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Abstract

The energy of a graph is the sum of the absolute values of all eigenvalues of its
adjacency matrix. Let PS° be the graph obtained from two copies of Cg joined by a
path P,_19. In 2001, Gutman and Vidovié¢ [I. Gutman, D. Vidovié¢, Quest for molec-
ular graphs with maximal energy: A computer experiment, J. Chem. Inf. Comput.
Sci. 41 (2001) 1002-1005] conjectured that the bicyclic graph with the maximal en-
ergy is PS5, This conjecture is true for bipartite bicyclic graphs. For non-bipartite
bicyclic graphs, Ji and Li [An approach to the problem of the maximal energy of bi-
cyclic graphs, MATCH Commun. Math. Comput. Chem. 68 (2012) 741-762] proved
the conjecture for bicyclic graphs which have exactly two edge-disjoint cycles such
that one of them is even and the other is odd. This paper is to prove the conjecture

for bicyclic graphs containing two odd cycles with one common vertex.
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1 Introduction

Graphs considered in this paper are all connected and simple, that is, have no loops and
parallel edges. Let G = (V(G), E(G)) be a graph with vertex set V(G) = {v1,v2,...,0,}
and edge set £(G). An edge e € E(G) with end vertices v; and v; is usually denoted by
v;v;. As usual, let P, and C,, be the path and cycle of order n. Let P! denote the unicyclic

graph obtained by connecting a vertex of C; with a terminal vertex of P,_; and P! denote



the graph obtained from two cycles Cy, and C; joined by a path P, _j_;.5. Denote by G(n,1)

the set of all n order connected unicyclic graphs which contain cycle C; as its subgraph.

Let G be a graph with n vertices and A(G) be its adjacency matrix. The characteristic
polynomial ¢(G, z) (or ¢(G) for short) of G is defined as

$(G,x) = det(z] — A(G)) =Y az"".
i=0
It is important that ¢(G, x) satisfies the following recursion relation
o(G,z) = (G —uv,z) — (G —u—v,x)—2 Z o(G—C, ),
Ceb(uv)

where €' (uv) is the set of cycles containing edge uv. With respect to the coefficients of

the characteristic polynomial of a graph, let G be a graph with characteristic polynomial
S or_oaxx™ . Then for k > 1,
ap = Z (—1)@ e,
SeLi(G)

where Ly (G) denotes the set of Sachs subgraphs of G with k vertices, that is, the subgraphs
in which every component is either a Ky or a cycle; w(S) is the number of connected
components of S and ¢(S) is the number of cycles contained in S. In addition, ag = 1.
This is the famous Sachs Theorem [3]. In particular, if G is a tree, the characteristic
polynomial of G can be expressed as

[n/2]
$(Gx) = (1) m(G, k)",

k=0
where m(G, k) is the number of k-matchings of G.

For a graph G, let A\i, A, ..., A\, denote the eigenvalues of ¢(G,x). The energy of G is
defined as

E(G) = Il

This definition was put forward by Gutman [5] in 1978. The following formula is also well

known
f@ =1 [ Loglena(Giijaa
=— — log |z i/z)| dx
T . l,172 g Y Y
where 1> = —1. Furthermore, in the book of Gutman and Polansky [7], the above equation

was converted into an explicit formula as follows:

1 [+ 1 [n/2] 2 In/2] 2
g(G> = %/ ; log Z <_1)ka2k<G)x2k + Z (—1)ka2k+1(G)x2k+1 d;p7
- k=0 k=0

(1)



which is called the Coulson integral formula.

Let b;(G) = |a;(Q)] for 0 <i < n. If (=1)*ag(G) and (—1)*as41(G) have the uniform

sign, respectively, then Equation (1) is reduced to

| e 1 n/2] 2 e 2
E(G) =5 / Slog || D ba(G)a™ |+ | D0 b (6™ | de (2)
- k=0 k=0

Define the quasi-order < and write G; =< Gy if b;(G1) < b;(Gy) for all 1 < ¢ < n.
Thus for any two graphs G; and G, if (—1)Faw(G1), (—1)*awu.1(G1), (—1)*amw(Gs)
and (—1)*age41(G2) have the uniform sign, respectively, we can obtain £(G;) < &£(Gs)
if G; = (5. Since 1980s, the extremal energy £(G) of a graph G has been studied ex-
tensively. Many results have been discovered on acyclic, unicyclic, bicyclic and bipartite
graphs by this quasi-order method; see [4, 6, 9, 11, 15].

In [2], Caporossi et al. proposed the following conjecture on the unicyclic graphs with

maximal energy.

Conjecture 1.1 Among all unicyclic graphs on n vertices, the cycle C,, has maximal en-
ergy if n < 7 and n = 9,10,11,13 and 15. For all other values of n, the unicyclic graph

with mazimal energy is PP.

By quasi-order method, Hou et al. [9] obtained £(G) < & (P%) for any connected,
unicyclic and bipartite graph G on n vertices and G ¢ {C,, P’}. One of the authors Li
[12] and Andriantiana [1] independently proved that & (C,,) < € (P%), and then completely
determined that PS is the only graph which attains the maximum value of the energy
among all the unicyclic bipartite graphs for n = 8,12,14 and n > 16, which partially
solved the above conjecture. In [13], by employing the Coulson integral formula and some
knowledge of real analysis, especially by using certain combinatorial techniques, Huo et al.
completely solved this conjecture. However, they found that for n = 4 the conjecture is

not true, and P} should be the unicyclic graph with maximal energy.

In [8], Gutman and Vidovi¢ proposed a conjecture on the bicyclic graphs with the

maximal energy.

Conjecture 1.2 For n = 14 and n > 16, the bicyclic molecular graph of order n with
mazximal energy is the molecular graph of the o, B diphenyl-polyene CsHs(CH ), _12CsHs,
or denoted by P%S.

Let G be the bipartite bicyclic graph that is not the graph R, obtained from two cycles
C, and Cj, (a,b > 10 and a = b = 2(mod 4)) joined by an edge. One of the authors Li and



Zhang [16] showed £(G) < E(PSY) with equality if and only if G = P%0. Subsequently,
Huo et al. [11] solved (R, ) < E(PSY) by using the Coulson integral formula. Thus, the

above conjecture for bipartite bicyclic graphs has been completely solved.

For any non-bipartite bicyclic graph G with two edge-disjoint cycles such that one of
them is even and the other is odd, Ji and Li [14] proved that (—1)*as,(G) and (—1)*ag,,1(G)
have uniform sign, respectively. And they obtained £(G) < E(PS9).

So far, Conjecture 1.2 is open for bicyclic graphs containing two odd cycles. In this
paper, we will consider bicyclic graphs containing exactly two odd cycles with one common
vertex. Let &,>° be the class of all bicyclic graphs which have exactly two cycles C,. and Cj

satisfying that they have just one common vertex. We will prove the following propositions.

Proposition 1.3 Conjecture 1.2 is true for bicyclic graphs in P*T129t1 ywhere p,q > 1
andp+q >3, and n = 12,14 and n > 16.

Proposition 1.4 Conjecture 1.2 is true for bicyclic graphs in 23 where n > 12.
From Propositions 1.3 and 1.4 we can directly get our following main result.

Theorem 1.5 Conjecture 1.2 is true for bicyclic graphs that contain two odd cycles with

one common vertez.

2 Preliminaries

To prove Propositions 1.3 and 1.4, we need some known and new results, so we will
divide this section into two parts. We first provide some known results which will be used

later and then give some new lemmas.

2.1 Known results

First we list some knowledge on real analysis, we refer the readers to [17] for details.

Theorem 2.1 [17] For any real number X > —1, we have

<log(1+ X) < X.
T x Slos(l+X) <

In particular, log(1 4+ X) < 0 if and only if X < 0.

The following lemma is a very useful result which will be frequently used in our proofs.



Theorem 2.2 [7] Let n € {4k, 4k + 1,4k + 2,4k + 3}. Then for even i,

bi(Pn) > bi(Py U Pog) > bi(PyU Pyg) > - > bj(Pox U Par) > bi(Pagy1 U Prag—1)
> bi(PZk—l U Pn—2k+1) > e > bZ(Pg U Pn_g) > bz(Pl U Pn—l)-
Recall that G(n,l) is the set of all n order connected unicyclic graphs which contain

cycle C; as its subgraph. In the study of unicyclic graphs with maximal energy, Hou et al.
[9] got the following result.

Theorem 2.3 [9] Let G € G(n,l) where | # 0(mod 4). Then b;(G) < b;(P!).

On the bicyclic graphs, Ji and Li [14] obtained two results which will be used in the

sequel.

