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Abstract. A strongly unimodal sequence of size n is a sequence of integers {aj}sj=1

satisfying the following conditions:

0 < a1 < a2 < · · · < ak > ak+1 > · · · > as > 0 and a1 + a2 + · · ·+ as = n,

for a certain index k, and we usually define its rank as s − 2k + 1. Let u(m,n) be the
number of strongly unimodal sequences of size n with rank m, and the generating function
for u(m,n) is written as

U(z; q) :=
∑
m,n

u(m,n)zmqn.

Recently, Chen and Garvan established some Hecke-type identities for the third order
mock theta function ψ(q) and U(q), which are the specializations of U(z; q), as advocated
by ψ(q) = U(±i; q) and U(q) = U(1; q). Meanwhile, they inquired whether these Hecke-
type identities could be proved via the Bailey pair machinery. In this paper, we not only
answer the inquiry of Chen and Garvan in the affirmative, but offer more instances in a
broader setting, with, for example, some classical third order mock theta functions due
to Ramanujan involved. Furthermore, we extend the Hecke-type identities into multiple
series identities. Our work is built upon a handful of Bailey pairs and conjugate Bailey
pairs.

1. Introduction

Throughout the paper, we always assume that q is a complex number such that |q| < 1
and the following standard q-series notation [28] will be utilized frequently. For positive
integers n and m,

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1− aqk), (a; q)∞ :=
∞∏
k=0

(1− aqk),

(a; q)−n :=
1

(aq−n; q)n
=

(−q/a)nq(
n
2)

(q/a; q)n
,

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n,
(a1, a2, . . . , am; q)∞ := (a1; q)∞(a2; q)∞ · · · (am; q)∞.
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We also need the (unilateral) basic hypergeometric series rφs which is given by

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, x

)
:=

∞∑
n=0

(a1, a2, . . . , ar; q)n
(q, b1, b2, . . . , bs; q)n

(
(−1)nq(

n
2)
)1+s−r

xn.

Define

j(x; q) := (x, q/x, q; q)∞ =
∞∑

n=−∞

(−1)nq(
n
2)xn, (1.1)

where the second equality is the Jacobi triple product identity [28, Eq. (1.6.1)]. For any
positive integer m, let

Jm :=
∞∏
i=1

(1− qmi).

In this paper, we mainly focus on Hecke-type double sums∑
(m,n)∈D

(−1)H(m,n)qQ(m,n)+L(m,n),

where H(m,n) and L(m,n) are linear forms, Q(m,n) is an indefinite quadratic form, and
D is some subset of Z× Z such that Q(m,n) ≥ 0 for all (m,n) ∈ D.

We follow the definition of strongly unimodal sequences due to Bryson, Ono, Pitman,
and Rhoades [15]. A sequence of integers {aj}sj=1 is considered as a strongly unimodal
sequence of size n if it satisfies the following conditions:

0 < a1 < a2 < · · · < ak > ak+1 > · · · > as > 0 and a1 + a2 + · · ·+ as = n,

for some k. Let u(n) denote the number of strongly unimodal sequences of size n. Addi-
tionally, the rank of a strongly unimodal sequence is defined as s − 2k + 1, which means
that the number of terms after the maximum term minus the number of terms before the
maximum term. Let u(m,n) denote the number of strongly unimodal sequences of size n
with rank m. Then the generating function for u(m,n) is given by

U(z; q) :=
∑
m,n

u(m,n)zmqn =
∞∑
n=0

(−zq; q)n(−z−1q; q)nqn+1.

For simplicity, set

U(q) := U(1; q) =
∞∑
n=0

(−q; q)2nqn+1.

In [15], Bryson et al. established a connection between U(−1; q) and a quantum modular
form which is dual to a quantum modular form given by Zagier [45]. Meanwhile, they
obtained a Hecke-type identity for U(−1; q).

U(−1; q) =
∑
n>0

∑
6n≥|6j+1|

(−1)j+1q2n
2−j(3j+1)/2 + 2

∑
n,m>0

∑
6n≥|6j+1|

(−1)j+1q2n
2+mn−j(3j+1)/2.
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Later, Hikami and Lovejoy [32] found the following Hecke-type identity for U(z; q).

(1 + z)U(z; q) = q

J1

(∑
n,r≥0

−
∑
n,r<0

)
(−1)nz−rqn(3n+5)/2+2nr+r(r+3)/2.

Bryson et al. [15] also demonstrated that U(±i; q) behaves like a mock modular form
and observed that

U(±i; q) = ψ(q) :=
∞∑
n=1

qn
2

(q; q2)n
, (1.2)

where ψ(q) is a third order mock theta function given by Ramanujan [41]. Furthermore,
they provided some interesting congruence results for u(n) and u(a, b;n) where u(a, b;n)
denotes the number of strongly unimodal sequences of size n with rank ≡ a (mod b).
Meanwhile, they proposed a congruence conjecture involving these two functions.

Beyond strongly unimodal sequences, Kim, Lim, and Lovejoy [33] introduced odd-balanced
unimodal sequences. A sequence of integers {aj}sj=1 satisfies

0 < a1 ≤ a2 ≤ · · · ≤ ak−1 < ak > ak+1 ≥ · · · ≥ as−1 ≥ as and a1 + a2 + · · ·+ as = n.

Besides, the peak ak is even, odd parts to the right of the peak are the same as those to the
left and even parts on both sides of the peak are distinct. Then such a sequence is called
an odd-balanced unimodal sequence of size n. Let v(n) denote the number of odd-balanced
unimodal sequences of size 2n + 2 and let v(m,n) denote the number of such sequences
with rank m, where the definition of rank is consistent with that of U(z; q). Meanwhile,
Kim et al. [33] gave the generating function for v(m,n).

V(z; q) :=
∑
m,n

v(m,n)zmqn =
∞∑
n=0

(−zq,−z−1q; q)nqn

(q; q2)n+1

. (1.3)

Setting z = ±i in the above equality gives

V(±i; q) =
∞∑
n=0

(−q2; q2)nqn

(q; q2)n+1

= q−1A(q),

where A(q) is a second order mock theta function [38]. Similar to U(z; q), the series V (z; q)
can also be expressed as Hecke-type double sums [33].(

1 +
1

z

)
V(z; q) = J2

J2
1

(∑
n,r≥0

−
∑
n,r<0

)
(−1)nzrqn2+2n+(2n+1)r+r(r+1)/2. (1.4)

Recently, Bringmann and Lovejoy [14] initiated the study of odd strongly unimodal
sequences whose numbers are odd. They derived∑

m,n

ou∗(m,n)zmqn =
∞∑
n=0

(−zq,−z−1q; q2)nq2n+1,
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where ou∗(m,n) denotes the number of odd strongly unimodal sequences of size n with
rank m. For convenience, we define

OU∗(z; q) :=
∞∑
n=0

(−zq,−z−1q; q2)nq2n+1. (1.5)

Meanwhile, they [14] obtained the following Hecke-type identity.

OU∗(z; q) =
q

J2

(∑
n,r≥0

−
∑
n,r<0

)
(−1)nzrq3n2+3n+4nr+r2+2r.

For more on unimodal sequences, one can see [11,12,34,35].
In [16], Chen and Garvan confirmed the conjecture posed by Bryson et al. [15] and

also proved the other two conjectures related to odd-balanced unimodal sequences [33]
and Andrews’ spt-function [4]. Meanwhile, they established the following three Hecke-type
identities.

ψ(q) =
J2
J2
1

∞∑
n=1

n∑
m=1−n

(1− q2n)(−1)m−1qn(3n−1)−2m2+m, (1.6)

U(q) =
1

J1

∞∑
n=1

n∑
r=1

(1 + q2n)(−1)r−1qn(2n−1)−r(r−1)/2, (1.7)

U(q) =
J2
J2
1

∞∑
n=1

n∑
m=1−n

sg(m)(1 + q2n)(−1)n−1qn(3n−1)−2m2+m, (1.8)

where sg(m) = 1 if m > 0 and sg(m) = −1 otherwise. At the end of the paper, they
proposed a question seeking a Bailey pair method to prove these identities.

