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Abstract. In his 1984 AMS memoir, Andrews introduced the family of k-colored
generalized Frobenius partition functions. For any positive integer k, let cφk(n) denote
the number of k-colored generalized Frobenius partitions of n. Among many other
things, Andrews proved that for any n ≥ 0, cφ2(5n+3) ≡ 0 (mod 5). Since then, many
scholars subsequently considered congruence properties of various k-colored generalized
Frobenius partition functions, typically with a small number of colors.

In 2019, Chan, Wang and Yang systematically studied arithmetic properties of
CΦk(q) with 2 ≤ k ≤ 17 by employing the theory of modular forms, where CΦk(q)
denotes the generating function of cφk(n). We notice that many coefficients in the
expressions of CΦk(q) are not integers. In this paper, we first observe that CΦk(q) is
related to the constant term of a family of bivariable functions, then establish a gener-
al symmetric and recurrence relation on the coefficients of these bivariable functions.
Based on this relation, we next derive many bivariable identities. By extracting and
computing the constant terms of these bivariable identities, we establish the expres-
sions of CΦk(q) with integral coefficients. As an immediate consequence, we prove
some infinite families of congruences satisfied by cφk(n), where k is allowed to grow
arbitrary large.

1. Introduction

Throughout this paper, we always assume that q is a complex number such that |q| < 1
and adopt the following customary notation:

(a; q)∞ :=
∞∏
n=0

(1− aqn), (1.1)

(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.

In his 1984 AMSMemoir, Andrews [2] introduced the notion of a generalized Frobenius
partition of n, which is a two-rowed array of nonnegative integers of the form:(

a1 a2 · · · ar
b1 b2 · · · br

)
,
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wherein each row, which is of the same length, is arranged in weakly decreasing order
with n = r +

∑r
i=1(ai + bi). Furthermore, Andrews studied a variant of generalized

Frobenius partitions whose parts are taken from k copies of nonnegative integers, which
is called k-colored generalized Frobenius partitions. For any k ≥ 1, let cφk(n) denote the
number of k-colored generalized Frobenius partitions of n. The popular way to study a
partition function such as cφk(n) is to investigate its generating function

CΦk(q) =
∞∑
n=0

cφk(n)qn.

In [2, Theorem 5.2], Andrews proved that

CΦk(q) =
1

(q; q)k∞

∞∑
m1,m2,...,mk−1=−∞

qQ(m1,m2,··· ,mk−1), (1.2)

where

Q(m1,m2, . . . ,mk−1) =
k−1∑
i=1

m2
i +

∑
1≤i<j≤k−1

mimj. (1.3)

Based on (1.2), Andrews [2, pp. 13, 26] established different expressions of CΦk(q) with
k ∈ {2, 3, 5}. To state Andrews’ results, we introduce the following two functions given
by

Θ2(q) =
∞∑

j=−∞

q(j+1/2)2 = 2q1/4
(q4; q4)2∞
(q2; q2)∞

,

Θ3(q) =
∞∑

j=−∞

qj
2

=
(q2; q2)5∞

(q; q)2∞(q4; q4)2∞
.

Andrews proved that

CΦ2(q) =
Θ3(q)

(q; q)2∞
=

(q2; q4)∞
(q; q2)4∞(q4; q4)∞

, (1.4)

CΦ3(q) =
1

(q; q)3∞

(
Θ3(q)Θ3(q

3) + Θ2(q)Θ2(q
3)
)

(1.5)

=
1

(q; q)3∞

(
1 + 6

∞∑
j=0

(
j

3

)
qj

1− qj

)
(1.6)

and

CΦ5(q) =
1

(q; q)5∞

(
1 + 25

∞∑
j=1

(
j

5

)
qj

(1− qj)2
− 5

∞∑
j=1

(
j

5

)
jqj

1− qj

)
, (1.7)

where
( ·
p

)
is the Kronecker symbol. An equivalent form of (1.7) can be found in the work

of Kolitsch [26, Lemma 1]. Andrews [2, pp. 13–15] obtained (1.4) and (1.5) by applying
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Jacobi’s triple product identity (see [2, Eq. (3.1)]) and some properties of theta series.
The main ingredient in the proofs of (1.6) and (1.7) is the result of Kloosterman [24, pp.
358, 362]. Andrews [2, p. 26] also remarked that there exists a similar identity for the
case k = 7, but this identity was not presented in [2]. This missing identity is

CΦ7(q) =
1

(q; q)7∞

(
1 +

343

8

∞∑
j=1

(
j

7

)
qj + q2j

(1− qj)3
− 7

8

∞∑
j=1

(
j

7

)
j2qj

1− qj

)
, (1.8)

which was later derived by Kolitsch [26, Lemma 2].
As an immediate consequence of (1.4), Andrews [2, Corollary 10.1] proved that for

any n ≥ 0,

cφ2(5n+ 3) ≡ 0 (mod 5). (1.9)

In 1994, Sellers [38] conjectured that (1.9) is the first special case of an infinite family
of congruences modulo any powers of 5 enjoyed by cφ2(n), namely,

cφ2

(
5αn+ δα

)
≡ 0 (mod 5α), (1.10)

where δα is the least positive integer such that 12δα ≡ 1 (mod 5α). Later, Eichhorn and
Sellers [13] proved that (1.10) is true for 1 ≤ α ≤ 4. Paule and Radu [36] confirmed the
Sellers conjecture by utilizing the theory of modular forms.

Since then, many scholars successively established other expressions of CΦk(q) and
derived a number of congruences for cφk(n) with different moduli. More specifically,
Baruah and Sarmah [3, 4] utilized the method described in Cao’s work [6] to establish
integral expressions of CΦk(q) for k ∈ {4, 5, 6}, namely,

CΦ4(q) =
1

(q; q)4∞

(
Θ3

3(q
2) + 3Θ3(q

2)Θ2
2(q

2)
)
, (1.11)

CΦ5(q) =
1

(q; q)5∞

(
Θ3(q

10)Θ3
3(q

2) + 3Θ3(q
10)Θ3(q

2)Θ2
2(q

2)

+
1

2
Θ2(q

5/2)Θ3
2(q

1/2) + 3Θ2(q
10)Θ2(q

2)Θ2
3(q) + Θ2(q

10)Θ3
2(q

2)

)
, (1.12)

CΦ6(q) =
1

(q; q)6∞

(
Θ3

3(q)Θ3(q
2)Θ3(q

6)

+
3

4
Θ3

2(q
1/2)Θ2(q)Θ2(q

3/2) + Θ2
3(q)Θ2(q

2)Θ2(q
6)

)
. (1.13)

According to (1.11) and (1.13), Baruah and Sarmah [3,4] established some congruences
modulo powers of 2 for cφ4(n) and some congruences modulo small powers of 3 for cφ6(n).
Congruence properties modulo powers of 5 for cφ3(n) and cφ4(n) were subsequently
studied by Ono [35], Lovejoy [33], Xiong [47], Sellers [39], Xia [46], Hirschhorn and
Sellers [21], Chan, Wang and Yang [7], and Wang and Zhang [42]. Congruence properties
modulo 7 for cφ4(n) were considered by Lin [32], and Zhang and Wang [49]. Congruence
properties of cφ6(n) modulo powers of 3 were successively investigated by Xia [45],
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Hirschhorn [18], Gu, Wang and Xia [16], and the third author [40]. The third author [41]
also proved congruence properties modulo 5 for cφ8(n) and cφ9(n). There are other
studies on congruences and arithmetic properties of cφk(n); see, for example, [9, 10, 12,
14,15,22,25,27–30,34,37].

It is worthwhile to mention that Andrews [2, p. 15] commented that as k increases,
the expressions of CΦk(q) quickly become long and messy. In 2019, Chan, Wang and
Yang [8] systematically studied the expressions of CΦk(q) by utilizing the theory of
modular forms, and discovered many surprising properties of CΦk(q), where k is an
integer satisfying 2 ≤ k ≤ 17. Based on the results of Chan, Wang and Yang, Wang [44]
further proved some congruence families modulo powers of 3 enjoyed by cφ3(n) and
cφ9(n), which improve some previous results of Kolitsch [28, 29]. In particular, Chan,
Wang and Yang [8, Theorem 5.3] proved the following general internal congruences for
cφk(n), namely,

cφpαN(n) ≡ cφpα−1N(n/p) (mod p2α), (1.14)

where α ≥ 1, n ≥ 0, p is a prime number and N is a positive integer which is not
divisible by p.

The method developed by Chan, Wang and Yang [8] is a powerful technique to derive
different expressions of CΦk(q). We notice that some coefficients in the expressions of
CΦk(q) are not integers. For example, one result derived by Chan, Wang and Yang [8,
Theorem 6.7] is that (some typos have been corrected)

CΦ12(q) =
1

Θ3(q)(q; q)12∞

(
− 36207

160
B12,1 +

923091

4000
B12,4 +

35829

1000
B12,5

+
891

4
B12,6 −

1485

8
B12,7 −

143247

250
B12,8 −

891

4
B12,9 −

8109

160
B12,10

− 582717

16000
B12,11 +

227691

200
B12,12 +

714249

8000
B12,13 +

8109

80
B12,14

+
33

8
B12,15 +

294109

500
B12,16 −

16503

400
B12,17 −

99

8
B12,18

+
10559

200
B12,19 −

128807

100
B12,20 +

25647

160
B12,21 +

727

160
B12,22

)
, (1.15)

where the B12,i for i ∈ {1, 4, 5, . . . , 22} are some functions involving Θ2(q) and Θ3(q).
Similar phenomena also exist in the expressions of CΦk(q) for k ∈ {10, 14, 15, 17}. More-
over, some expressions of CΦk(q) derived by Chan, Wang and Yang contain the following
Eisenstein series given by

E2(τ) = 1− 24
∞∑
k=1

kqk

1− qk
, q = e2πiτ , Im(τ) > 0.