Theorem 2.4 [1/] Let G be a bicyclic graph which has exactly two edge-disjoint cycles Cy
and Cy satisfying that t is even and | = 2p + 1 is odd. Then for i > 0, we have

(i) (=1)'az > 0;
(ii) (—1)'agis1 >0 (resp. <0) if p is odd (resp. even).

Theorem 2.5 [1]] Let G be a bicyclic graph which has ezactly two edge-disjoint cycles
satisfying that one is even and the other is odd. Then E(G) < E(PS%%) for n = 12,14 and
n > 16.

The following lemma is a well-known conclusion due to Gutman [6].

Theorem 2.6 [6/ If G and Gy are two graphs with the same number of vertices, then

1 +°° ’gzﬁ Gl,zx

E(G1> - g(Gg) - G2 Z:U

dz.

2.2 New lemmas

In the proof of Proposition 1.3, we will use bicyclic graphs which have exactly two
vertex-disjoint cycles such that one is even and the other is odd. Ji and Li [14] obtained
that Equation (2) holds for these graphs. What is more, they gave a result of b; when
bei(G) = (—1)'ag(@) and by;1(G) = (—1)%ag41(G). Based on the definition of b;(G) in
this paper, we provide a similar result.

Lemma 2.7 Let G be a bicyclic graph where has exactly two vertex-disjoint cycles satisfy-
ing that one is even and the other is odd. If uv is an edge of a cycle C, with r # 0(mod4),
then

bi(G) = b;(G — uv) + bi—2(G —u—v) 4+ 2b;_.(G — C,).



Proof. Let L;(G) be the set of the Sachs subgraphs with i vertices of G. Without loss of

generality, we assume that the even cycle of G is Cy, and the odd cycle is Cogy1.
Case 1. uv is an edge of the cycle (s, and p is odd.
If 7 is odd, then ¢+ — 2 and ¢ — 2p are also odd. Since the graphs G — uv, G — u — v and

G — Oy, all contain the odd cycle Cy,y1, we have

0, i<2q+1;
“OmwI=12 3 ()T iz,
SeL;(G—uv)
0, i<2g+3;

ai-2(G—u—v)=1q 9 Z (—1)H+71, i > 2q+ 3,
SeL; 2(G—u—v)

and
0, 1<2¢+2p+1;

Ai—9p(G — Cyp) = 9 Z (_1)1'—2z>52q+17 P>+ 2+ 1.
SELZ;QP(G*CQP)

According to p being odd, we obtain
bi(G) = |ai(G)| = [ai(G — wv) — ai2(G — u —v) — 2a;-2,(G — Cy)|

= [ai(G = wo)| + |ai2(G = u = )| + 2|a;5p(G = Ty )|
== bz(G - UU) + bz‘_Q(G —Uu— U) + Qbi_gp(G - Cgp).

Similarly, if 7 is even, then ¢ — 2 is even and ¢ — 2p is also even. Since there are no even

cycles in the graphs G —uv, G — u — v and G — Cy,, we get

a;(G —uv) = Z (—1)%7

SeL;(G—uv)

GoG-u—v)= Y (=17,

SeLi_Q(G—u—U)

and

aj—2p(G — Cyp) = o=y
SELifgp(G—Czp)
for ¢« > 2p. Thus,
bi(G) = b;(G —uv) + bi—o(G — u — v) 4 2b;_2,(G — Cyp).

Case 2. uv is an edge of the cycle Cygyq.



If 7 is odd, then i — 2 is odd and ¢ — (2¢ + 1) is even. Since G — uv and G — u — v have

no odd cycles, we get a;(G —uv) = 0 and a;_o(G — u — v) = 0. Hence,
bi(G) = |ai(G — wv)[ +[ai2(G = u = V)| + 2]ai-(2g11)(G — Cag11)|
= bZ(G — uv) + bi_Q(G —Uu— U) + Qbi_(gq_;,_l)(G — OQq—i—l)'
If i is even, then ¢ — 2 is even and i — (2¢ + 1) is odd. Because G — Cy,11 has no odd

cycle, we have a;_(2g4+1)(G — C2+1) = 0. Moreover, since Cy, is the subgraph of G —uv and

G — u — v, we obtain the number of components of each Sachs subgraph with ¢ vertices of

G —uv is % or # and the number of components of each Sachs subgraph with ¢ — 2
vertices of G — u — v is 52 or 22, Thus a;(G — w) and a,_»(G — u — v) have different

signs. We get
bl<G) = bl(G — 'LL'U) + bifz(G — U — U) + 2bi—(2q+1) (G — CQqul).

Therefore, we complete the proof. Il

Let G € 22124+ with p—q = 0(mod 2). Next we prove (—1)*ag(G) and (—1)*ag,1(G)
have the uniform sign and then give the expression of b;(G).

Lemma 2.8 If G € 2?1201 gnd p — q¢ = 0(mod 2), we have

(i) (—=1)'az; = 0;

(ii) (—1)'agi1 > 0 if p is odd and (—1)'agi 11 < 0 if p is even.

Proof. Let m(G, k) be the number of the k-matchings of G. From Sachs Theorem, we
have
(=D'ag = (=1)" - (=1)'m(G,7) > 0.
Thus, (i) holds.
For (—1)%ag;1. Without loss of generality, we suppose that p < ¢. Let, Sopt1 and Saqq1

be the sets of Sachs subgraphs with 2i + 1 vertices of G containing cycles Cy, 41 and Cog,

respectively.
If 20 +1 < 2p+ 1, then (—1)%ag,1 = 0.
f2p+1<2i4+1<2g+1, then

(~Diazn =2 3 (~D)i(=1)i 7 =2 3 (—1p.

SGSQP+1 S€S2p+1

So (—=1)"agi+1 > 0 (resp. < 0) if p is odd (resp. even).



If 2i +1 > 2+ 1, then

( 1 CL21+1 9 Z i zp+1+2 Z i 2 g+1

5652p+1 SEqu+1
P ICISIES o
S€Sapt1 S€S2g+1
Since p — ¢ = 0(mod 2), we get the result. O

Lemma 2.9 Let G € 2?P1207 gnd p — q = 0(mod 2). If uv is an edge of cycle C, with
r=2p+1 or2q+1, then

bZ(G) = bZ(G - UU) + bi_g(G —Uu— U) + 2b2_r(G - CT)
If uwv is a cut edge of G, then

bi(G) = b;(G —uv) + b—o(G — u —v).

Proof. The definition of L;(G) is the same as that provided in Lemma 2.7. If wv is an
edge in the cycle of G, without loss of generality, we suppose that uv is an edge of cycle
Copt1. Then

bi(@) = [ai(G)] = ai(G — uv) — ai-s(G —u — ) — 2a;_3p1)(G — Capi).

When i is odd, ¢ — 2 is odd and i — (2p + 1) is even. We have

0, i<2+1:
a;(G —uv) = { 4 S )TE, izt
SeL;(G—uv)

For a;_o(G—u—w), if u or v is a common vertex of Cy,11 and Cyyyq, then a;,_o(G—u—v) = 0.

Otherwise,
0, ©<2q+3;
Ga(Gmu=v)=99 3 (C1)TH, iz 243,
SEL;—o(G—u—v)
And

@i (op11)(G — Copir) = 3 (—1)

S€EL;_(2p11)(G—C2pt1)

when ¢ > 2p + 1.

Since p — ¢ = 0(mod 2), we have a;(G — uv) and a;_2(G —u —v) (a;—(2p+1)(G — Cops1))
have different signs for every 7. Hence,

bi(G) = |a;(G — wv)| + |ai—2(G — u — v)| + 2|a;_(2p+1) (G — Cop41)]

8



= bZ<G — UU> + bi_Q(G —Uu— U) + Qbi_(gp_;,_l)(G — 02p+1).

When i is even, i — 2 is even and i — (2p+1) is odd. Analogously, we have a;(G —uv) =
ZSELi(G—uv)(_1>% and a;—o(G —u —v) = ZSGLi_Q(G_u_v)(—l)%. Since there is no odd
cycle in G — Cypy1, we have a;_(2p41)(G — Copy1) = 0. Thus,

bl<G) = bl(G — UU) + bi_Q(G —UuU— ’U) + 2bi7(2p+1) (G — OZp-i—l)-
If wv is a cut edge of GG, then we have
bi(G) = |a;(G)| = |a;(G — wv) — a;—2(G — u —v)|.

When ¢ is odd, ¢ — 2 is also odd. The number of components of each Sachs subgraph

i—2p+1 i—2g+1
2 2

Sachs subgraph with ¢ — 2 vertices of G —u — v is 0 or

with ¢ vertices of G — wv is 0 or

or . The number of components of each

i—2p—1 1—2q—1

2 T 7

p —q = 0(mod 2), it follows that a;(G — wv) and a;—o(G — u — v) have different signs.