The aim of this paper is to give a positive answer. Meanwhile, some analogous iden-
tities and generalizations with more parameters are obtained. In particular, we derive
some Hecke-type identities for the third order mock theta functions due to Ramanujan.
Furthermore, we extend some theorems into multiple series identities.

Mock theta functions which are a fascinating class of mathematical functions are applied
to the fields of number theory and modular forms. These functions which were first intro-
duced by Ramanujan [40] in 1920 have continuously attracted widespread attention from
numerous scholars. In the literature, the Bailey pair machinery plays a very important role
in deriving Hecke-type identities for mock theta functions.

Definition 1.1. The pair of sequences (αn, βn) is called a Bailey pair relative to (a, q) if
(αn, βn) satisfies

βn =
n∑

r=0

αr

(q; q)n−r(aq; q)n+r

. (1.9)
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In 1979, Andrews [1] gave the following identity

αn =
(1− aq2n)(a; q)n(−1)nq(

n
2)

(1− a)(q; q)n

n∑
j=0

(q−n, aqn; q)jq
jβj, (1.10)

where (αn, βn) forms a Bailey pair relative to (a, q).

Theorem 1.2. ( [3]) (the Bailey lemma) Let ρ1 and ρ2 be nonzero complex numbers. If
(αn, βn) is a Bailey pair relative to (a, q), then so is (α′n, β′n), where

α′n =
(ρ1, ρ2; q)n(aq/ρ1ρ2)

nαn

(aq/ρ1, aq/ρ2; q)n
, (1.11)

β′n =
1

(aq/ρ1, aq/ρ2; q)n

n∑
j=0

(ρ1, ρ2; q)j(aq/ρ1ρ2; q)n−j(aq/ρ1ρ2)
jβj

(q; q)n−j
. (1.12)

Substituting (1.11) and (1.12) into (1.9), and then setting n→∞ yields that
∞∑
n=0

(ρ1, ρ2; q)n(aq/ρ1ρ2)
nβn =

(aq/ρ1, aq/ρ2; q)∞
(aq, aq/ρ1ρ2; q)∞

∞∑
n=0

(ρ1, ρ2; q)n(aq/ρ1ρ2)
nαn

(aq/ρ1, aq/ρ2; q)n
. (1.13)

Based on the Bailey lemma, Andrews [3] established the Hecke-type identities for the
fifth and seventh order mock theta functions which play a crucial role in proving mock theta
conjectures. Then Andrews and Hickerson [7] derived the Hecke-type identities for the sixth
order mock theta functions. Later, in 2000, Choi [18, 19] discussed the tenth order mock
theta functions. Subsequently, Berndt and Chan [10] used the Bailer pair method to obtain
the Hecke-type identities for two sixth order mock theta functions. Moreover, Cui, Gu,
and Hao [24] considered the second and eighth order mock theta functions. For additional
research on mock theta functions, one can refer to [5,13,17,20–23,25,27,29–31,39,41,43,44].

Besides the third order mock theta function ψ(q), recall the following two third order
mock theta functions due to Ramanujan [41].

ν(q) :=
∞∑
n=0

qn(n+1)

(−q; q2)n+1

, (1.14)

φ(q) :=
∞∑
n=0

qn
2

(−q2; q2)n
. (1.15)

The Hecke-type identities for these three functions were widely studied. The following
identities related to ψ(q) were given by Andrews [5, Eq. (1.10)], Mortenson [39, Eq. (2.5)],
and Chen and Wang [17, Eq. (4.37)], respectively.

1 + ψ(q) =
1

J1

∞∑
n=0

n∑
j=0

(1− q6n+6)(−1)nq2n2+n−(j+1
2 ),

1 + 2ψ(q) =
1

J1

∞∑
n=0

n∑
j=−n

(1 + q2n+1)(−1)nq2n2+n−(j+1
2 ),
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ψ(q) = − 1

J1

∞∑
n=1

n−1∑
j=0

(1− q2n)(−1)nq2n2−n−(j+1
2 ).

In addition, Mortenson [39, Eq. (2.6)] found that

ν(−q) = 1

J1

∞∑
n=0

n∑
j=−n

(−1)nq2n2+2n−(j+1
2 ),

and Chen and Wang [17, Eq. (6.20), Eq. (6.30)] obtained that

φ(q) =
J2
J1J4

(
1 + 2

∞∑
n=1

(−1)nq2n2−n −
∞∑
n=1

n∑
j=−n

(1− q2n)(−1)jq3n2−n−j2
)
,

ν(q) =
J4
J2
2

∞∑
n=0

n∑
j=−n

(1− q2n+1)(−1)jq3n2+2n−j2 .

The main results of this paper are stated as follows.
First, combining Theorem 1.2 and the Bailey pair obtained by Andrews and Hickerson [7],

we derive the following result, which implies the Hecke-type identities for some third order
mock theta functions. For any integer m, let a, x, and q be complex numbers with |x| < 1
and none of a and axq−m+1 of the form q−2k for any nonnegative integer k. Then

∞∑
n=0

qn
2+mn

(−x; q2)n+1

=
∞∑
n=0

(x−1qm+1; q2)n(−x)n (1.16)

=
(axq−m+1,−qm+1; q2)∞

(a,−x; q2)∞

∞∑
n=0

(1− aq4n)(x−1qm+1; q2)n(−1)na2nxnq3n
2−2n−mn

(axq−m+1; q2)n

×
n∑

j=0

(1− aq4j−2)(a; q2)j−1(−aq−m−1; q2)j(−1)ja−2jq−2j
2+3j+mj

(q2,−qm+1; q2)j
, (1.17)

Corollary 1.3. We have

ν(q) =
J2
1J

2
4

J5
2

∞∑
n=0

n∑
j=−n

(1 + q2n+1)(−1)n+jq3n
2+2n−2j2 , (1.18)

φ(q) =
J2
J2
4

∞∑
n=0

n∑
j=−n

(1 + q2n+1)(−1)n+jq3n
2+2n−2j2+j, (1.19)

ψ(q) =
J2
J2
1

∞∑
n=1

n∑
j=−n+1

(1− q2n)(−1)j−1q3n2−n−2j2+j (1.20)

=
J2
J2
1

∞∑
n=0

n∑
j=−n+1

(−1)jq3n2+n−2j2+j − J2
J2
1

∞∑
n=0

n+1∑
j=−n

(−1)jq3n2+5n−2j2+j+2. (1.21)
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Remark: The identity (1.20) is Chen and Garvan’s identity (1.6).

Theorem 1.4. We have
∞∑
n=0

(q; q2)nq
2n

(x,−q2; q2)n
=
J1
J2
2

∞∑
r=1

r∑
n=1

(1 + q2n−1)(1 + q2r)(xq−2n+2; q4)n−1(−1)n−1q2r
2−r−n

(x; q2)n−1
.

(1.22)

Corollary 1.5. We have
∞∑
n=0

(q; q2)nq
2n

(−q; q)2n+1

=
J1
J2
2

∞∑
r=1

r∑
n=1

(1 + q2r)(−1)n−1q2r2−r−(
n
2)−1, (1.23)

∞∑
n=0

(q; q2)nq
2n

(−q; q)2n
=
J1
J2
2

∞∑
r=1

r∑
n=−r+1

sg(n)(1 + q2r)(−1)n−1q2r2−r−(
n+1
2 ), (1.24)

where sg(n) = 1 if n > 0 and sg(n) = −1 otherwise.

Remark: Recall the following identity in [6, Eq. (1.2.1)]. For |t| < 1 and |b| < 1,
∞∑
n=0

(a; qh)n(b; q)hn
(qh; qh)n(c; q)hn

tn =
(at; qh)∞(b; q)∞
(t; qh)∞(c; q)∞

∞∑
n=0

(t; qh)n(c/b; q)n
(q; q)n(at; qh)n

bn. (1.25)

Setting h = 2, a = 0, b = q, c = −q2, and t = q2 in (1.25), we derive that
∞∑
n=0

(−q; q)2nqn+1 =
J2
2

J2
1

∞∑
n=0

(q; q2)nq
2n+1

(−q; q)2n+1

. (1.26)

So, combining (1.23) and (1.26), and then exchanging n and r, we obtain Chen and Garvan’s
identity (1.7).

