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Abstract

A bipartite graph G is two-disjoint-cycle-cover edge [r1, r2]-bipancyclic if, for any vertex-disjoint
edges uv and xy in G and any even integer ℓ satisfying r1 ⩽ ℓ ⩽ r2, there exist vertex-disjoint
cycles C1 and C2 such that |V (C1)| = ℓ, |V (C2)| = |V (G)| − ℓ, uv ∈ E(C1) and xy ∈ E(C2). In
this paper, we prove that the n-star graph Sn is two-disjoint-cycle-cover edge [6, n!

2 ]-bipancyclic for

n ⩾ 5, and thus it is two-disjoint-cycle-cover vertex [6, n!
2 ]-bipancyclic for n ⩾ 5. Additionally, it is

examined that Sn is two-disjoint-cycle-cover [6, n!
2 ]-bipancyclic for n ⩾ 4.
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1 Introduction

The underlying topology of an interconnection network is usually modeled by a connected simple

graph. Cycles are one class of fundamental network topologies, which are suitable for designing simple

algorithms with low communication costs. Many efficient parallel algorithms designed on cycles can

be used as data structures for distributed computing in those networks that can embed cycles so that

the algorithms designed on cycles can be simulated on the embedded cycles. In addition, more cycles

of various lengths can be embedded in a network, and more simulated processors can be adjusted to

increase the elasticity of demand. Thus, the problem of embedding cycles of various possible lengths

into a graph is an important factor for network simulation and merits special attention. This problem

has been considered for various special network topologies, for example, hypercubes [10], balanced

hypercubes [30], data center networks [11], (n, k)-bubble-sort networks [28], star graphs [12, 29], and

so on.

A cycle (or path) having ℓ edges is called an ℓ-cycle (or path), and we say it has length ℓ. For

a graph G, denote V (G) and E(G) the vertex set and edge set of G, respectively. A graph G is said

to be pancyclic [3] if it contains ℓ-cycles for each integer ℓ satisfying 3 ⩽ ℓ ⩽ |V (G)|. The concept

of pancyclicity has been extended to edge-pancyclicity and vertex-pancyclicity [4]. A graph G is

vertex-pancyclic (resp. edge-pancyclic) if every vertex (resp. edge) lies on ℓ-cycles for each integer ℓ

satisfying 3 ⩽ ℓ ⩽ |V (G)|. Note that an edge-pancyclic graph is certainly vertex-pancyclic. Since a

bipartite graph has no cycle of odd length, it was proposed in [20] that a bipartite graph G is called

bipancyclic if it contains ℓ-cycles for each even integer ℓ satisfying 4 ⩽ ℓ ⩽ |V (G)|. This concept has

been extended to vertex-bipancyclicity [21] and edge-bipancyclicity [18].

In [13, 14], Kung et al. investigated the problem of embedding disjoint cycles which cover all ver-

tices of a graph, and proposed the concepts of two-disjoint-cycle-cover (2-DCC in short) pancyclicity,

2-DCC [r1, r2]-pancyclicity, 2-DCC vertex [r1, r2]-pancyclicity and 2-DCC edge [r1, r2]-pancyclicity.

Following [14], the concepts of 2-DCC [r1, r2]-bipancyclicity and 2-DCC vertex [r1, r2]-bipancyclicity

were introduced in [27] and [23, 24] for bipartite graphs, respectively.

∗This work was funded by the National Natural Science Foundation of China (12471328,12331013, 12161141006), and
the Fundamental Research Funds for the Central Universities.

†Corresponding author.
E-mail address: 1120220002@mail.nankai.edu.cn(S. D. Xue).

1



Definition 1.1 ([27]) A bipartite graph G is 2-DCC [r1, r2]-bipancyclic if, for any even integer ℓ with

r1 ⩽ ℓ ⩽ r2, there are vertex-disjoint cycles C1 and C2 that cover all vertices of G, one of them has

length ℓ.

Definition 1.2 ([24]) A bipartite graph G is 2-DCC vertex [r1, r2]-bipancyclic if, for any distinct

vertices u and v in G and any even integer ℓ satisfying r1 ⩽ ℓ ⩽ r2, there exist vertex-disjoint ℓ-cycle

C1 and (|V (G)| − ℓ)-cycle C2 such that u ∈ V (C1), and v ∈ V (C2).

Analogously, 2-DCC edge [r1, r2]-bipancyclic of a bipartite graph is defined as follows.

Definition 1.3 A bipartite graph G is 2-DCC edge [r1, r2]-bipancyclic if, for any vertex-disjoint edges

uv and xy in G and any even integer ℓ satisfying r1 ⩽ ℓ ⩽ r2, there exist vertex-disjoint ℓ-cycle C1

and (|V (G)| − ℓ)-cycle C2 such that uv ∈ E(C1), and xy ∈ E(C2).

Remark 1.4 From the definitions, a 2-DCC edge [r1, r2]-bipancyclic bipartite graph is certainly 2-

DCC vertex [r1, r2]-bipancyclic, also is 2-DCC [r1, r2]-bipancyclic, and has an even number of vertices.

In addition, if a graph is 2-DCC edge/vertex [r1, r2]-(bi)pancyclic then it is also 2-DCC edge/vertex

[|V (G)| − r2, |V (G)| − r1]-(bi)pancyclic. Thus, as observed in [14, 23], it is reasonable to choose

r2 ⩽
|V (G)|

2 .

Two-disjoint-cycle-cover pancyclicity and its various extensions have been wildly studied in the

recent years for many popular networks, for example, 2-DCC pancyclicity for alternating group graphs

[5], crossed cubes [13] and locally twisted cubes [14], 2-DCC bipancyclicity for balanced hypercubes

[27] and bubble-sort star graphs [34], 2-DCC vertex pancyclicity for augmented cubes [26] and locally

twisted cubes [14], 2-DCC vertex bipancyclicity for bipartite generalized hypercubes [23] and bipartite

hypercube-like networks [24] and 2-DCC edge pancyclicity for locally twisted cubes [14].

The star graphs are Cayley graphs and have been recognized as an attractive alternative to the

hypercubes [1, 2]. This class of graphs has been widely investigated in various aspects, such as path

routing [15, 25], connectivity and diagnosability [6, 19], broadcasting [8, 22], and embedding problems

[9, 17, 29, 31–33], and so on. It is proved by Li [16] that the cycles of even lengths from 6 to n! can

be embedded into the n-star graph if the number of edge faults in the graph does not exceed n − 3.

This paper aims to examine the 2-DCC edge/vertex bipancyclicity and the 2-DCC bipancyclicity of

star graphs.

Theorem 1.5 The n-star graph Sn is two-disjoint-cycle-cover edge [6, n!2 ]-bipancyclic for n ⩾ 5.

Recall that a 2-DCC edge [r1, r2]-bipancyclic bipartite graph is 2-DCC vertex [r1, r2]-bipancyclic,

so also is 2-DCC [r1, r2]-bipancyclic.

Corollary 1.6 The n-star graph Sn is two-disjoint-cycle-cover vertex [6, n!2 ]-bipancyclic for n ⩾ 5.

We remark that the conclusions in Theorem 1.5 and Corollary 1.6 do not hold for n = 4, see

Lemma 2.7. However, Lemma 2.7 says that S4 is 2-DCC [6, 12]-bipancyclic. Combining Theorem 1.5

(or Corollary 1.6), we conclude the following result.

Theorem 1.7 The n-star graph Sn is two-disjoint-cycle-cover [6, n!2 ]-bipancyclic for n ⩾ 4.

2 Preliminaries

A bijection of [n] := {1, 2, . . . , n} onto itself is called a permutation of [n]. Denote by Sn the

set of permutations of [n]. Under composition of mappings, Sn forms a group of order n!, called the

symmetric group on [n]. We always write permutations on the left and compose from right to left, for

example, (x·y)(i) = x(y(i)).
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For distinct i, j ∈ [n], we use ti,j to denote the transposition interchanging i and j. Put

T := {t1,i | i ∈ [n] \ {1}}.

Then T is a set of generators of the symmetric group Sn. Thus we have a connected Cayley graph

Sn := Cay(Sn, T ), called the n-star graph, which has vertex set Sn such that two vertices x, y ∈ Sn

are adjacent if and only if x−1·y ∈ T . Clearly, the graph Sn is (n− 1)-regular.

Recall that a permutation is said to be even or odd if it is a product of an even or odd number of

transpositions, respectively. Denote by En and On the sets of even permutations and odd permutations

of [n], respectively. Then Sn = En ∪ On, |En| = n!
2 = |On| and Sn has bipartition (En,On). For

convenience, the vertices in En and On are call even and odd vertices, respectively.

The following two lemmas are proved in [31] and [33], respectively.

Lemma 2.1 ([31]) Let n ⩾ 4 and u, v be vertices with opposite parity in Sn. Then for any edge

e ∈ E(Sn) with e ̸= uv, there is a Hamilton path containing e between u and v in Sn.

Especially, let e1 and e2 be distinct edges of Sn. If e1 has ends u and v, then Lemma 2.1 implies

that there exists a Hamilton path containing e2 between u and v. Thus the following result holds.

Corollary 2.2 Let n ⩾ 4. If e1 and e2 are distinct edges of Sn, then Sn has a Hamilton cycle

containing e1 and e2.

Lemma 2.3 ([33]) Let n ⩾ 4 and M be a matching of size m of Sn, where m ⩽ n − 4. If u and v

are vertices with opposite parity of Sn − V (M), then Sn − V (M) has a Hamilton path between u and

v.

For convenience, the permutation

(
1 2 · · · n
p1 p2 · · · pn

)
is written as p1p2 · · · pn. An edge xy of Sn

is called an i-edge if x−1·y = t1,i, while x (or y) is called an i-neighbor of y (or x). In particular, denote

by x̄ the n-neighbor of x in Sn, i.e., x̄ = x · t1,n.

Fix i ∈ [n], define

Si
n := {x ∈ Sn | x(n) = i},
E i
n := {x ∈ En | x(n) = i},

Oi
n := {x ∈ On | x(n) = i}.

Then we have a partition {Si
n | i ∈ [n]} of the symmetric group Sn. Denote by Si

n the subgraph of Sn

induced by Si
n. Then Si

n is a bipartite graph with bipartition (E i
n,Oi

n).

For i, j ∈ [n] with j ̸= i, denote by Ei,j the set of edges between Si
n and Sj

n, and put

E :=
⋃

i,j∈[n],i ̸=j

Ei,j = E(Sn) \
⋃
i∈[n]

E(Si
n).

The following two lemmas collect some elementary properties of the n-star graph Sn.

Lemma 2.4 ([7]) Let i, j ∈ [n] with n ⩾ 3 and i ̸= j. Then

(1) Si
n is a subgraph of Sn and is isomorphic to the (n− 1)-star graph Sn−1; and

(2) E indices a perfect matching of Sn; and

(3) |Si
n ∩ En| = (n−1)!