. According to

Hence,

bi(G) = |a;(G — wv)| + |ai—2(G — u — v)|
=b;(G —uv) + b;—2(G —u —v).

When i is even, ¢ — 2 is also even. Since the number of components of each Sachs

subgraph with ¢ vertices of G — wv is % and the number of components of each Sachs
subgraph with ¢ — 2 vertices of G — u — v is %, a;(G — uv) and a;_o(G — u — v) have

different signs. Thus,

The proof is now complete. U

Remark 2.10 As we know, for non-bipartite graphs with uniform signs of (—1)kag, and
(—=1)*agpy 1, respectively, we also can compare their energies by quasi-order method, that
is, by directly proving b;(G1) < bi(Gy) for all 0 < i < n to obtain E(Gh) < E(G).
Thus by Lemma 2.8, we can use this method to compare the energies of graphs belong-
ing to PPH120 with p — q = 0(mod 2) and other graph H such that (—1)*as(H) and
(—=1)*agpy 1 (H) have uniform sign, respectively.

For the graph G € 22PT12+L with p — q 2 0(mod 2), we find the result of Lemma 2.8
may not hold. In this case, if we get b;(G) < b;(H) for all 0 < i < mn and H is the graph
such that (—=1)*ag(H) and (—1)*asp1(H) have uniform sign, respectively, then by

/2] 2 [Ins2) 2
> (=DFan(@)a™ | + | D (= DFagaa (G2
k=0 k=0



[n/2] 2 (/2] ?

< Z bar (G Z bok41(G) !

for all 0 < k < |n/2]| and Equation (2), we can obtain

Loy [l 2 (2 ?

E(G) < o /OO Plog Z bor (G + Z bopr1(G)z* ! dz
1 —+o0 1 I n/2J 2 I_n/2 2

< w2 log Z bor(H Z bap1 (H )z dz

= E(H). (3)

For convenience, we give some notations. Denote by C(I) the induced subgraph of G
consisting of the cycle C; and all the trees with a vertex on Cj. For a graph G € @2P+1.2a+1,

denote the two cycles Cy,yq = v - - - v), and Cagyq1 = Vovy - - - Vaq. Let T; (resp. T7) be

P

the subtree of G such that T; (resp. 7}) and Cy,4q (resp. Capi1) have a unique common

vertex v; (resp. v;). Denote by F; and F] the forests obtained from T; — v; and T — v},
respectively. Let |[C(2p+1) — Fo| =2p+ 1+l and [C(2¢+1)| =2¢+ 1+ k.

u; (0
Uk

i
Uy (0
U

0

Fi 2: Graph H,(2p+1,1;2¢g + 1, k) with
Figure 1: Graph H. lgure rap (2p+ q+1,k) wi

kE+l=n—-2p—2q—1.

Lemma 2.11 Let G € 2?12+ [fp— g = 0(mod 2) and 1 < p < q, then we have
E(Q) < E(B.(2p+ 1;2g+ 1,k + 1)) where the graph B,(2p + 1;2q + 1,k + 1) is shown in
Figure 3.

Proof. Firstly, we prove b;(G) < b;(H), where the graph H is shown in Figure 1. By

Theorem 2.3 and Lemma 2.9, we have
bi(G) = bi(G — vovy) + bi—a(G — vo — V) + 2bi—(2p11) (G — Copt1)

10



Ukl

Uy

Figure 3: Graph B,(2p + 1;2¢+ 1,k + 1) with k +1=n —2p — 2¢ — 1.

= bi(G — vvy — vovy,) + bia(G — vov| — v — vy,) + bi_a(G — vo — 1)

+ 2b;_(2p1+1) (G — Copt1)

=b((C2p+1) = To) UC(2g+ 1))

+b2((C(2p+1) = To — T3,) U (C(2g + 1) — To) U I3, U Fp)
+bi2((C2p+1) = To —T{) UF U Ky U (C(2g + 1) — Tp))

+ 2 opiy(Fo U Fj U+~ U Fl U (C(2q + 1) — Ty))

<b((C2p+1)—TH) U PQQ;J,J-rll-i-k) +bio((C2p+1) =Ty — T2/p> U Pygyr U F2/p>
+0i2((C2p+1) = Ty = TY) U F{ U Pagyr) + 205 (opr1y (FY U -+ - U Fy U Pag i)
= b;(H — vguy — vovzp) +b;_o(H — vovy — vg — v2p) +b;_o(H — vy — v})

+ 2b;i—(2p4+1)(H — Copy1)

= b;(H — vov}) + bi—o(H — vg — v}) + 2b;_(2p+1)(H — Copi1)

— b(H).

Next, we prove b;(H) < b;(H,(2p+1,1;2q+1, k)), where the graph H,(2p+1,1;2q+1, k)
is shown in Figure 2. Similarly, by Theorem 2.3 and Lemma 2.9, we get
bi(H) = bi(H — vov1) + bi—o(H — vo — v1) + 2b;— (2941 (H — Caq41)
= b;(H — vou1 — vgvaq) + bi—o(H — vov1 — vg — Vag) + bi—o(H —vg — v1)
4 2bi—(2g+1) (H — C2q41)
= bi(Pagx U (C(2p + 1) — Fy)) + bi2((C(2p + 1) — To) U Pagar—1)
+bi2((C(2p+1) = To) U P U Pag—1) + 2bi—(2441) ((C(2p + 1) — To) U By
<b (PQ;):ll-H U Pagir) + bi—a(Pap1 U Pagir—1)
+ bi—o(Papy1 U Py U Pog_1) + 2b;—(2g41) (Pap+1 U P)
= bi(Hn(2p+ 1,1;2¢ + 1, k) — vov1 — vovzg)
+bio(H,(2p+ 1,129 + 1, k) — vovy — vg — vag)

11



+bio(Hu(2p + 1,1;2q + 1, k) — vg — v1) + 2bi—2g11) (Ha (20 + 1,15 2¢ + 1, k) — Cagi1)
=b;(H,2p+ 1,1;2¢ + 1,k) —vovy) + bio(H,(2p + 1,1;2g 4+ 1, k) — vo — v1)

+ 2b;_(2g+1) (Hn(2p + 1,1; 2 + 1, k) — Cog11)

= bi(Ho(2p + 1,12 + 1, k).

Finally, by Theorem 2.2 and Lemma 2.9, we obtain

bi(H,(2p+ 1,1;2q + 1,k))

= bi(H,(2p + 1,1;2q + 1, k) — vyuh) + bio(Hn(2p + 1,15 2¢ + 1, k) — v} — u})
=b;(B,a(2p+ 1;2¢+ 1,k)UPR) + b;_o((Boy(2p+ 1;2¢ + 1, k) — v)) U B_4)
=bi(Bri(2p+1;2¢+ 1,k) U B) + b;—o(Poprogrr U Pi—1)

+ 0i—a(Pop—1 U Py U Pog_ 1 U P_y) + 2b;_ (243 (Pop—1 U P U P_y)

< bi(Bni(2p + 152¢ + 1, k) U B) + bio((Bp1-1(2p + 152¢ + 1,k — 1) — wovy) U Py)
+ bi—a(Pop—1 U Pagi—1 U Pi_1) + 2b;_(2p13)(Pagik—1 U P_1)

=b;(Bn(2p+ 1;2¢+ 1,k + 1) — upugy1) + bi2(Bn(2p+ 1,29 + 1,k + 1) — up — ugy1)
=b;(B.(2p+ 1,29+ 1,k +1)).

In the above result, if £ = 0, we assume that vy = v; and B,_;_1(2p+1;2¢+1,k—1) =
Pipzﬂ1 Then we have b;(G) < b;(B,(2p + 1;2¢ + 1,k + 1)). By Lemma 2.8, we can get
E(G) < &E(Bn(2p+1;2¢+ 1,k +1)), the result holds. O

3 Proof of Proposition 1.3

In order to prove Proposition 1.3, we divide into four cases based on the difference in
length between the two odd cycles. First we prove the result about graphs in g2+1:2a+l

where |q — p| > 3.

Lemma 3.1 Let G € 2212+ where |q — p| > 3 and p,q > 1. Then we have £(G) <
E(PSY) forn = 12,14 and n > 16.

Proof. Without loss of generality, we suppose that g—p > 3. Then ¢ > 4. Let |C(2p+1)| =
t>2p+1, we have n —t > 2q > 8.

