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Abstract

Let G be an edge-colored graph on n vertices. The minimum color degree of

G, denoted by δc(G), is defined as the minimum number of colors assigned to the

edges incident to a vertex in G. In 2013, H. Li proved that an edge-colored graph G

on n vertices contains a rainbow triangle if δc(G) ≥ n+1
2 . In this paper, we obtain

several estimates on the number of rainbow triangles through one given vertex in

G. As consequences, we prove counting results for rainbow triangles in edge-colored

graphs. One main theorem states that the number of rainbow triangles in G is

at least 1
6δ

c(G)(2δc(G) − n)n, which is best possible by considering the rainbow

k-partite Turán graph, where its order is divisible by k. This means that there

are Ω(n2) rainbow triangles in G if δc(G) ≥ n+1
2 , and Ω(n3) rainbow triangles in

G if δc(G) ≥ cn when c > 1
2 . Both results are tight in sense of the order of the

magnitude. We also prove a counting version of a previous theorem on rainbow

triangles under a color neighborhood union condition due to Broersma et al., and

an asymptotically tight color degree condition forcing a colored friendship subgraph

Fk (i.e., k rainbow triangles sharing a common vertex).

1 Introduction

Throughout this paper, we only consider finite undirected simple graphs. Let G be

a graph. By an edge-coloring of G, we mean a function C : E → N, where N is the

set of non-negative integers. If G has such an edge-coloring, we call G an edge-colored

graph and denote it by (G,C). For a vertex v ∈ V (G), the color neighborhood CNG(v)

∗Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China.
†Corresponding author. College of Computer Science, Nankai University, Tianjin 300350, China.

Email: bo.ning@nankai.edu.cn.
‡Center for Combinatorics and LPMC, Nankai University, Tianjin 300071, China.
§aSchool of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, Shaanxi 710129,

China; bXi’an-Budapest Joint Research Center for Combinatorics, Northwestern Polytechnical University,

Xi’an, Shaanxi 710129, China.

1



is defined as the set {C(e) : e is incident with v}, and the color degree of v is denoted

by dcG(v) := |CNG(v)|. We denote by δc(G) := min{dcG(v) : v ∈ V (G)}, and by c(G) the

number of colors appearing on E(G). Let σc
2(G) = min{dc(x)+ dc(y) : xy ∈ E(G)}. For a

vertex v ∈ V (G), the monochromatic degree of v (in G), denoted by dmon
G (v), is defined as

the maximum number of edges incident to v colored with a same color. A subgraph H of

G is called properly-colored if every two incident edges are assigned with different colors,

and is called rainbow if all of its edges have distinct colors. When there is no possibility

of confusion, we will drop the subscript G. For example, we use δc instead of δc(G). For

notation and terminology not defined here, we refer to Bondy and Murty [3].

Rainbow and properly-colored subgraph problems have received much attention from

graph theorists, see [1, 4, 5, 7, 15]. For surveys, see [6, 18]. In 2013, H. Li [21] proved a

minimum color degree condition for rainbow triangles, which was conjectured in [22].

Theorem 1 ([21]). Let (G,C) be an edge-colored graph on n ≥ 3 vertices. If δc(G) ≥ n+1
2

then G contains a rainbow triangle.

A slightly stronger Dirac-type result was proved by B. Li, Ning, Xu, and Zhang in

[20].

Theorem 2 ([20]). Let (G,C) be an edge-colored graph on n ≥ 5 vertices. If δc(G) ≥ n
2

then G contains a rainbow triangle unless G is a properly colored Kn
2
,n
2
.

Theorem 1 motivated much attention on rainbow subgraphs. Czygrinow, Molla, Nagle,

and Oursler [7] recently proved that the same condition in Theorem 1 ensures a rainbow

ℓ-cycle Cℓ whenever n > 432ℓ, which is sharp for a fixed odd integer ℓ ≥ 3 when n is

sufficiently large. The authors in [20] proposed a new type condition, i.e., every edge-

colored graph (G,C) on n vertices satisfying e(G) + c(G) ≥ n(n+1)
2

contains a rainbow

triangle, where e(G) is the number of edges in G and c(G) is the number of all colors

appearing on E(G). This motivated further studies on rainbow cliques [24] and properly-

colored C4’s [25].