These places cause heavy obstacle to further study congruence properties of cφk(n). In a
recent paper [11], we established another expression of CΦ12(q) with integral coefficients.
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Further, we proved some congruences modulo small powers of 3 enjoyed by cφ12(n) and
conjectured several congruence families modulo powers of 3 for cφ12(n).

The objective of this paper is to present a general strategy which can be applied to
establish the expressions of CΦk(q) with integral coefficients. For this purpose, we first
observe that CΦk(q) is related to the constant term of a family of bivariable functions.
For 0 < |z| <∞, we define

fk(z) = fk(z, q) :=

(
∞∑

n=−∞

znqn
2

)k

=
∞∑

n=−∞

ck,n(q)zn. (1.16)

Then the constant term (on the variable z) of fk(z) is

ck,0(q) = CTz

( ∞∑
n=−∞

znqn
2

)k


=
∞∑

n1,n2,...,nk=−∞
n1+n2+···+nk=0

qn
2
1+n

2
2+···+n2

k =
∞∑

n1,n2,...,nk−1=−∞

q2Q(n1,n2,...,nk−1), (1.17)

where Q(n1, n2, . . . , nk−1) is defined as in (1.3). Combining (1.2) and (1.17), we find
that

ck,0(q) = (q2; q2)k∞CΦk(q
2). (1.18)

By (1.18), to derive the integral expression of CΦk(q), we only need to compute the
constant term in fk(z). We shall establish a general symmetric and recurrence relation
on the coefficients in fk(z). With the help of this relation, we next derive many bivariable
identities for fk(z). Based on these bivariable identities, we prove three infinite families
of congruences satisfied by cφk(n), where k is allowed to grow arbitrary large, namely,

cφ9N+3(3n+ 2) ≡ 0 (mod 27), (1.19)
cφ9N+6(3n+ 2) ≡ 0 (mod 27), (1.20)
cφ4N+4(4n+ 3) ≡ 0 (mod 32). (1.21)

The rest of this paper is organized as follows. In Section 2, we first establish a general
symmetric and recurrence relation on the coefficients of a family of bivariable functions.
Based on this relation, we next derive many bivariable identities which can be applied to
deduce the expressions of CΦk(q) with integral coefficients. In Section 3, we prove many
integral expressions of CΦk(q). The proofs of (1.19)–(1.21) are presented in Section 4.
In the last section, we give several remarks and conjecture that (1.21) also holds for the
modulus 256.
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2. A general symmetric and recurrence relation and some bivariable
identities

In this section, we derive a general symmetric and recurrence relation on the coeffi-
cients of a family of bivariable functions and some bivariable identities, which can be
utilized to establish the expressions of CΦk(q) with integral coefficients.

For notational convenience, we denote

Ja,b := (qa, qb−a, qb; qb)∞, Ja,b := (−qa,−qb−a, qb; qb)∞, Ja := Ja,3a = (qa; qa)∞.

Ramanujan’s theta function f(a, b) is defined by

f(a, b) :=
∞∑

n=−∞

an(n+1)/2bn(n−1)/2 = (−a,−b, ab; ab)∞, |ab| < 1. (2.1)

The last identity in (2.1) is the well-known Jacobi triple product identity [5, p. 35, Entry
19]. Two important special cases of f(a, b) are, respectively, given by

ϕ(q) := f(q, q) =
∞∑

n=−∞

qn
2

=
J5
2

J2
1J

2
4

, (2.2)

ψ(q) := f(q, q3) =
∞∑

n=−∞

q2n
2−n =

1

2

∞∑
n=−∞

qn(n+1)/2 =
J2
2

J1
. (2.3)

Now we introduce the following auxiliary functions involving ϕ(q) and ψ(q), defined by

A(q) = ϕ2(q)ϕ(q2) + 8qψ2(q2)ψ(q4) and B(q) = ϕ2(q) + 2ϕ2(q2). (2.4)

The following lemma provides another expression of fk(z) and a general symmetric
and recurrence relation on the coefficients of fk(z). For the sake of convenience, we
denote

La,b,c,d = La,b,c,d(z, q) :=
∞∑

n=−∞

zan+bqcn
2+dn.

Lemma 2.1. Let fk(z) and ck,i(q) be defined as in (1.16). Then for any k ≥ 1,

fk(z) =

bk/2c∑
i=−b(k−1)/2c

ck,i(q)Lk,i,k,2i. (2.5)

In particular, ck,i(q) = ck,−i(q).

Proof. According to the definition of fk(z), we find that

fk(1/z) = fk(z) and fk(zq
2) = (zq)−kfk(z),

from which we deduce that

ck,n(q) = ck,−n(q) and ck,n(q) = q2n−kck,n−k(q).
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Therefore, by iteration, we conclude that for −b(k − 1)/2c ≤ i ≤ bk/2c,

ck,kn+i(q) = qkn
2+2nick,i(q).

The identity (2.5) thus follows. �

In the sequel, if we assume that fk(z) have the following expression:

fk(z) =

bk/2c∑
i=−b(k−1)/2c

ĉk,i(q)Lk,i,k,2i,

where ĉk,i(q) are some functions of q. Then we mean that

ck,i(q) = ĉk,i(q), for − b(k − 1)/2c ≤ i ≤ bk/2c.
With the help of Lemma 2.1, we deduce the following necessary lemmas, some of which
are main ingredients in the proofs of (1.19)–(1.21).

Lemma 2.2. We have

f2(z) = ϕ(q2)L2,0,2,0 + 2qψ(q4)L2,1,2,2, (2.6)

f3(z) = a(q2)L3,0,3,0 + 3q
J3
6

J2

(
L3,1,3,2 + L3,−1,3,−2

)
, (2.7)

where a(q) is one of the Borwein cubic functions, given by (see [20])

a(q) :=
∞∑

m,n=−∞

qm
2+mn+n2

. (2.8)

The identity (2.7) was proved earlier by Hirschhorn, Garvan and Borwein [20] and
Hirschhorn [17]; see also [19, Chap. 21]. It should be admitted that the proof of (2.7)
due to Hirschhorn is very elementary and is simpler than ours to some extent. However,
in order to the completeness and self-contained content of the discussion, we present
another proof of (2.7) here. More importantly, in the process of proving (2.7), we need
some variable substitutions to simplify certain double sums, and we will frequently utilize
this technique in what follows.

Proof. By Lemma 2.1, we need to derive c2,0(q), c2,1(q), c3,0(q) and c3,1(q). According to
the definition of fk(z), we arrive at

ck,i(q) =
∞∑

n1,n2,...,nk=−∞
n1+n2+···+nk=i

qn
2
1+n

2
2+···+n2

k . (2.9)

It follows from (2.2) and (2.3) that

c2,0(q) =
∞∑

n1,n2=−∞
n1+n2=0

qn
2
1+n

2
2 =

∞∑
n=−∞

q2n
2

= ϕ(q2), (2.10)
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c2,1(q) =
∞∑

n1,n2=−∞
n1+n2=1

qn
2
1+n

2
2 =

∞∑
n=−∞

q2n
2+2n+1 = 2qψ(q4). (2.11)

The identity (2.6) follows by Lemma 2.1, (2.10) and (2.11).
Next, we find that

c3,0(q) =
∞∑

n1,n2,n3=−∞
n1+n2+n3=0

qn
2
1+n

2
2+n

2
3 =

∞∑
n1,n2=−∞

qn
2
1+n

2
2+(n1+n2)2 = a(q2).

We next turn to prove the following identity, namely,

c3,1(q) = 3q
J3
6

J2
. (2.12)

It follows immediately from (2.9) that

c3,1(q) =
∞∑

n1,n2,n3=−∞
n1+n2+n3=1

qn
2
1+n

2
2+n

2
3 =

∞∑
n1,n2=−∞

q2n
2
1+2n2

2+2n1n2−2n1−2n2+1.

If n1 + n2 ≡ 0 (mod 2), we take n1 = r − s and n2 = r + s; if n1 + n2 ≡ 1 (mod 2), we
put n1 = r− s and n2 = r + s+ 1, where r and s are two integers. After simplification,
we deduce that

c3,1(q) =
∞∑

r,s=−∞

q6r
2−4r+2s2+1 +

∞∑
r,s=−∞

q6r
2+2r+2s2+2s+1

= qJ2,12ϕ(q2) + 2qJ4,12ψ(q4) = q
J7
4J6J24
J3
2J

3
8J12

+ 2q
J3
8J

2
12

J2
4J24

. (2.13)

Therefore, in order to prove (2.12), we need to prove that

q
J7
4J6J24
J3
2J

3
8J12

+ 2q
J3
8J

2
12

J2
4J24

= 3q
J3
6

J2
, (2.14)

or, equivalently,
J7
2J3J12
J3
1J

3
4J6

+ 2
J3
4J

2
6

J2
2J12

− 3
J3
3

J1
= 0. (2.15)

Now we recall Hirschhorn’s version of the parameterized identities of theta functions
(see [19, Chap. 35, Eqs. (35.1.1)–(35.1.6)]), and the idea comes from [1].

J1 = s1/2t1/24(1− 2qt)1/2(1 + qt)1/8(1 + 2qt)1/6(1 + 4qt)1/8, (2.16)

J2 = s1/2t1/12(1− 2qt)1/4(1 + qt)1/4(1 + 2qt)1/12(1 + 4qt)1/4, (2.17)

J3 = s1/2t1/8(1− 2qt)1/6(1 + qt)1/24(1 + 2qt)1/2(1 + 4qt)1/24, (2.18)

J4 = s1/2t1/6(1− 2qt)1/8(1 + qt)1/2(1 + 2qt)1/24(1 + 4qt)1/8, (2.19)

J6 = s1/2t1/4(1− 2qt)1/12(1 + qt)1/12(1 + 2qt)1/4(1 + 4qt)1/12, (2.20)
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J12 = s1/2t1/2(1− 2qt)1/24(1 + qt)1/6(1 + 2qt)1/8(1 + 4qt)1/24, (2.21)

where

s := s(q) =
J2
1J

2
4J

15
6

J5
2J

6
3J

6
12

and t := t(q) =
J3
2J

3
3J

6
12

J1J2
4J

9
6

.