When i is odd, choose edge vovy of cycle Cyyt1, according to the definition of b,(G) we
get

bz(G) = |CLZ(G - U(ﬂ}l) - CLZ‘_Q(G — Vo — ’Ul) - 26Li_(2q+1) (G - ng+1)|
< bi(G = vov1) + 2bi—2+1) (G — Cag41)
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< by(PZ) 4+ 2b; @2q+1) (Pn—(2g41))-

Since ¢ —p > 3, 2¢ — 2p — 6 > 0, it follows that b;—(2g41)(Pa—(2¢+1)) < bie(2p+7) (Pr—(2g41) U
Pay-op-6) < bi(2ps7)(Pu—(2ps7))- Thus

(P + 20 (2p47) (P (2p47))

(Pq%p—H) + bz 6( 3;:-&6-1)

z(PﬁpH) +bio(PrU BEY) + 2bi (P

( 6

2p+1,
B0).
When 1 is even, we consider the following two cases.

Case 1. ¢t > 4.

Pick edge vov; of cycle Cyqy1, we have

bi(G) = |ai(G — vov1) — ai—a(G — vo — V1) — 2a;—(2441) (G — Cog11)]
S b,(G — UQUl) + bz‘_Q(G — Vo — 1)1)

< by(PPYY 4 b, 2(P4 U Pjpgl) + 2b,_g(P?PEY

By Inequality (3) and Theorems 2.4 and 2.5, we get £(G) < E(P#+16) < £(PS0).
Case 2. t=3, then we have p = 1. Hence, q > 4.

Choose edge vov] of cycle Cy, 41, we obtain

bi(G)

IN

b (G - U(ﬂ)i) + bi_Q(G — Vg — Ui)
bi(P2HY) 4+ by (P U P,_3)
bi(Pn) + bi—a(Pag—1 U Po_(24+1)) + bi—o(P1 U P,_3).

IA

Note that n — (2¢+1) > 2. If n— (2¢+ 1) > 3, then by Theorem 2.2, we have b;_o(Pay—1 U
Pu_2g+1)) < bi_a(Py U P, ). Hence,

IN

b (G) b (Pn) + bi_Q(P4 U Pn—G) + bi_Q(Pl U Pn_g)
bi(Py) + bia(Pr U Py_5)
b

(P29).

IN

When n — (2g + 1) = 2, it follows that
bi(G) < bi(P,) + bi—o(Py U Pyy) + b _o(PL U P, _3)

13



- bZ(Pn) + bi_Q(PQ U Pn_ﬁ U PQ) + bi_4(P2 U Pn_7 U Pl) + bi_Q(Pl U Pn_3>
:bi(Pn)—f—bi,Q(PQUPn,GUPQ)—Fbi,;L(PlUPlUPn,7UP1)
+bi6(P7UPy) +bo(PLUP,_3)

< b-(P )+ bia(PoU P, UPs) 4+ bi_s(PLUP,_¢UP) 4+ bi_¢(Py_6) + bi—a(PL U P,_3)
bi(Pn) + bi—o(PyU Py6) + bi—6(Prs) + bia(P1 U Py 3)
bi(Py) + bi—a(PL U Py _y)
bi(P,°).
By Inequality (3) and Theorems 2.4 and 2.5, we have £(G) < E(P35) < &£(PS%°) for
n = 12,14 and n > 16. So we complete the proof. O

In the following, we will discuss graphs in 22P124+! where |¢ — p| < 3 one by one. For
the graphs in 221215 and @212+ they satisfy the condition of Lemma 2.11, so we

first consider these graphs.

Lemma 3.2 Let G € 22PTL2%5 where p > 1. We have E(G) < E(PSY) for n = 12,14
and n > 16.

Proof. By Lemma 2.11, we just prove that £(B,(2p+ 1;2p +5,n — (4p + 5))) < E(PSO).
Case 1. p > 2.
Subcase 1.1. n — (4p+5) > 3 or n = 4p + 6.
When 1 is odd, by Lemmas 2.7 and 2.9, we get

bi(G) = bi(G — vov1) + 2b;—(2p15) (G — Capys)
= bZ(Pszr ) + 2b; —(2p+5) (P2p Ur, (4p+5))
< bZ(Psp—H) + 2b;- (2p+5) (Pn—2p—9 U P4)
< bi(PIY) + 20 (2p13) (Pa2p-7 U Py)
— B(P2) + b (P U R
< bi(PPLO).
For n — (4p +5) > 3, if 2p = 4, it follows that P, U Py_(4p15) = Prgp—o U P

When 2p > 6, if 2p < n— (4p+5),then n—2p—9 =n— (4dp+5)+2p—4 > 8, so
Py, U Py_(4py5) = Py U P,_9,_9 by Theorem 2.2. If 2p > n — (4p +5), then n —2p — 9 =
n—Ap+5)+2p—4>3+6—42>5and P, UP, (a5 = PyU P, 9y 9.

Forn:4p—|—6, PQpUPnf(4p+5) :PszPl j ng_3UP4:Pn_2p_9UP4.
Thus, the first inequality above holds.

14



When i is even, we have

bl(G) == bl<G - U(ﬂ)l) + bz 2(G — Vo — Ul)
= bi(PPHY) + bica(Pap U Papia U P (apis))
< bi(P2H) 4+ b o(PPE U Py)
S bz(PQP—H 6)

Thus by Equation (2) and Theorems 2.4 and 2.5, £(G) < E(P*T10) < £(P5Y) for
n = 12,14 and n > 16.

Subcase 1.2. n =4p + 7.
When i is odd, we can find

(
(
bi(PZPTY) 4+ 2b;—(2p43) (P2,, UPUPR)
< b (P2 + 20, (9py3)(Pop U Py)
bi(P2PH) + b (P2l U Py)
(

bi(

by (PP 4 b, 2(P2p U Pz U P)
< b (P2 4 bi_o(Papro U Pays)

bi(

bi(

P2 4 b (PP U Py)

Pip—l-l 6>‘

Thus £(G) < E(P?PT15) < £(PSS).
Subcase 1.3. n =4p + 5.
When i is odd, we have

bi(G)

INA
S~ R~

(G — vov1) + 2b;—(2p45) (G — Capys)

i(PR7) 4 2bi (2p45) (Pap)

i(P0) + 2bi(2p15) (Pap)

i(P2P1) 4 2b;_(2ps1) (Pop U Py) + 4bi_(2p45) (Poy)
( )

J(PY) by o (PR U P + 20 (PR

IN

15



= b(P215),

When i is even, we obtain

bi(G) = b;(G — vovy) + bi_o(G — vg — v1)

= b;(P2P") + b9 (Pay U Pypys)
= bi(Fn) + bima(Pap—1 U Popra) + bia(Pap U Popis)
= b;(Py) + bi—a(Pop—3 U Py U Popya) 4+ bi—a(Popa U P U Popig) + bi_o(Pop U Paypy3)
< bi(Py) + bica(Pop—3 U Py U Pyyyg) + by (Py U Pyy_3) + bi—o( Py U Pyyq)
= 0;(P,) 4 bi—a(Pop—3 U Py U Papiy) + b;_g(PyU Pay_5 U Py)

+bi—6(PyU Pop_y U Poy_1) + b —o(Py U Pyy,_q)

< bi(Py) + bi—a(Pop—3U Poyig) + bi—a(Py U Pap_3 U Poy) + bi—6(Pap—1) + bi—a(Py U Pyy_y)
< (P21 + bi—a (P27 U Py) + 2bi6(Pi7))

— b (P19)

Thus £(G) < E(P?P~15) < £(PSS).
Case 2. p=1, that is, G = B,(3;7,n —9).
When 1 is odd, we get

bi(G) = bi(G — vov1) + 2b;—(2p45) (G — Capys)
= bi(P2) 4+ 2b;_7(P, U P,_y)
< b(P3) + 2b;_5(Py U P, _y)
=b;(P?) + b;_o(P? s UP))
< bi(P,°).

+bio(PS U P)

n

bi(
bi(F)
SbZ(Pn)—{—bl o(PyUP,_ 6)+b2 2(P1UPn 3)
bi(Fy)
bi(P>0

Thus £(G) < E(P3%) < £(P%Y). Hence we complete the proof. O

Lemma 3.3 Let G € 22TH%F where p > 2. Then E(G) < E(P%Y) for n = 12,14 and
n > 16.
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Proof. By Lemma 2.11, we have £(G) < E(B.(2p + 1;2p+ 1,n — (4p + 1))). Next, we
prove that £(B,(2p+ 1;2p+1,n — (4p+1))) < E(PSY). Let I =n — (4p+1).
When i is odd, we divide into three cases.

Casel.[=1or!>3.

bi(G) = b;i(G — vov1) + 2b;—(2p11) (G — Copy1)
(PP 4+ 26, 9,1y (Pap U P)
PP 4 2bi_(p41) (Popr1-4 U Py)
pr_l) + bi- 2(P425+_11 5 U Py)

If | =1, it is obvious that b;_(2p11)(Pap U B) < biopt1)(Popti—a U Py).