The original purpose of this article is to study the supersaturation problem of rainbow

triangles in edge-colored graphs. This problem is obviously motivated by the study of

supersaturation problem of triangles in graphs. It studies the following function: for

triangle C3 and for integers n, t ≥ 1,

hC3
(n, t) = min{t(G) : |V (G)| = n, |E(G)| = ex(n, C3) + t},

where t(G) is the number of C3 in G and ex(n, C3) is the Turán function of C3. Improving

Mantel’s theorem, Rademacher (unpublished, see [9]) proved that hC3
(n, 1) ≥ ⌊n

2
⌋. Erdős

[10, 11] proved that hC3
(n, k) ≥ k⌊n

2
⌋ where k ≤ cn for some constant c. In fact, Erdős

conjectured that hC3
(n, k) ≥ k⌊n

2
⌋ for all k < ⌊n

2
⌋, which was finally resolved by Lovász

and Simonovits [23].
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One can ask for a rainbow analog of the above Erdős’ conjecture. In this direction,

answering an open problem in [16], Ehard and Mohr [8] proved there are at least k rainbow

triangles in an edge-colored graph (G,C) such that e(G) + c(G) ≥
(

n+1
2

)

+ k − 1. If we

consider e(G) + c(G) as a variant of Turán function in edge-colored graphs, then the

theorem above tells us that the supersaturation phenomenon of rainbow triangles under

this type of condition is quite different from the original one. On the other hand, the

problem of finding a counting version of Theorem 1 is still open.

We denote by G∗
n the family of edge-colored graphs on n vertices with the minimum

color degree at least n+1
2
, by rt(G) the number of rainbow triangles in an edge-colored

graph G, and by rt(G; v) be the number of rainbow triangles through a vertex v in G.

Denote by

f(n) := min{rt(G) : G ∈ G∗
n}.

Proving a special case of a conjecture which states that every edge-colored graph on

n ≥ 20 vertices contains two disjoint rainbow triangles if the minimum color degree is at

least n+2
2
, Hu, Li, and Yang developed a key lemma [17, Lemma 1], from which one can

easily obtain f(n) = Ω(n). One may dare to guess that f(n) = Ω(n2). Our first humble

contribution confirms this.

Remark 1. Throughout this paper, we sometimes assume that an edge-colored graph

(G,C) satisfies δc(G) ≥ n+1
2

and subject to this, e(G) is minimal. Here the word “mini-

mal” means that deleting any edge e in G will result in the inequality δc(G − e) < n+1
2
.

It follows that G contains no monochromatic C3 or P4 (a path of order 4). Furthermore,

we can see that a spanning subgraph of G with a same color should be a star forest.

One of our main results is as follows.

Theorem 3. Let (G,C) be an edge-colored graph with vertex set V (G). Let n = |V (G)|.

If δc ≥ n+1
2
, and furthermore, e(G) is minimal, then we have,

rt(G) ≥
1

6

∑

v∈V (G)



(n− d(v)− 1)(d(v)− dc(v)) +
∑

a∈NG(v)

(dc(v) + dc(a)− n)



 .

As a consequence of Theorem 3, we obtain a counting version of Theorem 1.

Theorem 4. Let (G,C) be an edge-colored graph on n vertices. Then

rt(G) ≥
1

6
δc(G)(2δc(G)− n)n.

In particular, if δc(G) > cn for c > 1
2
, then

rt(G) ≥
c(2c− 1)

6
n3.
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One may wonder the tightness of Theorem 4. The following example shows that

Theorem 4 is best possible.

Example 1. Let G be a rainbow k-partite Turán graph on n vertices where k|n and

k ≥ 3. Then there are exactly
(

k

3

)

(n
k
)3 = (k−1)(k−2)

6k2
n3 rainbow triangles. By Theorem 4,

there are at least
(

k

3

)

(n
k
)3 = (k−1)(k−2)

6k2
n3 rainbow triangles.

Setting δc(G) = n+1
2

in Theorem 4, we obtain the right hand of the following.

Proposition 5. For even n ≥ 4, we have n2

4
≥ f(n) ≥ n2+2n

6
; for odd n ≥ 3, we have

n2−1
8

≥ f(n) ≥ n2+n
12

.

For Proposition 5, the leftmost of each inequality (for f(n)) of Proposition 5 was shown

by the following two examples. From Proposition 5, we infer f(n) = Θ(n2).

Example 2. Let (G,C) be a rainbow graph of order n where n is divisible by 4. Let

V (G) = X1 ∪ X2, |X1| = |X2| =
n
2
, and each of G[X1] and G[X2] consists of a perfect

matching of size n
4
. In addition, G−E(X1)−E(X2) is balanced and complete bipartite.

For each edge e ∈ E(X1), it is contained in exactly n
2
rainbow triangles. So does each

edge in G[X2]. Therefore, there are exactly n2

4
rainbow triangles in G.