Theorem 1.6. We have
∞∑
n=0

(q; q2)nq
2n+1

(−q; q)2n+1

=
1

J2

∞∑
r=1

r∑
n=−r+1

sg(n)(1 + q2r)(−1)r−1q3r2−r−2n2+n, (1.27)

∞∑
n=0

(q; q2)nq
2n+1

(−q2; q)2n+1

= − 1

J2

∞∑
r=0

r∑
n=−r

sg(n)(1− q4r+2)(−1)r−1q3r2+r−2n2+n + 1, (1.28)

where sg(n) = 1 if n > 0 and sg(n) = −1 otherwise.

Remark: Combining (1.26) and (1.27), we deduce Chen and Garvan’s identity (1.8).

Theorem 1.7. We have
∞∑
n=0

(−q2; q2)nq2n

(q2; q4)n+1

=
1

J2

∞∑
r=1

r∑
n=1

(1 + q2r)(−1)r+nq3r
2−r−2n2+2n−2, (1.29)

∞∑
n=0

(−q2; q2)nq2n

(q4; q4)n+1

=
1

J2

∞∑
r=1

r∑
n=1

(1− q4r+2)(−1)r+nq3r
2+r−2n2−2. (1.30)
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Remark: We can also obtain generalizations of (1.27)-(1.30), similar to Theorem 1.4.
Since the expressions are too complicated, we only state the special cases in Theorems 1.6
and 1.7.

In view of (1.29), we derive the following Hecke-type identity for OU∗(−1; q).

Corollary 1.8. We have

OU∗(−1; q) = J1
J2
2

∞∑
r=1

r∑
n=1

(1 + qr)(−1)r+nqr(3r−1)/2−n
2+n.

Theorem 1.9. We have
∞∑
n=0

(−q; q)nqn

(q; q2)n
=
J2
J2
1

∞∑
r=0

br/2c∑
n=−b(r+1)/2c

sg′(n)(1− q4n+1)(−1)r+nqr
2+2r−n2−3n,

where sg′(n) = 1 if n ≥ 0 and sg′(n) = −1 otherwise.

Theorem 1.10. We have

V(1; q) = J2
J2
1

∞∑
r=1

r∑
n=1

(1 + q2r)(−1)n−1q2r2−r−n2+n−1.

Notice that the above identity is different from (1.4) with z = 1.
Finally, we extend all the above theorems into infinite families. For the length of the

paper, we merely provide the multiple series identities related to Theorems 1.4, 1.6, and
1.9 as examples.

Theorem 1.11. For k ≥ 2,
∞∑
n=0

(q; q)2nq
2n

∞∑
n1,...,nk−1=0

q2N
2
1+···+2N2

k−1+2N1+···+2Nk−1

(q2; q2)n−N1(q
2; q2)n1 . . . (q

2; q2)nk−2
(q4; q4)nk−1

(x; q2)nk−1

=
J1
J2
2

∞∑
n=0

∞∑
r=0

(1 + q2n+1)(1 + q2n+2r+2)(xq−2n; q4)n(−1)nq2kn(n+1)+2r2+4nr+3r

(x; q2)n
,

where Nj = nj + nj+1 + · · ·+ nk−1.

Theorem 1.12. For k ≥ 2,
∞∑
n=0

(q2; q2)nq
2n

∞∑
n1,...,nk−1=0

(xq)2N1+···+2Nk−1q2N
2
1+···+2N2

k−1(q; q2)nk−1

(q2; q2)n−N1(q
2; q2)n1 . . . (q

2; q2)nk−1
(−xq; q)2nk−1+1

=
1

(x2q4; q2)∞

∞∑
n=0

∞∑
r=0

(1− xq2n+1)(1− x2q4n+4r+4)(x2q2; q2)n+r

(1− x2q2)(q2; q2)n+r+1

× (−1)r+nx2(nk−n+r)q(2k−1)n
2+2kn+3r2+6nr+5r,

where Nj = nj + nj+1 + · · ·+ nk−1.



STRONGLY UNIMODAL SEQUENCES AND HECKE-TYPE IDENTITIES 9

Theorem 1.13. For k ≥ 2,
∞∑
n=0

(q2; q2)nq
n

∞∑
n1,...,nk−1=0

qN
2
1+···+N2

k−1+N1+···+Nk−1

(q; q)n−N1(q; q)n1 . . . (q; q)nk−1
(q; q2)nk−1

=
J2
J2
1

∞∑
n=0

∞∑
r=0

(1− q4n+1)(−1)n+rq(4k−1)n
2+(2k−1)n+r2+4nr+2r

+
J2
J2
1

∞∑
n=0

∞∑
r=0

(1− q4n+3)(−1)n+rq(4k−1)n
2+(6k−1)n+2k+r2+4nr+4r,

where Nj = nj + nj+1 + · · ·+ nk−1.

This paper is organized as follows. In Section 2, some preliminaries are provided. In
Section 3, we prove the main results.

2. Preliminaries

In this section, we collect some q-series identities. Meanwhile, we recall the Bailey
transform and present some Bailey pairs and conjugate Bailey pairs.

Lemma 2.1. ( [28, Appendix (II.3)]) (the q-binomial theorem) For |z| < 1,
∞∑
j=0

(a; q)jz
j

(q; q)j
=

(az; q)∞
(z; q)∞

. (2.1)

Lemma 2.2. ( [26, p. 15]) (the Rogers-Fine identity) For |τ | < 1,
∞∑
r=0

(α; q)rτ
r

(β; q)r
=
∞∑
r=0

(α; q)r(ατq/β; q)rβ
rτ rqr

2−r(1− ατq2r)
(β; q)r(τ ; q)r+1

. (2.2)

Lemma 2.3. ( [28, Appendix (III.1) and (III.2)]) (the Heine transformations) For |z| < 1
and |b| < 1,

2φ1

(
a, b
c

; q, z

)
=

(b, az; q)∞
(c, z; q)∞

2φ1

(
c/b, z
az

; q, b

)
. (2.3)

For |z| < 1 and |c/b| < 1,

2φ1

(
a, b
c

; q, z

)
=

(c/b, bz; q)∞
(c, z; q)∞

2φ1

(
abz/c, b

bz
; q,

c

b

)
. (2.4)

Lemma 2.4. ( [28, Appendix (III.10)]) For |de/abc| < 1 and |b| < 1,

3φ2

(
a, b, c
d, e

; q,
de

abc

)
=

(b, de/ab, de/bc; q)∞
(d, e, de/abc; q)∞

3φ2

(
d/b, e/b, de/abc
de/ab, de/bc

; q, b

)
. (2.5)

Lemma 2.5. ( [28, Appendix (III.13)]) For any nonnegative integer n,

3φ2

(
q−n, b, c
d, e

; q,
deqn

bc

)
=

(e/c; q)n
(e; q)n

3φ2

(
q−n, c, d/b
cq1−n/e, d

; q, q

)
. (2.6)



10 S.-P. CUI, H.-X. DU, AND N.S.S. GU

Lemma 2.6. ( [17, Eq. (2.3)]) For any nonnegative integer n,

3φ2

(
q−n, aqn, β

c, d
; q, q

)
= (−c)nqn(n−1)/2 (aq/c; q)n

(c; q)n
3φ2

(
q−n, aqn, d/β

aq/c, d
; q,

βq

c

)
. (2.7)

Next, in addition to the definition of Bailey pairs and the Bailey lemma mentioned in
the introduction, we present some other facts related to Bailey pairs.

Definition 2.7. The pair of sequences (δn, γn) is called a conjugate Bailey pair relative to
(a, q) if (δn, γn) satisfies

γn =
∞∑
r=n

δr
(q; q)r−n(aq; q)r+n

.

