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ABSTRACT. In his 1984 AMS Memoir, Andrews introduced the family of functions
c¢r(n), the number of k-colored generalized Frobenius partitions of n. In 2019, Chan,
Wang and Yang systematically studied the arithmetic properties of C®y(q) for 2 <
k < 17 by utilizing the theory of modular forms, where C®(q) denotes the generating
function of cgg(n). In this paper, we first establish another expression of C®15(gq) with
integer coefficients, then prove some congruences modulo small powers of 3 for c¢12(n)
by using some parameterized identities of theta functions due to A. Alaca, S. Alaca
and Williams. Finally, we conjecture three families of congruences modulo powers of 3
satisfied by cé12(n).

1. INTRODUCTION

Throughout this paper, we always assume that ¢ is a complex number such that |g| < 1
and adopt the following standard notation:
(a; @)oo == [ [(1 = ag®).
k=0
In his 1984 AMS Memoir, Andrews [2] defined the notion of a generalized Frobenius
partition of n, which is a two-rowed array of nonnegative integers of the form:

a Qg --- a,
by by -+ b )’

wherein each row, which is of the same length, is arranged in weakly decreasing order
with n = r 4+ Y7, (a; + b;). Furthermore, Andrews studied a variant of generalized
Frobenius partitions whose parts are taken from k copies of the nonnegative integers,
which is called k-colored generalized Frobenius partitions. For any k& > 1, let cor(n)
denote the number of k-colored generalized Frobenius partitions of n. Among many
other things, Andrews |2, Corollary 10.1] proved that for any n > 0,

co2(5n+3) =0 (mod 5).

From then on, many scholars extensively investigated a number of congruence properties
for cor(n) with different moduli. Baruah and Sarmah [3, 1] derived some congruences
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modulo small powers of 2 for c¢4(n) and some congruences modulo small powers of
3 for c¢g(n). Congruence properties modulo powers of 5 for cos(n) and coy(n) were
subsequently considered by Ono [28]|, Lovejoy [20], Xiong [39], Sellers [31], Xia [38],
Hirschhorn and Sellers [21], Chan, Wang and Yang 7], and Wang and Zhang [31]|. Con-
gruence properties modulo 7 for c¢4(n) were investigated by Lin [25], and Zhang and
Wang [11]. Congruence properties of cgg(n) modulo powers of 3 were successively inves-
tigated by Xia [37], Hirschhorn [16], Gu, Wang and Xia [!1], and the third author [32].
The third author [33] also established congruence properties modulo 5 for c¢s(n) and
cpg(n). There are other studies on congruence properties for cgy(n); see, for exam-
ple, [ Ay esmar sl ady IY, ]

In 2019, Chan, Wang and Yang [3] systematically investigated the arithmetic proper-
ties of CPy(q) for 2 < k < 17, where CPy(q) denotes the generating function of coy(n).
In particular, they |3, Eq. (6.26)] proved that (some typos have been corrected)

1 36207 923091 35829 891
Co = — B —B
12(q) 05(0)(¢:9)2 < Te0 D2t 1000 D124 100 D2s + 1 P2
1485 143247 891 8109 582717
g P27 950 D128 1 D129 7 e P1210 T Teggg Pl
227691 714249 8109 33
200 1212 WBH,IB + WBIQ,M + §B12,15
294109 16503 99 n 10559
500 L1216 100 Dl21r T gbes 500 L1219
128807 25647 727
- —B 1.1
100 1220 + TS + 160 12,22>; (1.1)
where the By, for i € {1,4,5,...,22} are some functions involving the following two

theta functions, given by

0 4. 4\2
Ox(q) = > ¢t =2q1/4—( )

2. 42 ’
Pl (4% ¢*)o
0 2. ,2\5
2 (@59d°)%
©s(q) = Z N PR
j=—00 oo ) o0

It is easy to see that the coefficients of many terms in (1.1) are not integers. Therefore,
a natural question is whether there is another expression with integral coefficients for
C®12(q). The first purpose of this paper is to establish the following expression for
C®12(q). For the sake of convenience, denote

o0

alg) =Y ¢ and E(¢) = ("¢ (1.2)

m,n=—00
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Theorem 1.1.
_ b [ EW@PE@?) s E(q?)E(¢*)?
Cdi5(q) = )12{ (9) (— + 8¢ >