Example 3. Let (G,C) be a rainbow graph of order n where n ≡ 1 (mod 4). Let

V (G) = X1 ∪ X2, |X1| =
n+1
2

and |X2| =
n−1
2
, and G[X1] consists of a perfect matching

of size n+1
4
. In addition, G − E(X1) is complete bipartite. For each edge e ∈ E(X1), it

is contained in exactly n−1
2

rainbow triangles. Therefore, there are exactly n2−1
8

rainbow

triangles in G.

In 2005, Broersma, X. Li, Woeginger, and Zhang [4] proved that an edge-colored graph

(G,C) on n ≥ 4 vertices contains a rainbow C3 or a rainbow C4 if |CN(u)∪CN(v)| ≥ n−1

for every pair of vertices u, v ∈ V (G). Define G to be a rainbow Kn
2
,n
2
where n is even.

Then |CN(u)∪CN(v)| = n−1 for each pair of vertices u and v, and G contains no rainbow

triangles. Thus, one need slightly increase the color degree condition when finding rainbow

triangles. Broersma et al.’s theorem was generalized by Fujita, Ning, Xu and Zhang [16]

to the one forcing rainbow triangles under the same condition.

In this paper, we extend both theorems mentioned above to a counting version as

follows.

Theorem 6. Let (G,C) be an edge-colored graph of order n ≥ 4 such that |CN(u) ∪

CN(v)| ≥ n for every pair of vertices u, v ∈ V (G). Then G contains n2−2n
24

rainbow

triangles.

We also prove some better estimate on the number of rainbow triangles through ver-

tices with high monochromatic degree.
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Theorem 7. Let (G,C) be an edge-colored graph on n vertices with δc(G) and further-

more, e(G) is minimal. Let V (G) = {v1, v2, . . . , vn} such that dmon
G (v1) ≥ dmon

G (v2) ≥

· · · ≥ dmon
G (vn). Then for each 1 ≤ k ≤ δc(G)− 1,

k
∑

i=1

rt(G; vi) ≥
1

2

(

k
∑

i=1

dmon
G (vi) + k(δc(G)− 1)

)

(σc
2(G)− n) +

∆k(G)

2
.

where

∆k(G) =



δc(G)
k
∑

i=1

dmon
G (vi)− k

δc(G)
∑

i=1

dmon
G (vi)



 .

The above theorem has the following simple but useful corollary.

Theorem 8. Let (G,C) be an edge-colored graph on n vertices with δc(G) ≥ n+1
2
. Let

V (G) = {v1, v2, . . . , vn} such that dmon
G (v1) ≥ dmon

G (v2) ≥ · · · ≥ dmon
G (vn). Then for each

1 ≤ k ≤ δc(G)− 1,

k
∑

i=1

rt(G; vi) ≥
kδc(G)

2
.

The friendship graph Fk is a graph consisting of k triangles sharing a common vertex.

Finally, we obtain some color degree condition for the existence of some rainbow triangles

sharing one common vertex, i.e., the underlying graph is a friendship subgraph. This

extends Theorem 1 in another way.

Theorem 9. Let k ≥ 2 and n ≥ 50k2. Let (G,C) be an edge-colored graph on n vertices.

If δc(G) ≥ n
2
+ k − 1 then G contains k rainbow triangles sharing one common vertex.

This paper is organised as follows. In Section 2, we prove one technical lemmas which

gives an estimate on the number of rainbow triangles through one given vertex. We also

prove another estimate on the number of rainbow triangles through vertices with high

monochromatic degree. In Section 3, we prove Theorems 3, 4, 6 and 7. In Section 4, we

prove a theorem slightly stronger than Theorem 9. We conclude this paper with some

open problems in the last section.

2 Rainbow triangles through a specified vertex

In this section, we first prove one key lemma, whose proof is partly inspired by [17,

Lemma 1].

Let G be an edge-colored graph. Without loss of generality, assume that CNG(v) =

{1, 2, . . . , s}, where s = dc(v). Let Nj(v) := {u : C(uv) = j, u ∈ NG(v)} and dj(v) :=

|Nj(v)|, where 1 ≤ j ≤ s. Furthermore, assume that d1(v) ≥ d2(v) ≥ · · · ≥ ds(v). So

dmon(v) = d1(v).
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Lemma 1. Let (G,C) be an edge-colored graph on n vertices with δc(G) ≥ n+1
2

and

furthermore, e(G) is minimal. Then for each v ∈ V (G),

rt(G; v) ≥
1

2
((n− d(v)− 1)(d(v)− dc(v)) +

∑

1≤j≤dc(v)

∑

a∈Nj(v)

(dj(v)− dj(a))

+
∑

a∈N(v)

(dc(v) + dc(a)− n)).

Proof. Since G is edge-minimal, there is no monochromatic path of length 3 and no

monochromatic triangle in G.

