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Abstract

The notion of incompatibility system was first proposed by Krivelevich, Lee and Sudakov to formulate
the robustness of Hamiltonicity of Dirac graphs. Given a graph G = (V,E), an incompatibility system F
over G is a family F = {Fv}v∈V such that for every v ∈ V , Fv is a family of edge pairs {e, e′} ∈

(
E(G)

2

)
with e ∩ e′ = {v}. Moreover, for an integer k ∈ N, we say F is k-bounded if for every vertex v and
its incident edge e, there are at most k pairs in Fv containing e. Krivelevich, Lee and Sudakov proved
that there is an universal constant µ > 0 such that for every Dirac graph G and every µn-bounded
incompatibility system F over G, there exists a Hamilton cycle C ⊆ G where every pair of adjacent
edges e, e′ of C satisfies {e, e′} /∈ Fv for {v} = e ∩ e′. This resolves a conjecture posed by Häggkvist
in 1988 and such a Hamilton cycle is called compatible (with respect to F). We study high powers
of Hamilton cycles in this context and show that for every γ > 0 and k ∈ N, there exists a constant
µ > 0 such that for sufficiently large n ∈ N and every µn-bounded incompatibility system over an n-
vertex graph G with δ(G) ≥ ( k

k+1
+ γ)n, there exists a compatible k-th power of a Hamilton cycle in G.

Moreover, we give a µn-bounded construction which has minimum degree k
k+1

n+Ω(n) and contains no
compatible k-th power of a Hamilton cycle.

Keywords: Incompatibility system; Compatible subgraph; Power of Hamilton cycle.

1 Introduction

The classical Dirac’s theorem [8] asserts that every graph of order n ≥ 3 and minimum degree at least n
2

contains a Hamilton cycle, that is, a cycle passing through every vertex in the graph. Hamilton cycle is

a very important and extensively studied notion in graph theory. Also, Dirac’s theorem is a cornerstone

result in extremal graph theory, and it has been generalized in several directions (see e.g. [7, 10, 17, 20, 24]).

One fruitful area is to establish the existence, under certain (minimum) degree conditions, of more general

spanning graphs than a Hamilton cycle. A remarkable direction is Pósa and Seymour’s conjecture on the

existence of powers of Hamilton cycles. For k ∈ N, the k-th power of a Hamilton cycle is defined as a graph

on the same vertex set whose edges join distinct vertices at distance at most k in the Hamilton cycle.

Conjecture 1.1. [9, 25] Let G be a graph on n vertices. If δ(G) ≥ k
k+1n, then G contains the k-th power

of a Hamilton cycle.
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After two decades and several papers on this question, Komlós, Sárközy and Szemerédi [15] resolved this

conjecture for large n. In this paper we are interested in a ‘robust’ version of Conjecture 1.1 under the

incompatibility system, suggested by Krivelevich, Lee and Sudakov [19].

Definition 1.2. Let G be a graph with vertex set V . An incompatibility system F over G is a family

F = {Fv}v∈V such that for every v ∈ V , Fv is a family of edge pairs in {{e, e′} ∈
(
E(G)

2

)
: e ∩ e′ = {v}}.

(1) For every two edges e, e′ incident to a vertex v, if {e, e′} ∈ Fv, then we say that e and e′ are incompatible

at v. Otherwise, they are compatible. A subgraph H ⊆ G is compatible if all pairs of adjacent edges

are compatible.

(2) For a positive integer ∆, an incompatibility system F is ∆-bounded if for any vertex v and every edge

e incident to v, there are at most ∆ other edges incident to v that are incompatible with e.

(3) Given constants µ, δ > 0 and n ∈ N, an (n, δ, µ)-incompatibility system (G,F) consists of an n-vertex

graph G with δ(G) ≥ δn and a µn-bounded incompatibility system F over G.