E(q E(g?) E(q*)? E(q5)?
2E(P)° (E()EW)'E(¢®) | E(¢®)’E(¢®)*E(¢"*)E(¢*)
108t B (M T R )
E(g*)° (E(qz)E(Q‘*)E(qG)W(q%) ( q
E(q)* \ E(Q)E(¢*)E(q®)E(q"?)? E(¢*)E(q*)
zE(q3)12( E(q")*E(¢°)" E(¢**) E(

E(g)* \E(*)E(¢@P)*E(q®)E(q"?) )

+ 216q2a(q)

+ 4864

(
By utilizing a general congruence relation %, Theorem 5.3|, Chan et al. |3, Egs. (6.28)
and (6.29)| derived that for any n > 0,

cp12(3n+1) =0 (mod 9),

cP12(3n+2) =0 (mod 9). (1.4)
The other purpose of this paper is to prove the following congruences modulo 27 and 81
enjoyed by coia(n).
Theorem 1.2. For anyn > 0,

cP12(3n+2) =0 (mod 27), (1.5)
ch12(9n +5) =0 (mod 81), (1.6)
ch12(In+8) =0 (mod 81). (1.7)

Remark 1.3. Obviously, (1.5) is a stronger form of (1.4). By computation, one sees
that c¢12(2) = 4644 # 0 (mod 81). From this perspective, the modulus in (1.5) is best
possible. So does (1.6) and (1.7).

Actually, (1.5)—(1.7) appear to be just the tip of the iceberg. With the help of a
computer, we pose the following three families of conjectural congruences modulo powers
of 3 satisfied by co1a(n).

Conjecture 1.4. For any n > 0 and a > 0,

32a+1 1
cP12 <32°‘+1n + T+> =0 (mod 3%3),
32a+2 1 .
cor2 <32“+2n + T+> =0 (mod 3%**t),
5 32a+1 1
chio <320‘+2n + %) =0 (mod 33%*).

The rest of this paper is organized as follows. In Section 2, we collect some necessary
lemmas which will be utilized to prove the main results later. The proofs of Theorems
1.1 and 1.2 are presented in Section 3.
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2. SOME PRELIMINARY RESULTS
To prove (1.5)—(1.7), we first collect some necessary identities.

Lemma 2.1.

B E(*)*E()
B = Grgpp Y By (21)
1 E@)" ()2 E(q®)*

E(g)*  E(¢*)"“E(¢®)* +4q E(g?)10 (2.2)

Proof. The identities (2.1) and (2.2) are (2.9) and (2.10) in [10], respectively. O
Lemma 2.2.

E(q2)5 E(q18)5 E(q6)2E(q9)E(q36)
E(q)2E(¢Y)?  E(q°)2E(¢¢)2 + QqE(q3)E(q12)E(q18)’ (2.3)

Ba) ~ BB B 24

q )
E(¢*) _ E@)E(") Ed®)
7*)
Proof. The identities (2.3) and (2.4) follow from Corollary (i) and (ii) on page 49 of

Berndt’s book [5], respectively. O
Lemma 2.3.
E(¢®)  E(¢°)'E(¢°)° E(¢°)*E(¢°)° 2 E(¢°)°E(¢")?
B~ B@EF T By M By 0 ®P
E(q) E(@)E@Q’)’  E(@@)PE(®)? | ,E(@®)'E(¢")°
E(¢?)?  E(¢5)° TEBE@ U EBQ@FEE? (26)
E(¢*)  _ E(q")° +qE(q6)2E(q18)3
E(Q)E(q") E(¢®)E(¢°)E(¢'*)?E(¢*°)? " E(¢®)3E(q"?)?
2 E(¢°)'E(¢°)’E(¢*)? (2.7)

T B B2 E(g®)
Proof. The identity (2.5) was derived by Hirschhorn and Sellers [19, Theorem 1.1]. The
identity (2.6) is equivalent to Lemma 2.2 due to Hirschhorn and Sellers [20]. Moreover,
replacing ¢ by —¢ in (2.6) and utilizing the fact