2 = |Si
n ∩ On|, and |V (Ei,j) ∩ E i

n| =
(n−2)!

2 = |V (Ei,j) ∩ Oi
n|.

Pick x ∈ Si
n for i ∈ [n]. Let y = x · t1,i1 and z = x · t1,i2 for distinct i1, i2 ∈ [n] \ {1, n}. Then

x̄(n) = x(1), ȳ(n) = x(i1) and z̄(n) = x(i2). In other words, x̄ ∈ Sx(1)
n , ȳ ∈ Sx(i1)

n and z̄ ∈ Sx(i2)
n .

Therefore we have the following observation.
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Table 1: Hamilton paths in S4 − {1234, 3214} between u and v
v u = 2134
2314 2134,3124,1324,4321,2341,3241,4231,2431,3421,1423,4123,2143,1243,4213,2413,3412,1432,4132,3142,1342,4312,2314
1342 2134,3124,1324,2314,4312,3412,1432,4132,3142,2143,4123,1423,2413,4213,1243,3241,4231,2431,3421,4321,2341,1342
4132 2134,3124,4123,1423,2413,4213,1243,2143,3142,1342,2341,3241,4231,2431,3421,4321,1324,2314,4312,3412,1432,4132
4321 2134,3124,1324,2314,4312,1342,3142,4132,1432,3412,2413,4213,1243,2143,4123,1423,3421,2431,4231,3241,2341,4321
3241 2134,4132,1432,3412,4312,2314,1324,3124,4123,1423,2413,4213,1243,2143,3142,1342,2341,4321,3421,2431,4231,3241
3412 2134,3124,1324,2314,4312,1342,3142,4132,1432,2431,4231,3241,2341,4321,3421,1423,4123,2143,1243,4213,2413,3412
3124 2134,4132,3142,1342,2341,3241,4231,2431,1432,3412,4312,2314,1324,4321,3421,1423,2413,4213,1243,2143,4123,3124
2431 2134,3124,1324,2314,4312,1342,3142,4132,1432,3412,2413,4213,1243,2143,4123,1423,3421,4321,2341,3241,4231,2431
2143 2134,3124,1324,2314,4312,3412,1432,4132,3142,1342,2341,4321,3421,2431,4231,3241,1243,4213,2413,1423,4123,2143
4213 2134,3124,1324,2314,4312,3412,1432,4132,3142,1342,2341,4321,3421,2431,4231,3241,1243,2143,4123,1423,2413,4213
1423 2134,4132,1432,3412,4312,2314,1324,3124,4123,2143,3142,1342,2341,4321,3421,2431,4231,3241,1243,4213,2413,1423

u = 1324
2314 1324,4321,3421,1423,2413,4213,1243,2143,4123,3124,2134,4132,3142,1342,2341,3241,4231,2431,1432,3412,4312,2314
1342 1324,2314,4312,3412,1432,2431,4231,3241,2341,4321,3421,1423,2413,4213,1243,2143,4123,3124,2134,4132,3142,1342
4132 1324,2314,4312,1342,3142,2143,1243,4213,2413,3412,1432,2431,4231,3241,2341,4321,3421,1423,4123,3124,2134,4132
4321 1324,2314,4312,1342,2341,3241,4231,2431,1432,3412,2413,4213,1243,2143,3142,4132,2134,3124,4123,1423,3421,4321
3241 1324,2314,4312,3412,1432,4132,2134,3124,4123,1423,2413,4213,1243,2143,3142,1342,2341,4321,3421,2431,4231,3241
3412 1324,2314,4312,1342,3142,4132,2134,3124,4123,2143,1243,4213,2413,1423,3421,4321,2341,3241,4231,2431,1432,3412
3124 exception
2431 1324,2314,4312,1342,3142,2143,1243,4213,2413,3412,1432,4132,2134,3124,4123,1423,3421,4321,2341,3241,4231,2431
2143 1324,2314,4312,3412,1432,4132,2134,3124,4123,1423,2413,4213,1243,3241,4231,2431,3421,4321,2341,1342,3142,2143
4213 1324,2314,4312,3412,2413,1423,3421,4321,2341,1342,3142,2143,4123,3124,2134,4132,1432,2431,4231,3241,1243,4213
1423 1324,2314,4312,3412,2413,4213,1243,3241,4231,2431,1432,4132,2134,3124,4123,2143,3142,1342,2341,4321,3421,1423

u = 4312
2314 4312,3412,1432,4132,2134,3124,4123,1423,2413,4213,1243,2143,3142,1342,2341,3241,4231,2431,3421,4321,1324,2314
1342 4312,2314,1324,4321,2341,3241,4231,2431,3421,1423,4123,3124,2134,4132,1432,3412,2413,4213,1243,2143,3142,1342
4132 exception
4321 4312,2314,1324,3124,2134,4132,3142,1342,2341,3241,4231,2431,1432,3412,2413,4213,1243,2143,4123,1423,3421,4321
3241 4312,2314,1324,4321,2341,1342,3142,2143,1243,4213,2413,3412,1432,4132,2134,3124,4123,1423,3421,2431,4231,3241
3412 4312,2314,1324,4321,3421,1423,4123,3124,2134,4132,1432,2431,4231,3241,2341,1342,3142,2143,1243,4213,2413,3412
3124 4312,2314,1324,4321,3421,1423,4123,2143,1243,4213,2413,3412,1432,2431,4231,3241,2341,1342,3142,4132,2134,3124
2431 4312,2314,1324,4321,3421,1423,4123,3124,2134,4132,1432,3412,2413,4213,1243,2143,3142,1342,2341,3241,4231,2431
2143 4312,2314,1324,4321,3421,1423,4123,3124,2134,4132,3142,1342,2341,3241,4231,2431,1432,3412,2413,4213,1243,2143
4213 4312,2314,1324,3124,2134,4132,1432,3412,2413,1423,4123,2143,3142,1342,2341,4321,3421,2431,4231,3241,1243,4213
1423 4312,2314,1324,3124,2134,4132,1432,3412,2413,4213,1243,3241,4231,2431,3421,4321,2341,1342,3142,2143,4123,1423

u = 3142
2314 3142,2143,4123,1423,2413,4213,1243,3241,4231,2431,3421,4321,2341,1342,4312,3412,1432,4132,2134,3124,1324,2314
1342 3142,2143,1243,4213,2413,3412,1432,4132,2134,3124,4123,1423,3421,2431,4231,3241,2341,4321,1324,2314,4312,1342
4132 3142,2143,1243,4213,2413,3412,1432,2431,4231,3241,2341,1342,4312,2314,1324,4321,3421,1423,4123,3124,2134,4132
4321 3142,4132,2134,3124,1324,2314,4312,1342,2341,3241,4231,2431,1432,3412,2413,4213,1243,2143,4123,1423,3421,4321
3241 3142,4132,2134,3124,1324,2314,4312,1342,2341,4321,3421,1423,4123,2143,1243,4213,2413,3412,1432,2431,4231,3241
3412 3142,1342,2341,3241,4231,2431,1432,4132,2134,3124,4123,2143,1243,4213,2413,1423,3421,4321,1324,2314,4312,3412
3124 3142,1342,4312,2314,1324,4321,2341,3241,4231,2431,3421,1423,4123,2143,1243,4213,2413,3412,1432,4132,2134,3124
2431 3142,2143,4123,1423,3421,4321,2341,1342,4312,2314,1324,3124,2134,4132,1432,3412,2413,4213,1243,3241,4231,2431
2143 3142,1342,2341,3241,4231,2431,3421,4321,1324,2314,4312,3412,1432,4132,2134,3124,4123,1423,2413,4213,1243,2143
4213 3142,2143,4123,1423,2413,3412,1432,4132,2134,3124,1324,2314,4312,1342,2341,4321,3421,2431,4231,3241,1243,4213
1423 3142,4132,2134,3124,4123,2143,1243,4213,2413,3412,1432,2431,4231,3241,2341,1342,4312,2314,1324,4321,3421,1423

u = 1432
2314 1432,2431,4231,3241,2341,4321,3421,1423,4123,2143,1243,4213,2413,3412,4312,1342,3142,4132,2134,3124,1324,2314
1342 1432,3412,2413,4213,1243,2143,3142,4132,2134,3124,4123,1423,3421,2431,4231,3241,2341,4321,1324,2314,4312,1342
4132 1432,2431,4231,3241,2341,1342,3142,2143,1243,4213,2413,3412,4312,2314,1324,4321,3421,1423,4123,3124,2134,4132
4321 1432,2431,4231,3241,2341,1342,3142,4132,2134,3124,1324,2314,4312,3412,2413,4213,1243,2143,4123,1423,3421,4321
3241 1432,3412,4312,2314,1324,4321,2341,1342,3142,4132,2134,3124,4123,2143,1243,4213,2413,1423,3421,2431,4231,3241
3412 1432,2431,4231,3241,2341,1342,3142,4132,2134,3124,4123,2143,1243,4213,2413,1423,3421,4321,1324,2314,4312,3412
3124 1432,3412,2413,4213,1243,2143,4123,1423,3421,2431,4231,3241,2341,4321,1324,2314,4312,1342,3142,4132,2134,3124
2431 1432,3412,4312,2314,1324,4321,3421,1423,2413,4213,1243,2143,4123,3124,2134,4132,3142,1342,2341,3241,4231,2431
2143 1432,3412,4312,2314,1324,3124,2134,4132,3142,1342,2341,4321,3421,2431,4231,3241,1243,4213,2413,1423,4123,2143
4213 1432,3412,4312,2314,1324,3124,2134,4132,3142,1342,2341,4321,3421,2431,4231,3241,1243,2143,4123,1423,2413,4213
1423 1432,2431,4231,3241,2341,1342,3142,4132,2134,3124,4123,2143,1243,4213,2413,3412,4312,2314,1324,4321,3421,1423

u = 2341
2314 2341,4321,3421,2431,4231,3241,1243,4213,2413,1423,4123,2143,3142,1342,4312,3412,1432,4132,2134,3124,1324,2314
1342 2341,3241,4231,2431,1432,3412,2413,4213,1243,2143,3142,4132,2134,3124,4123,1423,3421,4321,1324,2314,4312,1342
4132 2341,3241,4231,2431,1432,3412,2413,4213,1243,2143,3142,1342,4312,2314,1324,4321,3421,1423,4123,3124,2134,4132
4321 2341,3241,4231,2431,3421,1423,4123,3124,2134,4132,1432,3412,2413,4213,1243,2143,3142,1342,4312,2314,1324,4321
3241 2341,1342,3142,2143,1243,4213,2413,1423,4123,3124,2134,4132,1432,3412,4312,2314,1324,4321,3421,2431,4231,3241
3412 2341,4321,3421,2431,4231,3241,1243,4213,2413,1423,4123,2143,3142,1342,4312,2314,1324,3124,2134,4132,1432,3412
3124 2341,4321,1324,2314,4312,1342,3142,2143,4123,1423,3421,2431,4231,3241,1243,4213,2413,3412,1432,4132,2134,3124
2431 2341,4321,3421,1423,4123,2143,3142,1342,4312,2314,1324,3124,2134,4132,1432,3412,2413,4213,1243,3241,4231,2431
2143 exception
4213 2341,1342,4312,2314,1324,4321,3421,1423,4123,3124,2134,4132,3142,2143,1243,3241,4231,2431,1432,3412,2413,4213
1423 2341,4321,3421,2431,4231,3241,1243,4213,2413,3412,1432,4132,2134,3124,1324,2314,4312,1342,3142,2143,4123,1423
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Table 2: Some pairs of vertex disjoint cycles in S4.
ℓ 24− ℓ |C1| = ℓ and |C2| = 24− ℓ
6 18 C1: 1234,2134,3124,1324,2314,3214,1234