Substituting (2.16)–(2.21) into the left-hand side of (2.15), after simplification, we obtain
(2.15). According to Lemma 2.1, we obtain (2.7).

This completes the proof of Lemma 2.2. �

Lemma 2.3. Let A(q) and B(q) be defined as in (2.4). Then

f4(z) = A(q2)L4,0,4,0 + 4qψ3(q2)
(
L4,1,4,2 + L4,−1,4,−2

)
+ 2q2B(q2)ψ(q8)L4,2,4,4 (2.22)

and

f4(z) =

(
a(q2)ϕ(q12) + 6q2

J3
6J

2
8J12J48

J2J4J16J24

)
L4,0,4,0

+

(
qa(q2)ψ(q6) + 3q

J4J
5
6

J2
2J12

)(
L4,1,4,2 + L4,−1,4,−2

)
+

(
2q4a(q2)ψ(q24) + 6q2

J3
6J16J

2
24

J2J8J48

)
L4,2,4,4. (2.23)

Proof. According to the definition of fk(z) and using (2.6), we deduce that

f4(z) =
(
f2(z)

)2
=
(
ϕ(q2)L2,0,2,0 + 2qψ(q4)L2,1,2,2

)2
. (2.24)

Therefore, combining (1.16) and (2.24) gives that

c4,0(q) = CTz

{
ϕ2(q2)L2

2,0,2,0

}
+ CTz

{
4q2ψ2(q4)L2

2,1,2,2

}
= ϕ2(q2)

∞∑
n1,n2=−∞
n1+n2=0

q2n
2
1+2n2

2 + 4q2ψ2(q4)
∞∑

n1,n2=−∞
n1+n2+1=0

q2n
2
1+2n1+2n2

2+2n2

= ϕ2(q2)ϕ(q4) + 8q2ψ2(q4)ψ(q8) = A(q2). (2.25)

Next we turn to derive the expression of c4,1(q). It follows from (1.16) and (2.24) that

c4,1(q) = 4qϕ(q2)ψ(q4)
∞∑

n1,n2=−∞
n1+n2=0

q2n
2
1+2n2

2+2n2

= 4qψ2(q2)
∞∑

n=−∞

q4n
2−2n = 4qψ3(q2). (2.26)

Following a similar strategy of deriving (2.25), we can prove that

c4,2(q) = 2q2ψ(q8)
(
ϕ2(q2) + 2ϕ2(q4)

)
= 2q2B(q2)ψ(q8). (2.27)

Based on Lemma 2.1, we obtain (2.22) by (2.25)–(2.27).
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To prove (2.23), one first readily finds that

f1(z) = L3,0,9,0 + q
(
L3,1,9,6 + L3,−1,9,−6

)
. (2.28)

According to the definition of fk(z), and utilizing (2.7) and (2.28), we find that

f4(z) = f3(z) · f1(z) =

{
a(q2)(q)L3,0,3,0 + 3q

J3
6

J2

(
L3,1,3,2 + L3,−1,3,−2

)}
×
{
L3,0,9,0 + q

(
L3,1,9,6 + L3,−1,9,−6

)}
. (2.29)

We only derive the expressions of c4,0(q) and c4,1(q) in (2.29). The coefficient c4,2(q) can
be demonstrated similarly, and thus, we omit the details.

Combining (1.16) and (2.29) yields that

c4,0(q) = a(q2)
∞∑

n1,n2=−∞
n1+n2=0

q3n
2
1+9n2

2 + 3q
J3
6

J2

∞∑
n1,n2=−∞
n1+n2=0

q3n
2
1+2n1+9n2

2−6n2+1

+ 3q
J3
6

J2

∞∑
n1,n2=−∞
n1+n2=0

q3n
2
1−2n1+9n2

2+6n2+1

= a(q2)ϕ(q12) + 6q2
J3
6

J2
J4,24 = a(q2)ϕ(q12) + 6q2

J3
6J

2
8J12J48

J2J4J16J24
. (2.30)

Now we prove c4,1(q). Notice that

c4,1(q) = a(q2)
∞∑

n1,n2=−∞
n1+n2=0

q3n
2
1+9n2

2+6n2+1 + 3q
J3
6

J2

∞∑
n1,n2=−∞
n1+n2=0

q3n
2
1+2n1+9n2

2

+ 3q
J3
6

J2

∞∑
n1,n2=−∞
n1+n2=1

q3n
2
1−2n1+9n2

2−6n2+1

= qa(q2)ψ(q6) + 3q
J3
6

J2

(
J10,24 + q2J2,24

)
.

We also require the following identity, which follows from two identities in Berndt’s
book [5, Entry 30 (ii) and (iii)]:

f(a, b) = f
(
a3b, ab3

)
+ af

(
b/a, a5b3

)
. (2.31)

Taking (a, b) = (q2, q4) in (2.31) yields that

J2,6 = J10,24 + q2J2,24, (2.32)

from which we obtain that

c4,1(q) = qa(q2)ψ(q6) + 3q
J3
6

J2
J2,6 = qa(q2)ψ(q6) + 3q

J4J
5
6

J2
2J12

.

We therefore complete the proof of Lemma 2.3 by utilizing Lemma 2.1. �
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Lemma 2.4. Let A(q) and B(q) be defined as in (2.4). Then

f5(z) =
(
A(q2)ϕ(q20) + 8q2ψ3(q2)ψ(q10) + 4q6B(q2)ψ(q8)ψ(q40)

)
L5,0,5,0

+
(
qA(q2)J12,40 + 4qψ3(q2)J4,10 + 2q3B(q2)ψ(q8)J8,40

)
×
(
L5,1,5,2 + L5,−1,5,−2

)
+
(
q4A(q2)J4,40 + 4q2ψ3(q2)J2,10 + 2q2B(q2)ψ(q8)J16,40

)
×
(
L5,2,5,4 + L5,−2,5,−4

)
. (2.33)

Proof. According to (1.16) and (2.22), we find that

f5(z) =
{
A(q2)L4,0,4,0 + 4qψ3(q2)

(
L4,1,4,2 + L4,−1,4,−2

)
+ 2q2B(q2)ψ(q8)L4,2,4,4

}
×
{
L4,0,16,0 + q

(
L4,1,16,8 + L4,−1,16,−8

)
+ q4L4,2,16,16

}
. (2.34)

Similar to the proof of (2.23), we only present the proofs of the expressions of c5,0(q)
and c5,1(q) in (2.33).

From (1.16) and (2.34) we deduce that

c5,0(q) = A(q2)
∞∑

n1,n2=−∞
n1+n2=0

q4n
2
1+16n2

2 + 4qψ3(q2)
∞∑

n1,n2=−∞
n1+n2=0

q4n
2
1+2n1+16n2

2−8n2+1

+ 4qψ3(q2)
∞∑

n1,n2=−∞
n1+n2=0

q4n
2
1−2n1+16n2

2+8n2+1

+ 2q2B(q2)ψ(q8)
∞∑

n1,n2=−∞
n1+n2+1=0

q4n
2
1+4n1+16n2

2+16n2+4

= A(q2)ϕ(q20) + 8q2ψ3(q2)ψ(q10) + 4q6B(q2)ψ(q8)ψ(q40). (2.35)

In the same vein, we deduce that

c5,1(q) = A(q2)
∞∑

n=−∞

q20n
2−8n+1 + 4qψ3(q2)

∞∑
n=−∞

q20n
2+2n

+ 4qψ3(q2)
∞∑

n=−∞

q20n
2−18n+4 + 2q2B(q2)ψ(q8)

∞∑
n=−∞

q20n
2+12n+1

= qA(q2)J12,40 + 4qψ3(q2)
(
J18,40 + q4J2,40

)
+ 2q3B(q2)ψ(q8)J8,40

= qA(q2)J12,40 + 4qψ3(q2)J4,10 + 2q3B(q2)ψ(q8)J8,40, (2.36)

where the last step follows from (2.31). Based on Lemma 2.1, we complete the proof of
Lemma 2.4. �

Lemma 2.5. We have

f6(z) =
(
a(q4)ϕ3(q2) + 24q2ψ3(q2)ψ(q4)ψ(q6)

)
L6,0,6,0
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+

(
24q3ψ3(q4)

J3
12

J4
+ 6qϕ(q2)ψ3(q2)

J4J
2
6

J2J12

)(
L6,1,6,2 + L6,−1,6,−2

)
+

(
3q2ϕ3(q2)

J3
12

J4
+ 12q2ψ3(q2)ψ(q4)

J4J
2
6

J2J12

)(
L6,2,6,4 + L6,−2,6,−4

)
+
(
8q3a(q4)ψ3(q4) + 12q3ϕ(q2)ψ3(q2)ψ(q6)

)
L6,3,6,6 (2.37)

and

f6(z) =

(
a2(q2)ϕ(q6) + 18q2

J2
4J

7
6J24

J3
2J8J12

)
L6,0,6,0

+

(
18q3ψ(q12)

J6
6

J2
2

+ 6qa(q2)
J3
6J8J

2
12

J2J4J24

)(
L6,1,6,2 + L6,−1,6,−2

)
+

(
9q2ϕ(q6)

J6
6

J2
2

+ 6q2a(q2)
J2
4J

4
6J24

J2
2J8J12

)(
L6,2,6,4 + L6,−2,6,−4

)
+

(
2q3a2(q2)ψ(q12) + 18q3

J6
6J8J

2
12

J2
2J4J24

)
L6,3,6,6. (2.38)