The definition of an incompatibility system is motivated by two concepts in graph theory. First, it

is a generalization of locally ℓ-bounded edge-coloring, which is an edge-coloring with each color appearing

at most ℓ times at any given vertex. In particular, a locally ℓ-bounded edge-coloring induces an (ℓ − 1)-

bounded incompatibility system, where every two adjacent edges of the same color are incompatible. Finding

properly colored subgraphs (any adjacent edges have different colors) in locally ℓ-bounded edge-colorings of

graphs has received considerable attention (see e.g. [1–3,5,22,26]). Note that in incompatibility systems, the

corresponding concept to properly colored subgraphs is compatible subgraphs. Moreover, the incompatibility

system is also a generalization of the transition system introduced by Kotzig [16] in 1968, which is indeed a

1-bounded incompatibility system.

The notion of an incompatibility system appears to provide a new and interesting take on the robustness

of graph properties. We refer the reader to a survey of Sudakov [27] where various measures of robustness

and relevant results are collected. Krivelevich, Lee and Sudakov [19] first studied the existence of compatible

Hamilton cycles in Dirac graphs, which can be viewed as a robust version of Dirac’s theorem under the

incompatibility system.

Theorem 1.3. [19] There exists a constant µ > 0 such that for large enough n, every (n, 1
2 , µ)-incompatibility

system contains a compatible Hamilton cycle.

They further studied compatible Hamilton cycles in random graphs in [18]. In this paper we explore the

degree condition forcing the existence of compatible high powers of Hamilton cycles and prove the following

robust version of Conjecture 1.1.

Theorem 1.4 (Main Theorem). For every γ > 0 and k ∈ N with k ≥ 2, there exists a constant µ > 0 such

that for sufficiently large n, every (n, k
k+1 + γ, µ)-incompatibility system (G,F) contains a compatible k-th

power of a Hamilton cycle.
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In particular, the term γn in the minimum degree condition of Theorem 1.4 cannot be omitted by the

constructions obtained in our previous work [12]. We will give a simple construction for completeness in

Section 1.1.

Note that the incompatibility system is a ‘local’ concept, that is, conflicting edges only appear in adjacent

edges. There is an analogous ‘global’ concept, called a system of conflicts (see [6]), in which conflicting edges

may not be adjacent. In such a system, the line of research is to find subgraphs with no conflicting edges.

It is an interesting problem to prove an analogue of Theorem 1.4 in systems of conflicts.

1.1 A space barrier

We shall give an (n, k
k+1 + µ

2 , µ)-incompatibility system (G,F) that contains no compatible k-th power of a

Hamilton cycle. Let 0 < µ < 1
2(k+1) , n ∈ (k+1)N and G0 be an n-vertex complete (k+1)-partite graph with

parts V1, V2, . . . , Vk+1 satisfying |V1| = n
k+1 + 1, |V2| = n

k+1 − 1 and |Vi| = n
k+1 for every i ∈ {3, . . . , k + 1}.

Inside every part Vi of G0, we add a bipartite spanning subgraph with minimum degree at least µn
2 + 1 and

maximum degree at most µn. Denote by G the resulting graph. Hence, δ(G) ≥
(
1− 1

k+1 + µ
2

)
n and for

every i ∈ [k + 1], G[Vi] is a triangle-free graph with δ(G[Vi]) ≥ µn
2 + 1 and ∆(G[Vi]) ≤ µn. Now we define

an incompatibility system F over G. For every two different parts Vi, Vj of G, let v be any vertex in Vi

and u,w be any two different vertices in Vj . If uw is an edge in G[Vj ], then let vu and vw be incompatible

at v. Since ∆(G[Vj ]) ≤ µn, the resulting system F is µn-bounded. Furthermore, suppose for contradiction

that (G,F) contains a compatible k-th power of a Hamilton cycle. As n ∈ (k + 1)N, (G,F) also contains a

compatible Kk+1-factor, say K. Then since |V1| = n
k+1 + 1 = |K|+ 1 and each G[Vi] is a triangle-free graph,

by the Pigeonhole Principle, there exists a compatible copy K of Kk+1 in K which intersects V1 in exactly

two vertices, say u1 and w1. As k ≥ 2, K also intersects another part except V1, say Vj for some j ̸= 1, and

choose v1 ∈ V (K) ∩ Vj . Then u1v1w1 is a compatible triangle, a contradiction.