C2: 4231,3241,1243,4213,2413,1423,4123,2143,3142,4132,1432,3412,4312,1342,2341,4321,3421,2431,4231
6 18 C1: 1234,2134,4132,1432,2431,4231,1234

C2: 3214,2314,1324,3124,4123,1423,3421,4321,2341,3241,1243,2143,3142,1342,4312,3412,2413,4213,3214
8 16 C1: 1234,2134,3124,1324,4321,3421,2431,4231,1234

C2: 3214,2314,4312,3412,1432,4132,3142,1342,2341,3241,1243,2143,4123,1423,2413,4213,3214
8 16 C1: 1234,2134,4132,1432,3412,4312,2314,3214,1234

C2: 3124,1324,4321,3421,2431,4231,3241,2341,1342,3142,2143,1243,4213,2413,1423,4123,3124
8 16 C1: 1234,2134,3124,4123,2143,1243,4213,3214,1234

C2: 2314,4312,1342,3142,4132,1432,3412,2413,1423,3421,2431,4231,3241,2341,4321,1324,2314
10 14 C1: 1234,2134,3124,4123,1423,3421,4321,1324,2314,3214,1234

C2: 4231,3241,2341,1342,4312,3412,2413,4213,1243,2143,3142,4132,1432,2431,4231
10 14 C1: 1234,2134,4132,3142,2143,4123,3124,1324,2314,3214,1234

C2: 4231,3241,1243,4213,2413,1423,3421,4321,2341,1342,4312,3412,1432,2431,4231
10 14 C1: 1234,2134,3124,1324,2314,3214,4213,1243,3241,4231,1234

C2: 2431,3421,4321,2341,1342,4312,3412,2413,1423,4123,2143,3142,4132,1432,2431
10 14 C1: 1234,2134,4132,1432,2431,3421,4321,2341,3241,4231,1234

C2: 3214,2314,1324,3124,4123,1423,2413,3412,4312,1342,3142,2143,1243,4213,3214

Lemma 2.5 Let i ∈ [n] and x ∈ Si
n. Suppose that y, z are distinct neighbors of x in Si

n. Then the

n-neighbors of x, y and z lie in 3 distinct subgraphs Sj
n of Sn, where j ∈ [n] \ {i}. In particular, the

n-neighbor of x and the n-neighbors of the other n − 2 neighbors of x in Si
n are scattered into the

distinct n− 1 subgraphs Sj
n, where j runs over [n] \ {i}.

A graph G is called the vertex (resp., edge)-transitive if, for any two vertices u, v ∈ V (G) (resp.,

edges e, f ∈ E(G)) there exists an automorphism ϕ of G such that ϕ(u) = v (resp., ϕ(e) = f). By [2],

the star graph Sn is both vertex-transitive and edge-transitive.

Lemma 2.6 Let xy be an edge of S4, and u, v ∈ S4 \ {x, y} with opposite parity. Then either there

exists a Hamilton path of S4 − {x, y} between u and v, or {u, v} is one of six possible exceptions.

Proof. Noting that S4 is edge-transitive, without loss of generality, we choose x = 1234 ∈ E4 and y =

x·t1,3 = 3214 ∈ O4. Define π : S4 → S4, a 7→ t2,4 · a · t2,4. It is easily shown that π is an automorphism

of S4, which has order 2 and fixes both x and y. Let O = {2134, 1324, 4312, 1432, 3142, 2341} and

E = {2314, 3124, 3412, 1342, 4132, 3241, 2431, 4321, 4213, 1423, 2143}. Then O4 = O ∪ π(O)∪ {y}, and
E4 = E ∪ {x}. Without loss of generality, we let u ∈ O ∪ π(O) and v ∈ E . For each u ∈ O and each

v ∈ E , a Hamilton path of S4−{x, y} between u and v is described as in Table 1, unless three possible

exceptions: u = 1324, v = 3124; u = 4312, v = 4132; and u = 2341, v = 2143. Note that there exists a

Hamilton path of S4−{x, y} between u and v if and only if there exists a Hamilton path of S4−{x, y}
between π(u) and π(v). When u runs over π(O), we get the other three possible exceptions for {u, v},
which are the images of the above exceptions under π. Then the lemma follows. 2

The following lemma will be used in the proof of Theorem 1.7.

Lemma 2.7 The graph S4 is 2-DCC [6, 12]-bipancyclic but not 2-DCC vertex [6, 12]-bipancyclic. More

precisely, the following hold.

(1) Let uv and xy be vertex-disjoint edges of S4. If ℓ ∈ {6, 8, 10}, then there exist vertex-disjoint

ℓ-cycle C1 and (24− ℓ)-cycle C2 in S4 such that uv ∈ E(C1) and xy ∈ E(C2);

(2) S4 has exactly three pairs {C1, C2} of vertex-disjoint 12-cycles, and if C1 and C2 are vertex-

disjoint 12-cycles then the cycle containing 1234 must contain both 1342 and 1423.

Proof. By the edge-transitivity of S4, fix uv and traverse all xy ∈ E(S4 \ {u, v}). Without loss of

generality, we let u = 1234, v = u · t1,2 = 2134. It is easily shown that the conjugation of t3,4 on S4

gives an automorphism of S4, say π : S4 → S4, a 7→ t3,4 · a · t3,4. Then π has order 2 and fixes both u

5



and v. Write each edge ab as {a, b}, and put

E =


{2314, 1324}, {3241, 4231}, {4231, 2431}, {2431, 3421}, {3412, 4312}, {4312, 1342},
{1342, 3142}, {3142, 4132}, {4132, 1432}, {1432, 3412}, {3412, 2413}, {2413, 4213},
{4213, 1243}, {1243, 2143}, {2143, 4123}, {1423, 2413}.


and E∗ = {{1234, 2134}, {1234, 3214}, {1234, 4231}, {2134, 3124}, {2134, 4132}}. Then E(S4) = E ∪
π(E) ∪ E∗. By the choice of uv and xy, we have {x, y} /∈ E∗. In addition, the edge xy lies on an

ℓ-cycle if and only if so does π(xy). To prove part (1), without loss of generality, we may choose {x, y}
from E. For such edges uv and xy, Table 2 illustrates the existence of cycles desired as in part (1).

Computation with GAP shows that there are exactly three pairs {C1, C2} of vertex-disjoint 12-

cycles, which are listed as follows:

C1 : 1234, 2134, 3124, 4123, 1423, 2413, 3412, 4312, 1342, 2341, 3241, 4231, 1234;

C2 : 1243, 2143, 3142, 4132, 1432, 2431, 3421, 4321, 1324, 2314, 3214, 4213, 1243.

C1 : 1234, 2134, 4132, 3142, 1342, 2341, 4321, 3421, 1423, 2413, 4213, 3214, 1234;

C2 : 1243, 2143, 4123, 3124, 1324, 2314, 4312, 3412, 1432, 2431, 4231, 3241, 1243.

C1 : 1234, 3214, 2314, 4312, 1342, 3142, 2143, 4123, 1423, 3421, 2431, 4231, 1234;

C2 : 1243, 4213, 2413, 3412, 1432, 4132, 2134, 3124, 1324, 4321, 2341, 3241, 1243.

It is easy to check that each cycle C1 contains the vertices 1234, 1342 and 1423, and then part (2) of

the lemma follows. 2

Lemma 2.8 Let C be an h-cycle in Si
n, where n ⩾ 5 and i ∈ [n].

(1) If h = 6, then |{x̄(n) | x ∈ V (C)}| = 3.

(2) If h ⩾ 8, then there exist vertex-disjoint edges uv and wz in C such that |{ū(n), v̄(n), w̄(n), z̄(n)}|
= 4.

Proof. It is easily shown that x 7→ ti,n · x is an automorphism of Sn which maps Si
n to Sn

n . Thus,

without loss of generality, we let i = n. Pick x ∈ V (C), and assume the edges of C are i1-edge,

i2-edge, . . ., ih−1-edge, ih-edge in clockwise order around C from x. Then i1, i2, . . . , ih ∈ [n] \ {1, n},
t1,i1 · t1,i2 · · · · · t1,ih = 123 · · ·n, and t1,is · t1,is+1 · · · · · t1,it ̸= 123 · · ·n for any 1 ⩽ s < t ⩽ h with

t − s < h. After a simple calculation, we conclude that h = 6 if and only if is = it whenever t − s is

even.

Let xs = x · t1,i1 · t1,i2 · · · · · t1,is for 1 ⩽ s ⩽ h− 1. Then V (C) = {x, x1, · · · , xh−1}. Assume that

h = 6. Then i1 = i3 = i5 and i2 = i4 = i6, We have x̄(n) = x̄3(n) = x(1), x̄1(n) = x̄4(n) = x(i1)

and x̄2(n) = x̄5(n) = x(i2), and thus |{x̄(n) | x ∈ V (C)}| = 3, desired as in part (1) of this lemma.

Now let h ⩾ 8. Then there exist s and t with t − s = 2 and is ̸= it; in particular, is, is+1 and is+2

are pairwise distinct. Choosing u = xs−1, v = xs, w = xs+1 and z = xs+2, we have ū(n) = xs−1(1),

v̄(n) = xs−1(is), w̄(n) = xs−1(is+1), and z̄(n) = xs−1(is+2), and then part (2) follows. 2

For a nonempty subset I ⊆ [n], denote by SI
n the subgraph of Sn induced by

⋃
i∈I Si

n.

Lemma 2.9 Let I ⊆ [n] with |I| ⩾ 2, where n ⩾ 5. Suppose P is either the null graph or a path

of SI
n, and for all k ∈ I either V (P ) ∩ Sk

n = ∅ or V (P ) ∩ Sk
n is the set of ends of some edge on P .

Let e ∈ E(Si
n) for i ∈ I with V (P ) ∩ Si

n = ∅. Then for any distinct j1, j2 ∈ I, u ∈ Oj1
n \ V (P ) and

v ∈ Ej2
n \ V (P ), there is a Hamilton path of SI

n − P that contains e between u and v.

Proof. Let |I| = s. Without loss of generality, we let j1 = 1, j2 = s, I = [s]. Put u1 = u and vs = v.