Proof. We first prove (2.37). From (2.6) we find that

f6(z) =
(
ϕ(q2)L2,0,2,0 + 2qψ(q4)L2,1,2,2

)3
= ϕ3(q2)L3

2,0,2,0 + 6qϕ2(q2)ψ(q4)L2
2,0,2,0L2,1,2,2

+ 12q2ϕ(q2)ψ2(q4)L2,0,2,0L
2
2,1,2,2 + 8q3ψ3(q4)L3

2,1,2,2. (2.39)

Based on Lemma 2.1, we need to find the expressions of c6,i(q) for 0 ≤ i ≤ 3.
First, combining (1.16) and (2.39) gives that

c6,0(q) = ϕ3(q2)
∞∑

n1,n2,n3=−∞
n1+n2+n3=0

q2n
2
1+2n2

2+2n2
3

+ 12q2ψ2(q2)ψ(q4)
∞∑

n1,n2,n3=−∞
n1+n2+n3+1=0

q2n
2
1+2n2

2+2n2+2n2
3+2n3

= ϕ3(q2)
∞∑

n1,n2=−∞

q4n
2
1+4n2

2+4n1n2

+ 12q2ψ2(q2)ψ(q4)
∞∑

n1,n2=−∞

q4n
2
1+4n2

2+4n1n2+2n1+4n2 . (2.40)

Following a similar strategy of proving (2.13), upon simplification, we obtain that
∞∑

n1,n2=−∞

q4n
2
1+4n2

2+4n1n2+2n1+4n2
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=
∞∑

r,s=−∞

q12r
2+6r+4s2+2s +

∞∑
r,s=−∞

q12r
2+18r+4s2+6s+8 = 2ψ(q2)ψ(q6). (2.41)

Substituting (2.41) into (2.40) yields that

c6,0(q) = a(q4)ϕ3(q2) + 24q2ψ3(q2)ψ(q4)ψ(q6).

Next, we prove c6,1(q). We first derive that

c6,1(q) = 8q3ψ3(q4)
∞∑

n1,n2=−∞

q4n
2
1+4n2

2+4n1n2+4n1+4n2

+ 6qϕ(q2)ψ2(q2)
∞∑

n1,n2=−∞

q4n
2
1+4n2

2+4n1n2−2n1−2n2

= 8q3ψ3(q4)

(
∞∑

r,s=−∞

q12r
2+8r+4s2 +

∞∑
r,s=−∞

q12r
2−4r+4s2+4s

)

+ 6qϕ(q2)ψ2(q2)

(
∞∑

r,s=−∞

q12r
2+2r+4s2−2s +

∞∑
r,s=−∞

q12r
2−10r+4s2+2s+2

)
= 8q3ψ3(q4)

(
ϕ(q4)J4,24 + 2ψ(q8)J8,24

)
+ 6qϕ(q2)ψ3(q2)

(
J10,24 + q2J2,24

)
= 24q3ψ3(q4)

J3
12

J4
+ 6qϕ(q2)ψ3(q2)J2,6

= 24q3ψ3(q4)
J3
12

J4
+ 6qϕ(q2)ψ3(q2)

J4J
2
6

J2J12
, (2.42)

where we obtain the second step by setting n1 = r + s, n2 = −2r or n1 = r + s + 1,
n2 = −2r− 1, and the penultimate step follows from (2.14) and (2.32). The expressions
of c6,2(q) and c6,3(q) can be proved similarly.

Next, we turn to prove (2.38). At this time, it follows from (2.7) that

f6(z) =

{
a(q2)L3,0,3,0 + 3q

J3
6

J2

(
L3,1,3,2 + L3,−1,3,−2

)}2

. (2.43)

And we can derive the expressions of c6,i(q) in (2.43) for 0 ≤ i ≤ 3 by following a similar
strategy as deriving (2.22), and thus, we omit the details here. We therefore finish the
proof of Lemma 2.5 by using Lemma 2.1. �

Lemma 2.6. Let A(q) and B(q) be defined as in (2.4). Then

f8(z) =
(
A2(q2)ϕ(q8) + 32q2ψ6(q2)ψ(q4) + 8q4B2(q2)ψ2(q8)ψ(q16)

)
L8,0,8,0

+
(
8qA(q2)ψ3(q2)J6,16 + 16q3B(q2)ψ3(q2)ψ(q8)J2,16

)(
L8,1,8,2 + L8,−1,8,−2

)
+
(
4q2A(q2)B(q2)ψ(q4)ψ(q8) + 16q2ψ6(q2)ϕ(q8) + 32q4ψ6(q2)ψ(q16)

)
×
(
L8,2,8,4 + L8,−2,8,−4

)



14 S.-P. CUI, N. S. S. GU, AND D. TANG

+
(
8q3A(q2)ψ3(q2)J2,16 + 16q3B(q2)ψ3(q2)ψ(q8)J6,16

)
× (L8,3,8,6 + L8,−3,8,−6)

+
(
2q4A2(q2)ψ(q16) + 4q4B2(q2)ϕ(q8)ψ2(q8) + 32q4ψ6(q2)ψ(q4)

)
L8,4,8,8. (2.44)

Proof. According to (1.16) and (2.22), we deduce that

f8(z) =
{
A(q2)L4,0,4,0 + 4qψ3(q2)

(
L4,1,4,2 + L4,−1,4,−2

)
+ 2q2B(q2)ψ(q8)L4,2,4,4

}2
.

(2.45)

Similar to the previous lemmas, we only demonstrate the proof of the expression of
c8,0(q) in (2.45). From (1.16) and (2.45), we find that

c8,0(q) = A2(q2)
∞∑

n1,n2=−∞
n1+n2=0

q4n
2
1+4n2

2 + 32q2ψ6(q2)
∞∑

n1,n2=−∞
n1+n2=0

q4n
2
1+2n1+4n2

2−2n2

+ 4q4B2(q2)ψ2(q8)
∞∑

n1,n2=−∞
n1+n2+1=0

q4n
2
1+4n1+4n2

2+4n2

= A2(q2)ϕ(q8) + 32q2ψ6(q2)ψ(q4) + 8q4B2(q2)ψ2(q8)ψ(q16).

Based on Lemma 2.1, we complete the proof of Lemma 2.6. �

For the sake of convenience, we write

C(q) =
(q3; q3)3∞
(q; q)∞

. (2.46)

Lemma 2.7. We have

f9(z) =
(
a3(q2)a(q6) + 54q2a(q2)C3(q2) + 162q4C3(q2)C(q6)

)
L9,0,9,0

+
{

27q3a(q2)C2(q2)
(
J4,12J8,36 + J2,12J10,36

)
+ 9qa2(q2)C(q2)

(
ϕ(q6)J14,36 + 2q4ψ(q12)J4,36

)
+ 81q3C3(q2)

(
ϕ(q6)J10,36 + 2q2ψ(q12)J8,36

)}(
L9,1,9,2 + L9,−1,9,−2

)
+
{

27q2a(q2)C2(q2)
(
J4,12J16,36 + q4J2,12J2,36

)
+ 9q2a2(q2)C(q2)

(
ϕ(q6)J10,36 + 2q2ψ(q12)J8,36

)
+ 81q4C3(q2)

(
J2,12J10,36 + J4,12J8,36

)}(
L9,2,9,4 + L9,−2,9,−4

)
+
{

3q3a3(q2)C(q6) + 27q3a(q6)C3(q2)

+ 54q3a(q2)C3(q2) + 81q5C3(q2)C(q6)
}(
L9,3,9,6 + L9,−3,9,−6

)
+
{

27q4a(q2)C2(q2)
(
J2,12J14,36 + q2J4,12J4,36

)
+ 9q4a2(q2)C(q2)

(
q2ϕ(q6)J2,36 + 2ψ(q12)J16,36

)
+ 81q4C3(q2)

(
ϕ(q6)J14,36 + 2q4ψ(q12)J4,36

)}(
L9,4,9,8 + L9,−4,9,−8

)
. (2.47)
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Proof. From (2.7), we deduce that

f9(z) =

{
a(q2)L3,0,3,0 + 3q

J3
6

J2

(
L3,1,3,2 + L3,−1,3,−2

)}3

. (2.48)

The proof of the expression of c9,0(q) in (2.48) is a little trickier than the previous cases.
According to (1.16) and (2.48), we deduce that

c9,0(q) = a3(q2)
∞∑

n1,n2,n3=−∞
n1+n2+n3=0

q3n
2
1+3n2

2+3n2
3

+ 27q3
J9
6

J3
2

∞∑
n1,n2,n3=−∞
n1+n2+n3+1=0

q3n
2
1+2n1+3n2

2+2n2+3n2
3+2n3

+ 27q3
J9
6

J3
2

∞∑
n1,n2,n3=−∞
n1+n2+n3−1=0

q3n
2
1−2n1+3n2

2−2n2+3n2
3−2n3

+ 54q2a(q2)
J6
6

J2
2

∞∑
n1,n2,n3=−∞
n1+n2+n3=0

q3n
2
1+3n2

2+2n2+3n2
3−2n3

= a3(q2)
∞∑

n1,n2=−∞

q6n
2
1+6n2

2+6n1n2

+ 54q3
J9
6

J3
2

∞∑
n1,n2=−∞

q6n
2
1+6n2

2+6n1n2+6n1+6n2+1

+ 54q2a(q2)
J6
6

J2
2

∞∑
n2,n3=−∞

q6n
2
2+6n2

3+6n2n3+2n2−2n3 .