E q2 3

E(9)E(q")
upon simplification, we obtain (2.7). O
Lemma 2.4. If a(q) is defined by (1.2), then
E(q’)’
E(q®)

a(q) = a(q®) + 6q
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and

E(lq)g = 5((q39))132 (a(q3)2E(q3)2 + SQCL(q3)E(q3)E(q9)3 + 9q2E(q9)6). (29)

Proof. The identity (2.8) was established by Hirschhorn, Garvan and Borwein |18, Eq.
(1.3)]. The identity (2.9) was proved by Wang [35, Eq. (2.28)]. O

Hirschhorn et al. [18, Eq. (1.5)] also proved that
o 3n—2 o 3n—1
q q
a(q)zl—i—GZ(l_an_z— 1_q3n—1>’
n=1
from which we find that

a(q) =1 (mod 3) and a(g)*=1 (mod9). (2.10)

According to the binomial theorem, one can easily establish the following congruence,
which will be used frequently in the sequel.

Lemma 2.5. For any k > 1,
E(¢")? = E(¢*) (mod 3). (2.11)
3. PROOFS OF THE MAIN RESULTS
To prove Theorem 1.1, we require the following two related lemmas.

Lemma 3.1.

0 6)\8 12 12)\3 24\2

Z q32?:17‘i2+321§i<]§37'i7”j — M + 8q3E<q ) E(q ) (31)
E(q3)4E‘<q24>2

71,r2,r3=—00

E q3 > TIH3 301 <y jan TiT IR+ 23
71,72,r3=—00

E(¢")E(®)'E(¢®) = E(¢*)*E(¢*)*E(¢"?)E(¢*")

S TEEEE T E@E@ED .
i q32?=1T?+3Zl§i<]§3mrj+37‘1+3r2+27'3
o,
_ B@)EW@)EW)E@™) | E@)E@)Eq?)’ (3.3)
E(Q)E(¢*)E(¢*)E(q"?)? E(@®)E(¢*)
i q3 S8 r248r1ra—3r17r3—3rar3+2r1+2r2
P00
__BW@PBE(@)TEQT) | B@)EGE) (3.4)
E(¢®)E(¢®)*E(¢®)E(q"?)° E(q*)E(¢°)*E(g*)
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Proof. The main ingredient in proofs of (3.1)—(3.4) is the integer matrix exact covering
systems, developed by Cao [6]. Similar treatments were used for deriving the generating
functions of 4- and 6-colored generalized Frobenius partitions; see |3, 1] for a detailed

account of such applications.

We only present the proof of (3.1), and the remaining cases can be demonstrated in

a similar manner.
First, we adopt the matrix

Blz

-1 1
0
0

0
1
-1

Then the congruences Bir = 0 (mod 2) satisfy that

—ri+1r=0
T1+T350
r1—ra=0

(mod 2),
(mod 2),
(mod 2).

Then the above congruences contain two solutions. Namely,

Therefore, we get the following integer matrix exact covering systems

T1 —1
T9 = 1
T3 1
T1 —1
Ty | = 1
T3 1

Using the above integer matrix exact covering systems, we obtain that

oo

3
E q32i:1 rz‘2+321§i<j§3 TiTy

T1,72,73=—00

o0

1

_ 2 : qﬁn’;’ +3n2+3n3 +

n1,n2,N3=-—00

_ E(¢°)®E(¢")

ni
ng
ns

ny
N2
ng

[e.9]

2.

ni,n2,m3=-—00

s E(¢?)°E(¢*)?

T B B 5

By =

E(q%)?
which is nothing but (3.1). For (3.2) and (3.3), we also adopt the matrix By and utilizing
a similar strategy. However, for (3.4), we need the following matrix

10
10
11

-1

+

q

0
1

0

612 +6n1+3n3+3n2+3n2+3n3+3

modulo 2.
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This completes the proof of Lemma 3.1.