For each 1 ⩽ k ⩽ s− 1, we have |Ek,k+1
n ∩E(P )| ⩽ 1 and |V (Ek,k+1

n ) ∩ V (P )| ⩽ 2 by the assumption.

Then Lemma 2.4 allows us choose vkuk+1 ∈ Ek,k+1
n with vk ∈ Ek

n \ V (P ) and uk+1 ∈ Ok+1
n \ V (P ).

Note that each Sk
n − P is either Sk

n or obtained by deleting the endpoints of some edge on P .
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Assume first that n > 5. Applying Lemma 2.3 to each Sk
n − P , there exists a Hamilton path of

Sk
n − P , say Pk, between uk and vk, where 1 ⩽ k ⩽ s and k ̸= i. By Lemma 2.1, there is a Hamilton

path that contains e of Si
n, say Pi, between ui and vi. Then we have a Hamilton path that contains e

of SI
n − P between u and v, say P1 + v1u2 + P2 + v2u3 + · · ·+ vs−1us + Pk.

Now let n = 5. Then |Ok
5 | = 12 = |Ek

5 | for 1 ⩽ k ⩽ s, and |Ok
5 ∩V (Ek,k+1

5 )| = 3 = |Ek
5 ∩V (Ek,k+1

5 )|
for 1 ⩽ k ⩽ s− 1. Then, by Lemma 2.6, we may choose uk and vk such that there exists a Hamilton

path of Sk
5 − P , say Pk, between uk and vk, where 1 ⩽ k ⩽ s and k ̸= i. By Lemma 2.1, there is

a Hamilton path that contains e of Si
n, say Pi, between ui and vi. Thus we have a Hamilton path

P1 + v1u2 +P2 + v2u3 + · · ·+ vk−1uk +Pk that contains e of SI
5 −P between u and v. This completes

the proof. 2

Lemma 2.10 Let I ⊆ [n] with |I| ⩾ 3, where n ⩾ 5. Suppose P is either the null graph or a path of

SI
n and for all k ∈ I either V (P ) ∩ Sk

n = ∅ or V (P ) ∩ Sk
n is the set of ends of some edge on P . Let

e ∈ E(Si
n) for i ∈ I with V (P ) ∩ Si

n = ∅. Then there is a Hamilton cycle of SI
n − P that contains e.

Proof. Pick distinct i1, i2 ∈ I \ {i}. Then Si
n has exactly (n− 2)! vertices x with x(1) = i1, and these

vertices x can be partitioned into n− 2 classes Uj := {x ∈ Si
n | x(1) = i1, x(j) = i2}, j ∈ [n] \ {1, n},

each has length (n − 3)!. Let x ∈ Uj . Then x̄(n) = x · t1,n(n) = i1, i.e., the n-neighbor x̄ of x is

contained in Si1
n . Let U :=

⋃
j∈[n]\{1,n} Uj and U∗ := {x̄ | x ∈ U}. Then U∗ ⊆ Si1

n .

Fix distinct x1, x2 ∈ U . If x1x2 ∈ E(Si
n) then x2 = x1 · t1,k1 for some k1 ∈ [n] \ {1, n}, and so

x1(1) = i1 = x2(1) = x1 · t1,k1(1) = x1(k1), yielding k1 = 1, a contradiction. If x̄1x̄2 ∈ E(Si1
n ) then

x̄2 = x̄1 · t1,k2 for some k2 ∈ [n] \ {1, n}, and so x̄1(1) = i = x̄2(1) = x̄1 · t1,k2(1) = x̄1(k2), implying

k2 = 1, a contradiction. Therefore U is an independent set of Si
n and U∗ is an independent set of Si1

n .

By the assumption, since U∗ is an independent set, we have |V (P )∩U∗| ⩽ 1. It follows that there

exist at least j1, j2 ∈ [n] \ {1, n} such that the n-neighbor x̄ of any x ∈ Uj1 ∪ Uj2 is not contained in

V (P ). Pick distinct x1j , x2j ∈ Uj , put y1j = x1j · t1,j and y2j = x2j · t1,j , where j ∈ {j1, j2}. Then

ȳ1j , ȳ2j ∈ Si2
n . Recalling that x1jx2j ̸∈ E(Si

n) from the discussion above, we have y1jy2j ̸∈ E(Si
n),

and so ȳ1j ȳ2j ̸∈ E(Si2
n ). Then the assumption implies that one of ȳ1j and ȳ2j is not contained

in V (P ). Thus, for each j ∈ {j1, j2}, we have an edge xy ∈ E(Si
n) such that x̄, ȳ ̸∈ V (P ), and

x̄(n), ȳ(n) ∈ I0 := I \ {i}. Pick such an edge e∗ = xy with e∗ ̸= e. Corollary 2.2 implies that there is a

Hamilton cycle C that contains e and e∗ in Si
n. By Lemma 2.9, there is a Hamilton path P ∗ in SI0

n −P

between x̄ and ȳ. Therefore, SI
n−P has a Hamilton cycle that contains e, say C −xy+P ∗+xx̄+ yȳ.

This completes the proof. 2

3 Constructions of cycles

This section aims to construct several cycles from any given cycle in Sn
n . The proof of Theorem

1.5 is based on these constructions. In the following, assume that X is an h-cycle in Sn
n . Fix an edge

wz of X, and write z = w · t1,i. Clearly, i ̸= n. Let [1, n− 1] = [n] \ {n}.

D1: Construction of (h+ 4)-cycle:

We expand the edge wz to a 6-cycle C1 by adding two i-edges and three n-edges, which has

vertices w, z, z̄ := z · t1,n, z1 := z̄ · t1,i, z̄1 := z1 · t1,n and w̄ := w · t1,n = z̄1 · t1,i. Calculation shows

that z̄(n) = z(1) = z1(n) and w̄(n) = w(1) = z(i) = z̄1(n). Since i ̸= n and z(n) = n, we have

z(1) ̸= n and z(i) ̸= n, and so z̄, z1, z̄1, w̄ ̸∈ Sn
n . In particular, z̄, z1, z̄1, w̄ ̸∈ V (X). Thus we have a

cycle X1 := (X − wz) + (C1 − wz) of length h+ 4. In addition, V (X1) ∩ V (S
[1,n−1]
n ) ⊆ Sw(1)

n ∪ Sz(1)
n .

D2: Construction of (h+ 6)-cycles:

Let j ∈ [n] \ {1, i, n}. Then the edge wz can be expanded to an 8-cycle C2 by adding one i-edge,

two j-edges and four n-edges, which has vertices w, z, z̄ := z · t1,n, z1 := z̄ · t1,j , z̄1 := z1 · t1,n,
z2 := z̄1 · t1,i, z̄2 := z2 · t1,n and w̄ := w · t1,n = z̄2 · t1,j . Considering the images of n under these

permutations, we have w̄(n) = w(1) = z̄2(n), w(n) = n = z(n), z̄(n) = z(1) = w(i) = z1(n) and
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z̄1(n) = w(j) = z2(n). By the choices of j and X, we have z̄, z1, z̄1, z2, z̄2, w̄ ̸∈ V (X). Thus we have a

cycleX2 := (X−wz)+(C2−wz) of length h+6. In addition, V (X2)∩V (S
[1,n−1]
n ) ⊆ Sw(1)

n ∪Sz(1)
n ∪Sw(j)

n .

When j runs over [n] \ {1, i, n}, we get n − 3 cycles of length h + 6, which contain a common path

X − wz + ww̄ + zz̄.

D3: Construction of (h+ (n− 1)! + 2)-cycles:

First, we have a 6-cycle C1 given as in D1. Noting that w̄(n) = w(1) = z(i) = z̄1(n) and

z̄(n) = z(1) = z1(n), by Lemma 2.1, we may pick a Hamilton path P in S
w(1)
n between w̄ and z̄1 and a

Hamilton path P ′ in S
z(1)
n between z̄ and z1. Then we have two ((n−1)!+4)-cycles C3 := C1−w̄z̄1+P

and C ′
3 := C1 − z̄z1 + P ′. Thus we have two (h + (n − 1)! + 2)-cycles X3 := (X − wz) + (C3 − wz)

and X ′
3 := (X − wz) + (C ′

3 − wz), which contain a common path X − wz + ww̄ + zz̄. In addition,

Sw(1)
n ⊆ V (X3) ∩ V (S

[1,n−1]
n ) ⊆ Sw(1)

n ∪ Sz(1)
n and Sz(1)

n ⊆ V (X ′
3) ∩ V (S

[1,n−1]
n ) ⊆ Sw(1)

n ∪ Sz(1)
n .

D4. Construction of (h+ k(n− 1)! + 2)-cycles for 2 ⩽ k ⩽ n− 2:

Let j ∈ [n]\{1, i, n}, and C2 be the 8-cycle constructed as in D2. Recall that w̄(n) = w(1) = z̄2(n),

w(n) = n = z(n), z̄(n) = z(1) = w(i) = z1(n) and z̄1(n) = w(j) = z2(n). By the choices of j and wz,

we know that w(1), w(i), w(j) and n are pairwise distinct. Pick I ⊆ [n]\{z(1), n} with w(1), w(j) ∈ I.

By Lemma 2.9, it is easily shown that SI
n contains a Hamilton path P between w̄ and z̄1. Set |I| = k.

Then 2 ⩽ k ⩽ n−2, and we get a cycle C4 of length k(n−1)!+4, say C2− w̄z̄2− z̄2z2− z2z̄1+P . It is

easy to see that V (C4)∩ V (X) = {w, z}. Thus we have a cycle X4 := (X −wz) + (C4 −wz) of length

h+k(n−1)!+2. In addition, SI
n ⊆ V (X4)∩V (S

[1,n−1]
n ) ⊆ SI

n∪Sz(1)
n and Sz(1)

n ⊈ V (X4)∩V (S
[1,n−1]
n ).

When j runs over [n]\{1, i, n}, we get n−3 cycles of length h+k(n−1)!+2, which contain a common

path X − wz + ww̄ + zz̄.

D5. Construction of (h+ (n− 1)! + 4)-cycles:

Let j ∈ [n] \ {1, i, n}, and C2 be the 8-cycle provided as in D2. Then w̄, z̄2 ∈ Sw(1)
n , z2, z̄1 ∈ Sw(j)

n

and z̄, z1 ∈ Sz(1)
n . By Lemma 2.1, we may choose a Hamilton path P in S

w(1)
n between w̄ and z̄2, a

Hamilton path P ′ in S
w(j)
n between z2 and z̄1 and a Hamilton path P ′′ in S

z(1)
n between z̄ and z1. Then

we have three ((n−1)!+6)-cycles C5 := C2− w̄z̄2+P , C ′
5 := C2− z2z̄1+P ′ and C ′′

5 := C2− z̄z1+P ′′.