For [l > 3. If 2p+1—4 < 4, then 2p 4+ 1 < 8 Since 2p > 4 and [ > 3, it follows
that 2p +1 > 7. So 2p +1 = 7, that is, p = 2 and | = 3. Thus b;_(2p41)(Pop U P) =
bi—(2p+1)(Ps U Ps) = b (2p41)(Pops1—a U Py). If 2p+1—4 > 4, Since 2p > 4 and [ > 3, it
is easy to get that b;_(ap11)(Pop U F) < bi(2p11)(Popri—a U Py). Hence, the first inequality
above holds.

Case 2. [ = 2.

bi(G) = bi(G — vov1) + 2b;—(2p11) (G — Copi1)
= bi(P2*Y) 1 20, o1y (Pop U Py)
= 2b;—(2p4+1) (Popy2) + 2bi_(2p11) (Pap—2 U Po U Py) + 2b;_(2p13)(Pap—3 U Py U Py)
< 2bi—(2p41) (Pap2) + 205 (2p41) (Pap—2 U Py) + 2, (2p—1) (Popt3 U Pr)
= 2b;_(2p—1)(Pop+a) + 2b;_2p11)(Pop—2 U Py)
= b(P3) + bia (P25 U Py)
< 0P,

Case 3. [ =0.

b(G) = bi(G — vov1) + 2bi_(aps1)(G — Capi)
= bi(PPT) + 2bi 9 1) (Pap)
= 2bi—(2p+1) (Pop) + 2bi—(2p41) (Pop-a U Pa) + 2bi(2p1.3) (Pop—5 U P3)
= 2b;—(2p+1)(Pap) + 2bi—(2p11) (Pop—a U Py) + 2b;_(2p13)(Pop—5 U Py U P)
+ 2b;_(2p45) (Pap—s U Py)
< 2bi—(2p+1) (Pap) + 20— (2p11) (Pop—a U Py) + 2b;—(2p—1)(Popy1 U P1) + 2b;—(2p+5)(Pop—a)
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= 2bi_(2p—1)(Popy2) + 205 (2p11) (Pop—a U Py) + 205 (2p45)(Pop—4)
= bi(P)) + bio (PR3 U Py) + big(P )
< b (P2p 1, 6)'

When i is even, we get

bi(G) = bi(G — vov1) + bi_o(G — vg — v1)

= bi(PZP™Y £ by o(Po, UP, U Py, )
= b;(P,) + bi—a(Pop—1 U Pypiy) + bi—o( Py U P U Py, q)
=b;(P,) + bi—a(Pop—3 U Py U Poyyy) + bimg(Popa U Py U Papyy) + bi_o(Popy U P U Pyyq)
< bi(Py) + bica(Pop—3 U Py U Poyyg) + bima(Py U Papyy—a) + bi—o(Py U Pyyyys)
= b;(Py) + bi—a(Pop_3 U Py U Pypiy) 4+ bi—a(Pr U Poy_3 U Papyy 1)

+bi—6(P1U Pop_a U Popiy—9) + bi—o(Py U Pyyyy_5)

< 0i(Po) + bia(Pap—3 U Papiira) + bice(Pipri—s) + bi2(Py U Prpii-5)

< bi(PPY) 4 bia(PiP L U Py) + 20 (PP L)

= 0:(P)

Thus £(G) < E(P?P~15) < £(PSS). O

For graphs in 22PT12%3  they do not satisfy Lemma 2.11. Here we use Inequality (3)
and prove directly by Theorems 2.2-2.5 and Lemma 2.7.

Lemma 3.4 Let G € 22PT1%%3 where p > 1. Then E(G) < E(P%Y) for n = 12,14 and
n > 16.

Proof. Suppose that |C(2p +1) — Fy| = 2p+ 1+ 1 and |C(2p + 3)| = 2p + 3 + k, then
n=4p+3+k+1.

Case 1. 2p+[1>3and k=1or k > 3.

When 7 is odd, we get

bi(G)

IN

bi(G = vov1) + 2bi—(2p13)(G — Copy3)
bi(P*1) + 2b; —(2p+3)(Pr U Papyi)
bi(PP) + 2, (2p43) (P U Pappia)
bi(

bi(

IA

IN

(PPN 4b,_o (PP U PY)

n

IN

i(Pr).

f3<2p+1<k,then2p+k+1—-42>2p+1> 3. Itis obvious that P, U Py,4; =
PyU Popyjti—a.

18



For 2p +1 > k. Note that 2p +1 > 3. If k = 1, then P, U Py,yy = PL U Po,yy =
PyUPsy 3 =P UPypp-a If k=3, it follows that 2p +k +1—4 =2p+1—1> 2.
Then P, U P,y = PyU Popijyyg. f k>4, then2p+k+1—-4>2p+1>Fk >4 So
PoU Py X PyU Py ge—a.

Therefore, the third inequality above holds.

When i is even, we have

bl<G) S bZ(G - U(ﬂ)1> + bi_Q(G — Vo — 1}1)
< b (PP + bio(Popys U Popigst)
< bi(PP) + bio(PPE U Py)
< b (P20,

By Inequality (3) and Theorems 2.4 and 2.5, we get £(G) < E(P#+16) < £(PS0).

Case 2. 2p+ (>3 and k = 2.

Sincen =4p+3+k+1 > 12, we have 2p + 1 > 4. Otherwise p =1 and [ = 1, thus
n = 10.

Subcase 2.1. [ > 1.

When 7 is odd, we have

bi(G) < bi(G — vour) + 2b;_(2p13) (G — Copis)
< 2b;—(2p4+1) (FP1 U Popia) + 2b;—(ap3) (Popt1 U Po)
= 2bi_(2p+1) (P U Popya) + 2bi(2p13)(Popyi—1 U PL U Po) 4 2bi_(2p45) (Popri—2 U P)
< 2bi(2p41) (P U Papya) + 2bi(2p13) (P U Papys) + 20 2p15) (Popri—2 U Pa)
< 2bi—2p 1) (B U Popa) + 2bi—2p13) (P11 U Papis)
+ 2b;— (2p+3) (Popti—2 U Pr U Ps) + 2b;_(2p15) (Popyi—2 U Ps)
= 20— (2p11) (Poptira) + 20 (2p+3) (Popri—2 U Py)
= b(PP*) + bio(PG U Py)
< b (P20,

When i is even, we get

bl(G) < bZ(G — 710111) + bz 2<G — Vg — Ul)
< bi(PPYY) + bio(Popyi U Popys)
< (P + bio (PG U Py)
S bZ(P2p+1’6>.
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Thus £(G) < E(PPH10) < £(P5Y).

Subcase 2.2. [ = 0, that is, n = 4p + 5.

If p is odd, we prove that £(G) < E(P2Pr12rH1) < £( P56,
When 1 is odd, we get

bi(G)

IN

bi(G — vov1) + 2bi—(2p4+3) (G — Copes)
bi( PP *1) + 2bi—(2p13) (P2 U Pay)

bi( PP ) + 20i-(2p13) (Pape2)
bi(
bi(

VAN VAN

T Pr%er ) + bl 2<C2p+1 U P2p+2)

2p+1,2p+4
by ).

IN

(2

When i is even, we have

bi(G)

IA

(G — vouy) + bi_o(G — vg — v7)
i(G — vovy — oy, + bi—a(G — vov] — vo — vy,) + bi—ao(G — vo — v})
i(Pop U P;ﬁ:g) + bi—o(Pop_1 U Pypia) + bi—o(Pop_1 U Papiy)

bi(G
bi(
bi(
bi(Pop U Popys) + bimo(Pop U Popi1 U Py) + bi—o(Pop—1 U Popia) + bi—o(Pop1 U Popia)
bi(
bi(
bi(

mIA

i(Papts) + 0i—o(Pop U Popiq U Po) + bi_o(Pap—1 U Popia)
i(P2PH) 4 bi—o(Copir U Pops)

n
2p+1,2p+4
7 Pn )

IN A

as desired.
If p is even, we prove that £(G) < E(P#T12r12) < £(PSHY),
When 1 is odd, we get

i
i
z(Pﬁp ) + bif2<P221§j31 U P2p)
i

2p+1,2p+2
P: ).

When i is even, it is analogous to that p is odd,

bi(G) < bi(Papys) + bia(Pap U Popin U Pa) + bio(Pap—1 U Payia)
< bi(PaPH) 4 bima(Pyys U Py)
< b (p2p+1,2p+2)’

as claimed.
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Case 3. 2p+ 1 >3 and k = 0.

Since n = 4p + 3+ k + 1 > 12, it follows that 2p +1 > 5.
Subcase 3.1. [=1or [ > 3.