Lemma 2.8. ( [8]) (the Bailey transform) If (αn, βn) is a Bailey pair relative to (a, q) and
(δn, γn) is a conjugate Bailey pair relative to (a, q), then

∞∑
n=0

αnγn =
∞∑
n=0

βnδn.

The following Bailey pair is given by Andrews and Hickerson [7].

Lemma 2.9. ( [7, Theorem 2.3]) Let a, b, c, and q be complex numbers with a 6= 1, b 6= 0,
c 6= 0, q 6= 0, and none of a/b, a/c, qb, and qc of the form q−k with k ≥ 0. For n ≥ 0,
define

An = An(a, b, c, q)

=
(1− aq2n)(a/b, a/c; q)n(bc)nqn

2

(1− a)(bq, cq; q)n

n∑
j=0

(−1)j(1− aq2j−1)(a; q)j−1(b, c; q)j
q(

j
2)(bc)j(q, a/b, a/c; q)j

,

Bn = Bn(a, b, c, q) =
1

(bq, cq; q)n
.

Then the pair of sequences (An, Bn) forms a Bailey pair relative to (a, q).

Recall the Bailer pairs introduced by Lovejoy [37] and Slater [42].

Lemma 2.10. ( [37, Eqs. (23) and (24)]) The following pair of sequences (αn, βn) forms
a Bailey pair relative to (x2q2, q2), where

αn =
(1− xq2n+1)(x2q2; q2)n(−1)nqn

2

(1− x2q2)(q2; q2)n
,

βn =
(q; q2)n

(q2; q2)n(−xq; q)2n+1

.

Lemma 2.11. ( [42, Eq. (4.1)]) The following pair of sequences (αn, βn) forms a Bailey
pair relative to (a, q), where

αn =
(1− aq2n)(a, b, c; q)n(−1)n(aq/bc)nq(

n
2)

(1− a)(q, aq/b, aq/c; q)n
,
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βn =
(aq/bc; q)n

(q, aq/b, aq/c; q)n
.

In addition, we also need the following Bailey pairs and conjugate Bailey pairs.

Lemma 2.12. The following pair of sequences (αn, βn) forms a Bailey pair relative to
(q2, q2), where

αn =
(1− q4n+2)(xq−2n; q4)n(−1)nq2n

2

(1− q2)(x; q2)n
,

βn =
1

(q4; q4)n(x; q2)n
. (2.8)

Proof. According to (1.10) with q → q2 and a = q2, and then using (2.8), we deduce that

αn =
(1− q4n+2)(−1)nqn2−n

1− q2
n∑

j=0

(q−2n, q2n+2; q2)jq
2j

(q4; q4)j(x; q2)j
. (2.9)

In (2.7), replace q by q2, and then set a = q2, c = −q2, and d = x. After letting β → 0, we
derive that

n∑
j=0

(q−2n, q2n+2; q2)jq
2j

(q4; q4)j(x; q2)j
= qn

2+n

n∑
j=0

(q−2n, q2n+2; q2)jx
jqj

2−j

(q4; q4)j(x; q2)j
. (2.10)

Then replacing q by q2, and setting b = q2n+2, d = −q2, e = x, and c → ∞ in (2.6), we
obtain that

n∑
j=0

(q−2n, q2n+2; q2)jx
jqj

2−j

(q4; q4)j(x; q2)j
=

1

(x; q2)n

n∑
j=0

(q−4n; q4)j(xq
2n)j

(q4; q4)j

=
(xq−2n; q4)n
(x; q2)n

, (2.11)

where the last step follows from the following identity [28, Appendix (II.4)].
n∑

j=0

(q−n; q)jz
j

(q; q)j
= (zq−n; q)n.

Next, combining (2.10) and (2.11) yields that
n∑

j=0

(q−2n, q2n+2; q2)jq
2j

(q4; q4)j(x; q2)j
= qn

2+n (xq
−2n; q4)n
(x; q2)n

. (2.12)

Finally, substituting (2.12) into (2.9), we prove the lemma. �

Lemma 2.13. The following pair of sequences (δn, γn) forms a conjugate Bailey pair rela-
tive to (q2, q2), where

δn = (q; q)2nq
2n, (2.13)
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γn =
(1− q2)q2nJ1
(1− q2n+1)J2

2

∞∑
r=0

(1 + q2r+2n+2)q2r
2+4nr+3r. (2.14)

Proof. Combining Definition 2.7 and (2.13) yields that

γn =
∞∑
r=n

δr
(q2; q2)r−n(q4; q2)r+n

=
∞∑
r=0

δr+n

(q2; q2)r(q4; q2)r+2n

=
∞∑
r=0

(q; q)2r+2nq
2r+2n

(q2; q2)r(q4; q2)r+2n

=
(q; q)2nq

2n

(q4; q2)2n

∞∑
r=0

(q2n+1; q)2rq
2r

(q2; q2)r(q4n+4; q2)r

=
(1− q2)q2nJ1
(1− q2n+1)J2

2

∞∑
r=0

(q2n+2; q2)rq
2nr+2r

(q2n+3; q2)r
, (2.15)

where we obtain the last step by invoking (2.3) with q replaced by q2, and a, b, c, and z
replaced by q2n+1, q2n+2, q4n+4, and q2, respectively.

Next in (2.2), replacing q by q2, and then setting α = q2n+2, β = q2n+3, and τ = q2n+2,
we deduce that

∞∑
r=0

(q2n+2; q2)rq
2nr+2r

(q2n+3; q2)r
=
∞∑
r=0

(1 + q2r+2n+2)q2r
2+4nr+3r. (2.16)

Thus, substituting (2.16) into (2.15) yields (2.14). Here we complete the proof. �

Lemma 2.14. The following pair of sequences (γn, δn) forms a conjugate Bailey pair rela-
tive to (x2q2, q2), where

δn = (q2; q2)nq
2n, (2.17)

γn =
q2n

(1− q2n+2)(x2q4; q2)∞

∞∑
r=0

(x2q2n+2; q2)r(1− x2q4r+4n+4)(−1)rx2rq3r2+6nr+5r

(q2n+4; q2)r
.

Proof. According to Definition 2.7 and (2.17), we have

γn =
∞∑
r=n

(q2; q2)rq
2r

(q2; q2)r−n(x2q4; q2)r+n

=
(q2; q2)nq

2n

(x2q4; q2)2n

∞∑
r=0

(q2n+2; q2)rq
2r

(q2, x2q4n+4; q2)r

=
q2n

(1− q2n+2)(x2q4; q2)∞

∞∑
r=0

(−1)r(x2q4n+4)rqr
2−r

(q2n+4; q2)r
, (2.18)
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where the last step follows from (2.3) with q → q2, a = q2n+2, c = x2q4n+4, z = q2, and
b → 0. Then substituting (2.2) with q → q2, τ = x2q4n+4/α, β = q2n+4, and α → ∞ into
(2.18), we complete the proof. �

Lemma 2.15. The following pair of sequences (αn, βn) forms a Bailey pair relative to
(q, q), where

α2n =
(1− q4n+1)(−1)nq3n2−n

1− q
, (2.19)

α2n+1 =
(1− q4n+3)(−1)nq3n2+3n+1

1− q
, (2.20)

βn =
1

(q; q)n(q; q2)n
. (2.21)

Proof. According to (1.10) with a = q, and then using (2.21), we deduce that

αn =
(1− q2n+1)(−1)nq(

n
2)

1− q

n∑
j=0

(q−n, qn+1; q)jq
j

(q; q)j(q; q2)j
. (2.22)

In (2.7), setting a = q, c = q1/2, d = −q1/2, and β → 0, we derive that
n∑

j=0

(q−n, qn+1; q)jq
j

(q; q)j(q; q2)j
= (−1)nqn2/2 (q

3/2; q)n
(q1/2; q)n

n∑
j=0

(q−n, qn+1; q)jq
(j2+j)/2

(q, q3/2,−q1/2; q)j
. (2.23)