Thus we get three (h+(n−1)!+4)-cycles X5 := (X−wz)+(C5−wz), X ′
5 := (X−wz)+(C ′

5−wz) and

X ′′
5 := (X−wz)+(C ′′

5 −wz). In addition, Sw(1)
n ⊆ V (X5)∩V (S

[1,n−1]
n ) ⊆ Sw(1)

n ∪Sz(1)
n ∪Sw(j)

n , Sw(j)
n ⊆

V (X ′
5) ∩ V (S

[1,n−1]
n ) ⊆ Sw(1)

n ∪ Sz(1)
n ∪ Sw(j)

n and Sz(1)
n ⊆ V (X ′′

5 ) ∩ V (S
[1,n−1]
n ) ⊆ Sw(1)

n ∪ Sz(1)
n ∪ Sw(j)

n .

Letting j run over [n] \ {1, i, n}, we get 3(n − 3) cycles of length h + (n − 1)! + 4, which contain a

common path X − wz + ww̄ + zz̄.

4 The proof the Theorem 1.5

We shall process by induction on n. Thus we assume that either n = 5, or n ⩾ 6 and Sn−1 is

2-DCC edge [6, (n−1)!
2 ]-bipancyclic. Recall that Sn

n
∼= Sn−1. By Remark 1.4, if n > 5 then the graph

Sn−1 is also 2-DCC edge [ (n−1)!
2 , (n− 1)!− 6]-bipancyclic. Thus

(I) Sn
n is 2-DCC edge [6, (n− 1)!− 6]-bipancyclic, where n > 5.

Similarly, due to Lemma 2.7,

(II) S5
5 is 2-DCC [6, 18]-bipancyclic, 2-DCC edge [6, 10]-bipancyclic and 2-DCC edge [14, 18]-

bipancyclic.

Let uv and xy be vertex-disjoint edges in Sn. It suffices to prove the following (†) holds for all

even integers ℓ with 6 ⩽ ℓ ⩽ n!
2 .

(†) Sn has vertex-disjoint ℓ-cycle C and (n!− ℓ)-cycle C∗ such that uv ∈ E(C) and xy ∈ E(C∗).

By the edge-transitivity of of Sn, without loss of generality, we let u = 12 . . . n, the identity of

Sn, and let v = t1,2. Pick m ∈ [n] \ {1, 2, n}, and consider the conjugation of tm,n on Sn. Then we

have an automorphism of the star graph Sn, say, ϕ : Sn → Sn, a 7→ tm,n · a · tm,n. It is straightforward
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to checked that ϕ(u) = u and ϕ(v) = v. If y = x · t1,n then ϕ(y) = ϕ(x · t1,n) = ϕ(x) · t1,m. Thus,

replacing xy by ϕ(xy) if necessary, we may choose xy as an m-edge for some m ∈ [n] \ {1, n}. Then

y(n) = x · t1,m(n) = x(n). Putting i0 = x(n), we have xy ∈ E(Si0
n ). Therefore, our task is to prove

the above (†) holds for the chosen edges uv and xy when ℓ runs over the even integers from 6 to n!
2 .

Thus, in the following, we always assume that

u = 123 . . . (n− 1)n, v = 213 . . . (n− 1)n, and xy ∈ E(Si0
n ) for some i0 ∈ [n].

Recall that w̄ = w · t1,n for every w ∈ V (Sn); in particular, w̄(n) = w(1). For integers r1 ⩽ r2,

denote [r1, r2] the set of integers from r1 to r2.

Lemma 4.1 Assume that k ∈ [1, ⌈n2 ⌉] and i0 ̸= n. Then (†) holds for all even integers ℓ in [(k −
1)(n− 1)! + 6, k(n− 1)!− 6].

Proof. We discuss in three cases according to ℓ ∈ [6, (n − 1)! − 6], ℓ = (k − 1)(n − 1)! + 6 and

ℓ ∈ [(k− 1)(n− 1)!+8, k(n− 1)!− 6] for k ∈ [2, ⌈n2 ⌉], respectively. Since i0 ̸= n, we have x, y ̸∈ V (Sn
n).

Case 1. Assume that ℓ ∈ [6, (n− 1)!− 6]. By (I) and (II), we may choose vertex-disjoint ℓ-cycle

C and ((n− 1)!− ℓ)-cycle C1 in Sn
n with uv ∈ E(C). Pick an edge wz ∈ E(C1). Since w̄(n) = w(1) ̸=

w(n) = n and z̄(n) = z(1) ̸= z(n) = n, we have w̄, z̄ ̸∈ V (Sn
n). By Lemma 2.9, S

[1,n−1]
n has a Hamilton

path P containing xy from w̄ to z̄, and we have an (n! − ℓ)-cycle C∗ := (C1 − wz) + ww̄ + zz̄ + P

which contains the edge xy. Then C and C∗ are vertex-disjoint, desired as in (†).

Case 2. Assume that ℓ = (k − 1)(n− 1)! + 6, where k ∈ [2, ⌈n2 ⌉].

Subcase 2.1. First consider ℓ = (n− 1)! + 6. Putting h = (n− 1)!, we have ℓ = h+ 6. We may

choose an edge wz in Sn
n \ {uv} such that i0 /∈ {w(1), z(1)}. By Corollary 2.2, Sn

n has an h-cycle, say

C1, such that both uv and wz lie on C1. Write z = w · t1,i, and pick j ∈ [n] \ [1, i, n] with w(j) ̸= i0.

Applying Construction D2 to C1, wz and j, we get a cycle of length h+ 6, say C, which contains the

path (C1−wz)+ww̄+zz̄, and V (C)∩V (S
[1,n−1]
n ) ⊂ Sw(1)

n ∪Sz(1)
n ∪Sw(j)

n . In particular, Si0
n ∩V (C) = ∅.

Since xy ∈ E(Si0
n ), according to Lemma 2.10, Sn−C possesses a Hamilton cycle C∗ that contains xy.

Then C and C∗ are vertex-disjoint cycles desired as in (†).

Subcase 2.2. Now deal with ℓ = (k − 1)(n − 1)! + 6, where k ∈ [3, ⌈n2 ⌉]. Putting h = (n − 1)!

yields that ℓ = h+ (k− 2)(n− 1)! + 6. Similarly as in Subcase 2.1, we may choose wz ∈ E(Sn
n \ {uv})

with i0 /∈ {w(1), z(1)}, and pick an h-cycle C1 containing uv and wz in Sn
n by Corollary 2.2. Then

applying Construction D3 to C1 and the edge wz, we obatin an (h+(n−1)!+2)-cycle, write C0, such

that Sw(1)
n ⊆ V (C0)∩V (S

[1,n−1]
n ) ⊆ Sw(1)

n ∪Sz(1)
n if k = 3. Otherwise an (h+(k− 2)(n− 1)!+ 2)-cycle

C0 is obtained from C1 by Construction D4, and satisfies SI
n ⊆ V (C0) ∩ V (S

[1,n−1]
n ) ⊆ SI

n ∪ Sz(1)
n

for some I ⊆ [n] \ {n, i0, z(1)} with w(1) ∈ I and |I| = k − 2 ⩾ 2. Thus for both cases, we have

Si0
n ∩ V (C0) = ∅.

Noting that z̄ ∈ S
z(1)
n and by Construction D3 and D4, we know that C0 and S

z(1)
n intersect some

edge on C0, write z̄z1. By choosing w2z2 ∈ E(S
z(1)
n \ {z̄, z1}) with w2(1) = i0 and z2(1) /∈ I ∪ {n}

and applying (I) and (II), we can guarantee that Sn
n has vertex-disjoint 6-cycle C2 and ((n− 1)!− 6)-

cycle C3 such that z̄z1 ∈ E(C2) and w2z2 ∈ E(C3). Now we get a ((k − 1)(n − 1)! + 6)-cycle, says

C := (C0 − z̄z1)+ (C2 − z̄z1). Then Lemma 2.9 implies that Sn −C −C3 has a Hamilton path P that

contains xy from w̄2 to z̄2. Thus Sn − C has a Hamilton cycle C∗ := (C3 − w2z2) + w2w̄2 + z2z̄2 + P

containing xy. Therefore, C and C∗ are vertex-disjoint, desired as in (†).

Case 3. Assume that ℓ ∈ [(k − 1)(n− 1)! + 8, k(n− 1)!− 6], where k ∈ [2, ⌈n2 ⌉].

Subcase 3.1. Suppose first that ℓ ∈ [(n− 1)! + 8, 2(n− 1)!− 6]. Put

h =

{
ℓ− (n− 1)!− 2, if ℓ ̸= (n− 1)! + 14;

ℓ− (n− 1)!− 4, if ℓ = (n− 1)! + 14.
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Thus, h ∈ [6, (n− 1)!− 8] \ {12} if ℓ ̸= (n− 1)! + 14, and h = 10 otherwise. Note that

ℓ =

{
h+ (n− 1)! + 2, if ℓ ̸= (n− 1)! + 14;

h+ (n− 1)! + 4, if ℓ = (n− 1)! + 14.

Choosing an edge wz from Sn
n \{u, v} with w(1) = i0, and by (I) and (II), we have vertex-disjoint

h-cycle C1 and ((n − 1)! − h)-cycle C2 in Sn
n with uv ∈ E(C1) and wz ∈ E(C2). Due to Lemma 2.8,

we may choose an edge w1z1 from C1 \ {uv} such that i0 /∈ {w1(1), z1(1)}. Then since w1(1) ̸= z1(1),

we may let w1(1) ̸= z(1).

If ℓ ̸= (n − 1)! + 14, then applying Construction D3 to C1 and the edge w1z1, we get an (h +

(n − 1)! + 2)-cycle, say C, such that Sw1(1)
n ⊆ V (C) ∩ V (S

[1,n−1]
n ) ⊆ Sw1(1)

n ∪ Sz1(1)
n . Otherwise,

ℓ = (n − 1)! + 14. Write z1 = w1 · t1,i, and take j ∈ [n] \ [1, i, n] with w1(j) ̸= i0. We construct

an (h + (n − 1)! + 4)-cycle C from C1 by using Construction D5 and the edge w1z1, which satisfies

Sw1(1)
n ⊆ V (C) ∩ V (S

[1,n−1]
n ) ⊆ Sw1(1)

n ∪ Sz1(1)
n ∪ Sw1(j)

n . Noting that i0 /∈ {w1(1), z1(1), w1(j)} and

z̄ /∈ Sw1(1)
n , for both case, we get Si0

n ∩ V (C) = ∅ and z̄ /∈ V (C). Now it follows from Lemma 2.9 that

Sn − C − C2 has a Hamilton path P containing xy from z̄ to w̄. Thus Sn − C has a Hamilton cycle

C∗ := (C2 − wz) + zz̄ + ww̄ + P that contains xy. Therefore, C and C∗ are vertex-disjoint cycles

required as in (†).

Subcase 3.2. Suppose that ℓ ̸= (k−1)(n−1)!+14, where k ∈ [3, ⌈n2 ⌉]. Putting h ∈ [6, (n−1)!−
8]\{12} shows that ℓ = h+(k−1)(n−1)!+2. Choosing wz ∈ E(Sn

n \{u, v}) with w(1) = i0, similarly

in Subcase 3.1, we have vertex-disjoint h-cycle C1 and ((n − 1)! − h)-cycle C2 with uv ∈ E(C1) and

wz ∈ E(C2) in Sn
n by (I) and (II). Lemma 2.8 implies that we may choose w1z1 ∈ E(C1 \ {uv}) with

i0 /∈ {w1(1), z1(1)} and w1(1) ̸= z(1).