For the vertex v ∈ V (G), define a digraph Dv on N(v) as follows:
−→
ab ∈ A(Dv) if and

only if ab ∈ E(G) and C(ab) 6= C(va), i.e., vab is a rainbow path of length 2. Therefore,

for any two vertices x, y ∈ Nj(v) (if |Nj(v)| ≥ 2), there is either a 2-cycle xyx or no arc

between x and y; since otherwise, there is a monochromatic C3, a contradiction. (Recall

Remark 1!)

For a ∈ N(v), let Sa ⊆ N(v)\{a} be maximal such that C(au), C(au′) and C(av) are

distinct for any two vertices u, u′ ∈ Sa. According to the definition of Dv, every edge au,

u ∈ Sa, corresponds to an out-arc from a to u in Dv. Notice that

d+Dv
(a) ≥ |Sa| ≥ |CNG[N(v)∪{v}](a)| − 1 ≥ dc(a)− 1− |V (G) \ (N(v) ∪ {v})|.

Thus, we have

d+Dv
(a) ≥ dc(a) + dG(v)− n.

Therefore,

∑

a∈N(v)

d+Dv
(a) ≥ dG(v)(dG(v)− n) +

∑

a∈N(v)

dc(a)

= dG(v)





dc(v)
∑

j=1

(dj(v)− 1)



+
∑

a∈N(v)

(dc(a) + dc(v)− n).

(1)

Next, consider
∑

a∈Nv

d−Dv
(a). For 1 ≤ j ≤ s, let nj be the number of 2-cycles in

Dv[Nj(v)]. Let n0 be the number of all 2-cycles xyx in Dv such that C(xv) 6= C(yv).

That is, n0 = rt(G; v).

Thus, we have

∑

a∈N(v)

d−Dv
(a) ≤

∑

1≤j≤dc(v),dj (v)=1

∑

a∈Nj(v)

(dj(a)− 1) + 2n0 + 2
s
∑

j=1

nj(v). (2)
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In fact, for any neighbor of v, say u, when we want to compute the value d−Dv
(u), there

are several different cases. First, for any other neighbor of v, say w, if uw /∈ E(G), then

there is no in-arc wv for A(D). Secondly, we know uvwu (if uw ∈ E(G)) cannot give us

a monochromatic C3 (as G is edge-minimal).

We divide the corresponding terms into the following different types: (i) C(uw) =

C(uv). For this case, we know dC(uv)(v) = 1, since otherwise there is a monochromatic

P4 or monochromtic C3. If wuvw is a triangle in G, then we know C(uw) = C(uv) and

C(vw) 6= C(uw), and so there is an in-arc wu in Dv for the vertex u. By the definition of

the maximum monochromatic degree of G, we have at most dC(vu)(u)− 1 such in-arcs for

u. (ii) C(uw) 6= C(uv) but C(uv) = C(wv). For this case, there are two arcs uw and wu

(which is a 2-cycle) in Dv. Each such 2-cycle contributes 2 to the sum of all in-degrees

(one for u, one for w). In the inequality (2), this can explain where the term 2
∑s

j=1 nj(v)

comes from. (iii) C(uw) 6= C(uv) and C(uv) 6= C(wv). For this case, uwvu gives us a

rainbow triangle. We also have a 2-cycle uwu in Dv, and each such 2-cycle contributes

2 to the sum of all in-degrees. In the inequality (2), this can explain why the term 2n0

comes from.

Now we have proved (2).

Since

2nj ≤ dj(v)(dj(v)− 1),

from (2), we can obtain that

∑

a∈Nv

d−Dv
(a) ≤

∑

1≤j≤dc(v),dj (v)=1

∑

a∈Nj(v)

(dj(a)− 1) + 2n0 +
s
∑

j=1

dj(v)(dj(v)− 1). (3)

As
∑

a∈Nv

d+Dv
(a) =

∑

a∈Nv

d−Dv
(a),

combining (1) and (3), we have

2n0 ≥
∑

a∈Nv

(dc(v) + dc(a)− n) + d(v)

(

s
∑

j=1

(dj(v)− 1)

)

− 2

s
∑

j=1

dj(v)(dj(v)− 1)

−
∑

1≤j≤s,dj(v)=1

∑

a∈Nj(v)

(dj(a)− 1) +
s
∑

j=1

dj(v)(dj(v)− 1). (4)

Set

A = d(v)

(

s
∑

j=1

(dj(v)− 1)

)

− 2
s
∑

j=1

dj(v)(dj(v)− 1),
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and

B = −
∑

1≤j≤s,dj(v)=1

∑

a∈Nj(v)

(dj(a)− 1) +
s
∑

j=1

dj(v)(dj(v)− 1).