Next, letting a = q−n, b = qn+1, d = q3/2, e = −q1/2, and c→∞ in (2.5), we obtain that
n∑

j=0

(q−n, qn+1; q)jq
(j2+j)/2

(q, q3/2,−q1/2; q)j

=
(1− q1/2)(qn+1,−q; q)∞

(q; q2)∞

∞∑
j=0

(q−n+1/2,−q−n−1/2; q)jqnj+j

(q2; q2)j

=
(1− q1/2)J2

2

(1− q−n−1/2)(q; q)nJ1

∞∑
j=0

(q−2n−1; q2)j(1− qj−n−1/2)qnj+j

(q2; q2)j

= − (1− q1/2)qn+1/2J2
2

(1− qn+1/2)(q; q)nJ1

(
∞∑
j=0

(q−2n−1; q2)jq
nj+j

(q2; q2)j
− q−n−1/2

∞∑
j=0

(q−2n−1; q2)jq
nj+2j

(q2; q2)j

)

= − (1− q1/2)qn+1/2J2
2

(1− qn+1/2)(q; q)nJ1

(
(q−n; q2)∞
(qn+1; q2)∞

− q−n−1/2 (q
−n+1; q2)∞

(qn+2; q2)∞

)
, (2.24)

where the last step follows from the q-binomial theorem (2.1). Define

Ln :=
(q−n; q2)∞
(qn+1; q2)∞

− q−n−1/2 (q
−n+1; q2)∞

(qn+2; q2)∞
. (2.25)
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Then combining (2.22), (2.23), (2.24), and (2.25), we deduce that

αn = −(1− q2n+1)qn
2+n/2+1/2J2

2

(1− q)(q; q)nJ1
Ln. (2.26)

According to the parity of n, we consider the following two cases for Ln. For even n,
replacing n by 2n in (2.25), we have

L2n = −q−2n−1/2 (q
−2n+1; q2)∞

(q2n+2; q2)∞
=

(q; q)2n(−1)n+1q−n
2−2n−1/2J1

J2
2

. (2.27)

So, combining (2.26) and (2.27), we prove (2.19). Similarly, for odd n, replacing n by 2n+1
in (2.25) yields that

L2n+1 =
(q−2n−1; q2)∞
(q2n+2; q2)∞

=
(q; q)2n+1(−1)n+1q−n

2−2n−1J1
J2
2

. (2.28)

Then combining (2.26) and (2.28), we establish (2.20). Therefore, we complete the proof.
�

Lemma 2.16. The following pair of sequences (δn, γn) forms a conjugate Bailey pair rela-
tive to (q, q), where

δn = (q2; q2)nq
n, (2.29)

γn =
(1− q)qnJ2

J2
1

∞∑
r=0

(−1)rqr2+2nr+2r. (2.30)

Proof. From Definition 2.7 and (2.29), it can be seen that

γn =
∞∑
r=n

(q2; q2)rq
r

(q; q)r−n(q2; q)r+n

=
(q2; q2)nq

n

(q2; q)2n

∞∑
r=0

(q2n+2; q2)rq
r

(q; q)r(q2n+2; q)r

=
(1− q)qnJ2
(1− qn+1)J2

1

∞∑
r=0

(−qn+1; q)r(−1)rqnr+r

(qn+2; q)r
, (2.31)

where we obtain the last step by utilizing (2.3) with a, b, c, and z replaced by qn+1, −qn+1,
q2n+2, and q, respectively.

Then in (2.2), setting α = −qn+1, β = qn+2, and τ = −qn+1, we deduce that
∞∑
r=0

(−qn+1; q)r(−1)rqnr+r

(qn+2; q)r
= (1− qn+1)

∞∑
r=0

(−1)rqr2+2nr+2r. (2.32)

Thus, substituting (2.32) into (2.31) yields (2.30). Here we complete the proof. �
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Remark: Notice that the identities (1.6) and (1.8) given by Lovejoy in [36] imply the cases
x = q and x = 1 in Lemma 2.14, respectively. Similarly, Lemmas 2.13 and 2.16 can be
derived from the identities (1.7) and (1.9) in [36], respectively.

To derive the infinite sequence of Bailey pairs, we require the following result, which can
also be obtained by setting ρ1, ρ2 →∞ in (1.11) and (1.12).

Lemma 2.17. ( [2]) If (αn, βn) is a Bailey pair relative to (a, q). Then also (α′n, β
′
n), where

α′n = anqn
2

αn,

β′n =
∞∑
j=0

ajqj
2

(q; q)n−j
βj.

Iterating the above lemma yields a Bailey chain. So, combining Lemma 2.12 and the
above lemma, we produce the following infinite sequence of Bailey pairs.

Lemma 2.18. For k ≥ 2, the following pair of sequences (α
(k)
n , β

(k)
n ) forms a Bailey pair

relative to (q2, q2), which is

α(k)
n =

(1− q4n+2)(xq−2n; q4)n(−1)nq2kn
2+2(k−1)n

(1− q2)(x; q2)n
,

β(k)
n =

∞∑
n1,...,nk−1=0

q2N
2
1+···+2N2

k−1+2N1+···+2Nk−1

(q2; q2)n−N1(q
2; q2)n1 . . . (q

2; q2)nk−2
(q4; q4)nk−1

(x; q2)nk−1

,

where Nj = nj + nj+1 + · · ·+ nk−1.

Proof. We prove the lemma by induction on k. For k = 2, substituting the Bailey pair in
Lemma 2.12 into Lemma 2.17 yields that

α(2)
n =

(1− q4n+2)(xq−2n; q4)n(−1)nq4n
2+2n

(1− q2)(x; q2)n
,

β(2)
n =

∞∑
j=0

q2j
2+2j

(q2; q2)n−j(q4; q4)j(x : q2)j
,

which form a new Bailey pair relative to (q2, q2), as desired.
Then we assume that (α(k−1)

n , β
(k−1)
n ) is a Bailey pair relative to (q2, q2), giving

α(k−1)
n =

(1− q4n+2)(xq−2n; q4)n(−1)nq2(k−1)n
2+2(k−2)n

(1− q2)(x; q2)n
,

β(k−1)
n =

∞∑
n′1,...,n

′
k−2=0

q2N
′2
1 +···+2N ′2k−2+2N ′1+···+2N ′k−2

(q2; q2)n−N ′1(q
2; q2)n′1 . . . (q

2; q2)n′k−3
(q4; q4)n′k−2

(x; q2)n′k−2

,

where N ′j = n′j + n′j+1 + · · ·+ n′k−2.
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Substituting (α
(k−1)
n , β

(k−1)
n ) into Lemma 2.17 enables us to obtain a new Bailey pair

(α
(k)
n , β

(k)
n ) relative to (q2, q2), where

α(k)
n =

(1− q4n+2)(xq−2n; q4)n(−1)nq2kn
2+2(k−1)n

(1− q2)(x; q2)n
,

β(k)
n =

∞∑
n′k−1=0

q2n
′2
k−1+2n′k−1

(q2; q2)n−n′k−1

β
(k−1)
n′k−1

=
∞∑

n′1,...,n
′
k−1=0

q2n
′2
k−1+2n′k−1+2N ′21 +···+2N ′2k−2+2N ′1+···+2N ′k−2

(q2; q2)n−n′k−1
(q2; q2)n′k−1−N

′
1
(q2; q2)n′1 . . . (q

2; q2)n′k−3
(q4; q4)n′k−2

(x; q2)n′k−2

.

(2.33)

Next, setting n1 = n′k−1−N ′1, n2 = n′1, . . . , nk−1 = n′k−2, and Nj = nj + nj+1 + · · ·+ nk−1
for 1 ≤ j ≤ k− 1 in (2.33) leads to N2 = N ′1, N3 = N ′2, . . . , Nk−1 = N ′k−2, and N1 = n′k−1.
Hence, we complete the proof. �

Similarly, based on Lemma 2.17, the following two lemmas can be obtained by Lemmas
2.10 and 2.15, respectively. Hence, we omit the proofs.