The paper is organised as follows. In Section 2, we set up some basic notation and crucial lemmas. Then

we present the proof of Theorem 1.4 in Section 2.4. Sections 3, 4 and 5 are devoted to proving Lemmas 2.3,

2.4 and 2.5, respectively.

2 Notation and preliminaries

Let Pn be a path of order n. We use P k
n to denote the k-th power of Pn, where we often call Pn the base path.

Given a copy of Pn, say v1v2 . . . vn, we call the k-tuples (vk, . . . , v1) and (vn−k+1, . . . , vn) the ends of Pn.

More often, given a k-tuple e = (u1, u2, . . . , uk), we write ←−e := (uk, uk−1, . . . , u1). For two vertex-disjoint

paths P and Q, P ∼ Q means that we connect P and Q, i.e. the path PQ.

Definition 2.1. Let G be an n-vertex graph and F be an incompatibility system over G. For every k-tuple

e = (u1, u2, . . . , uk) such that {u1, u2, . . . , uk} induces a compatible copy of Kk, we say f = (v1, v2, . . . , vk)

is a mate of e if u1 . . . ukv1 . . . vk forms a compatible copy of P k
2k in (G,F). Denote by M(e) the number of

mates of e in (G,F).
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2.1 Absorption strategy and main tools

Our proof uses the absorption method, introduced by Rödl, Ruciński and Szemerédi [23], and here we shall

follow the strategy in the work of Levitt, Sárközy and Szemerédi [21] for embedding powers of Hamilton

cycles. The first major task is to find an absorbing structure in the host graph which can “absorb” any

(small) set of left-over vertices. Here we adopt a much weaker absorbing strategy in which we only need to

absorb subsets of a fixed vertex set, namely the reservoir defined in Section 2.4. A similar idea has previously

appeared in a recent work of Chang–Han–Thoma [4]. We will see that this weaker version is easier to handle.

In particular, we will introduce a slightly stronger notion of absorbers to aid our proof.

Definition 2.2 (β-absorber for a vertex v). Let k ∈ N, and G be an n-vertex graph and F is an incompat-

ibility system over G. For every v ⊆ V and β > 0, we say that a compatible copy A of P k
2k is an absorber

for v if V (A) ∪ {v} induces a compatible copy of P k
2k+1 which shares the same ends with A. In addition, if

both ends have at least βnk mates in G, then we call A a β-absorber for v.

The first result ensures that every vertex has many β-absorbers as above.

Lemma 2.3. Let k ∈ N. For any γ > 0, there exist β1, β2, µ > 0 such that for every sufficiently large n, if

(G,F) is an (n, k
k+1 + γ, µ)-incompatibility system, then every vertex of G has at least β1n vertex-disjoint

β2-absorbers.

In [21], a key step of the proof is to build a k-th power of a short path connecting every two fixed copies of

Kk. We are attempting this approach which boils down to building a compatible k-th power of a short path

connecting every two fixed compatible copies of Kk. However, in our context, it is still unclear whether a

fixed compatible copy of Kk has a mate or not. The worst-case scenario would be that an end of a compatible

k-th power of a path (that is, a compatible copy of Kk) has no mate and so it can not be extended to longer

ones. The bulk of the work in our paper is to overcome this obstacle. Hence the second major task is to

cover almost all vertices using a constant number of compatible k-th power of paths in a ‘robust manner’

that every end of them has enough mates so as to be extended further.

Lemma 2.4 (Almost cover). Let k ∈ N. For any γ, τ > 0, there exist µ, λ, β > 0, such that for every

sufficiently large n, if (G,F) is an (n, k
k+1 + γ, µ)-incompatibility system, then there exists a family of

vertex-disjoint compatible k-th power of paths each of length at least λn covering all but at most τn vertices

of G, where each end has at least βnk mates.

The following result is used for connecting two ends (compatible copies of vertex-ordered Kr) via a

compatible k-th power of a path provided that both of them have polynomially many mates.