Then (4) is equivalent to the following

2n0 ≥
∑

a∈Nv

(dc(v) + dc(a)− n) + A+B. (5)

By simple algebra,

A =
s
∑

j=1

(d(v)− 2dj(v))(dj(v)− 1) =
s
∑

j=1,dj(v)≥2

(d(v)− 2dj(v))(dj(v)− 1).

As

d1(v) ≤ d(v)− dc(v) + 1

and

dc(v) ≥
n+ 1

2
,

we have

d(v)−2dj(v) ≥ d(v)−2d1(v) ≥ d(v)−2(d(v)−dc(v)+1) = 2dc(v)−d(v)−2 ≥ n−d(v)−1,

and so

A ≥
s
∑

j=1

(n− d(v)− 1)(dj(v)− 1) = (n− d(v)− 1)(d(v)− dc(v)). (6)

Furthermore, we obtain

B = −
∑

1≤j≤s,dj(v)=1

∑

a∈Nj (v)

(dj(a)− dj(v)) +
∑

1≤j≤s,dj(v)≥2

∑

a∈Nj(v)

(dj(v)− dj(a))

=
∑

1≤j≤dc(v)

∑

a∈Nj (v)

(dj(v)− dj(a)), (7)

where dj(a) = 1 when dj(v) ≥ 2, since G contains no monochromatic path of length three.

Now, together with (5), (6), and (7), we infer

2n0 ≥

(

∑

a∈Nv

(dc(v) + dc(a)− n)

)

+ (n− d(v)− 1)(d(v)− dc(v))

+
∑

1≤j≤dc(v)

∑

a∈Nj(v)

(dj(v)− dj(a)).

This proves Lemma 1.
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We then obtain a better estimate of the number of rainbow triangles through a specified

vertex when the monochromatic degree of this vertex is large. Before the proof, we need

to introduce some additional notation.

For a vertex v ∈ V (G), let Xv be the maximal subset of NG(v) such that c(va) = c(vb)

for any two distinct vertices a, b ∈ Xv. Then |Xv| = dmon(v). In the following, Xv is

called a maximum monochromatic neighborhood of v. Let Yv ⊆ NG(v)\Xv such that

c(va) 6= c(vb) for any two vertices a, b ∈ Yv. Thus, we have |Yv| ≤ dc(v) − 1. In the

following, set

f(v) := min{dc(u) + |Yv|+ 1 : u ∈ Xv ∪ Yv}.

For a vertex v ∈ V (G), define a digraph Dv on Xv ∪ Yv as follows:
−→
ab ∈ A(Dv) if and

only if ab ∈ E(G) and c(ab) 6= c(va). Let n∗
1 be the number of 2-cycles in Dv[X ]. Let n0

be the number of other 2-cycles in Dv. Then, rt(G; v) ≥ n0.

We now prove the following lemma, whose proof is a variant of Lemma 1.

Lemma 2. Let (G,C) be an edge-colored graph on n vertices with δc(G), and subject to

this, e(G) is minimal. For each v ∈ V (G), fix a Yv defined above. Then, we have

rt(G; v) ≥ n0 ≥
1

2

(

(dmon
G (v) + |Yv|)(f(v)− n) + (|Yv|d

mon
G (v)−

∑

a∈Yv

dmon
G (a))

)

. (8)

Proof. For a ∈ Xv ∪ Yv, let S ⊂ (Xv ∪ Yv)\{a} be maximal such that c(au), c(au′), c(av)

are pairwise different for two distinct vertices u, u′ ∈ Xv ∪Yv. According to the definition

of Dv, every edge au, u ∈ S gives an out-arc of a in Dv. Hence, we have

d+Dv
(a) ≥ dc(a)− 1− |V (G) \ (Xv ∪ Yv ∪ {v})|

≥ f(v) + dmon(v)− n− 1.

Therefore,
∑

a∈Xv∪Yv

d+Dv
(a) ≥ (dmon(v) + |Yv|)(f(v) + dmon(v)− n− 1). (9)

Next, consider
∑

a∈Xv∪Yv
d−Dv

(a). By reasoning the proof of Lemma 1 and a similar

analysis, we obtain

∑

a∈Xv∪Yv

d−Dv
(a) ≤

∑

a∈Yv

dmon(a)− |Yv|+ 2(n∗
1 + n∗

2). (10)

Since
∑

a∈Xv∪Yv

d+Dv
(a) =

∑

a∈Xv∪Yv

d−Dv
(a)

and

2n∗
1 ≤ dmon(v)(dmon(v)− 1),
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by combining (9) and (10), we have

2n0 ≥ dmon(v)(f(v)− n) + |Yv|(f(v) + dmon(v)− n)−
∑

a∈Yv

dmon(a)

= (dmon(v) + |Yv|)(f(v)− n) + (|Yv|d
mon(v)−

∑

a∈Yv

dmon(a)).