Assume first that n = 5, which implies that k = 3. By picking another neighbor of w in C2, write

z′, and noting that {n, i0} ∩ {w1(1), z1(1), z(1), z
′(1)} = ∅, we see |{w1(1), z1(1), z(1), z

′(1)}| ⩽ 3.

Without loss of generality, let z(1) = z1(1). Let z1 = w1 · t1,i, and choose j ∈ [n] \ [1, i, n] with

w1(j) ̸= i0. Applying Construction D4 to C1, w1z1 and j, we get an (h + 2(n − 1)! + 2)-cycle C

such that Sw1(1)
n ∪ Sw1(j)

n ⊆ V (C) ∩ V (S
[1,n−1]
n ) ⊆ Sw1(1)

n ∪ Sz1(1)
n ∪ Sw1(j)

n . Assume now that n ⩾ 6.

Regardless of whether z(1) = z1(1). Now applying Construction D4 to C1 and the edge w1z1, we

have an (h + (k − 1)(n − 1)! + 2)-cycle C such that SI
n ⊆ V (C) ∩ V (S

[1,n−1]
n ) ⊆ SI

n ∪ Sz1(1)
n for some

I ⊆ [n] \ {n, i0, z(1), z1(1)} with w(1) ∈ I and |I| = k − 1 ⩾ 2. Recalling that i0 /∈ I and z̄ /∈ SI
n, for

both cases, we have Si0
n ∩ V (C) = ∅ and z̄ /∈ V (C). Then it follows from Lemma 2.9 that there exists

a Hamilton path P that contains xy from z̄ to w̄ in Sn −C −C2. Thus Sn −C has a Hamilton cycle

C∗ := (C2 −wz) + zz̄ +ww̄+ P which contains the edge xy. Therefore, C and C∗ are vertex-disjoint

cycles desired as in (†).

Subcase 3.3. Suppose now that ℓ = (k− 1)(n− 1)!+14, where k ∈ [3, ⌈n2 ⌉], and let h = (n− 1)!.

Then ℓ = h + (k − 2)(n − 1)! + 14. Analogously to the argument in Subcase 2.2, only instead of

vertex-disjoint 6-cycle C3 and ((n − 1)! − 6)-cycle C4 we shall use vertex-disjoint 14-cycle C3 and

((n − 1)! − 14)-cycle C4. Then we obtain vertex-disjoint cycles C and C∗ such that uv ∈ E(C) and

xy ∈ E(C∗). 2

Lemma 4.2 Assume that k ∈ [1, ⌈n2 ⌉] and i0 = n. Then (†) holds for all even integers ℓ in [(k −
1)(n− 1)! + 6, k(n− 1)!− 6].

Proof. We shall distinguish three cases according to the value of ℓ. Noting that i0 = n, we have

x, y ∈ V (Sn
n).

Case 1. Assume that ℓ ∈ [6, (n − 1)! − 6]. First, if ℓ ∈ [6, (n − 1)! − 6] \ {12}, then put h = ℓ.

Otherwise, ℓ = 12. Putting h = 8, we have ℓ = h + 4. By (I) and (II), there exist vertex-disjoint

h-cycle C1 and ((n − 1)! − h)-cycle C2 with uv ∈ E(C1) and xy ∈ E(C2) in Sn
n . Choosing two edges

w1z1 ∈ E(C1 \{uv}) and w2z2 ∈ E(C2 \{xy}), we have that {w̄1, z̄1, w̄2, z̄2} are pairwise different. Let

C be an (h + 4)-cycle obtained by applying construction D1 to C1 and the edge w1z1 if ℓ = 12. We
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note that V (C)∩V (S
[1,n−1]
n ) ⊆ Sw1(1)

n ∪Sz1(1)
n and w̄2, z̄2 /∈ V (C). Otherwise, ℓ ∈ [6, (n−1)!−6]\{12},

and pick C := C1. Then Lemma 2.9 yields that Sn − C − C2 has a Hamilton path P from w̄2 to z̄2.

Thus Sn −C has a Hamilton cycle C∗ := (C2 −w2z2) + z2z̄2 +w2w̄2 + P containing xy. Then C and

C∗ are vertex-disjoint cycles desired as in (†).

Case 2. Assume that ℓ = (k − 1)(n− 1)! + 6 for k ∈ [2, ⌈n2 ⌉].

Subcase 2.1. Suppose first that ℓ = (n − 1)! + 6. Putting h = (n − 1)! − 6, we have ℓ =

h+ 12. According to (I) and (II), Sn
n has vertex-disjoint h-cycle C1 and ((n− 1)!− h)-cycle C2 with

uv ∈ E(C1) and xy ∈ E(C2). Since |E(C2)| = 6, we can pick first wz ∈ E(C2 \ {xy}), and then

pick w1z1 ∈ E(C1 \ {uv}) such that z1(1) = z(1) and |{w1(1), z(1), w(1)}| = 3. Then an (h + 4)-

cycle, say C0, we get by applying construction D1 to C1 and the edge w1z1. By noting that C0

and S
z(1)
n intersect some edge on C0, write z̄1z

′
1, and taking a neighbor of z̄ in S

z(1)
n \ {z̄1, z′1}, says

z2, with z2(1) /∈ {n,w(1)}, we obtain vertex-disjoint 10-cycle C3 and ((n − 1)! − 10)-cycle C4 with

z̄1z
′
1 ∈ E(C3) and z̄z2 ∈ E(C4) in S

z(1)
n using (I) and (II). Now an ((n−1)!+6)-cycle is obtained, write

C := (C0 − z̄1z
′
1) + (C3 − z̄1z

′
1)). Recall from Lemma 2.9 that Sn −C −C2 −C4 has a Hamilton path

P from z̄2 to w̄. Thus Sn−C has a Hamilton cycle C∗ := (C2−wz)+(C4− z̄z2)+ww̄+ zz̄+ z2z̄2+P

which contains the edge xy. Then C and C∗ are vertex-disjoint, desired as in (†).

Subcase 2.2. Suppose now that ℓ = (k− 1)(n− 1)! + 6 for k ∈ [3, ⌈n2 ⌉]. Putting h = (n− 1)!− 8

yields that ℓ = h + (k − 2)(n − 1)! + 14. By (I) and (II), Sn
n , there exist vertex-disjoint h-cycle

C1 and ((n − 1)! − h)-cycle C2 with uv ∈ E(C1) and xy ∈ E(C2). Similarly as in Subcase 2.1, by

Lemma 2.4 and 2.5, we choose wz ∈ E(C2 \ {xy}) and w1z1 ∈ E(C1 \ {uv}) with z1(1) = z(1) and

|{w1(1), z(1), w(1)}| = 3 since |E(C2)| = 8.

Let k = 3. Then by applying Construction D3 to C1 and the edge w1z1, we get an (h+(n−1)!+2)-

cycle C0 such that Sw1(1)
n ⊆ V (C0) ∩ V (S

[1,n−1]
n ) ⊆ Sw1(1)

n ∪ Sz1(1)
n . However, for k ⩾ 4, applying

Construction D4 to C1 and the edge w1z1, we have an (h + (k − 2)(n − 1)! + 2)-cycle C0 such

that SI
n ⊆ V (C0) ∩ V (S

[1,n−1]
n ) ⊆ SI

n ∪ Sz1(1)
n for some I ⊆ [n] \ {n,w(1), z(1)} with w1(1) ∈ I

and |I| = k − 2 ⩾ 2. Noting that z̄1 ∈ S
z(1)
n and by Construction D3 and D4, we have C0 and

S
z(1)
n intersect some edge on C0, write z̄1z

′
1. Then taking a neighbor of z̄ in S

z(1)
n \ {z̄1, z′1}, says

z2, with z2(1) /∈ {n,w(1)}, we obtain vertex-disjoint 14-cycle C3 and ((n − 1)! − 14)-cycle C4 with

z̄1z
′
1 ∈ E(C3) and z̄z2 ∈ E(C4) in S

z(1)
n by (I) and (II). Now we get a ((k − 1)(n− 1)! + 6)-cycle, says

C := (C0− z̄1z
′
1)+(C3− z̄1z

′
1)). Then Lemma 2.9 yields that there is a Hamilton path P from w̄ to z̄2

in Sn−C−C2−C4. Thus Sn−C has a Hamilton cycle C∗ := (C2−wz)+(C4−z̄z2)+ww̄+zz̄+z2z̄2+P

that contains xy. Therefore, C and C∗ are vertex-disjoint, required as in (†).

Case 3. Assume that ℓ ∈ [(k − 1)(n− 1)! + 8, k(n− 1)!− 6] for k ∈ [2, ⌈n2 ⌉].

Subcase 3.1. Suppose first that ℓ ∈ [(n− 1)! + 8, 2(n− 1)!− 6]. Take

h =

{
ℓ− (n− 1)!− 2, if ℓ ̸= (n− 1)! + 14;

ℓ− (n− 1)!− 4, if ℓ = (n− 1)! + 14.

Thus, h ∈ [6, (n− 1)!− 8] \ {12} if ℓ ̸= (n− 1)! + 14, and h = 10 otherwise. Note that

ℓ =

{
h+ (n− 1)! + 2, if ℓ ̸= (n− 1)! + 14;

h+ (n− 1)! + 4, if ℓ = (n− 1)! + 14.

Recall from (I) and (II) that there exist vertex-disjoint h-cycle C1 and ((n−1)!−h)-cycle C2 with

uv ∈ E(C1) and xy ∈ E(C2) in Sn
n . By Lemma 2.8, we may choose two edges w1z1 ∈ E(C1 \ {uv})

and wz ∈ E(C2 \ {xy}) such that |{w1(1), z1(1), w(1), z(1)}| ⩾ 3. Without loss of generality, let

w1(1) /∈ {z(1), w(1)}.

If ℓ ̸= (n− 1)! + 14, then an (h+ (n− 1)! + 2)-cycle, say C, is obtained by applying Construction

D3 to C1 and the edge w1z1, and satisfies Sw1(1)
n ⊆ V (C) ∩ V (S

[1,n−1]
n ) ⊆ Sw1(1)

n ∪ Sz1(1)
n . Otherwise,

ℓ = (n − 1)! + 14. Write z1 = w1 · t1,i, and pick j ∈ [n] \ [1, i, n]. Applying Construction D5 to
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C1, w1z1 and j, we get an (h + (n − 1)! + 4)-cycle, say C, such that Sw1(1)
n ⊆ V (C) ∩ V (S

[1,n−1]
n ) ⊆

Sw1(1)
n ∪Sz1(1)

n ∪Sw1(j)
n . Noting that w̄, z̄ /∈ Sw1(1)

n , for both cases, we have w̄, z̄ /∈ V (C). Then Lemma

2.9 yields that Sn − C − C2 has a Hamilton path P from z̄ to w̄. Thus Sn − C has a Hamilton cycle

C∗ := (C2 − wz) + zz̄ + ww̄ + P that contains xy. Therefore, C and C∗ are vertex-disjoint cycles

desired as in (†).