Lemma 2.5 (Connecting ends). For any β, γ > 0, there exist µ > 0 and L = L(γ) ∈ N such that for

every sufficiently large n the following is true. Let (G,F) be an (n, k
k+1 + γ, µ)-incompatibility system, and

W ⊆ V (G) with |W | < min{γ2n,
β
2n}. Then for every two disjoint k-tuples of vertices e1, e2 each with a

familyMi of at least βnk mates (i ∈ [2]), there exists a compatible k-th power of a path Q of length at most

L, which has ←−e 1,
←−e 2 as ends and all other vertices in G−W .
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As such, Lemma 2.5 allows us to connect two compatible k-th power of paths into a longer one.

Lemma 2.6 (Connecting paths). For any β, γ > 0, there exist µ > 0 and L = L(γ) ∈ N such that

the following holds for sufficiently large n. Let (G,F) be an (n, k
k+1 + γ, µ)-incompatibility system, and

W ⊆ V (G) with |W | < min{γ4n,
β
4n}. Suppose G has two vertices u, v and vertex-disjoint absorbers Au, Av

on base paths P1 and P2, respectively, such that each Pi has an end ei with M(ei) ≥ βnk, i = 1, 2. Write

P1 = a1a2 . . . aku1u2 . . . uk, e1 = (u1, . . . , uk),

P2 = b1b2 . . . bkv1v2 . . . vk, e2 = (v1, . . . , vk).

Then there exists a compatible k-th power of a path Q of length at most L in G−W , such that

(A) the k-th power of the paths a1a2 . . . aku1u2 . . . uk ∼ Q ∼ vk . . . v1bk . . . b2b1 and

a1a2 . . . ak ∼ u ∼ u1u2 . . . uk ∼ Q ∼ vk . . . v1 ∼ v ∼ bk . . . b2b1

are all compatible in (G,F).

Proof. For any β, γ > 0, we choose

1

n
≪ µ≪ β, γ,

1

k
and additionally

1

L
≪ γ.

We fix (G,F) to be an (n, k
k+1 + γ, µ)-incompatibility system, and W ⊆ V (G) with |W | < min{β4n,

γ
4n},

and P1, P2, e1, e2 given as above such that M(ei) ≥ βnk, i = 1, 2. We say a mate f = (f1, . . . , fk) of

e1 (similarly for e2) is good for P1 if the k-th power of the paths a1a2 . . . aku1u2 . . . uk ∼ f1f2 . . . fk and

a1a2 . . . ak ∼ u ∼ u1u2 . . . uk ∼ f1f2 . . . fk are compatible, and otherwise it is bad. Thus if f is bad for P1,

then there exist x ∈ {a1, a2, . . . , ak, u}, ui and fj for some i, j ∈ [k] such that the edges uifj and xui are

incompatible (at ui). Therefore as (G,F) is µn-bounded, the number of bad mates f for P1 (resp. for P2)

is at most (k2µn)nk−1. For i ∈ [2], we define the family

Mi = {f : f is a good mate of ei}.

Then by the choice of µ≪ β, γ, 1
k , it is easy to see that |Mi| ≥ β

2n
k for i ∈ [2] and by applying Lemma 2.5

to G with (γ/2, β/2,W ∪ V (P1) ∪ V (P2) ∪ {u, v}) in place of (γ, β,W ), we can obtain disjoint good mates

fi ∈ Mi for i ∈ [2] and a compatible k-th power of a path Q of length at most L whose ends are
←−
f 1 and

←−
f 2. It is easy to check that the k-th power of the paths

a1a2 . . . aku1u2 . . . uk ∼ Q ∼ vk . . . v1bk . . . b2b1,

a1a2 . . . ak ∼ u ∼ u1u2 . . . uk ∼ Q ∼ vk . . . v1 ∼ v ∼ bk . . . b2b1

are all compatible in (G,F).

To this end, it is worth to remark that Lemma 2.6 enables us to complete the absorption of the left-over

vertices. Moreover, instead of β-absorbers, given any two vertex-disjoint compatible copies of P k
2k each of

which has an end ei with M(ei) ≥ βnk, i ∈ [2], we can connect them into a compatible k-th power of a

longer path using almost the same argument. The other situations regarding the presence of u or v follow

as well and we omit this in the statement of Lemma 2.6.