When i is odd, we have

bi(G) < bi(G — vovr) + 2b;—(2p+3) (G — Copy3)
< 20i—(2p41) (F1 U Papya) + 2bi_(2p13)(Papt1)
= 2b;—(2p+1) (P U Popia) + 2b;— 2p13) (Popyi—3 U P3) + 2b;_(2p15)(Papr1—a U Pa)
< 20— (2p41) (P U Popia) + 2b;_(ap13) (P11 U Papy1)
+ 26— (2p+5) (Popti—a U Pa) 4 2b;_(2p+3) (Popri—a U P3 U P)
= 2b;i—(2p+1) (Poptir2) + 20— (2p43) (Popri—a U Py)
= bi(B27) + b o (PG U Py)
< bi( PO,

When ¢ is even, we get

bi(G)

IN

(G —vov1) + bi—o(G — v9 — 1)
(PP 4 bimo(Popyr U Popia)

i(PP) 4 bi—o(Papyis U Pa)
i
i

IN

IN

P + by (PG U Py)

n

IA
[N~ SR~ TR~ R~

IA

p2rtl, )

n

Thus £(G) < E(P?PTL6) < £(PSS).

Subcase 3.2. [ = 2, that is, n = 4p + 5.

If p is odd, we prove that £(G) < E(P2PH12rH) < £(PSS).
When 1 is odd, we get

bi(G)

IN

i((G — vov1) + 20 (2p13) (G — Copy3)

b;
bz P3p+1) + 2b (2p+3) (P2p+2)
b

(G
(
i(P2PHY) 4 bima(Copir U Popra)
(

2p+1,2p+4
bi(P; ).

IN

IN

When ¢ is even, we have

b (G) S b; (G - U()Ul) + bl‘_Q(G — Vo — Ul)
< bi(PFY) + bio(Popi1 U Papya)
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< bi(P3p+1,2p+4)7

as desired.
If p is even, we prove that £(G) < E(P?PT12rH2) < £(PSS),

When ¢ is odd, we get

bi(G) < bi(G — vovr) + 2bi—(2p+3) (G — Copy3)
< 20— (2p+1) (P2 U Papya) + 20— (2p+3)(Papy2)
= 2b;—(2p+1) (P2 U Papya) + 20— (2p43)(Pap U Pa) + 2b;—(2p45)(Pap—1 U P)
< 2bi—(2p+1)(P2 U Popta) + 2b;—(apt3) (Pop U Pa) + 2b;—(9p+-3) (Popt1 U Pr)
= 20, (2p+1)(Popya) + 2bi_2p13)(Pop U Ps)
= bi( P + bia(Popls U Pay)
< bi<p3p+1,2p+2).

When i is even, we have

bi(G) < bi)(G — vovy) + bi—2(G — vg — vy)
< bi(PT) 4 bio(Popi1 U Popya)
Sb(Pr%p )+bz Z(ngi?}UP?p)
< by(P2HL20H2)

as required.
Subcase 3.3. | = 0, that is, n = 4p + 3. Thus p > 3.
When i is odd, we have

bi(G) < bi(G — vov1) + 2bi(2p13) (G — Copy3)
= 2b;(2p+1)(Pops2) + 205 (2p43)(P2p)
= 20, (2p11) (Papy2) + 2bi(2p43)(Pop—1 U P1) + 2b;_(2p15)(Pap—2)
< 2bi(2p—1) (Papta) + 2bi—(2p+3) (Po U Pap—2) + 2bi—(2p15)(Pap—2)
< 2b;—(2p—1) (Papya) + 2bi—(2p+1) (Pop—2 U Py) + 2b;—(2p45)(Pap—2)
= bi(Png:;) + b; o
< bi(Prhe).

Piy s U P1) + bioo(Prys)

When i is even, we get

b (G) S (G—UO’Ul) ‘l—bz‘_Q(G_UO —Ul)

b;
bi( PP + bi—o(Pay U Pap 1)
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= bi(Pn) + bi—a(Pap—1 U Popio) + bi—a(Pop U Popiq)
= bi(Pn) + bi—a(Pap—3U Py U Popio) + bi—a(Popa U Py U Poy o)
+ bi—o(Pop U Py 3 U Py) + bi_a( Py U Poypy U Ps)
< bi(Pn) + bica(Pop—3U Py U Popio) + bi—a(Pop—a U Py U Poy_q)
+ bi—o(Pop U Pop_3 U Py) + b;_4(Pop_3 U Paypyio)
= 0;(P,) 4+ bi—a(Pop—3 U Pa U Popio) + bi_g(Pop_y U P, U Py, )
+ bi—o(Pop U Pop3 U Py) + b;_g(Pap_3 U Papi1 U Py) + bi_g(Pop—3 U Pyp)
= 0;(P,) 4 bi—a(Pop—3 U Popia) + bi—o(Pyp—3 U Py) + bi—6(Pop—3 U Pay)
< b (PP + bi—2(P425__31 U Py) + Qbi—G(Pf;)__gl)
= bi(PrH0).
Thus £(G) < E(P?P~15) < £(PSS).
Case 4. 2p+ 1 =2, thatis, p=1and [ = 0.
When 7 is odd, we get

bi(G) < bi(G — vov)) + bi_2(G — vy — v})
gb(P )+ bio(PLUP,_3)
=b;(P,) + b;— 2(P3 UP,_5)+ b o(PLUP,_3)
< bi(Py) + bi—a( Py 6) bi_o(PLUP,_3)
< bi(Py) +bia(PLU Py _y)
= bi(Py°)

Thus £(G) < E(P35) < £(PSH).

Combining Lemmas 3.1-3.4, we can obtain Proposition 1.3.
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4 Proof of Proposition 1.4

In this secction, we will prove Proposition 1.4. For convenience, we introduce some

notations as follows, which will be used in the sequel. Let

r+vVr2—4 T —r2—4
Vi) = YRR vy = TR TR
And

x4+ Ve +4 o T —Va*+4

Zi(z) = —iYi(iz) = Zo(z) = —iYa(iz) =

It is easy to verify that
Vi) + Yala) =, Yi(a)¥a(a) = 1
and
Zy(x) + Zo(z) =, Zi(x)Zsy(x) = —1.
What is more, Z;(z) > 1 and —1 < Zy(x) < 0 for z > 0; 0 < Z1(z) < 1 and Zy(z) < —1
for z < 0. In the following, we abbreviate Zy(z) to Zx for k =1, 2.
We define

Yi(2)¢(Br(3;3,2), 2) — ¢(Bs(3;3, 1), 7) Ya(2)o(B1(3;3,2), 2) — 6(Bs(3;3, 1), )

Ala) = (MG~ (@) = (V) — W) |
_ Vi@e(Px) = 9P ) Va(@)o(Px) — 6(P,a)
e S ) A VA5 L A5
Cy(z) = Ha)a®— 1) = Cy(z) = Lol —1) -

(Y1 (2))? = Ya(z)
By calculations, we have that

(Ya(2))? = Ya(z)

G(PES ) = %% — 142M 4 742° — 18827 + 2452° — 158z% + 40z

and
o(PY, ) = 2% — 13210 + 622° — 13825 + 1532 — 812 + 16.
Then 7 N 7 N
. 1913 T 912 19 . 2013 T 912
B (iz) = WZQ , Bo(iz) = ZES U
where
g13 = ' + 14x't + 742” + 18827 + 2452° + 1582% + 40z

and

gr2 = 2" + 132" + 622° + 1382° + 1532* + 8122 + 16.
Huo et al. got that By (ix), Ba(iz) > 0 in [11].
About the characteristic polynomials of P, and P%® Huo et al. [10, 11, 12] proposed

the following Lemma.
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Lemma 4.1 Forn > 12 and x # +2, the characteristic polynomials of P, and P%® have

the following forms:

P(Fn, ) = Cy(2)(Y1(2))" + Co(a)(Ya(x))"

and

O(Py°, x) = Bi(2)(Y1(2))" + Ba(2)(Ya(2))".
Similarly, we can get a characteristic polynomial of B,(3;3,n — 5).

Lemma 4.2 Forn > 6 and x # £2, the characteristic polynomial of B, (3;3,n — 5) has
the following form:

P(Bn(3;3,1n = 5), x) = Ay(x)(Yr(2))" + Az () (Ya(2))".