12
Lemma 3.2. The constant term of (ZOO arq’”Q) I8

o 12 :
(=)

o0

e a(q2)4 Z qﬁzl 1 7,+6Zl<z<j<3rlr]

71,72,7'3=—00

+ 108(]@( )2 = Z qGZl 1 1+621<1<]<3rzrj+2r1+2r2+4r3
E(q ) r1,r2,r3=—00
619 0
+216¢"a(q )§EZ3§3 Z 621 1T H6 X i j<a T HOrLH6ratdns

T1,72,T3=—00

+486q4E(q6)12 i 621 1 1+67’1T2 6r1r3— 6T2T3+4T1+47’2
E(q?)!

T1,72,7'3=—00

Proof. Hirschhorn [15] proved the following identity
o0 3 oo
T 7"2 T T
(Z a’q ) =alg’) Y ¥
( Z a3r 3r24-2r Cl_l Z a—37“q37“2+2r),

r=—00 r=—00

+

where a(q) is defined as in (1.2). With the help of (3.6), we obtain that

(S >

_ a(q2)4 621 VTP i jea Ty

7"177"277"3——00
E 6\6 &
+ 108q2a(q2)2E532;2 Z 621 1 1+621<l<]<37’17’]+2T1+2T2+4r3

T1,72,7'3=—00

+ 216¢*a(q?)

§ 621 VTP <y jan TiTjHOrIH6raArs

T1,72,73=—00

+486q4E(q6>12 i 621 1 ,L+67“1T'2 671713 —061ror3+4ri+4rg
E(g?)*

T1,72,7'3=—00

Y
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which is nothing but (3.5).
We therefore complete the proof of Lemma 3.2. U

Now it is time to prove Theorem 1.1.

Proof of Theorem 1.1. In view of (3.5), we deduce that

o 12
(=)

o0

— Z qzz'li1 m?

mi+ma+--+mi12=0

CT

S]

3 .2 o
— a(q2)4 E q6 2 T X <ic <3 TiT

r1,r2,1r3—=—0Q
616 >
+ 108q2a<q2)2§gq2;2 Z qGZ?:l ri2+621§i<j§3 rirj+2r1+2r2+4r3
q

T1,72,7'3=—00

21 4 2 E(q6)9 - 623:1 r246 D i<ici<3 TiTj+6r1+6ro+4rs
+216g"a(q") Tk Y R Rs

E
T1,7r2,r3——00
E(q°)'? > 3 2
486 4 621-:1 r; +6T1T‘2—67’17'3—67"27'3+47’1+47"2' 3.7

T1,72,7'3=—00

Moreover, Andrews |2, Theorem 5.2| established the following expression for C®;(q),
namely,

1 > k=1 o
Cd.(q) = qzizl mi+21§i<j§k—lmimj' 3.8
k( ) E(q)k . m27m’zml:k1:_oo ( )
The identity (1.3) follows from (3.1)—(3.4), (3.7) and (3.8).
This finishes the proof of Theorem 1.1. O

Next, we are in a position to prove Theorem 1.2.
In what follows, all congruences are modulo 81 unless otherwise specified.

Proof of Theorem 1.2. According to (2.10) and (2.11), we find that
_ CL((])4 E(q6)8E(ql2) 3E(q12)3E(q24)2
couto) = g Hemeagmr 0 B )
E(¢°)? ( E(¢YE@)" | qE(q3)2E(qlz)E(q2“)>
E(q)? \ E(¢*)*E(¢®)? E(q)*E(q®)

+ 27q




SOME CONGRUENCES FOR 12-COLORED GENERALIZED FROBENIUS PARTITIONS 9

E(*)E(¢")E(®)°E(¢*") | E(®)E(¢*)E(¢"?)?
+ 54¢*E 34( +2 . (39
TECT B E @ E @B T2 E@EE) (39)
Next, we consider the following three auxiliary functions, defined by
0 a 4 E 6 SE 12 E 12 3EI 24\2
Z gl (n)qn = (q>12 ( (qii >4 (q24 )2 + 8(]3 (q ) 6 <2q ) ) ’ (310)
— E(q)? \ E(¢*)*E(¢**) E(¢5)