Hence,

rt(G; v) ≥ n0 ≥
1

2

(

(dmon(v) + |Yv|)(f(v)− n) + (|Yv|d
mon(v)−

∑

a∈Yv

dmon(a))

)

.

The proof is complete.

If Yv is maximal, then |Yv| = dc(v)− 1. Then

f(v) := min{dc(v) + dc(u) : u ∈ Xv ∪ Yv} ≥ σc
2(G),

and Lemma 2 has the following form:

Lemma 3. Let (G,C) be an edge-colored graph on n vertices with δc(G) and furthermore,

e(G) is minimal. Let V (G) = {v1, v2, . . . , vn} such that dmon(v1) ≥ dmon(v2) ≥ · · · ≥

dmon(vn). Then for each 1 ≤ i ≤ δc(G),

rt(G; vi) ≥
1

2



(dmon(vi) + dc(vi)− 1)(σc
2(G)− n) + (|Yvi|d

mon(vi)−
∑

a∈Yvi

dmon(a))



 .

Next, we prove a technical proposition, which is helpful to the proof of Theorem 7.

Proposition 10. Let (G,C) be an edge-colored graph on n vertices with δc(G) and fur-

thermore, e(G) is minimal. Let V (G) = {v1, v2, . . . , vn} such that dmon(v1) ≥ dmon(v2) ≥

· · · ≥ dmon(vn). Let Yvi be defined as in Lemma 2 with |Yvi | = δc(G) − 1. Then for each

1 ≤ k ≤ δc(G)− 1,

k
∑

i=1

(|Yvi|d
mon(vi)−

∑

a∈Yvi

dmon(a)) ≥

(

δc
k
∑

i=1

dmon(vi)− k

δc
∑

i=1

dmon(vi)

)

≥ 0.

Proof. Note that for vi ∈ V (G), vi /∈ Yi := Yvi. Hence, for i < δc(G),

∑

a∈Yi

dmon(a) ≤

i−1
∑

j=1

dmon(vj) +

δc
∑

j=i+1

dmon(vj).

10



Thus,

0 ≤
k
∑

i=1

∑

a∈Yi

dmon(a) ≤
k
∑

i=1

(

i−1
∑

j=1

dmon(vj) +
δc
∑

j=i+1

dmon(vj)

)

= k
δc
∑

i=1

dmon(vi)−
k
∑

i=1

dmon(vi).

It follows that

k
∑

i=1

(

dmon(vi)(δ
c − 1)−

∑

a∈Yi

dmon(a)

)

≥

(

δc
k
∑

i=1

dmon(vi)− k

δc
∑

i=1

dmon(vi)

)

.

The proof of Proposition 10 is complete.

3 Proofs

In this section, we prove Theorems 3, 4, 6 and 7.

By simple technique of counting in two ways, we have the following.

Proposition 11. 1 Let (G,C) be an edge-colored graph with vertex set V (G) and δc(G) ≥
n+1
2
, and furthermore, e(G) is minimal. For k ∈ CNG(v), Nk(v) := {u ∈ Nv : C(uv) = k}

and dk(v) := |Nk(v)|. Then

∑

v∈V (G)

∑

k∈CNG(v)

∑

a∈Nk(v)

(dk(v)− dk(a)) = 0. (11)

Proof. By definition of Nk(v), we can see

∑

k∈CNG(v)

∑

a∈Nk(v)

(dk(v)− dk(a)) =
∑

a∈NG(v)

dC(va)(v)− dC(va)(a).

By counting in two ways, we have

∑

v∈V (G)

∑

a∈NG(v)

(dC(va)(v)− dC(va)(a))

=
∑

xy∈E(G)

(dC(xy)(x)− dC(xy)(y)) + (dC(xy)(y)− dC(xy)(x)) = 0.

This proves Proposition 11.

1Note that in the proof of Lemma 1, without loss of generality, we assume that CNG(v) =

{1, 2, . . . , dc(v)} for simplicity. In fact, for distinct vertices u, v ∈ V (G), CNG(u) may be not equal

to CNG(v), and may be not a subset of [1, C(G)].

11



Now we can prove one main result in this paper.

Proof of Theorem 3. The theorem follows from Lemma 1, Proposition 11, and the fact

that

3rt(G) =
∑

v∈V (G)

rt(G; v).

�

We deduce Theorem 4 from Theorem 3.