Lemma 2.19. For k ≥ 2, the following pair of sequences (α
(k)
n , β

(k)
n ) forms a Bailey pair

relative to (x2q2, q2), which is

α(k)
n =

(1− xq2n+1)(x2q2; q2)n(−1)n(xq)2(k−1)nq(2k−1)n
2

(1− x2q2)(q2; q2)n
,

β(k)
n =

∞∑
n1,...,nk−1=0

(q; q2)nk−1
(xq)2N1+···+2Nk−1q2N

2
1+···+2N2

k−1

(q2; q2)n−N1(q
2; q2)n1 . . . (q

2; q2)nk−1
(−xq; q)2nk−1+1

,

where Nj = nj + nj+1 + · · ·+ nk−1.

Lemma 2.20. For k ≥ 2, the following pair of sequences (α
(k)
n , β

(k)
n ) forms a Bailey pair

relative to (q, q), which is

α
(k)
2n = (−1)nq(4k−1)n2+(2k−3)n1− q4n+1

1− q
,

α
(k)
2n+1 = (−1)nq(4k−1)n2+3(2k−1)n+2k−11− q4n+3

1− q
,

β(k)
n =

∞∑
n1,...,nk−1=0

qN
2
1+···+N2

k−1+N1+···+Nk−1

(q; q)n−N1(q; q)n1 . . . (q; q)nk−1
(q; q2)nk−1

,

where Nj = nj + nj+1 + · · ·+ nk−1.
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3. Proofs of the main results

In this section, we prove the main results.
Proof of (1.16) and (1.17). Replacing q by q2 and setting b = q2, c = −xq2, z = −qm+1/a,
and then letting a→∞ in (2.4), we obtain that

∞∑
n=0

qn
2+mn

(−xq2; q2)n
= (1 + x)

∞∑
n=0

(x−1qm+1; q2)n(−x)n.

So, (1.16) holds.
In Lemma 2.9, replacing q by q2 and then setting b = −aq−m−1 and c→ 0, we find that

An =
(1− aq4n)(−qm+1; q2)na

2nq3n
2−2n−mn

(1− a)(−aq−m+1; q2)n

×
n∑

j=0

(1− aq4j−2)(a; q2)j−1(−aq−m−1; q2)j(−1)ja−2jq−2j
2+3j+mj

(q2,−qm+1; q2)j
, (3.1)

Bn =
1

(−aq−m+1; q2)n
. (3.2)

Then substituting (3.1) and (3.2) into (1.13) and setting q → q2, ρ1 = x−1qm+1, and
ρ2 = −aq−m+1, we obtain (1.17). Therefore, we complete the proof. �
Proof of Corollary 1.3. To obtain (1.18), we set x = q, m = 1, and a = q2 in (1.17). So,

∞∑
n=0

qn
2+n

(−q; q2)n+1

=
J2
1J

2
4

J5
2

∞∑
n=0

(1 + q2n+1)(−1)nq3n2+2n

(
1 + 2

n∑
j=1

(−1)jq−2j2
)
. (3.3)

Observe that

1 + 2
n∑

j=1

(−1)jq−2j2 =
n∑

j=−n

(−1)jq−2j2 .

Substituting the above identity into (3.3), and then using (1.14), we complete the proof of
(1.18).

Next, setting x = q2, m = 2, and a = q2 in (1.17) yields that
∞∑
n=0

qn
2+2n

(−q2; q2)n+1

=
J2

(1 + q)J2
4

∞∑
n=0

(1 + q2n+1)(−1)nq3n2+2n

×

(
1 + (1 + q−1)

n∑
j=1

(1 + q)(1 + q2j)(−1)jq−2j2+j

(1 + q2j−1)(1 + q2j+1)

)
. (3.4)

Notice that
n∑

j=1

(1 + q)(1 + q2j)(−1)jq−2j2+j

(1 + q2j−1)(1 + q2j+1)
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=
n∑

j=1

(−1)jq−2j2+j

1 + q2j−1
+

n∑
j=1

(−1)jq−2j2+j+1

1 + q2j+1

=
n−1∑
j=0

(−1)j+1q−2j
2−3j−1

1 + q2j+1
+

n∑
j=1

(−1)jq−2j2+j+1

1 + q2j+1

=
n−1∑
j=1

(1− q2j+1)(−1)j+1q−2j
2−3j−1 +

(−1)nq−2n2+n+1

1 + q2n+1
− q−1

1 + q

=
n∑

j=2

(−1)jq−2j2+j +
n−1∑
j=1

(−1)jq−2j2−j + (−1)nq−2n2+n+1

1 + q2n+1
− q−1

1 + q

=
n∑

j=−n+1

(−1)jq−2j2+j − 1 + q−1 +
(−1)nq−2n2+n+1

1 + q2n+1
− q−1

1 + q

=
n∑

j=−n+1

(−1)jq−2j2+j +
(−1)nq−2n2+n+1

1 + q2n+1
− q

1 + q
. (3.5)

So, substituting (3.5) into (3.4), we obtain that
∞∑
n=0

qn
2+2n

(−q2; q2)n+1

=
J2
J2
4

∞∑
n=0

n∑
j=−n+1

(1 + q2n+1)(−1)n+jq3n
2+2n−2j2+j−1 +

J2
J2
4

∞∑
n=0

qn
2+3n

=
J2
J2
4

∞∑
n=0

n∑
j=−n

(1 + q2n+1)(−1)n+jq3n
2+2n−2j2+j−1

− J2
J2
4

∞∑
n=0

(1 + q2n+1)qn
2+n−1 +

J2
J2
4

∞∑
n=0

qn
2+3n

=
J2
J2
4

∞∑
n=0

n∑
j=−n

(1 + q2n+1)(−1)n+jq3n
2+2n−2j2+j−1 − J2

J2
4

∞∑
n=0

qn
2+n−1.

Then multiplying q on both sides, and replacing n by n − 1 on the left-hand side of the
above identity, we have

∞∑
n=1

qn
2

(−q2; q2)n
=
J2
J2
4

∞∑
n=0

n∑
j=−n

(1 + q2n+1)(−1)n+jq3n
2+2n−2j2+j − J2

J2
4

∞∑
n=0

qn
2+n. (3.6)

Notice that [9, Eq. (1.3.14)]
∞∑
n=0

qn(n+1)/2 =
J2
2

J1
. (3.7)

Thus, substituting (3.7) into (3.6), and then employing (1.15), we prove (1.19).
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Setting x = −q,m = 2, and a = q4 in (1.17) yields that
∞∑
n=0

qn
2+2n

(q; q2)n+1

=
(1− q)J2

J2
1

∞∑
n=0

(1− q2n+2)q3n
2+5n

×

(
1 +

1

1− q

n∑
j=1

(1− q2j+1)(−1)jq−2j2−3j
)
. (3.8)

Observe that

1

1− q

n∑
j=1

(1− q2j+1)(−1)jq−2j2−3j

=
1

1− q

(
n∑

j=1

(−1)jq−2j2−3j −
n∑

j=1

(−1)jq−2j2−j+1

)

=
1

1− q

(
n+1∑
j=2

(−1)j−1q−2j2+j+1 +
−1∑

j=−n

(−1)j−1q−2j2+j+1

)

=
1

1− q

(
n+1∑
j=−n

(−1)j−1q−2j2+j+1 + q − 1

)

=
1

1− q

n+1∑
j=−n

(−1)j−1q−2j2+j+1 − 1. (3.9)

Then substituting (3.9) into (3.8), we get
∞∑
n=0

qn
2+2n

(q; q2)n+1

=
J2
J2
1

∞∑
n=0

n+1∑
j=−n

(1− q2n+2)(−1)j−1q3n2+5n−2j2+j+1.