Proof. Note that ¢(B,(3;3,n — 5),x) satisfies the recursive formula f(n,z) = xf(n —
1,2) — f(n — 2,z). Therefore, the form of the general solution of the linear homogeneous
recursive relation is f(n,z) = Dq(x)(Yi(z))™ + Dso(z)(Ya(x))". By simple calculations, we
can obtain that D;(z) = A;(x), i = 1,2, from the initial values ¢(B7(3;3,n — 5),2) and
&(Bs(3;3,n —5), x). O

Lemma 4.3 A;(iz) = A (x) + Aia(z) - i and As(iz) = Ag(x) + Aga(x) - 1, where

P+ axZi+ 13+ 272 +2(x* + 1)
A Agg(z) = =22
11( ) Z5+Zg ) 12($) Zf—l—Z? )
Z34axZi+2*+x 2724 2(x* + 1)
A Agy(z) = -2
21( ) Z5+Z3 ) 22(1’) ZQ5 —|—Z§’

Proof. By ¢(G,z) = ¢(G —wv,z) — ¢(G —u—v,2) = 23 ) 9(G — C, x), we have

¢(Br(3;3,2), 1) = ¢(P?,x) — p(2P U Py, ) — 2¢(2Py, @)
= ¢(Pr,x) — ¢(PL U Py, x) —20(Py,x) — 9(2P, U Py, ) — 2¢(2Ps, x)
= Cy () (Ya(2))" + Co(x)(Ya(x))" — 2Cy(z)(Ya(x))* — 2Cy(x)(Ya(x))*
— 20 (2)(Ya(2))" = 2Co(2) (Ya())" — 2(a® = 1)* = 2(2® — 1)?
= Oy (2)(Yi(2)) (Yi(2))® — & = 2) + Cofa) (Ya(2)) ((Ya(2))® — 2 — 2)
—(z+2)(z* = 1)%

Similarly,
¢(Bs(3;3,1), 2) = C1(z)(V1(2))*(Vi(2))* — 2 — 2) + Ca(2) (Ya(2))*((Ya(2))* — 2 — 2)
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Then
Avx) = Ci(2) (Y1 (2))*(Vi(2))* = D(Yi(2))® — 2 = 2) — (2 + 2)(2? — 1)((2* — 1)Yi(z) — )
(Yi(2))® — (Yi(2))°
_ (Mi(z)(@? 1) — 2)(M(2))*(Vi(2))® — 2 — 2) — (w4 2)(2a? — 1)((2* — DYi(z) — )
(Yi(2))® — (Yi(2))°
(Yi(2))*((Yi(2))® — 2 —2) — (z +2)(2® — 1)
(Y1(2))° — (Yi(x))®
_ N(@)° = (@ +2)(Yi(2))* — (z +2)(2* — 1)
(Yi(2))® — (Yi(x))?
Therefore,

_iZ + (i 4+ 2) 27 — (1w + 2)(—2® — 1)
B VAREEVAL

P+ (=202 + (v — 20)(2® + 1)

B 70+ 73

D +aZi+at+x 2274202 +1)
- 2+ 73} D+ 7

Similarly, the required expression of As(iz) can be obtained by the analogous method. [

For convenience, we abbreviate Aj;(x) and B;(iz) to A, and B; for j,k = 1,2. Ac-
cording to Lemmas 4.1-4.3, it is easy to get the following simplifications.
|6(Bn(3;3,n = 5),ix)|* = (A} + Alp) 27" + (A3 + A%) 25" + (—1)"2(An Ao + A1z A),
(P00, iw)|? = BRZE + B3Z3" + (—1)"2B, B,
Proof of Proposition 1.4. According to Lemma 2.11, we can obtain that £(G) <

E(B,(3;3,n —5)) for G € 233. Next we just prove £(B,(3;3,n — 5)) < £(P%) for any
positive number n > 12. By Theorem 2.6,

dx.

Foo o ‘¢(Bn(3; 3,m —5),ix)

(B33, - 5) ~ 75 = - o

—00
We distinguish two cases in terms of the parity of n.

Case 1. n is odd and n > 13.

We first prove that the integrand log ]W\ is monotonically decreasing in n

when n > 13.

¢(Bnt2(3;3,n — 3),ix)
Qb(ng% ZI)

¢(Bn(3;3,n —5),iv)
(PP ix)

log — log ’
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1 1 |¢(Bn+2(3737n_3)72x) ’ ¢(P7?767ix)|2

O
2 % 10(Bu(3:3,n — 5, iz) - 6(P°Y,, ix) ?

=27 ( en)

where
H(n,z) = |p(Bn(3;3,n — 5),iz) - (PYS,. iz)[> > 0

and
K(n,7) = |¢(Bys2(3:3,n — 3),ix) - p(PSC,iz)[* — |¢(Bn(3;3,1n — 5),ix) - ¢(Peyy, )],

From Theorem 2.1, we just need to show K(n,z) < 0. By elementary calculations and

simplifications, we have

K(n,z) = (A}, + AL B; — (A3, + A%)Bi(Z] — Z3)
—2[(A3, + A2,)B1 By — (A1 Ay + A1pAg)BI(Z) — 1) 23"
— 2[(Ay1 Agy + A1 A B3 — (A3, + AZ)B1Bo|(1 — Zy) Z3™.

Claim 1. For any real number x, A1 Ay + A19A45 < 0.

Proof. By Lemma 4.3, we have

A1 Agy + ApAgg

D4 aZi+ 3+ Zy+aZi+ad+ax 2722422 +1) 2774 2(2%+1)
B 75+ 73 ' 75+ 73 i+ 7y I+ 7

—1+ (27 + Z3) + x(a® + 1)(Z7 + Z3) + 2° + 2*(2® + 1)(ZF + Z3) + 2*(2° +1)°

- (Z2+1)(Z3+1)

4+ 4(2x® + 1)(Z2+ Z2) + A(2? +1)?
N (Z2+1)(Z3 +1)

3+a(Z3+Z) +x(@x®+ 1) (27 + Z3) + 22 + (22 + 4) (2 + 1)(Z2 + Z2) + (2® + 4) (2 + 1)?

- (Z2+1)(Z3+1) ‘

Since
73+ 73 =a* 4 3x
and
70+ Zy = 2° + 5a® + b,
we can obtain Aj; Ay + A19Ass < 0 for any real number x. Hence, the claim holds. O

Since Z1(x) > 1 and —1 < Zy(z) < 0 for x > 0, we have Z?" > Z2¢ and 72" < Z3¢
when n > 13. Since 0 < Z;(z) < 1 and Zy(x) < —1 for x < 0, we get Z" < Z% and
Z2" > 7326 when n > 13. By Claim 1, we obtain

K(n,z) < [(Afl + A%Q)Bg - (Agl + A%Q)B%KZf - Zg)
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—2[(A2, + AL)B1By — (A1 Aoy + Ao Ap)B(Z} — 1) 23
— 2[(A11As; + A12A%) BS — (A3, + A3%,)BiBs)(1 — Z3) Z3°
= |¢(B15(3;3,10), iz) - ¢(PL3’, iz)[* — |¢(Bi3(3;3,8), iz) - ¢( Py, iz)|*.

It is no difficult to get that

¢(Bi5(3;3,10),ix) = —(42'? 4 422" + 1642° + 29425 + 2402" + 742> + 4)
— (2 4+ 162" + 992" 4 3022° 4 47727 + 37225 + 1212° + 102)i,
B(Bi3(3;3,8), i) = (42'° + 342° + 1002° + 1202 + 5227 + 4)
+ (2" + 142" 4 722° + 17027 + 1862° + 822° + 9x)i

and

PP ix) = — (2" + 162" + 101" + 3242° + 57127 + 5562° + 2792° + 562)i,
O(PSS ix) = (2 + 142 + 742° + 18827 4 2452° + 1582° + 40z ).

By direct calculations, we have

K(n,z) < |6(Bi5(3;3,10),ix) - o(Py’, iz)[* — |$(Bus(3; 3,8), i) - (3’ i)
= —2%(2® + 3) (2 + 1)° (22 + 802°* + 14562°° + 160242 + 1194832%° + 640628z
+ 25566552 + 77502322%° 4 180362362 + 323176202 + 443981542 + 4621134822
+ 3566995520 + 197255562° + 73958992° + 1714208z + 2060162 + 8192) < 0.

Therefore,

B13(3; 3, n— 5), Zl’)
O(Piy’ i)

= £(B13(3;3,8)) — £(P)

= —0.1676 < 0.

E(Bo(3:3,m — ) — E(PF) < %/M log V( do

Case 2. n is even and n > 12.
Since

gb(Bn(?), 3, n — 5), Zl‘) 2 (A%I + A%Q)len + (A%I + A%Q)Zzzn + (_1)n2(A11A21 + A12A22)

= log

¢(Pa®,ix) BYZi" + B3Z3" + (—1)"2B1 B ’
we have
2 2
‘¢(Bn(3;3,n —5),in) [P ) T, @ > 0;
o(Pr°,ix) Btdh 4

2
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when n — oo. Next we will show

¢(B,(3;3,n — 5),iz) |? A2+ A2
¢(Pa®, ix)

log

for x > 0, and

¢(Bn<3§ 3,n — 5)7 m) 2 og A%l + A%z

lo
ST (P i) B3

for x < 0.