Subcase 3.2. Suppose that ℓ ∈ [(k − 1)(n − 1)! + 8, k(n − 1)! − 6] \ {(k − 1)(n − 1)! + 14} for

k ∈ [3, ⌈n2 ⌉]. Putting h ∈ [6, (n− 1)!− 8] \ {12}, we get ℓ = h+(k− 1)(n− 1)! + 2. By (I) and (II), we

have vertex-disjoint h-cycle C1 and ((n − 1)! − h)-cycle C2 with uv ∈ E(C1) and xy ∈ E(C2) in Sn
n .

And Lemma 2.8 shows that we may choose two edges w1z1 ∈ E(C1 \ {uv}) and wz ∈ E(C2 \ {xy})
such that |{w1(1), z1(1), w(1), z(1)}| ⩾ 3. Without loss of generality, let w1(1) /∈ {z(1), w(1)}.

If n = 5, then k = 3. Let z′1 be another neighbor of w1 in C1. Since {n,w1(1)}∩{z1(1), z′1(1), w(1),
z(1)} = ∅, we see |{z1(1), z′1(1), w(1), z(1)}| ⩽ 3. Without loss of generality, let z(1) = z1(1). Write

z1 = w1 · t1,i, and pick j ∈ [n] \ [1, i, n] with w1(j) ̸= w(1). Applying Construction D4 to C1, w1z1 and

j, we obtain an (h+2(n−1)!+2)-cycle, say C, such that Sw1(1)
n ∪Sw1(j)

n ⊆ V (C)∩V (S
[1,n−1]
n ) ⊆ Sw1(1)

n ∪
Sz1(1)
n ∪Sw1(j)

n . Otherwise, n ⩾ 6. We constructe an (h+(k− 1)(n− 1)!+2)-cycle, say C, by applying

Construction D4 to C1 and the edge w1z1, which satisfies SI
n ⊆ V (C) ∩ V (S

[1,n−1]
n ) ⊆ SI

n ∪ Sz1(1)
n for

some I ⊆ [n] \ {n,w(1), z(1), z1(1)} with w1(1) ∈ I and |I| = k − 1 ⩾ 2. Thus for both cases, we have

w̄, z̄ /∈ V (C). Then from Lemma 2.9, we find that Sn − C − C2 has a Hamilton path P from z̄ to w̄.

Thus Sn −C has a Hamilton cycle C∗ := (C2 −wz)+ zz̄+ww̄+P which contains the edge xy. Then

C and C∗ are vertex-disjoint cycles desired as in (†).

Subcase 3.3. Suppose now that ℓ = (k − 1)(n − 1)! + 14 for k ∈ [3, ⌈n2 ⌉]. Putting h = 6 shows

that ℓ = h+ (k − 1)(n− 1)! + 8. Recall from (I) and (II) that Sn
n has vertex-disjoint h-cycle C1 and

((n− 1)!− h)-cycle C2 with uv ∈ E(C1) and xy ∈ E(C2). Noting that |E(C1)| = 6 and using Lemma

2.8, we choose first w1z1 ∈ E(C1 \ {uv}), and then choose wz ∈ E(C2 \ {xy}) with z1(1) = z(1) and

|{w1(1), z(1), w(1)}| = 3.

Now applying Construction D4 to C1 and the edge w1z1, we obtain an (h+ (k − 1)(n− 1)! + 2)-

cycle C0 such that SI
n ⊆ V (C0) ∩ V (S

[1,n−1]
n ) ⊆ SI

n ∪ Sz1(1)
n for some I ⊆ [n] \ {n,w(1), z(1)} with

w1(1) ∈ I and |I| = k − 1 ⩾ 2. Noting that z̄1 ∈ S
z(1)
n and by Construction D4, we have C0 and

S
z(1)
n intersect some edge on C0, write z̄1z

′
1. Consider the case that n = 5, which implies that k = 3.

Taking a neighbor of z̄ in S
z(1)
n \ {z̄1, z′1}, says z2, with z2(1) = w(1). However, for n ⩾ 6, we choose

a neighbor z2 of z̄ in S
z(1)
n \ {z̄1, z′1} such that z2(1) /∈ {n,w(1)}. According to (I) and (II), we obtain

vertex-disjoint 8-cycle C3 and ((n − 1)! − 8)-cycle C4 with z̄1z
′
1 ∈ E(C3) and z̄z2 ∈ E(C4) in S

z(1)
n .

Then clearly an (h+(k−1)(n−1)!+8)-cycle, which says C := (C0− z̄1z
′
1)+(C3− z̄1z

′
1)) is determined.

Then Lemma 2.9 yields that Sn − C − C2 − C4 has a Hamilton path P from z̄2 to w̄. Thus Sn − C

has a Hamilton cycle C∗ := (C2 − wz) + (C4 − z̄z2) + ww̄ + zz̄ + z2z̄2 + P that contains xy. Then C

and C∗ are vertex-disjoint, desired as in (†). 2

Lemma 4.3 Assume that k ∈ [1, ⌈n2 ⌉]. Then (†) holds for all even integers ℓ = k(n− 1)!− 4.

Proof. Put

h =


ℓ− 4, if ℓ = (n− 1)!− 4;

ℓ− (n− 1)!− 2, if ℓ = 2(n− 1)!− 4;

ℓ− (k − 1)(n− 1)!− 2, if ℓ = k(n− 1)!− 4, where k ∈ [3, ⌈n
2
⌉].

Thus, h = (n− 1)!− 8 if ℓ = (n− 1)!− 4, and h = (n− 1)!− 6 otherwise. Note that

ℓ =


h+ 4, if ℓ = (n− 1)!− 4;

h+ (n− 1)! + 2, if ℓ = 2(n− 1)!− 4;

h+ (k − 1)(n− 1)! + 2, if ℓ = k(n− 1)!− 4, where k ∈ [3, ⌈n
2
⌉].

12



Assume that i0 ̸= n. Pick an edge wz of Sn
n \ {u, v} such that w(1) = i0. It follows from (I)

and (II) that Sn
n has vertex-disjoint h-cycle C1 and ((n − 1)! − h)-cycle C2 with uv ∈ E(C1) and

wz ∈ E(C2). Since |E(C2)| = 6 or 8 and by Lemma 2.8, we may choose an edge w1z1 ∈ E(C1 \ {uv})
such that z1(1) = z(1) and w1(1) ̸= i0.

Assume that i0 = n. Recall from (I) and (II) that Sn
n has vertex-disjoint h-cycle C1 and ((n−1)!−

h)-cycle C2 with uv ∈ E(C1) and xy ∈ E(C2). Since |E(C2)| = 6 or 8 and by Lemma 2.8, we choose

first an edge wz ∈ E(C2 \ {xy}), and then choose an edge w1z1 ∈ E(C1 \ {uv}) with z1(1) = z(1) and

|{w1(1), z(1), w(1)}| = 3.

Suppose first that ℓ = (n−1)!−4. We get an (h+4)-cycle C by applying ConstructionD1 to C1 and

the edge w1z1. Suppose that ℓ = 2(n−1)!−4. Applying Construction D3 to C1 and the edge w1z1, we

find an (h+(n−1)!+2)-cycle, say C, such that Sw1(1)
n ⊆ V (C)∩V (S

[1,n−1]
n ) ⊆ Sw1(1)

n ∪Sz1(1)
n . Suppose

now that ℓ = k(n−1)!−4, where k ∈ [3, ⌈n2 ⌉]. Then an (h+(k−1)(n−1)!+2)-cycle, say C, is obtained by

applying Construction D4 to C1 and the edge w1z1, and satisfies SI
n ⊆ V (C)∩V (S

[1,n−1]
n ) ⊆ SI

n∪S
z1(1)
n

for some I ⊆ [n] \ {n,w(1), z(1)} with w1(1) ∈ I and |I| = k − 1 ⩾ 2. Thus for the above, we have

Si0
n ∩ V (C) = ∅ and z̄ /∈ V (C) if i0 ̸= n. Otherwise w̄, z̄ /∈ V (C). Then applying Lemma 2.9 to

Sn − C − C2, we have either a Hamilton path P containing xy from w̄ to z̄ (i0 ̸= n) or a Hamilton

path P from w̄ to z̄ (i0 = n). Thus Sn −C has a Hamilton cycle C∗ := (C2 −wz)+ zz̄+ww̄+P that

contains xy. Then C and C∗ are vertex-disjoint cycles desired as in (†). 2

Lemma 4.4 Assume that k ∈ [1, ⌈n2 ⌉]. Then (†) holds for all even integers ℓ = k(n− 1)!− 2.

Proof. Put

h =


ℓ− 4, if ℓ = (n− 1)!− 2;

ℓ− (n− 1)!− 6, if ℓ = 2(n− 1)!− 2;

ℓ− (k − 1)(n− 1)!− 6, if ℓ = k(n− 1)!− 2, where k ∈ [3, ⌈n
2
⌉].

Thus, h = (n− 1)!− 6 if ℓ = (n− 1)!− 2, and h = (n− 1)!− 8 otherwise. Note that

ℓ =


h+ 4, if ℓ = (n− 1)!− 2;

h+ (n− 1)! + 6, if ℓ = 2(n− 1)!− 2;

h+ (k − 1)(n− 1)! + 6, if ℓ = k(n− 1)!− 2, where k ∈ [3, ⌈n
2
⌉].

Assume that i0 ̸= n. Let us first choose an edge wz of Sn
n \{u, v} such that w(1) = i0. By (I) and

(II), we have vertex-disjoint h-cycle C1 and ((n− 1)!− h)-cycle C2 with uv ∈ E(C1) and wz ∈ E(C2)

in Sn
n . According to Lemma 2.8, we may choose an edge w1z1 ∈ E(C1 \ {uv}) such that z1(1) = z(1)

and w1(1) ̸= i0 since |E(C2)| = 6 or 8.

Assume that i0 = n. Applying (I) and (II) to Sn
n , we get vertex-disjoint h-cycle C1 and ((n −

1)!−h)-cycle C2 with uv ∈ E(C1) and xy ∈ E(C2). Recalling that |E(C2)| = 6 or 8 and using Lemma

2.8, we choose first an edge wz ∈ E(C2 \ {xy}), and then choose an edge w1z1 ∈ E(C1 \ {uv}) with

z1(1) = z(1) and |{w1(1), z(1), w(1)}| = 3.

The case that ℓ = (n − 1)! − 2 can proceed by applying Construction D1 to C1 and the edge

w1z1, we get an (h+ 4)-cycle, written C. Obviously, we have Si0
n ∩ V (C) = ∅ and z̄ /∈ V (C) if i0 ̸= n.