5



2.2 Regularity

An important ingredient in our proofs is Szemerédi’s Regularity Lemma, and we first give the crucial notion

of ε-regular pairs.

Definition 2.7. (Regular pair). Given a graph G and disjoint vertex subsets X,Y ⊆ V (G), the density of

the pair (X,Y ) is defined as d(X,Y ) := e(X,Y )
|X||Y | , where e(X,Y ) := e(G[X,Y ]). For ε > 0, the pair (X,Y ) is

ε-regular if for every A ⊆ X,B ⊆ Y with |A| ≥ ε|X|, |B| ≥ ε|Y |, we have |d(A,B)−d(X,Y )| < ε. Moreover,

if d(X,Y ) ≥ d for some d > 0, then we say that (X,Y ) is (ε, d)-regular.

Fact 2.8. Let (X,Y ) be an (ε, d)-regular pair, and B ⊆ Y with |B| ≥ ε|Y |. Then all but at most ε|X|
vertices in X have degree at least (d− ε)|B| in B.

Fact 2.9. (Slicing lemma, [14]). Let (X,Y ) be an (ε, d)-regular pair. Then for any ε ≤ η ≤ 1 and X ′ ⊆
X,Y ′ ⊆ Y with |X ′| ≥ η|X|, |Y ′| ≥ η|Y |, the pair (X ′, Y ′) is an (ε′, d′)-regular pair with ε′ = max{ε/η, 2ε}
and d′ = d− ε.

Definition 2.10. (Regular partition). For a graph G = (V,E) and ε, d > 0, a partition V = V0∪V1∪ . . .∪Vk

is (ε, d)-regular, if |V0| ≤ ε|V |, |V1| = |V2| = . . . = |Vk| ≤ ⌈ε|V |⌉ and all but at most εk2 pairs (Vi, Vj) with

1 ≤ i < j ≤ k are (ε, d)-regular. We usually call V1, . . . , Vk clusters and call V0 the exceptional set.

Lemma 2.11. (Degree form of the Regularity Lemma, [14]). For every ε > 0, there is an M = M(ε) such

that if G = (V,E) is any graph and d ∈ (0, 1] is any real number, then there is an (ε, d)-regular partition

V = V0 ∪ V1 ∪ . . . ∪ Vk with |Vi| = m for each i ∈ [k], and a spanning subgraph G′ ⊆ G with the following

properties:

• 1/ε ≤ k ≤M ;

• dG′(v) > dG(v)− (d+ ε)|V | for all v ∈ V ;

• e(G′[Vi]) = 0 for all i ≥ 1;

• all pairs (Vi, Vj)(1 ≤ i < j ≤ k) are ε-regular in G′ with density 0 or at least d.

Definition 2.12. (Reduced graph). Given an arbitrary graph G = (V,E), a partition V = V1 ∪ . . . ∪ Vk,

and two parameters ε, d > 0, the reduced graph R = R(ε, d) of G is defined as follows: V (R) = [k], and

ij ∈ E(R) if and only if (Vi, Vj) is (ε, d)-regular.

Note that we usually apply Lemma 2.11 on a graph G = (V,E) with parameters ε, d > 0, then obtain an

(ε, d)-regular partition V = V0 ∪ V1 ∪ . . . ∪ Vk and a subgraph G′. After that we consider the reduced graph

R of G′ \ V0 with partition V1 ∪ . . . ∪ Vk. By Lemma 2.11,

δ(R) ≥ δ(G)− (d+ ε)|V | − |V0|
m

≥ δ(G)− (d+ 2ε)|V |
m

.

In particular, if δ(G) ≥ c|V |, then δ(R) ≥ (c− d− 2ε)|R|.
We also need a ‘compatible’ variant of the graph counting lemma as follows.