Subcase 2.1 2 > 0.

log ‘qs(Bn 3:3,n—5),ix) || A} + A

( _

P(Py°,ix) TR

|6(Bn(3;3,n — 5), ix)|* - B}

(P’ ix)[2 - (A} + AD)

~log (1 n ((A3, + A%,) B} — (A%, + A§2)B§)62§”.+ 2(A11As1 + A12Ag) BY — 2(A%) + A)) B1 By
|o(Pn”,iw)|? - (AT + Aly)

= log

Let
Ki(n,x) = ((A3,+A3,) B; — (A7, + A3,) B3) 23" +2(A11 As1 + A12 Ay ) Bf —2( A}, + ATy) B1 Bs.
By Claim 1, we have
2(Ay Agy + Ay Agy)B? — 2(A2, + A2)) BB, < 0.
If (A3, + A3,)B? — (A%, + A3,)B3 <0, then K;(n,z) < 0. Hence,

¢(Bn(37 32‘,? _ 5)7233) ’ < 10g A%l +2A%2‘
¢(Pn7 ,ZI) Bl

Now suppose (A%, + A3,)B? — (A%, + A2,)B3 > 0. Since —1 < Zy(x) < 0 and n > 12, we
get Z2n < 724, Hence,

Ki(n,z) < ((A3; + A3,)Bf — (A}, + AL B3) Z3* + 2(A1 Aoy + A1pAs) BY — 2(A%, + A3,)Bi By
= |¢(Bi12(3;3,7),iz)|* - B} — |¢(Py,ix)|* - (A}, + A}
(Z1g13 + 912)2 724
(Zt+1)2 7
o (B +aZi+2° +a)’ + (277 + 20° +2)°

6,6 - 6
—|o(Py’,ix)|* - (212 +1)2 Zy

= |p(Bi2(3; 3, 7)am)|2 :

Z22 .
- (22 i 12 (I¢(B12(3;3,7),i)|* - (13 — Z2912)°
1

— |p(PS0ix) P(Z0 + 222 + 2% + )2 + (222 + 222 + 2)?) - Z16).
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Since
#(B12(3;3,7),i7) = (2241320 +602°+1212°+1042" + 302> +1) — (42°+302 "+ 742° +-682° +187)i

and
PPy i) = "% + 1320 + 622% 4 1382° + 1532* + 8122 4 16,

by calculations, we get

222
Ki(n,z) < ﬁ (=2 = 2)(2® + 1) (2 4 382 4 65022° + 663822* + 45235272
1

+ 21764020 + 7623062'® + 197323220 + 37871412 + 53475542'% + 54426802°

+ 38449021° + 17674272° + 4731642 + 601922 + 2048) — x(2* + 1)°(2® + 112°

+ 392" + 492% + 16)(z** + 282 + 34320 4 24452 + 113362'° 4 360742

+ 80758z 4 12776020 + 1408312° 4 1042742° + 483072 + 122352° + 1256)V/22 + 4).

(Bn(3;3,n—5),ix)

. ¢ 2 +A2
Because x > 0, we can obtain K;(n,z) < 0 and log (P50 ) =12,

2
A
< log ik

Subcase 2.2. 2 < 0.

log‘qﬁ(Bn 3:3,n—5),ix)|° | A5+ A3,

(
&(PS°, i) ?
g (320 = 5). )P
[G(Pn”, i) |? - (A3, + A3,)
— log (1 n (A%, + AL) B3 — (A3, + A§2)B%)6Zé2" + 2(A11 A9 + A12A%)B; — 2(A3, + A%2)B1Bz) '
|6(P”, i) | - (A3, + A3)

Let
Ky(n,x) = ((Al}+A%y) By — (A3, + A%,) BY) 27" +2(A11 As1 + A1p Ay ) B3 —2( A3, + A3,) B1 B
By Claim 1, we have
2(A11 Aoy + A1aAg) By — 2(A3, + A3,) BB, < 0.
If (A3, + A2,)B3 — (A3, + A3,)B? <0, then Ky(n,z) < 0. Hence,

¢(Bn(3§ 3;;7; — 5)7 W) ? < log A%1 ‘1‘214%2'
¢(Pn’ ) 233) BQ

Now suppose (A2, + A2,)B2 — (A3, + A3,)B? > 0. Since 0 < Z;(x) < 1 and n > 12, we
have Z" < Z?*. Therefore,

Ks(n,x) < (A}, + Aly) BY — (A3, + A%) BY) 27" + 2(An A + A1aAs) By — 2(A3, + A3) BiBs
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= |¢(B12(3;3,7), i) > - BY — |¢(Ply’, i) - (A3, + A3)
(Zag13 + 912)* 04
(Z3+1)2 ™
(Z5+ 272 + 2%+ 2)% + (272 + 222 + 2)?
(Z3 +1)?
Zl22 2 2
ZENE (Ip(B12(3;3,7), i)[” - (913 — Z1912)
2
— (P30 i) |2((Z5 + 222 + a® + )% + (222 + 22° + 2)%) - Z3°)
722
RSk
+ 2176402 + 7623062 + 19732322'° + 37871412 + 53475542 + 54426802°
+ 3844902x% + 17674272° + 4731642 + 601922° + 2048) + x(2® + 1)°(2® + 112°
+ 392" + 4922 + 16)(z** + 2822 + 343220 4 24452 + 113362'° 4 360742
+ 80758z + 1277602'° + 1408312° + 10427425 + 48307x* + 1223522 + 1256)V a2 + 4).

= |p(Bi2(3; 3, 7)ai$)|2 :

— |p(Py’ i) |- A

(=2 = 2)(2® + 1)5(2*® + 382 + 6502° + 66382** + 452355

n(3;3,n—5),i )
PSG,')

Because x < 0, we can obtain K3(n,z) < 0 and log‘

< log 21 +A22
B3

From the two subcases, we have

1 +°° d(Bn(3;3,n —5),iz)|?
B,(3; — pso — - d
E(Ba(3;3,n —5)) — E(Py°) = % ‘ (P55 in) x
1 et A3+ A2 1/ A3+ A2
il 1 11 12d 1 21 22d
= 2m Jo ©8 B? 27T ©8 B2

When z > 0, we can obtain

(Zp+2Zi+2° +2)2 + (222 + 202 +2)  (Zigiz + g12)?

A2 + A%, — B? = _ . g2A
11 1t Al 1 (25 + Z3)2 (Z2+ 1) 2
222
=z (A T aZi 4o’ )+ 20+ 2%+ 2020 = (g3 — Zagr2))
1
Z22
= 2(22—11)2((—202 — 1)(2% + 2) (42" + 722 + 5602 + 24842'% 4 691127
1

+ 122852° 4 134762° 4 83962 + 25212 + 239) + x(—2? — 1)(4a™® + 7221°
+ 5682 + 25962 + 757320 + 1447128 + 1779025 + 13282x* + 534522
+ 863)V a2 + 4)

< 0.

When z < 0, we have

(25 +aZ5+2° + ) + (225 + 202 + 2)°  (Zagis + g12)°

2 2 2
At = By = (23 + 237 BZET

24
'Zl
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222
= m((@g +aZy + 2 + 1)’ + (223 + 20 + 2)) 2,° — (913 — Z1912)°)
2
Z22
— 2(22—11)2((—12 — 1)(2* + 2)(42"® + 722" + 5602 + 24842'* + 69112
1
+ 122852° + 134762° + 83962 + 252122 + 239) + x(2? + 1)(4z'® + 722
+ 5682 4 259622 + 757320 + 144712° + 177902° + 132822 + 534522

+863)v/22 1 4)

< 0.

Therefore,

L[t AL+ A3

— log —H—5—2dx < 0

27 Jo ©8 B? ‘
and 0 2 2

1 Az + A

el log =21 ~_“722 40 - ().

27 J_ oo ©8 B3 ’
Hence, £(B,(3;3,n —5)) < £(P%%) when n is even. The entire proof of Proposition 1.4 is
now complete. Il

5 Concluding remarks

In this paper we prove that Conjecture 1.2 holds for the bicyclic graphs containing
exactly two odd cycles with one common vertex. So far, Conjecture 1.2 is true for the

following cases:

Case 1: G is bipartite bicyclic graph ([16] and [11]).

Case 2: G is bicyclic graph which has exactly two edge-disjoint cycles such that one of
them is even and the other is odd ([14]).

Case 3: G is bicyclic graph which contains exactly two odd cycles with one common

vertex (Theorem 1.5 of this paper).

In order to completely solve Conjecture 1.2, one just needs to consider the remaining
two cases, one of bicyclic graphs that contain two odd cycles with no common vertex and
the other of bicyclic graphs that contain two odd cycles with at least one common edge.

We think the latter case is much more difficult.
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