Otherwise w̄, z̄ /∈ V (C). Then Lemma 2.9 yields that Sn − C − C2 has either a Hamilton path P

containing xy from w̄ to z̄ (i0 ̸= n) or a Hamilton path P from w̄ to z̄ (i0 = n). Thus Sn − C has a

Hamilton cycle C∗ := (C2 −wz) + zz̄ +ww̄+ P that contains xy. Then C and C∗ are vertex-disjoint

cycles desired as in (†).

Consider the case that ℓ = 2(n − 1)! − 2. We get an (h + (n − 1)! + 2)-cycle, written C0, by

applying Construction D3 to C1 and the edge w1z1, which satisifies Sw1(1)
n ⊆ V (C0) ∩ V (S

[1,n−1]
n ) ⊆

Sw1(1)
n ∪Sz1(1)

n . Noting that z̄1 ∈ S
z(1)
n and using Construction D3, we have that C0 and S

z(1)
n intersect

some edge on C0, write z̄1z
′
1. Then pick a neighbor z2 of z̄ in S

z(1)
n \{z̄1, z′1} such that z2(1) /∈ {n,w(1)}.
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Now deal with the case that ℓ = k(n−1)!−2, where k ∈ [3, ⌈n2 ⌉]. Applying Construction D4 to C1

and the edge w1z1, we obtain an (h+(k−1)(n−1)!+2)-cycle C0 such that SI
n ⊆ V (C0)∩V (S

[1,n−1]
n ) ⊆

SI
n ∪ Sz1(1)

n for some I ⊆ [n] \ {n,w(1), z(1)} with w1(1) ∈ I and |I| = k − 1 ⩾ 2. Thus for the above,

we have Si0
n ∩ V (C) = ∅ and z̄ /∈ V (C) if i0 ̸= n. Otherwise w̄, z̄ /∈ V (C). Recalling that z̄1 ∈ S

z(1)
n

and by Construction D4, we see that C0 and S
z(1)
n intersect some edge on C0, write z̄1z

′
1. Suppose

that n = 5 and thus k = 3. Choosing a neighbor of z̄ in S
z(1)
n \ {z̄1, z′1}, says z2, with z2(1) = w(1).

Suppose that n ⩾ 6. We pick a neighbor z2 of z̄ in S
z(1)
n \ {z̄1, z′1} such that z2(1) /∈ {n,w(1)}.

By (I) and (II), for both cases, we get vertex-disjoint 6-cycle C3 and ((n− 1)!− 6)-cycle C4 with

z̄1z
′
1 ∈ E(C3) and z̄z2 ∈ E(C4). Then a (k(n − 1)! − 2)-cycle, says C := (C0 − z̄1z

′
1) + (C3 − z̄1z

′
1)

is established. Again recall that by Lemma 2.9, we have either a Hamilton path P that contains xy

from w̄ to z̄2 (i0 ̸= n) or a Hamilton path P from w̄ to z̄2 (i0 = n) in Sn −C −C2 −C4. Thus Sn −C

has a Hamilton cycle C∗ := (C2 −wz) + (C4 − z̄z2) +ww̄+ zz̄+ z2z̄2 +P which contains the edge xy.

Therefore, C and C∗ are vertex-disjoint, desired as in (†). 2

Lemma 4.5 Assume that k ∈ [1, ⌈n2 ⌉]. Then (†) holds for all even integers ℓ = k(n− 1)!.

Proof. We shall distinguish two cases according to ℓ = (n− 1)! and ℓ = k(n− 1)!, where k ∈ [2, ⌈n2 ⌉].

Case 1. Assume that ℓ = (n− 1)!. Suppose that first i0 ̸= n. Corollary 2.2 implies that Sn
n has

an (n − 1)!-cycle C that containing uv. According to Lemma 2.10, Sn − C has a Hamilton cycle C∗

that contains xy. Therefore, C and C∗ are vertex-disjoint, desired as in (†). Suppose now that i0 = n.

Putting h = (n − 1)! − 6, we have ℓ = h + 6. By (I) and (II), Sn
n has vertex-disjoint h-cycle C1 and

((n− 1)!− h)-cycle C2 with uv ∈ E(C1) and xy ∈ E(C2). Since |E(C2)| = 6 or 8 and by Lemma 2.8,

we pick first an edge wz ∈ E(C2 \{xy}), and then pick an edge w1z1 ∈ E(C1 \{uv}) with z1(1) = z(1)

and |{w1(1), z(1), w(1)}| = 3. This case can finish by applying Construction D2 to C1 and the edge

w1z1, we get an (h + 6)-cycle, written C. Obviously, we have w̄, z̄ /∈ V (C). Then Lemma 2.9 yields

that there exist a Hamilton path P from z̄ to w̄ in Sn − C − C2. Thus Sn − C has a Hamilton cycle

C∗ := (C2 − wz) + zz̄ + ww̄ + P that contains xy. Then C and C∗ are vertex-disjoint cycles desired

as in (†).

Case 2. Assume that ℓ = k(n − 1)!, where k ∈ [2, ⌈n2 ⌉]. Putting h = (n − 1)! − 6 yields that

ℓ = h+(k−1)(n−1)!+6. Analogously to the argument in Lemma 4.4, only instead of h = (n−1)!−8

we shall use h = (n − 1)! − 6. Then we obtain vertex-disjoint cycles C and C∗ such that uv ∈ E(C)

and xy ∈ E(C∗). 2

Lemma 4.6 Assume that k ∈ [1, ⌈n2 ⌉]. Then (†) holds for all even integers ℓ = k(n− 1)! + 2.

Proof. We shall distinguish two cases according to ℓ = (n − 1)! + 2 and ℓ = k(n − 1)! + 2, where

k ∈ [2, ⌈n2 ⌉].

Case 1. Assume that ℓ = (n − 1)! + 2. Putting h = (n − 1)! − 6 implies that ℓ = h + 8. If

i0 ̸= n, then choose an edge wz of Sn
n \ {u, v} such that w(1) = i0. It follows from (I) and (II) that

Sn
n has vertex-disjoint h-cycle C1 and ((n− 1)!−h)-cycle C2 with uv ∈ E(C1) and wz ∈ E(C2). Since

|E(C2)| = 6 or 8, we may choose an edge w1z1 ∈ E(C1\{uv}) such that z1(1) = z(1) and w1(1) ̸= i0 by

Lemma 2.8. Otherwise, i0 = n. By (I) and (II), there exist vertex-disjoint h-cycle C1 and ((n−1)!−h)-

cycle C2 with uv ∈ E(C1) and xy ∈ E(C2) in Sn
n . Considering |E(C2)| = 6 or 8 and using Lemma

2.8, we pick first an edge wz ∈ E(C2 \ {xy}), and then choose an edge w1z1 ∈ E(C1 \ {uv}) with

z1(1) = z(1) and |{w1(1), z(1), w(1)}| = 3.

For both cases, we obtain an (h + 4)-cycle, written C0, by applying Construction D1 to C1 and

the edge w1z1. By noting that C0 and S
z(1)
n intersect some edge on C0, write z̄1z

′
1, and taking a

neighbor of z̄ in S
z(1)
n \ {z̄1, z′1}, says z2, with z2(1) /∈ {n,w(1)}, we obtain vertex-disjoint 6-cycle C3

and ((n− 1)!− 6)-cycle C4 with z̄1z
′
1 ∈ E(C3) and z̄z2 ∈ E(C4) in S

z(1)
n by (I) and (II). Then we get

an ((n−1)!+2)-cycle, says C := (C0− z̄1z
′
1)+(C3− z̄1z

′
1). According to Lemma 2.9, Sn−C−C2−C4
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has either a Hamilton path P that contains xy from w̄ to z̄2 (i0 ̸= n) or a Hamilton path P from w̄

to z̄2 (i0 = n). Thus Sn −C has a Hamilton cycle C∗ := (C2 −wz)+ (C4 − z̄z2)+ww̄+ zz̄+ z2z̄2 +P

which contains the edge xy. Then C and C∗ are vertex-disjoint, desired as in (†).

Case 2. Assume that ℓ = k(n − 1)! + 2, where k ∈ [2, ⌈n2 ⌉]. Putting h = (n − 1)! − 6 yields

that ℓ = h + (k − 1)(n − 1)! + 8. Analogously to the argument in Lemma 4.4, not only instead of

h = (n − 1)! − 8 we shall use h = (n − 1)! − 6, but also instead of vertex-disjoint 6-cycle C3 and

((n − 1)! − 6)-cycle C4 we shall use vertex-disjoint 8-cycle C3 and ((n − 1)! − 8)-cycle C4. Then we

obtain vertex-disjoint cycles C and C∗ such that uv ∈ E(C) and xy ∈ E(C∗). 2

Lemma 4.7 Assume that k ∈ [1, ⌈n2 ⌉]. Then (†) holds for all even integers ℓ = k(n− 1)! + 4.

Proof. We shall distinguish two cases according to ℓ = (n − 1)! + 4 and ℓ = k(n − 1)! + 4, where

k ∈ [2, ⌈n2 ⌉].

Case 1. Assume that ℓ = (n − 1)! + 4. Suppose that i0 ̸= n. Putting h = (n − 1)! shows that

ℓ = h + 4. Choosing wz ∈ E(Sn
n \ {uv}) with i0 /∈ {w(1), z(1)}, we get that Sn

n has an h-cycle C1

containing both uv and wz by Corollary 2.2. Applying Construction D1 to C1 and the edge wz, we

obtain an (h + 4)-cycle, written C, such that Si0
n ∩ V (C) = ∅. Since xy ∈ Si0

n , Lemma 2.10 yields

that Sn−C has a Hamilton cycle C∗ that contains xy. Therefore, C and C∗ are vertex-disjoint cycles

desired as in (†). Suppose that i0 = n. Putting h = (n− 1)!− 6, we have ℓ = h+ 10. Analogously to

the argument in Case 1 of Lemma 4.6, only instead of vertex-disjoint 6-cycle C3 and ((n−1)!−6)-cycle

C4 we shall use vertex-disjoint 8-cycle C3 and ((n− 1)!− 8)-cycle C4. Then we obtain vertex-disjoint

cycles C and C∗ such that uv ∈ E(C) and xy ∈ E(C∗).

Case 2. Assume that ℓ = k(n − 1)! + 4, where k ∈ [2, ⌈n2 ⌉]. Putting h = (n − 1)! − 6 implies

that ℓ = h + (k − 1)(n − 1)! + 10. Analogously to the argument in Lemma 4.4, not only instead of

h = (n − 1)! − 8 we shall use h = (n − 1)! − 6, but also instead of vertex-disjoint 6-cycle C3 and

((n− 1)!− 6)-cycle C4 we shall use vertex-disjoint 10-cycle C3 and ((n− 1)!− 10)-cycle C4. Then we

obtain vertex-disjoint cycles C and C∗ such that uv ∈ E(C) and xy ∈ E(C∗).

This completes the proof of the theorem. 2
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