Multiplying q and replacing n by n−1 on both sides, and then using (1.2), we derive (1.20).
Finally, setting x = −q, m = 2, and a = q2 in (1.17), and then employing (1.2) and

(3.5), we deduce that

ψ(q) =
J2
J2
1

∞∑
n=0

n∑
j=−n+1

(1− q4n+2)(−1)jq3n2+n−2j2+j +
J2
J2
1

∞∑
n=0

(1− q2n+1)(−1)nqn2+2n+1

=
J2
J2
1

∞∑
n=0

n∑
j=−n+1

(−1)jq3n2+n−2j2+j − J2
J2
1

(
∞∑
n=0

n∑
j=−n+1

(−1)jq3n2+5n−2j2+j+2

+
∞∑
n=0

(−1)n+1qn
2+2n+1 +

∞∑
n=0

(−1)nqn2+4n+2

)
,

which implies (1.21). Here we complete the proof. �
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Proof of Theorem 1.4. Combining Lemmas 2.8, 2.12, and 2.13, we have
∞∑
n=0

(q; q2)nq
2n

(x,−q2; q2)n

=
J1
J2
2

∞∑
n=0

∞∑
r=0

(1 + q2n+1)(1 + q2r+2n+2)(xq−2n; q4)n(−1)nq2r
2+4nr+3r+2n2+2n

(x; q2)n

=
J1
J2
2

∞∑
n=0

∞∑
r=n

(1 + q2n+1)(1 + q2r+2)(xq−2n; q4)n(−1)nq2r
2+3r−n

(x; q2)n

=
J1
J2
2

∞∑
r=0

r∑
n=0

(1 + q2n+1)(1 + q2r+2)(xq−2n; q4)n(−1)nq2r
2+3r−n

(x; q2)n

=
J1
J2
2

∞∑
r=1

r−1∑
n=0

(1 + q2n+1)(1 + q2r)(xq−2n; q4)n(−1)nq2r
2−r−n−1

(x; q2)n
.

Then replacing n by n − 1 on the right-hand side of the above identity, we complete the
proof. �
Proof of Corollary 1.5. First, we simplify (xq−2n; q4)n. Depending on the parity of n,
we discuss two cases. For even n, replacing n by 2n yields that

(xq−4n; q4)2n = (xq−4n, x; q4)n

= (x, x−1q4; q4)n(−1)nxnq−2n
2−2n. (3.10)

For odd n, replacing n by 2n+ 1, we have

(xq−4n−2; q4)2n+1 = (xq2; q4)n(x
−1q2; q4)n+1(−1)n+1xn+1q−2n

2−4n−2. (3.11)

So, setting x = −q3 in (xq−2n; q4)n, and then using (3.10) and (3.11), we deduce that

(−q−4n+3; q4)2n = (−q; q2)2nq−(
2n
2 ),

(−q−4n+1; q4)2n+1 = (−q; q2)2n+1q
−(2n+1

2 ).

According to the above two identities, we conclude that

(−q−2n+3; q4)n = (−q; q2)nq−(
n
2). (3.12)

Similarly, setting x = −q in (3.10) and (3.11), we have

(−q−2n+1; q4)n = (−q; q2)nq−(
n+1
2 ). (3.13)

Next, setting x = −q3 in (1.22) yields that
∞∑
n=0

(q; q2)nq
2n

(−q3,−q2; q2)n

=
J1
J2
2

∞∑
r=1

r∑
n=1

(1 + q2n−1)(1 + q2r)(−q−2n+5; q4)n−1(−1)n−1q2r
2−r−n

(−q3; q2)n−1



STRONGLY UNIMODAL SEQUENCES AND HECKE-TYPE IDENTITIES 21

=
J1
J2
2

∞∑
r=1

r∑
n=1

(1 + q2n−1)(1 + q2r)(−q; q2)n−1(−1)n−1q2r
2−r−(n2)−1

(−q3; q2)n−1

=
(1 + q)J1

J2
2

∞∑
r=1

r∑
n=1

(1 + q2r)(−1)n−1q2r2−r−(
n
2)−1,

where the second equality follows from (3.12). Then dividing both sides of the above
identity by (1 + q), we prove (1.23).

To prove (1.24), we employ the same method by setting x = −q in (1.22) and using
(3.13). So,

∞∑
n=0

(q; q2)nq
2n

(−q; q)2n
=
J1
J2
2

∞∑
r=1

r∑
n=1

(1 + q2n−1)(1 + q2r)(−q−2n+3; q4)n−1(−1)n−1q2r
2−r−n

(−q; q2)n−1

=
J1
J2
2

∞∑
r=1

r∑
n=1

(1 + q2n−1)(1 + q2r)(−1)n−1q2r2−r−(
n+1
2 ). (3.14)

Notice that
r∑

n=1

(1 + q2n−1)(−1)n−1q−(
n+1
2 ) =

r∑
n=1

(−1)n−1q−n(n+1)/2 +
r∑

n=1

(−1)n−1q−n2/2+3n/2−1

=
r∑

n=1

(−1)n−1q−n(n+1)/2 −
r∑

n=1

(−1)n−1q−n(n−1)/2

=
r∑

n=−r+1

sg(n)(−1)n−1q−n(n+1)/2,

where sg(n) = 1 if n > 0 and sg(n) = −1 otherwise. Then substituting the above identity
into (3.14) yields (1.24). Therefore, we complete the proof. �
Proof of Theorem 1.6. Applying the Bailey transform in Lemma 2.8 and combining the
Bailey pair in Lemma 2.10 and the conjugate Bailey pair in Lemma 2.14 with x = 1, we
arrive at

q

∞∑
n=0

βnδn =
∞∑
n=0

(q; q2)nq
2n+1

(−q; q)2n+1

= q
∞∑
n=0

αnγn

=
1

J2

∞∑
n=0

∞∑
r=0

(1− q2n+1)(1 + q2r+2n+2)(−1)r+nq3r
2+6nr+5r+n2+2n+1

=
1

J2

∞∑
n=0

∞∑
r=n

(1− q2n+1)(1 + q2r+2)(−1)rq3r2+5r−2n2−3n+1
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=
1

J2

∞∑
r=0

r∑
n=0

(1− q2n+1)(1 + q2r+2)(−1)rq3r2+5r−2n2−3n+1

=
1

J2

∞∑
r=1

r∑
n=1

(1− q2n−1)(1 + q2r)(−1)r−1q3r2−r−2n2+n. (3.15)

Observe that
r∑

n=1

(1− q2n−1)q−2n2+n =
r∑

n=1

q−2n
2+n −

r∑
n=1

q−2n
2+3n−1

=
r∑

n=1

q−2n
2+n −

r−1∑
n=0

q−2n
2−n

=
r∑

n=1

q−2n
2+n −

0∑
n=−r+1

q−2n
2+n

=
r∑

n=−r+1

sg(n)q−2n
2+n, (3.16)

where sg(n) = 1 if n > 0 and sg(n) = −1 otherwise. Combining (3.15) and (3.16), we
prove (1.27).

Next, substituting the Bailey pair in Lemma 2.10 and the conjugate Bailey pair in Lemma
2.14 with x = q into Lemma 2.8, we derive that

∞∑
n=0

(q; q2)nq
2n+1

(−q2; q)2n+1

=
1

J2

∞∑
r=1

r∑
n=1

(1− q2n)(1− q4r+2)(−1)r−1q3r2+r−2n2−n. (3.17)

Notice that
r∑

n=1

(1− q2n)q−2n2−n =
r∑

n=1

q−2n
2−n −

r∑
n=1

q−2n
2+n

=
0∑

n=−r

q−2n
2+n −

r∑
n=1

q−2n
2+n − 1

= −
r∑

n=−r

sg(n)q−2n
2+n − 1.

