the weighted matrix of G and S is the sum of all the entries in Ã(G),

then

λ1(Ã(G)) < Θ− (nΘ− S)k2ω

(n2 − 2(n− k))(nΘ− S) + nk2ω
.

Let us compare this bound and our bound obtained in Theorem 4.3. Since k ≤ δ < n−1,

we have

(n− δ − 1)(n+ k − 2) + k2 = n2 − 2n+ (k − δ)(n− 1 + k) + δ − (n− 2) < n2 − 2n+ 2k.

which means that our bound is better.

5 Concluding

In this paper, our focus is on several bounds of the largest weighted adjacency eigen-

value. On the one hand, we get the relations between the largest weighted adjacency

eigenvalue λ1(Af (G)) and λ1(Af (H)), where H is obtained from G by graph operations,

including deleting vertices, deleting an edge and subdividing an edge. On the other hand,

15



similar to the idea “How small ∆(G) − λ1(A(G)) can be when G is irregular?”, we have

some bounds for the largest weighted adjacency eigenvalue of irregular weighted graphs.
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