Adopting a similar strategy of deriving (2.13), after simplification, we obtain that

c9,0(q) = a3(q2)a(q6) + 54q4
J9
6

J3
2

(
ϕ(q6)J6,36 + 2ψ(q12)J12,36

)
+ 54q2a(q2)

J6
6

J2
2

(
ϕ(q18)J2,12 + 2q4ψ(q36)J4,12

)
. (2.49)

Thanks to (2.15),

ϕ(q)J1,6 + 2ψ(q2)J2,6 = 3
J3
3

J1
,

from which we obtain that

54q4
J9
6

J3
2

(
ϕ(q6)J6,36 + 2ψ(q12)J12,36

)
= 162q4

J8
6J

3
18

J3
2

. (2.50)
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Therefore, in order to prove

c9,0(q) = a3(q2)a(q6) + 54q2a(q2)
J9
6

J3
2

+ 162q4
J8
6J

3
18

J3
2

, (2.51)

we only need to prove that

ϕ(q9)J1,6 + 2q2ψ(q18)J2,6 =
J3
3

J1
, (2.52)

or, equivalently,

3
(
ϕ(q9)J1,6 + 2q2ψ(q18)J2,6

)
= ϕ(q)J1,6 + 2ψ(q2)J2,6. (2.53)

We also require the following identities which follow from the two identities in Berndt’s
book [5, p. 345, Entry 1 (ii) and (iii)]:(

ψ(q2)− 3q2ψ(q18)
)3

= ψ3(q2)

(
1− 9q2

ψ4(q6)

ψ4(q2)

)
, (2.54)

(
ϕ(q)− 3ϕ(q9)

)3
= ϕ3(q)

(
1− 9

ϕ4(q3)

ϕ4(q)

)
. (2.55)

Combining (2.54) and (2.55) gives that(
ψ(q2)− 3q2ψ(q18)

ϕ(q)− ϕ(q9)

)3

=
ψ3(q2)− 9q2ψ4(q6)/ψ(q2)

ϕ3(q)− 9ϕ4(q3)/ϕ(q)
.

Notice that (2.53) is equivalent to

ψ(q2)− 3q2ψ(q18)

ϕ(q)− 3ϕ(q9)
= − J1,6

2J2,6

= −1

2

J2
2J3J12
J1J4J6

· J2J12
J4J2

6

= − J
3
2J3J

2
12

2J1J2
4J

3
6

.

Thus, in order to prove (2.53), we need to prove that
ψ3(q2)− 9q2ψ4(q6)/ψ(q2)

ϕ3(q)− 9ϕ4(q3)/ϕ(q)
=

J9
2J

3
3J

6
12

−8J3
1J

6
4J

9
6

. (2.56)

Substituting (2.2) and (2.3) into (2.56), we find that (2.56) is equivalent to
J6
4

J3
2

− 9q2
J2J

8
12

J2
4J

4
6

=

(
J15
2

J6
1J

6
4

− 9
J2
1J

2
4J

20
6

J5
2J

8
3J

8
12

)(
J9
2J

3
3J

6
12

−8J3
1J

6
4J

9
6

)
,

or, equivalently,

8
J6
4

J3
2

− 72q2
J2J

8
12

J2
4J

4
6

+
J24
2 J

3
3J

6
12

J9
1J

12
4 J

9
6

− 9
J4
2J

11
6

J1J5
3J

4
4J

2
12

= 0. (2.57)

Plugging (2.16)–(2.21) into the left-hand side of (2.57), upon simplification, we find that
(2.57) is indeed true. The identity (2.51) thus follows.

The proofs of the expressions of c9,i(q) for 1 ≤ i ≤ 4 can be established similarly, and
thus, we omit the details. Notice that when we derive the fourth term of c9,3(q), we need
to set n2 = 1− n1 − n3 and utilize (2.52).

This completes the proof of Lemma 2.7 based on Lemma 2.1. �
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3. Generating functions of k-colored generalized Frobenius partitions

In this section, we derive some expressions of CΦk(q) with integral coefficients. From
(1.18), one sees that for any k ≥ 1,

CΦk(q) =
ck,0(
√
q)

Jk1
. (3.1)

Combining (3.1) and these bivariable identities presented in Section 2, we can deduce
the integral expressions of CΦk(q).

3.1. Case k = 4. The following theorem provides two expressions of CΦ4(q).

Theorem 3.1. Let a(q) be defined as in (2.8). Then

CΦ4(q) =
1

J4
1

(
J8
2J4
J4
1J

2
8

+ 8q
J3
4J

2
8

J2
2

)
(3.2)

=
1

J4
1

(
a(q)

J5
12

J2
6J

2
24

+ 6q
J3
3J

2
4J6J24

J1J2J8J12

)
. (3.3)

Proof. The identities (3.2) and (3.3) follow immediately from (3.1) and (2.25), and (3.1)
and (2.30), respectively. �

Baruah and Sarmah [3, Theorem 2.1] derived an equivalent form of (3.2) (see (1.11)
above) by utilizing the method of integer matrix exact covering systems. The identity
(1.11) can be derived from (3.2) if one uses the following three identities involving ϕ(q)
and ψ(q) (see [5, p. 40, Entry 25 (iv)–(vi)]):

ϕ(q)ψ(q2) = ψ2(q), (3.4)

ϕ2(q)− ϕ2(−q) = 8qψ2(q4), (3.5)

ϕ2(q) + ϕ2(−q) = 2ϕ2(q2). (3.6)

3.2. Case k = 5. The following theorem gives an expression of CΦ5(q).

Theorem 3.2. Let A(q) and B(q) be defined as in (2.4). Then

CΦ5(q) =
1

J5
1

(
A(q)ϕ(q10) + 8qψ3(q)ψ(q5) + 4q3B(q)ψ(q4)ψ(q20)

)
. (3.7)

Proof. The identity (3.7) follows immediately from (1.18) and (2.35). �

Employing the method of integer matrix exact covering systems, Baruah and Sarmah
[3, Theorem 2.2] derived another form of (3.7). However, it seems that there is a misprint
in the coefficient of last component in the expression of CΦ5(q) due to Baruah and
Sarmah.
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3.3. Case k = 6. The identities (2.37) and (2.38) give the following two expressions of
CΦ6(q).

Theorem 3.3. Let a(q) be defined as in (2.8). Then

CΦ6(q) =
1

J6
1

(
a(q2)

J15
2

J6
1J

6
4

+ 24q
J5
2J

2
4J

2
6

J3
1J3

)
(3.8)

=
1

J6
1

(
a2(q)

J5
6

J2
3J

2
12

+ 18q
J2
2J

7
3J12

J3
1J4J6

)
. (3.9)

Utilizing the method of integer matrix exact covering systems, Baruah and Sarmah
[4, Theorem 2.1] provided an expression of CΦ6(q). Actually, (3.8) is equivalent to
the expression of CΦ6(q) derived by Baruah and Sarmah if one observes the following
identity [4, p. 368]:

a(q) = ϕ(q)ϕ(q3) + 4qψ(q2)ψ(q6).

The identity (3.9) was established by Hirschhorn [18]. Moreover, Gu, Wang and Xia [16],
and Tang [40] proved some congruences and internal congruences modulo powers of 3
for cφ6(n) based on (3.9).

3.4. Case k = 8. The identity (2.44) implies the following expressions of CΦ8(q).

Theorem 3.4. Let A(q) and B(q) be defined as in (2.4). Then

CΦ8(q) =
1

J8
1

(
A2(q)ϕ(q4) + 8q2B2(q)ψ2(q4)ψ(q8) + 32qψ6(q)ψ(q2)

)
. (3.10)

With the help of modular forms, Chan, Wang and Yang [8, Theorem 6.3] obtained
an expression of CΦ8(q) with seven terms. Interestingly, we can further simplify (3.10).
For this purpose, we require the following 2-dissection of ϕ(q) (see [5, p. 40, Entry 25
(i) and (ii)]):

ϕ(q) = ϕ(q4) + 2qψ(q8), (3.11)

which is equivalent to

J5
2

J2
1J

2
4

=
J5
8

J2
4J

2
16

+ 2q
J2
16

J8
. (3.12)

Substituting (3.12) into (3.10), after simplification, we find that

CΦ8(q) =
1

J8
1

(
J16
2 J8
J8
1J

2
16

+ 64q2
J4
4J

9
8

J4
2J

2
16

+ 8q2
J20
2 J

3
8J

2
16

J8
1J

10
4

+ 32q2
J18
4 J

2
16

J8
2J

5
8

+ 48q
J11
2 J

2
4

J6
1

)
.
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3.5. Case k = 9. The identity (2.47) implies the following expression of CΦ9(q).

Theorem 3.5. Let a(q) be defined as in (2.8). Then

CΦ9(q) =
1

J9
1

(
a3(q)a(q3) + 54qa(q)

J9
3

J3
1

+ 162q2
J8
3J

3
9

J3
1

)
. (3.13)

In 1996, Kolitsch [30,31] proved that
∞∑
n=0

cφ9(n+ 1)qn = 3
∞∑
n=0

cφ3(3n+ 2)qn = 81
J8
3

J9
1

+ 729q
J8
3J

3
9

J12
1

, (3.14)

where

cφk(n) =
∑

`| gcd(k,n)

µ(`)cφk/`(n/`), (3.15)

and µ(n) is the Möbius function. Based on (1.5), (3.14) and (3.15), one can obtain an
integral expression of CΦ9(q).