Proof of Theorem 4. For any vertex v ∈ V and a ∈ NG(v), we have

(n− d(v)− 1)(d(v)− dc(v)) ≥ 0,

e(G) ≥ δ(G)n
2

≥ δc(G)n
2

, and dc(v) + dc(a)− n ≥ 2δc(G)− n. Thus, we derive that

rt(G) ≥
1

6
δc(G)(2δc(G)− n)n.

If δc(G) > cn for c > 1
2
, then by the inequality above,

rt(G) ≥
c(2c− 1)

6
n3.

This proves Theorem 4. �

Finally, we give proofs of Theorem 7 and Theorem 6.

Proof of Theorem 7. This theorem directly follows from Lemma 3 and Proposition 10.

�

Proof of Theorem 6. If δc ≥ n+1
2
, then by Proposition 5, G contains n2+n

12
rainbow

triangles. Thus, δc ≤ n
2
. Choose v ∈ V (G) such that dcG(v) = δc ≤ n

2
. Set G′ = G− v.

First we furthermore suppose that dcG(v) ≤
n−1
2
. For a vertex u adjacent to v, |CN(u)∪

CN(v)| ≥ n. It follows that

dcG(u) + dcG(v) = |CN(u) ∪ CN(v)|+ |CN(u) ∩ CN(v)| ≥ n+ 1.

It follows that dcG(u) ≥
n+3
2
. For a vertex u non-adjacent to v, we also have

dcG(u) + dcG(v) = |CN(u) ∪ CN(v)|+ |CN(u) ∩ CN(v)| ≥ n.

Thus, dcG(u) ≥
n+1
2
. It follows that dG′(u) ≥ n+1

2
> |G′|+1

2
. Then by Theorem 4, we have

rt(G′) ≥
1

6
·
n+ 1

2

(

2 ·
n+ 1

2
− (n− 1)

)

n ≥
n2 + n

6
.

So dc(v) = n
2
, i.e., δc = n

2
. In this case, for an edge uv ∈ E(G),

dc(u) + dc(v) = |CN(u) ∪ CN(v)|+ |CN(u) ∩ CN(v)| ≥ n + 1.
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By setting k = δc − 1 in Theorem 7, recall δc = n
2
for this case, we have

rt(G) ≥
1

3

δc−1
∑

i=1

rt(G; vi)

≥
1

6
(δc − 1)δc(n+ 1− n) +

∆k(G)

6

=
n2 − 2n

24
+

∆k(G)

6
,

where V (G) = {v1, v2, . . . , vn} such that dmon(v1) ≥ dmon(v2) ≥ · · · ≥ dmon(vn). Further-

more, we have

∆k(G) = δc(G)

δc(G)−1
∑

i=1

dmon
G (vi)− (δc(G)− 1)

δc(G)
∑

i=1

dmon
G (vi)

=

δc(G)−1
∑

i=1

dmon
G (vi)− (δc(G)− 1)dmon

G (vδc)

≥ 0

as dmon
G (vi) ≥ dmon

G (vδc) for i ∈ [1, δc(G) − 1]. Thus, rt(G) ≥ n2−2n
24

. This proves the

theorem. �

4 Edge-colored friendship subgraphs

In this section, we shall prove a result slightly stronger than Theorem 9. For a graph

G, we denote by ∆mon(G) := max{dmon
G (v) : v ∈ V (G)}.

Theorem 12. Let k, n be positive integers, and G be an edge-colored graph on n vertices

with n ≥ 50k2 where k ≥ 2, and δc(G) ≥ n
2
+ k − 1. Let v ∈ V (G) such that dmon

G (v) =

∆mon(G). Then G contains k rainbow triangles sharing only the vertex v as the center

(i.e., the underly graph is Fk with v as its center).

The following result on Turán number of friendship graphs is well known.

Theorem 13 ([12]). For every k ≥ 1 and every n ≥ 50k2, if a graph G of order n satisfies

e(G) > ex(n, Fk), then G contains a copy of a k-friendship graph, where ex(n, Fk) =

⌊n2

4
⌋+ k2 − k if k is odd; and ex(n, Fk) = ⌊n2

4
⌋+ k2 − 3k

2
if k is even.

The matching number of a graph G, denoted by α′(G), is defined to be the maximum

number of pairwise disjoint edges in G. Our proof of Theorem 12 uses a famous result on

Turán number of a matching with given number of edges due to Erdős and Gallai [13].
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Theorem 14 ([13]). Let G be a graph on n vertices. If α′(G) ≤ k then e(G) ≤

max{
(

2k+1
2

)

,
(

n

2

)

−
(

n−k

2

)

}.