Lemma 2.13. [12] For constant d, η > 0 and positive integers r, h1, . . . , hr with
∑r

i=1 hi =: h, there

exist positive constants ε∗ = ε∗(r, d, h), c = c(r, d, h) and µ = µ(r, d, h, η) such that the following holds for
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sufficiently large n. Let (G,F) be a µn-bounded incompatibility system with |G| = n and U1, . . . , Ur be

pairwise vertex-disjoint sets in V (G) with |Ui| ≥ ηn, i ∈ [r] and every pair (Ui, Uj) being (ε∗, d)-regular.

Then there exist at least c
∏r

i=1 |Ui|hi compatible copies of Kr(h1, . . . , hr) in G[U1, . . . , Ur], each containing

exactly hi vertices in Ui for every i ∈ [r], where Kr(h1, . . . , hr) is the complete r-partite graph with each

part of size hi.

Corollary 2.14. For any d, η > 0, integer h ≥ 1 and a graph H with V (H) = {u1, . . . , uh}, there exist

positive constants ε∗ = ε∗(h, d), c = c(h, d) and µ = µ(h, d, η) such that the following holds for sufficiently

large n. Let (G,F) be a µn-bounded incompatibility system with |G| = n, and U1, . . . , Uh be pairwise

vertex-disjoint sets in V (G) with |Ui| ≥ ηn, i ∈ [h], and (Ui, Uj) are (ε∗, d)-regular if uiuj ∈ H, where

{i, j} ⊆ [h]. Then G contains c
∏h

i=1 |Ui| compatible copies of H, and all the corresponding vertices of ui

are in Ui, where i ∈ [h].

2.3 Probabilistic tools

We give two well-known concentration inequalities for random variables in this section.

Lemma 2.15. (Chernoff’s inequality, [13], Corollary 2.3). Let X ∼ Bin(n, p), Then for every 0 < a < 3/2,

we have

P(|X − EX| > aEX) < 2e−a2EX/3.

Lemma 2.16. (Janson’s inequality, [13], Theorem 2.14). Let p ∈ [0, 1], G be a graph and R be a random

vertex subset obtained by including every vertex of G independently with probability p. Let F ⊆ 2V (G) be

a collection of vertex subsets of G. Given a vertex subset F in F , we denote by IF the indicator random

variable for the event that F is contained in R. Let X =
∑

F∈F IF , λ = E[X] and

∆ =
∑

(F,F ′)∈F2:F∩F ′ ̸=∅

E[IF IF ′ ].

Then, for every ε ∈ (0, 1), we have

P(X ≤ (1− ε)λ) ≤ exp
(
− ε2λ2

2∆

)
.

2.4 Putting things together

Proof of Theorem 1.4. For any γ > 0, we choose

1

n
≪ µ≪ λ, β3 ≪ τ ≪ p≪ 1

L
, β1, β2 ≪ γ,

1

k
,

and let (G,F) be an (n, k
k+1 + γ, µ)-incompatibility system. By Lemma 2.3, there exist β1, β2 > 0 such

that every vertex of G has β1n vertex-disjoint β2-absorbers. Let R be a random set of vertices obtained by

including every vertex of G independently with probability p. We call R the reservoir.

Claim 2.17 (Reservoir). The following properties hold with high probability.

(B1) 1
2pn ≤ |R| ≤

3
2pn;
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(B2) dR(v) ≥ ( k
k+1 + γ

2 )|R| for each v ∈ V (G);

(B3) Every vertex v ∈ V (G) has at least p2k

2 |A(v)| vertex-disjoint β2-absorbers in R, where A(v) is a

maximum family of vertex-disjoint β2-absorbers of v in (G,F);

(B4) Given any fixed constant β > 0, every k-tuple e with M(e) ≥ βnk has at least βnkpk

2 mates in R,

where M(e) is the number of the mates of e in (G,F).