3.6. Case k = 10. We derive the following expression of CΦ10(q).

Theorem 3.6. Let A(q) and B(q) be defined as in (2.4). Then

CΦ10(q) =
1

J10
1

{(
A(q)ϕ(q10) + 16qψ3(q)ψ(q5)

)
A(q)ϕ(q5)ϕ(q10)

+
(
64q4ψ3(q)ψ(q5) + 16q6B(q)ψ(q4)ψ(q20)

)
B(q)ϕ(q5)ψ(q4)ψ(q20)

+
(
64q2ψ6(q)ψ2(q5) + 8q3A(q)B(q)ϕ(q10)ψ(q4)ψ(q20)

)
ϕ(q5)

+
(
2qJ3,10J

2

6,20 + 2q4J1,10J
2

2,20

)
A2(q)

+
(
16qJ2,5J3,10J6,20 + 16q3J1,5J1,10J2,20

)
A(q)ψ3(q)

+
(
32qJ

2

2,5J3,10 + 32q2J
2

1,5J1,10

)
ψ6(q)

+
(
8q2J3,10J4,20J6,20 + 8q3J1,10J2,20J8,20

)
A(q)B(q)ψ(q4)

+
(
32q2J2,5J3,10J4,20 + 32q2J1,5J1,10J8,20

)
B(q)ψ3(q)ψ(q4)

+
(
8q3J3,10J

2

4,20 + 8q2J1,10J
2

8,20

)
B2(q)ψ2(q4)

}
. (3.16)

Proof. It follows from (1.16) and (2.33) that

f10(z) =
{(
A(q2)ϕ(q20) + 8q2ψ3(q2)ψ(q10) + 4q6B(q2)ψ(q8)ψ(q40)

)
L5,0,5,0

+
(
qA(q2)J12,40 + 4qψ3(q2)J4,10 + 2q3B(q2)ψ(q8)J8,40

)
×
(
L5,1,5,2 + L5,−1,5,−2

)
+
(
q4A(q2)J4,40 + 4q2ψ3(q2)J2,10 + 2q2B(q2)ψ(q8)J16,40

)
×
(
L5,2,5,4 + L5,−2,5,−4

)}2
.
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Then we find that

c10,0(q) =
(
A(q2)ϕ(q20) + 8q2ψ3(q2)ψ(q10) + 4q6B(q2)ψ(q8)ψ(q40)

)2
×

∞∑
n1,n2=−∞
n1+n2=0

q5n
2
1+5n2

2

+ 2
(
qA(q2)J12,40 + 4qψ3(q2)J4,10 + 2q3B(q2)ψ(q8)J8,40

)2
×

∞∑
n1,n2=−∞
n1+n2=0

q5n
2
1+2n1+5n2

2−2n2

+ 2
(
q4A(q2)J4,40 + 4q2ψ3(q2)J2,10 + 2q2B(q2)ψ(q8)J16,40

)2
×

∞∑
n1,n2=−∞
n1+n2=0

q5n
2
1+4n1+5n2

2−4n2 . (3.17)

Now (3.16) follows by simplifying three double sums on the right-hand side of (3.17)
and utilizing (3.1). �

3.7. Case k = 12. We obtain the following expression of CΦ12(q).

Theorem 3.7. Let A(q) and B(q) be defined as in (2.4), and let a(q) be defined as in
(2.8). Then

CΦ12(q) =
1

J12
1

(
a(q4)A3(q) + 96qA(q)

J11
2 J

2
4J

5
6

J6
1J

2
3J

2
12

+ 24q2A(q)B2(q)
J4
8J

2
12

J2J6
+ 192q2B(q)

J17
2 J

2
8J

2
12

J8
1J

3
4J6

)
. (3.18)

Proof. According to (1.16) and (2.22), we deduce that

f12(z) =
{
A(q2)L4,0,4,0 + 4qψ3(q2)

(
L4,1,4,2 + L4,−1,4,−2

)
+ 2q2B(q2)ψ(q8)L4,2,4,4

}3
,

from which we obtain that

c12,0(q) = A3(q2)
∞∑

n1,n2,n3=−∞
n1+n2+n3=0

q4n
2
1+4n2

2+4n2
3

+ 96q2A(q2)ψ6(q2)
∞∑

n1,n2,n3=−∞
n1+n2+n3=0

q4n
2
1+4n2

2+2n2+4n2
3−2n3

+ 12q4A(q2)B2(q2)ψ2(q8)
∞∑

n1,n2,n3=−∞
n1+n2+n3+1=0

q4n
2
1+4n2

2+4n2+4n2
3+4n3
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+ 96q4B(q2)ψ6(q2)ψ(q8)
∞∑

n1,n2,n3=−∞
n1+n2+n3+1=0

q4n
2
1+2n1+4n2

2+2n2+4n2
3+4n3

+ 96q4B(q2)ψ6(q2)ψ(q8)
∞∑

n1,n2,n3=−∞
n1+n2+n3=0

q4n
2
1−2n1+4n2

2−2n2+4n2
3+4n3 . (3.19)

We next simplify the five triple sums in (3.19) by applying a similar strategy of deriving
(2.13), after tedious but straightforward calculations, we conclude that

c12,0(q) = a(q8)A3(q2) + 96q2A(q2)
J11
4 J

2
8J

5
12

J6
2J

2
6J

2
24

+ 24q4A(q2)B2(q2)
J4
16J

2
24

J4J12
+ 192q4B(q2)

J17
4 J

2
16J

2
24

J8
2J

3
8J12

. (3.20)

Notice that when we simplify the second term on the right-hand side of (3.19), we set
n1 = −n2 − n3. Moreover, we also need to utilize (3.11) to derive (3.20). The identity
(3.18) follows from (3.1) and (3.20). �

Note that

f13(z) =
(
f4(z)

)3 · f1(z), f14(z) =
(
f4(z)

)3 · (f1(z)
)2
, f15(z) =

(
f5(z)

)3
.

Of course, we can also analyse the corresponding integral expressions of CΦ13(q), CΦ14(q)
and CΦ15(q) similarly. However, the process will be lengthier and trickier because we
need to use the method of integer matrix exact covering systems to simplify some mul-
tiple q-series sums. Therefore, we do not consider these cases here.

3.8. Case k = 16. We obtain the following expression of CΦ16(q).

Theorem 3.8. Let A(q) and B(q) be defined as in (2.4). Then

CΦ16(q) =
1

J16
1

(
A4(q)A(q4) + 192qA2(q)

J11
2 J

3
8J

3
16

J6
1J

2
32

+ 512q2B(q)
J24
2 J

2
8

J12
1 J4

+ 768q2A(q)B(q)
J16
2 J

4
8

J8
1J

2
4

+ 48q2A2(q)B2(q)
J4J

6
8

J2
2

+ 1536q3B2(q)
J11
2 J8J

7
16

J6
1J

2
32

+ 1536q4B2(q)
J11
2 J

9
8J

2
32

J6
1J

2
4J

3
16

+ 64q4B4(q)
J4
8J

9
16

J4
4J

2
32

+ 32q4B4(q)
J18
8 J

2
32

J8
4J

5
16

+ 768q4A2(q)
J11
2 J

2
4J16J

2
32

J6
1J8

)
. (3.21)

Proof. It follows from (1.16) and (2.44) that

f16(z) =
{(
A2(q2)ϕ(q8) + 8q4B2(q2)ψ2(q8)ψ(q16) + 32q2ψ6(q2)ψ(q4)

)
L8,0,8,0

+
(
8qA(q2)ψ3(q2)J6,16 + 16q3B(q2)ψ3(q2)ψ(q8)J2,16

)(
L8,1,8,2 + L8,−1,8,−2

)
+
(
4q2A(q2)B(q2)ψ(q4)ψ(q8) + 16q2ψ6(q2)ϕ(q8) + 32q4ψ6(q2)ψ(q16)

)
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×
(
L8,2,8,4 + L8,−2,8,−4

)
+
(
8q3A(q2)ψ3(q2)J2,16 + 16q3B(q2)ψ3(q2)ψ(q8)J6,16

)
× (L8,3,8,6 + L8,−3,8,−6)

+
(
2q4A2(q2)ψ(q16) + 4q4B2(q2)ϕ(q8)ψ2(q8) + 32q4ψ6(q2)ψ(q4)

)
L8,4,8,8

}2
,

from which we obtain that

c16,0(q) =
(
A2(q2)ϕ(q8) + 8q4B2(q2)ψ2(q8)ψ(q16) + 32q2ψ6(q2)ψ(q4)

)2
×

∞∑
n1,n2=−∞
n1+n2=0

q8n
2
1+8n2

2

+ 2
(
8qA(q2)ψ3(q2)J6,16 + 16q3B(q2)ψ3(q2)ψ(q8)J2,16

)2
×

∞∑
n1,n2=−∞
n1+n2=0

q8n
2
1+2n1+8n2

2−2n2

+ 2
(
4q2A(q2)B(q2)ψ(q4)ψ(q8) + 16q2ϕ(q8)ψ6(q2) + 32q4ψ6(q2)ψ(q16)

)2
×

∞∑
n1,n2=−∞
n1+n2=0

q8n
2
1+4n1+8n2

2−4n2

+ 2
(
8q3A(q2)ψ3(q2)J2,16 + 16q3B(q2)ψ3(q2)ψ(q8)J6,16

)2
×

∞∑
n1,n2=−∞
n1+n2=0

q8n
2
1+6n1+8n2

2−6n2

+
(
2q4A2(q2)ψ(q16) + 4q4B2(q2)ϕ(q8)ψ2(q8) + 32q4ψ6(q2)ψ(q4)

)2
×

∞∑
n1,n2=−∞
n1+n2+1=0

q8n
2
1+8n1+8n2

2+8n2 . (3.22)

After simplification, one finds that the five double sums in (3.22) can be expressed as
certain single Ramanujan’s theta function (2.1). When we simplify (3.22), we also need
the following results.

First, we shall consider the simplification of the following expression, namely,

J
2

6,16J12,32 + q4J
2

2,16J4,32. (3.23)

We need to utilize the following identity involving f(a, b), which can be found in Berndt’s
book [5, p. 45, Entry 29].

f(a, b)f(c, d) = f(ac, bd)f(ad, bc) + af
(
b/c, ac2d

)
f
(
b/d, acd2

)
. (3.24)
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Taking a = c = q6 and b = d = q10 in (3.24) first and setting a = c = q2 and b = d = q14

in (3.24) second yield that

J
2

6,16 = J12,32ϕ(q16) + 2q6J4,32ψ(q32), (3.25)

J
2

2,16 = J4,32ϕ(q16) + 2q2J12,32ψ(q32). (3.26)

Substituting (3.25) and (3.26) into (3.23), we get that

J
2

6,16J12,32 + q4J
2

2,16J4,32 =
(
J
2

12,32 + q4J
2

4,32

)
ϕ(q16) + 4q6J4,32J12,32ψ(q32).