We also need a special case of the next lemma.

Lemma 4. Let (G,C) be an edge-colored graph on n vertices with δc(G) such that e(G)

is minimal. Then for a vertex v ∈ V (G) with dmon
G (v) = △mon(G), we have

rt(G; v) ≥ n0 ≥
1

2
(∆mon(G) + dcG(v)− 1)(δc(G) + dcG(v)− n)) .

Proof. Let v be such that dmon(v) = ∆mon(G), Xv be the maximum monochromatic

neighborhood of v (in G), and Yv ⊂ N(v)\Xv (such that for each u, u′ ∈ Yv, we have

C(uv) 6= C(u′v)) and |Yv| = dc(v)− 1 in Lemma 2. From the fact

|Yv|d
mon(v)−

∑

a∈Yv

dmon(a) ≥ 0,

we obtain the lemma.

Proof of Theorem 12. Without loss of generality, assume that G is edge-minimal

subject to the condition δc ≥ n
2
+ k − 1. We prove the theorem by contradiction. Choose

v ∈ V (G) such that dmon(v) = ∆mon(G).

If ∆mon(G) = 1, then G is properly-colored. Note that e(G) ≥ δcn
2

≥ n2

4
+ kn

2
− n

2
, and

ex(n, Fk) ≤
⌊

n2

4

⌋

+ k2 − 3k
2
when n ≥ 50k2 by Theorem 13. When n ≥ 50k2, we have

n2

4
+

kn

2
−

n

2
>

⌊

n2

4

⌋

+ k2 −
3k

2

(recall k ≥ 2), and so G contains a properly-colored Fk, and hence k rainbow triangles

sharing one common vertex. Next we assume that ∆mon(G) ≥ 2.

By Lemma 4,

n0 ≥
1

2
((dmon(v) + dc(v)− 1)(δc + dc(v)− n)) ≥ (k − 1)(dmon(v) + dc(v)− 1). (12)

Recall Dv is the digraph defined on Xv ∪ Yv, where Xv is the maximum monochromatic

neighborhood of v and Yv ⊂ N(v)\Xv such that for any u1, u2 ∈ Yv, we have C(u1v) 6=

C(u2v) and |Yv| is maximal. Furthermore, n∗
1 is the number of 2-cycles inDv[Xv], and n0 is

the number of other 2-cycles in Dv. Observe that the 2-cycle in Dv[Xv] do not correspond

to a rainbow triangles through v, but a 2-cycle contributing to n0 can correspond to such

one.

Consider the subgraph of G on vertex set Xv ∪ Yv, denoted by G′, with edge set

consisting of ones which correspond to the 2-cycles in Dv (of the number n0). Then
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|G′| = dmon(v) + dc(v)− 1 ≥ n
2
+ k. Notice that each edge in G′ corresponds to a rainbow

triangle through the vertex v. From (12), we have that

e(G′) ≥ (k − 1)(dmon(v) + dc(v)− 1). (13)

Since G contains no k rainbow triangles sharing one common vertex, G′ contains no

matching of size k. That is, α′(G′) ≤ k − 1. So by Theorem 14,

e(G′) ≤ max

{(

2k − 1

2

)

,

(

k − 1

2

)

+ (k − 1)(|G′| − k + 1)

}

. (14)

By simple algebra, we have
(

2k−1
2

)

< (k−1)(n+2k)
2

when n ≥ 2k − 3. Furthermore,

(k − 1)(dmon(v) + dc(v)− 1)−

(

k − 1

2

)

− (k − 1)(|G′| − k + 1)

= −

(

k − 1

2

)

+ (k − 1)2 > 0

Thus, (13) contradicts (14) since n ≥ 2k − 3. The proof is complete. �

5 Concluding remarks

In this paper, we give a tight color degree condition (up to a constant) for k rainbow

triangles sharing one common vertex (when k is a fixed integer), and highly suspect the

tight one is n+1
2

for n = Ω(k2) (by considering Theorem 13).

Erdős et al. [12] conjectured Theorem 13 holds for n ≥ 4k. If the answer to this

conjecture is positive, then Theorem 9 can be improved to all graphs with order n ≥ 4k.

On the other hand, maybe an answer to the following is positive.

Problem 1. Let n, k be two positive integers. Let (G,C) be an edge-colored graph on

n vertices with δc(G) ≥ n+1
2
. Does there exist a constant c, such that if n ≥ ck then G

contains a properly-colored Fk?

Recall that f(n) := min{rt(G) : G ∈ G∗
n} (see Section 1). We conclude this paper

with the following more feasible problem.

Problem 2. Determine the value of lim
n→∞

f(n)
n2 .
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