Proof. (1) Note that E[|R|] = pn. By Lemma 2.15, we have P(||R| − pn| > pn
2 ) < exp(− 1

12E[|R|]) =

exp(−pn/12).
(2) Choose δ ≪ γ. We have P(|R| > (1+δ)pn) < exp(−δ2pn/3) by Lemma 2.15. On the other hand, for a

given vertex v ∈ V (G), E[dR(v)] ≥ ( k
k+1+γ)pn. So P

(
dR(v) < ( k

k+1+γ)pn(1−δ)
)
< exp

(
−δ2( k

k+1+γ)pn/3
)

by Lemma 2.15. Hence

P
(
dR(v) < (

k

k + 1
+

γ

2
)|R|

)
< P

(
dR(v) < (

k

k + 1
+ γ)

1− δ

1 + δ
|R|

)
≤ P

(
dR(v) < (

k

k + 1
+ γ)pn(1− δ)

)
+ P(|R| > (1 + δ)pn)

< exp
(
− δ2(

k

k + 1
+ γ)pn/3

)
+ exp(−δ2pn/3).

(3) For every vertex v ∈ V (G), let Xv be the number of vertex-disjoint β2-absorbers from A(v) that lie

in R. Then E[Xv] = p2k|A(v)|. Note that |A(v)| ≥ β1n. Hence P(Xv < p2k

2 |A(v)|) = P(Xv < E[Xv]/2) <

exp(−E[Xv]
12 ) < exp(−p2k

12 |A(v)|) < exp(−p2kβ1n/12) by Lemma 2.15.

(4) For a given k-tuple e with M(e) ≥ βnk, let F be the set of mates for e. Then |F| = M(e) ≥ βnk.

We choose a subfamily F ′ of F with exactly βnk members. For each F ∈ F ′, let IF be the indicator random

variable with

IF =

{
1 if F is contained in R,
0 otherwise,

and let X =
∑

F∈F ′ IF . We have E[X] = βnkpk. Recall that ∆ =
∑

(F,F ′)∈F ′2:F∩F ′ ̸=∅ E[IF IF ′ ]. Note that

E[IF IF ′ ] = E[IF ] when F = F ′. Then∑
(F,F ′)∈F ′2:F=F ′

E[IF IF ′ ] =
∑
F∈F ′

E[IF ] = E[X].

Hence ∆ ≤ E[X] +
∑k

s=1

(
k
s

)
|F ′| · nk−s · p2k−s and so

∆− E[X] ≤
k−1∑
s=1

(
k

s

)
|F ′| · nk−s · p2k−s

=

k−1∑
s=1

(
k

s

)
β(np)2k−s

≤ kkβ(np)2k−1.

By Lemma 2.16 we have that P(X ≤ E[X]/2) ≤ exp
(
− (E[X])2

8∆

)
≤ exp

(
− βnp

8kk

)
.

By the union bound, we obtain that with high probability, (B1)–(B4) hold.
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Connecting β2-absorbers. We choose the reservoir R as above. Note that by Lemma 2.3 each vertex

has at least β1n vertex-disjoint β2-absorbers. Then by the choice of p ≪ β1, β2 and Claim 2.17 (B1), we

can greedily pick a collection C = {Av : v ∈ R} of vertex-disjoint β2-absorbers Av (for v) from V (G) \ R.

Moreover, δ(G − R) ≥ ( k
k+1 + γ

2 )n and every end of Av has at least β2n
k − |R|nk−1 ≥ β2

2 nk mates in

G − R. Let S be an arbitrary sequence of all these copies Av, v ∈ R. By repeatedly applying Lemma 2.6,

we can iteratively connect two consecutive copies from S into a compatible k-th power of a path, say PR,

via a collection of |R| − 1 vertex-disjoint compatible k-th power of paths of length at most L in G − R.

Indeed, during the process, suppose we have two consecutive absorbers Au, Av to be connected and let Q
be the family of vertex-disjoint k-th power of paths used for previous connections along the sequence. Since

p ≪ 1
L , β2 ≪ γ, 1

k and thus |R| + |V (Q)| + |V (S)| ≤ (L + 1 + 2k) · 32pn ≤ min{γ8n,
β2

8 n}, we can apply

Lemma 2.6 to G−R with (γ2 ,
β2

2 , R∪V (Q)∪V (S)) in place of (γ, β,W ) and obtain a compatible k-th power

of a path Quv satisfying (A).