We also recall from [5, p. 51, Example (iv)] that

2J
2

3,8 = ϕ(q2)ψ(q) + ϕ(−q2)ψ(−q),

2qJ
2

1,8 = ϕ(q2)ψ(q)− ϕ(−q2)ψ(−q),

from which we find that

J
2

3,8 + qJ
2

1,8 = ϕ(q2)ψ(q). (3.27)

With the help of (3.27), we further have

J
2

6,16J12,32 + q4J
2

2,16J4,32 = ϕ(q8)ϕ(q16)ψ(q4) + 4q6J4,32J12,32ψ(q32)

=
J3
16J

3
32

J4J2
64

+ 4q6
J2
8J32J

2
64

J4J16
.

Next, notice that

J2,16J6,16

(
J12,32 + q2J4,32

)
= J2,16J6,16J2,8 =

J4
4J

2
16

J2
2J8

,

where the first identity follows from (2.31) with a = q2 and b = q6. Finally, we also need
to use (2.2)–(2.4) and (3.11) to simplify (3.22).

Through these simplifications, (3.21) thus follows. We therefore complete the proof
of Theorem 3.8. �

4. Congruences for k-colored generalized Frobenius partitions

To investigate congruence properties of cφk(n), we collect some necessary identities.

Lemma 4.1. We have
J2
1

J2
=
J2
9

J18
− 2q

J3J
2
18

J6J9
, (4.1)

J1J4
J2

=
J3J12J

5
18

J2
6J

2
9J

2
36

− qJ9J36
J18

. (4.2)

The identities (4.1) and (4.2) follow by replacing q by −q in (i) and (ii) of [5, p. 49,
Corollary], respectively.
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Lemma 4.2. [20, 43] Let a(q) be defined as in (2.8). Then

a(q) = a(q3) + 6q
J3
9

J3
, (4.3)

J3
1 = a(q3)J3 − 3qJ3

9 (4.4)
and

1

J3
1

=
J3
9

J12
3

(
a2(q3)J2

3 + 3qa(q3)J3J
3
9 + 9q2J6

9

)
. (4.5)

The identities (4.3) and (4.4) were established by Hirschhorn, Garvan and Borwein [20,
Eqs. (1.3) and (1.4)]. The identity (4.5) was proved by Wang [43, Eq. (2.28)].

According to the binomial theorem, one can easily establish the following congruence,
which will be used frequently without mention.

Lemma 4.3. For any k ≥ 1 prime number p,

Jpk ≡ Jpk (mod p).

First, we prove the following infinite family of congruences modulo 27.

Theorem 4.4. For any N ≥ 0 and n ≥ 0,

cφ9N+3(3n+ 2) ≡ 0 (mod 27). (4.6)

Proof. The congruence cφ3(3n+2) ≡ 0 (mod 27) was proved by Kolitsch [28]. Therefore,
we only need to consider the case N ≥ 1 in (4.6).

With the help of (2.7), we obtain that, modulo 27,

f9N+3(z) =
{
a(q2)L3,0,3,0 + 3qC(q2)

(
L3,1,3,2 + L3,−1,3,−2

)}3N+1

≡ a3N+1(q2)L3N+1
3,0,3,0 + 3(3N + 1)qC(q2)a3N(q2)L3N

3,0,3,0

(
L3,1,3,2 + L3,−1,3,−2

)
+ (27N(3N + 1)/2)q2C2(q2)a3N−1(q2)L3N−1

3,0,3,0

(
L3,1,3,2 + L3,−1,3,−2

)2
, (4.7)

where C(q) is defined as in (2.46). Extracting the constant term in (4.7), we find that,
modulo 27,

CTz

{
f9N+3(z)

}
≡ CTz

{
a3N+1(q2)L3N+1

3,0,3,0

}
= a3N+1(q2)

∞∑
n1,n2,...,n3N+1=−∞
n1+n2+···+n3N+1=0

q3n
2
1+3n2

2+···+3n2
3N+1

= a3N+1(q2)
∞∑

n1,n2,...,n3N=−∞

q6(
∑3N
i=1 n

2
i+

∑
1≤i<j≤3N ninj). (4.8)

Combining (3.1) and (4.8) yields that

CΦ9N+3(q) ≡
a3N+1(q)

J9N+3
1

∞∑
n1,n2,...,n3N=−∞

q3(
∑3N
i=1 n

2
i+

∑
1≤i<j≤3N ninj) (mod 27). (4.9)
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Thanks to (4.3) and (4.4),

a3(q)J3
3 = a3(q3)J3

3 + 18qa2(q3)J2
3J

3
9 + 108q2a(q3)J3J

6
9 + 216q3J9

9 ,

J9
1 = a3(q3)J3

3 − 9qa2(q3)J2
3J

3
9 + 27q2a(q3)J3J

6
9 − 27q3J9

9 ,

from which we obtain that

J9N
1 ≡ a3N(q)J3N

3 (mod 27). (4.10)

Substituting (4.3), (4.5) and (4.10) into (4.9), we find that

CΦ9N+3(q) ≡
J3
9

J3N+12
3

(
a2(q3)J2

3 + 3qa(q3)J3J
3
9 + 9q2J6

9

)(
a(q3) + 6q

J3
9

J3

)
×

∞∑
n1,n2,...,n3N=−∞

q3(
∑3N
i=1 n

2
i+

∑
1≤i<j≤3N ninj) (mod 27). (4.11)

Taking all the terms of the form q3n+2 in (4.11), upon simplification, we conclude that
∞∑
n=0

cφ9N+3(3n+ 2)qn ≡ 27a(q)
J9
3

J3N+12
1

∞∑
n1,n2,...,n3N=−∞

q(
∑3N
i=1 n

2
i+

∑
1≤i<j≤3N ninj)

≡ 0 (mod 27).

Therefore, we complete the proof of (4.6). �

Next, we prove another infinite family of congruences modulo 27.

Theorem 4.5. For any N ≥ 0 and n ≥ 0,

cφ9N+6(3n+ 2) ≡ 0 (mod 27). (4.12)

Proof. The case N = 0 of (4.12) was proved by Xia [45]. Therefore, we consider that N
is a positive integer in (4.12).

According to (2.38) and (2.47), we find that, modulo 27,

c9N+6,0(q) = CTz{f9N+6(z)} = CTz

{
fN9 (z) · f6(z)

}
≡ cN9,0(q)c6,0(q)S9N+6,1(q) + cN9,0(q)c6,3(q)S9N+6,2(q)

+NcN−19,0 (q)c9,3(q)c6,0(q)
(
S9N+6,3(q) + S9N+6,4(q)

)
+NcN−19,0 (q)c9,3(q)c6,3(q)

(
S9N+6,5(q) + S9N+6,6(q)

)
+ (N(N − 1)/2)cN−29,0 (q)c29,3(q)c6,0(q)

×
(
S9N+6,7(q) + S9N+6,8(q) + 2S9N+6,9

)
+ (N(N − 1)/2)cN−29,0 (q)c29,3(q)c6,3(q)

×
(
S9N+6,10(q) + S9N+6,11(q) + 2S9N+6,12

)
=: S9N+6(q),



26 S.-P. CUI, N. S. S. GU, AND D. TANG

where the S9N+6,i(q) for 1 ≤ i ≤ 12 are some functions of q3. For example,

S9N+6,1(q) =
∞∑

n1,n2,...,nN+1=−∞
3n1+3n2+···+3nN+2nN+1=0

q9n
2
1+9n2

2+···+9n2
N+6n2

N+1 ,

S9N+6,2(q) =
∞∑

n1,n2,...,nN+1=−∞
3n1+3n2+···+3nN+2nN+1+1=0

q9n
2
1+9n2

2+···+9n2
N+6n2

N+1+6nN+1 .

From (3.1) we have

CΦ9N+6(q
2) =

c9N+6,0(q)

J9N+6
2

≡ S9N+6(q)

J9N+6
2

(mod 27).

Therefore, in order to prove (4.12), we need to prove that the coefficients of q3n+1 for any
n ≥ 0 in S9N+6(q)/J

9N+6
2 vanish modulo 27. Next, we shall prove that for any n ≥ 0,

the coefficients of q3n+1 in

cN9,0(q)c6,0(q)/J
9N+6
2 , cN9,0(q)c6,3(q)/J

9N+6
2 ,

cN−19,0 (q)c9,3(q)c6,0(q)/J
9N+6
2 , cN−19,0 (q)c9,3(q)c6,3(q)/J

9N+6
2 ,

cN−29,0 (q)c29,3(q)c6,0(q)/J
9N+6
2 and cN−29,0 (q)c29,3(q)c6,3(q)/J

9N+6
2

vanish modulo 27. For this purpose, we first notice that, modulo 27,

c9,0(q) ≡ a3(q2)a(q6) and c9,3(q) ≡ 3q3a3(q2)C(q6).

Moreover, we find that, modulo 27,

cN9,0(q)c6,0(q) ≡ a3N(q2)aN(q6)

(
a2(q2)ϕ(q6) + 18q2

J2
4J

7
6J24

J3
2J8J12

)
, (4.13)

cN9,0(q)c6,3(q) ≡ a3N(q2)aN(q6)

(
2q3a2(q2)ψ(q12) + 18q3

J6
6J8J

2
12

J2
2J4J24

)
, (4.14)

cN−19,0 (q)c9,3(q)c6,0(q) ≡ 3q3a3N+2(q2)aN−1(q6)C(q6)ϕ(q6), (4.15)

cN−19,0 (q)c9,3(q)c6,3(q) ≡ 6q6a3N+2(q2)aN−1(q6)C(q6)ψ(q12), (4.16)

cN−29,0 (q)c29,3(q)c6,0(q) ≡ 9q6a3N+2(q2)aN−2(q6)C2(q6)ϕ(q6), (4.17)

cN−29,0 (q)c29,3(q)c6,3(q) ≡ 18q9a3N+2(q2)aN−2(q6)C2(q6)ψ(q12). (4.18)

Based on (4.13)–(4.18), we consider the following three auxiliary functions, given by
∞∑
n=0

A1(n)qn =
a3N+2(q2)

J9N+6
2

,

∞∑
n=0

A2(n)qn = 18q2a3N(q2)
J2
4J

7
6J24

J9N+9
2 J8J12

,

∞∑
n=0

A3(n)qn = 18a3N(q2)
J6
6J8J

2
12

J9N+8
2 J4J24

.
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Therefore, to obtain (4.12), the ultimate task is to prove that for any n ≥ 0,

A1(3n+ 1) ≡ A2(3n+ 1) ≡ A3(3n+ 1) ≡ 0 (mod 27).