Then substituting the above identity into (3.17), we obtain that
∞∑
n=0

(q; q2)nq
2n+1

(−q2; q)2n+1

= − 1

J2

∞∑
r=1

r∑
n=−r

sg(n)(1− q4r+2)(−1)r−1q3r2+r−2n2+n

− 1

J2

∞∑
r=1

(1− q4r+2)(−1)r−1q3r2+r.
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Since
∞∑
r=1

(1− q4r+2)(−1)r−1q3r2+r =
∞∑
r=1

(−1)r−1q3r2+r −
∞∑
r=1

(−1)r−1q3r2+5r+2

=
∞∑
r=1

(−1)r−1q3r2+r +
∞∑
r=2

(−1)r−1q3r2−r

=
∞∑

r=−∞

(−1)r−1q3r2+r + (1− q2)

= −J2 + (1− q2),
where we use (1.1) to derive the last step, we have

∞∑
n=0

(q; q2)nq
2n+1

(−q2; q)2n+1

= − 1

J2

∞∑
r=1

r∑
n=−r

sg(n)(1− q4r+2)(−1)r−1q3r2+r−2n2+n + 1− 1− q2

J2
,

which implies (1.28). Here we complete the proof. �
Proof of Theorem 1.7. In Lemma 2.11, replace q by q2, and then let a = q2, b = −q,
and c = q. The resulting Bailey pair relative to (q2, q2) is

αn = qn
2+n,

βn =
(1− q2)(−q2; q2)n
(q2; q2)n(q2; q4)n+1

.

Moreover, invoking the conjugate Bailey pair in Lemma 2.14 with x = 1, we establish that

δn = (q2; q2)nq
2n,

γn =
(1− q2)q2n

J2

∞∑
r=0

(1 + q2r+2n+2)(−1)rq3r2+6nr+5r.

Then substituting the above Bailey pair and conjugate Bailey pair into Lemma 2.8, we
derive that

∞∑
n=0

(−q2; q2)nq2n

(q2; q4)n+1

=
1

J2

∞∑
n=0

∞∑
r=0

(1 + q2r+2n+2)(−1)rq3r2+6nr+5r+n2+3n

=
1

J2

∞∑
n=0

∞∑
r=n

(1 + q2r+2)(−1)r+nq3r
2+5r−2n2−2n

=
1

J2

∞∑
r=0

r∑
n=0

(1 + q2r+2)(−1)r+nq3r
2+5r−2n2−2n.

Replacing r by r − 1 and then n by n− 1 on the right-hand side of the above identity, we
obtain (1.29).

Finally, combining Lemma 2.11 with q → q2, a = q4, b = −q2, and c = q2, Lemma 2.14
with x = q, and Lemma 2.8, we derive (1.30). Therefore, we complete the proof. �
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Proof of Corollary 1.8. We start with z = −1 in (1.5), giving

OU∗(−1; q) =
∞∑
n=0

(q; q2)2nq
2n+1. (3.18)

Then setting a = q, b = q, c = 0, h = 2, and t = q2 in (1.25), we obtain that
∞∑
n=0

(q; q2)2nq
2n+1 =

J2
1

J2
2

∞∑
n=0

(−q; q)nqn+1

(q; q2)n+1

. (3.19)

Next, combining (1.29) with q replaced by q1/2, (3.18), and (3.19), we complete the proof.
�

Proof of Theorem 1.9. Applying the Bailey transform in Lemma 2.8, and combining
the Bailey pair in Lemma 2.15 and the conjugate Bailey pair in Lemma 2.16, we arrive at

∞∑
n=0

βnδn =
∞∑
n=0

(−q; q)nqn

(q; q2)n

=
∞∑
n=0

α2nγ2n +
∞∑
n=0

α2n+1γ2n+1

=
J2
J2
1

∞∑
n=0

∞∑
r=0

(1− q4n+1)(−1)r+nqr
2+4nr+2r+3n2+n

+
J2
J2
1

∞∑
n=0

∞∑
r=0

(1− q4n+3)(−1)r+nqr
2+4nr+4r+3n2+5n+2

=
J2
J2
1

∞∑
n=0

∞∑
r=2n

(1− q4n+1)(−1)r+nqr
2+2r−n2−3n

+
J2
J2
1

∞∑
n=0

∞∑
r=2n

(1− q4n+3)(−1)r+nqr
2+4r−n2−3n+2

=
J2
J2
1

∞∑
r=0

br/2c∑
n=0

(1− q4n+1)(−1)r+nqr
2+2r−n2−3n

+
J2
J2
1

∞∑
r=0

br/2c∑
n=0

(1− q4n+3)(−1)r+nqr
2+4r−n2−3n+2. (3.20)

Then letting r → r−1 and n→ −n−1 in the second term on the right-hand side of (3.20)
and simplifying, we have

J2
1

J2

∞∑
n=0

(−q; q)nqn

(q; q2)n
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=
∞∑
r=0

br/2c∑
n=0

(1− q4n+1)(−1)r+nqr
2+2r−n2−3n

+
∞∑
r=1

−1∑
n=−b(r+1)/2c

(1− q−4n−1)(−1)r+nqr
2+2r−n2+n+1

=
∞∑
r=0

br/2c∑
n=0

(−1)r+nqr
2+2r−n2−3n −

∞∑
r=0

br/2c∑
n=0

(−1)r+nqr
2+2r−n2+n+1

+
∞∑
r=1

−1∑
n=−b(r+1)/2c

(−1)r+nqr
2+2r−n2+n+1 −

∞∑
r=1

−1∑
n=−b(r+1)/2c

(−1)r+nqr
2+2r−n2−3n. (3.21)

Observe that
∞∑
r=0

br/2c∑
n=0

(−1)r+nqr
2+2r−n2−3n −

∞∑
r=1

−1∑
n=−b(r+1)/2c

(−1)r+nqr
2+2r−n2−3n

=
∞∑
r=0

br/2c∑
n=−b(r+1)/2c

sg′(n)(−1)r+nqr
2+2r−n2−3n (3.22)

and

−
∞∑
r=0

br/2c∑
n=0

(−1)r+nqr
2+2r−n2+n+1 +

∞∑
r=1

−1∑
n=−b(r+1)/2c

(−1)r+nqr
2+2r−n2+n+1

= −
∞∑
r=0

br/2c∑
n=−b(r+1)/2c

sg′(n)(−1)r+nqr
2+2r−n2+n+1, (3.23)

where sg′(n) = 1 if n ≥ 0 and sg′(n) = −1 otherwise. So, substituting (3.22) and (3.23)
into (3.21), we complete the proof. �
Proof of Theorem 1.10. First, letting z = 1 in (1.3) and then setting a = q, b = q,
c = −q2, h = 2, and t = q2 in (1.25), we have

V(1; q) =
∞∑
n=0

(−q; q)2nqn

(q; q2)n+1

=
J3
2

J3
1

∞∑
n=0

(q; q2)2nq
2n

(−q; q)2n+1

. (3.24)

Then replacing q by q2 and setting a = q2, b = −q2, and c = −q in Lemma 2.11, we derive
the following Bailey pair relative to (q2; q2), where

αn =
(1− q2n+1)(−1)nqn2

1− q
,

βn =
(q; q2)n

(q2,−q2,−q3; q2)n
.



26 S.-P. CUI, H.-X. DU, AND N.S.S. GU

Thus, by the above Bailey pair and Lemmas 2.8 and 2.13, we deduce that
∞∑
n=0

βnδn =
∞∑
n=0

(q; q2)2nq
2n

(−q2; q)2n

=
∞∑
n=0

αnγn

=
(1 + q)J1

J2
2

∞∑
n=0

∞∑
r=0

(1 + q2n+2r+2)(−1)nqn2+2n+2r2+4nr+3r

=
(1 + q)J1

J2
2

∞∑
n=0

∞∑
r=n

(1 + q2r+2)(−1)nq2r2+3r−n2−n

=
(1 + q)J1

J2
2

∞∑
r=0

r∑
n=0

(1 + q2r+2)(−1)nq2r2+3r−n2−n

=
(1 + q)J1

J2
2

∞∑
r=1

r∑
n=1

(1 + q2r)(−1)n−1q2r2−r−n2+n−1, (3.25)

where the last step is followed by shifting r to r − 1 and n to n − 1. Hence, combining
(3.24) and (3.25), we complete the proof.
Proof of Theorem 1.11. Substituting Lemmas 2.13 and 2.18 into Lemma 2.8, we com-
plete the proof. �

Similarly, applying Lemmas 2.8, 2.14, and 2.19, we prove Theorem 1.12. In view of
Lemmas 2.8, 2.16, and 2.20, we prove Theorem 1.13.
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