E(q3)2 E(q4)E(q6)4 E(q3)2E( 12)E(q24)
E(q)? (E(QQ)QE(q8)2 ta E(q)2E(¢®) )7 (3.11)
E(¢*)E(¢YE(¢°)°E(¢™) |, E(")E@)E(")*
E(q)E(¢®)E(q8)E(q'?)? +2 E(@)E() ) (3.12)

Substituting (2.8) and (2.9) into (3.10), extracting all the terms of the form ¢3" 2, after
simplification, we deduce that

S n_ 10 E(@*) B E(q") 10B(@*) E(d")*E(¢*)
2 on+ )" =20 =g+ M T p s

n=0

> _ga(n)q" =27
n=0

Z g3(n)q" = 54q2E(q3)4(

Thanks to (2.10) and (2.11),

Z g1(3n +2)¢" = 27E(¢*)* (% + 2qE <qE>(q§)(f ) ) (3.13)

The congruence (1.5) follows from (3.9) and (3.13) immediately.
Moreover, it follows from (3.13) that

> q1(3n+2)"
n=0

_ saf _E@)®  E() E(¢")' E(¢®)?
=278(7) (E<q>4E<q4>4 E@PE@? T B E<q4>)' (3.14)

Substituting (2.3) and (2.4) into (3.14), after some tedious but straightforward calcula-
tions, we deduce that

2%91(971 £5)g = 27{ E(qE)(quig ' E(qE)(q;;(q ) E()!

—gBE@P B (B@)) + CE@PE) B E<q>4} (3.15)

and

o0 . E(g")" | ne E(¢®)2E(¢*)? . 1 2
nzzogl(gn +8)q¢" = 27{E(q2)8E(q8>6 (E(q) ) E(gh)13 ( )4>
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E(g)" s E(@®)E(¢)° "
(= F —q—————>—F : 3.16
Substituting (2.1) and (2.2) into (3.15) and (3.16), upon simplification, we further obtain
that
0 BE(¢h)? E(®)2E(¢®)?  LE(¢*)'E(¢%)"
g 9n+5q”527<—q +4q +4q ;
2 9o +5) B@E@r T B B(q")
(3.17)
e E(g*)39 E(a2)AE(g*)15 E(oM)P E(a8)2
Zg1(9n+8)q"527< - Sg ) - (¢”) S(g ) pE) - iq ) ) (3.18)
— E(g*)*E(q®) E(q®) E(q?)
Now we recall Horschhorn’s version of parameterized identities (see [17, Chap. 35,
Egs. (35.1.1)—(35.1.6)]), whose idea comes from [1].
E(q) = st/ (1 = 2qt)' (1 + ) /3 (1 + 2qt) /(1 + 4gt)'/*, (3.19)
E(q?) = sV2Y2(1 — 2¢t)Y4(1 + qt)Y4(1 + 2¢t) Y12 (1 + 4qt) V4, (3.20)
E(q®) = sY2Y8(1 — 2¢t)V0(1 + qt) V24 (1 + 2¢t) /2 (1 + 4qt)V/*, (3.21)
E(q*) = s"Y5(1 — 2¢t)Y3(1 + qt) V(1 4 2qt)Y*4(1 + 4qt) Y5, (3.22)
B(q%) = s'284(1 — 2qt) 2 (1 + qt) 2 (1 + 2qt) (1 + 4qt) P2, (3.23)
E(q") = s'12(1 = 2qt) 24 (1 + qt) VO (1 + 2qt)3(1 + dgt) '/, (3.24)
where
E 2E 42E 6115 E2 33E 12\6
g = EQEGPEOT B EG B
E(¢®)°E(¢®)°E(q"?) E(q)E(¢")*E(¢°)

It follows immediately from the parameterized identities (3.19)—(3.24) that

(_ E(¢*)* E(Q)"E(¢")? | E@)'E(¢") ) E(9)*E(q")*E(¢%)"
E(q)'E(q")° E(q?) E(q?) E(¢®)"E(¢*)°E(q"?)"
= —15¢s"t*(1 — 2qt)*(1 + qt)°(1 + 2qt)(1 + 4qt) =0 (mod 3)
and
( E()*  E@'E()" E(q2)15E(q4)2>. E(q)’E(¢")’E(¢°)"
E(g)"?E(¢")™ E(q*)® E(q)* E(¢*)BE(¢*)°E(q"?)
= 15¢s"t(1 — 2qt)*(1 + qt)* (1 + 2qt)(1 + 4qt)> =0 (mod 3).
Since
E(q)°E(¢")*E(¢°)" . E@PBE(d)’E(e)”
E(*)TE(¢?)PE(q'?)* E(?)BE(¢®)°E(q"?)T
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are invertible in the ring Z/3Z][q]], we deduce that
E(@)* | E(@PE(¢) | E()'E()”