Thanks to (4.3) and (4.5), we deduce that, modulo 27,

a3N+2(q2) ≡ a3N+2(q6) + 6(3N + 2)q2a3N+1(q6)C(q6)

+ 18(3N + 2)(3N + 1)q4a3N(q6)C2(q6),

1

J9N+6
2

≡ J9N+6
18

J36N+24
6

(
a6N+4(q6)J6N+4

6 + 3(3N + 2)q2a6N+3(q6)J6N+3
6 J3

18

)
,

from which we obtain that
∞∑
n=0

A1(3n+ 1)qn ≡ 54(3N + 2)(2N + 1)q
J9N+12
6

J30N+22
2

a9N+4(q2) ≡ 0 (mod 27).

This implies that for any n ≥ 0,

A1(3n+ 1) ≡ 0 (mod 27).

Moreover, it follows from (4.3) that
∞∑
n=0

A2(n)qn ≡ 18q2a4N(q6)
J24

J3N−4
6 J12

· J
2
4

J8
(mod 27),

∞∑
n=0

A3(n)qn ≡ 18a4N(q6)
J2
12

J3N−3
6 J24

· J2J8
J4

(mod 27).

Thanks to (4.1) and (4.2), we conclude that for any n ≥ 0,

A2(3n+ 1) ≡ A3(3n+ 1) ≡ 0 (mod 27).

We therefore prove (4.12). �

Remark 4.6. The congruence (1.14) implies that for any N ≥ 0 and n ≥ 0,

cφ9N+3(3n+ 2) ≡ 0 (mod 9), (4.19)
cφ9N+6(3n+ 2) ≡ 0 (mod 9). (4.20)

From this perspective, (4.6) and (4.12) are the corresponding generalizations of (4.19)
and (4.20), respectively.

Finally, we derive the following infinite family of congruences modulo 32.

Theorem 4.7. For any N ≥ 0 and n ≥ 0,

cφ4N+4(4n+ 3) ≡ 0 (mod 32). (4.21)
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Proof. Baruah and Sarmah [3, Eq. (3.2)] proved that for any n ≥ 0,

cφ4(4n+ 3) ≡ 0 (mod 256). (4.22)

With the help of (1.14), Chan, Wang and Yang [8, Eq. (6.14)] obtained that for any
n ≥ 0,

cφ8(2n+ 1) ≡ 0 (mod 64). (4.23)

The congruences (4.22) and (4.23) imply that (4.21) holds for the cases N = 0 and
N = 1. Therefore, we will consider the cases N ≥ 2.

From (2.22) we find that

f4N+4(z) =
{
A(q2)L4,0,4,0 + 4qψ3(q2)

(
L4,1,4,2 + L4,−1,4,−2

)
+ 2q2B(q2)ψ(q8)L4,2,4,4

}N+1
,

from which we obtain that, modulo 32,

c4N+4,0(q) = CTz{f4N+4(z)}

≡ AN+1(q2)
∞∑

n1,n2,...,nN+1=−∞
n1+n2+···+nN+1=0

q4n
2
1+4n2

2+···+4n2
N+1

+ 2N(N + 1)q4AN−1(q2)B2(q2)ψ2(q8)

×
∞∑

n1,n2,...,nN+1=−∞
n1+n2+···+nN+1+1=0

q4n
2
1+···+4n2

N−1+4n2
N+4nN+4n2

N+1+4nN+1

+ 16

(
N + 1

4

)
q8AN−3(q2)B4(q2)ψ4(q8)

×
∞∑

n1,n2,...,nN+1=−∞
n1+n2+···+nN+1+2=0

q4n
2
1+···+4n2

N−3+4n2
N−2+4nN−2+···+4n2

N+1+4nN+1 ,

where we have
(
N+1
4

)
= 0 if N = 2. Thanks to (1.18),

CΦ4N+4(q) ≡
1

J4N+4
1

AN+1(q)
∞∑

n1,n2,...,nN+1=−∞
n1+n2+···+nN+1=0

q2n
2
1+2n2

2+···+2n2
N+1

+ 2N(N + 1)q2
1

J4N+4
1

AN−1(q)B2(q)ψ2(q4)

×
∞∑

n1,n2,...,nN+1=−∞
n1+n2+···+nN+1+1=0

q2n
2
1+···+2n2

N−1+2n2
N+2nN+2n2

N+1+2nN+1

+ 16

(
N + 1

4

)
q4

1

J4N+4
1

AN−3(q)B4(q)ψ4(q4)
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×
∞∑

n1,n2,...,nN+1=−∞
n1+n2+···+nN+1+2=0

q2n
2
1+···+2n2

N−3+2n2
N−2+2nN−2+···+2n2

N+1+2nN+1 . (4.24)

We also need the following 2-dissection identity due to Yao and Xia [48, Eq. (2.10)]:

1

J4
1

=
J14
4

J14
2 J

4
8

+ 4q
J2
4J

4
8

J10
2

. (4.25)

Moreover, it follows from (2.4), (3.5) and (3.6) that

A(q) = ϕ3(q2) + 12qψ(q2)2ψ(q4), (4.26)

B(q) = 3ϕ(q2)2 + 4qψ(q4)2. (4.27)

Substituting (4.25)–(4.27) into (4.24), and taking all the terms of the form q2n+1, after
simplification, we obtain that, modulo 32,

∞∑
n=0

cφ4N+4(2n+ 1)qn ≡ 16(N + 1)
J3
4

JN+1
2

∞∑
n1,n2,...,nN+1=−∞
n1+n2+···+nN+1=0

qn
2
1+n

2
2+···+n2

N+1

≡ 16(N + 1)
J3
4

JN+1
2

∞∑
n1,n2,...,nN=−∞

q
∑N
i=1 2n

2
i+

∑
1≤i<j≤N 2ninj .

This implies that (4.21) holds. �

5. Final remarks

The entire project began in an attempt to find the integral expressions of the generat-
ing functions of k-colored generalized Frobenius partitions. Based on general symmetric
and recurrence relations for certain bivariable quadratic forms, we manage to establish
many expressions of CΦk(q) with integer coefficients. Some of these were derived by
other scholars in the previous study, others are new. As an immediate consequence, we
prove three infinite families of congruences satisfied by cφk(n), where k is allowed to
grow arbitrary large. We conclude this paper with several remarks.

First, the congruence (4.22), the expressions (3.10), (3.18) and (3.21), together with
the numerical evidence suggest the following congruence family, which can be viewed as
an improvement of (4.21).

Conjecture 5.1. For any N ≥ 0 and n ≥ 0,

cφ4N+4(4n+ 3) ≡ 0 (mod 256). (5.1)

Unfortunately, it seems that the method of constant terms used in the present paper
will run into serious limitations beyond the modulus 32 in (5.1). One main obstacle is
that we need to further analyse congruence properties of certain multiple q-series sums.
Thus, a different approach may be necessary. Further, it would be interesting to find
more instances similar to (4.6), (4.12) and (5.1).
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Second, utilizing the theory of modular forms, Jiang, Rolen and Woodbury [23] also
strived to find new ways to represent the generating functions CΦk(q) as linear combina-
tions of Dedekind’s eta functions and Klein forms. Moreover, they [23, p. 5, Corollary]
proved that there exists an algorithm to compute CΦk(q) as sums of products of q-
Pochhammer symbol, given by (1.1). It is not clear whether the coefficients of linear
combinations in these expressions are integers.

Finally, as mentioned in the introduction, Chan, Wang and Yang [7] did not give inte-
gral expressions of CΦk(q) with k ∈ {10, 12, 14, 15, 17}. Actually, Kolitsch [31, Theorem
1] proved a very neat identity, that is, for any n ≥ 0,

cφ10(n+ 1) = 5cφ2(5n+ 3). (5.2)

Utilizing the theory of modular forms, Paule and Radu [36] established the following
generating function of cφ2(5n+ 3):

∞∑
n=0

cφ2(5n+ 3)qn = 20
J2
5J

5
10

J6
1J

2
20

+ 25q
J2
2J

3
10J

2
20

J4
4J

4
5

+ 300q
J2J5J

8
10

J9
1J

2
20

+ 200q2
J3
2J

6
10J

2
20

J3
1J

4
4J

5
5

+ 300q2
J2
2J

2
5J

3
10J

2
20

J6
1J

4
4

+ 1000q2
J2
2J

11
10

J12
1 J

2
20

+ 400q3
J4
2J

9
10J

2
20

J6
1J

4
4J

6
5

+ 2500q3
J3
2J5J

6
10J

2
20

J9
1J

4
4

+ 5000q4
J4
2J

9
10J

2
20

J12
1 J

4
4

. (5.3)

According to (3.15), (5.2), (5.3) and the generating functions CΦ2(q) and CΦ5(q), one
can derive an integral expression of CΦ10(q). It should be admitted that there are less
terms than (3.16). However, our approach is elementary, unified and general. Following
a similar strategy as deriving (2.33), we can prove the corresponding expression of f7(z).
Based on this bivariable identity, one can derive an integral expression of CΦ14(q) after
some tedious computations. Adopting a similar manipulation, one can also derive the
integral expressions of CΦ15(q) and CΦ17(q). However, there are many terms containing
the factor Ja,b in the expressions of CΦ15(q) and CΦ17(q), these terms can not be further
simplified as in derivation of (3.21).
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