- E(q)*E(q")S E(q?) q E(g?) =0 (mod 3), (3.25)
E(@)*  E@'E(¢)" BB _,
E(q)2E (¢ E(q)° —q Blq)’ =0 (mod 3). (3.26)

The congruences (3.17) and (3.18), together with (3.25) and (3.26), imply that for any
n >0,

g1(9n+5)=¢gi1(In+8) =0. (3.27)
Similarly, from (3.11) we find that

+E(¢°)’E(¢®)E(¢*) -

With the help of (2.6) and (2.7), we further obtain that

N n_ E(9)'E(¢*)°E(¢)" | E(¢*)°E(¢")"
2 lon+ 20" = 27(_ () B ()
E(®)°E(¢")  E(0)“E(¢")’E(¢®)?
YRGBy
PR BB+ SO s
Plugging (2.1) and (2.2) into (3.28), after simplification, we obtain that
S " E(¢")*"  E(@)E(¢)* E(q")*
2 on+2)0" = 27<E<q2>12E<q8>18 B0 IB@ BT
E(¢*)°E(q")’ 2 E(¢")* 31 AN\, 8\6
&) CE DB ! E(¢")E() ) (3.29)
According to the parameterized identities (3.19)—(3.24), we find that
( E(¢*)®  E(q)'E(¢*)* . E(¢*)* ) - E(g)*E(¢")'E(¢°)"
E(q)PE(q")™ E(q*) E(@)'E(¢')?)  E(@)°E(¢®)°E(¢"?)°
= 15¢s°(1 — 2qt)*(1 + ¢t)* (1 + 2qt)(1 + 4gt)' =0 (mod 3)
and

7

E(@)*  EW@E(@?)° s oae) .  E@E()
(B ot~ B~ P EG ) B
= 15¢s*t*(1 — 2q1)*(1 + qt)°(1 + 2qt)(1 + 4¢t)> =0 (mod 3).
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Since
E(@)°E(¢")’E(¢)” E(9)E(¢°)"
E(q*)¥E(¢*)°E(q'?)® E(¢*)?E(¢®)*E(q'?)?
are invertible in the ring Z/3Z[[q|], we obtain that
E(@)®  E(@'E@)  E@)*
B@2E@® By BBy 0 medd 330
E7) E@EC) g B =0 mod3).  (331)

E(@PE@)®  E(d)
According to (3.29)—(3.31), we find that for any n > 0
G2(3n+2) =0. (3.32)

Finally, from (3.12) we find that

N v ol 2BW@)’E()EWG) B¢ El(d)
S sty = —r(o M B
_ PE@E@EGR) E@)  E()
E(¢*) E(¢?)  E(q*)?

Thanks to (2.4), (2.5), (2.7) and (2.11), we further arrive at

(E(q)4E(qz)GE(qA‘)11 E(q)*E(¢")*

E(q®)° E(¢*)*E(¢®)"

> 9s(3n+2)g" =27

B@SEGY g} Bl B
- e ) e

Substituting (2.1) into (3.33), upon simplification, we obtain that

(_ E(g")* E(@1 B2, B2 )

Zgg(?m +2)¢" =27

n=0

E<q2)12E(q8>18 E(q8)10 _'_q E(q2)4E(q8>2

BE(q*)* N E(¢*)*E(q")°
E(q?)*E(g®)"° E(q®)?

According to (3.30) and (3.31), we conclude that for any n > 0,

27 - + BB ).
93(3n+2) = 0. (3.34)

The congruences (1.6) and (1.7) follow from (3.9)—(3.12), (3.27), (3.32) and (3.34).
We therefore complete the proof of Theorem 1.2. O
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