Almost cover. Let G′ = G[V (G) \ (R ∪ V (PR))]. Then δ(G′) ≥ δ(G) − (L + 2k) 32pn ≥ ( k
k+1 + γ

2 )n. By

Lemma 2.4, G′ contains a family of vertex-disjoint compatible k-th power of paths P1, . . . , Ps for some s ≤ 1
λ ,

each of length at least λn, that cover all but at most τn vertices of G′, and all the ends of them have at

least β3n
k mates in V (G) and thus at least β3p

k

2 nk mates in R by Claim 2.17 (B4). By repeatedly applying

Lemma 2.6 to R with (γ2 ,
β3p

k

2 ) in place of (γ, β) as above, we can iteratively connect P1, . . . , Ps into a

compatible k-th power of a path, say PG′ , via vertex-disjoint k-th power of paths of length at most L in R.

This can be done because in the process, we need to avoid a set of at most (s − 1)L < min{γ8 |R|,
β3p

k

8 |R|}
vertices that have been used in previous connections.

Connecting three paths. Let T the set of at most τn vertices not covered by the paths P1, . . . , Ps and

write T = {v1, v2, . . . , vt}, where t = |T | ≤ τn. Note that S := R ∩ V (PG′) has size |S| ≤ sL ≤ L
λ . Thus by

Lemma 2.3 and Claim 2.17 (B3), every vertex in T has at least β1p
2kn/2 − |S| ≥ β1p

2kn/4 vertex-disjoint

β2-absorbers in R \ V (PG′). We assign v1 ∈ T a β2-absorber in R \ V (PG′), say A1, and denote by A′
1 the

corresponding compatible copy of P k
2k+1 induced by A1 ∪{v1}, each end of which has at least β2n

k mates in

G. Also, by applying Lemma 2.6 to R twice, we can connect PR, PG′ , A′
1 in order and obtain a compatible

k-th power of a path, say Pcomb. This is because we only need to avoid a constant number of vertices used

in previous connections. Note that both ends of Pcomb have at least β2n
k mates in G.

Connecting the rest. Note that S1 := R ∩ V (Pcomb) has |S1| ≤ (s + 2)L. Then every vertex in T has

at least β1p
2kn/2 − |S1| ≥ β1p

2kn/4 vertex-disjoint β2-absorbers in R \ V (PG′). Now, since |T | ≤ τn and

τ ≪ p, β1, we can greedily assign every vertex vi in T \ {v1} a β2-absorber in R \S1, say Ai, such that these

absorbers are vertex-disjoint. Similarly for every i ∈ [2, t], we denote by A′
i the corresponding compatible

copy of P k
2k+1 induced by Ai ∪ {vi}, each end of which has at least β2p

k

2 nk mates in R.

Next we shall connect Pcomb, A
′
2, . . . , A

′
t into a compatible k-th power of a cycle. Recall that t ≤ τn,

dR(v) ≥ ( k
k+1 +

γ
2 )|R| for each v ∈ V (G) and every end of Pcomb, A

′
2, . . . , A

′
t has at least β2p

k

2 nk mates in R.

Again, by applying Lemma 2.6 to R we iteratively connect Pcomb, A
′
2, . . . , A

′
t into a compatible k-th power

of a cycle via a collection of t vertex-disjoint compatible k-th power of paths of length at most L. In fact,

in each step i, i ∈ [t], since τ ≪ p, β2, γ and thus the number of vertices in R covered in previous steps is at

most |S1|+ iL ≤ 2Lτn < min{γ8 |R|,
β2p

k

8 |R|}, by Lemma 2.6 one can obtain a path as desired. Let C be the
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resulting cycle. Finally, using property (A), we absorb the leftover vertices in V (G) \V (C) by the absorbers

Av in C and obtain a compatible k-th power of a Hamilton cycle, as desired.

3 Absorbing lemma

Proof of Lemma 2.3. Given γ > 0, we choose

1

n
≪ µ, β1, β2 ≪ ε, c≪ d≪ γ,

1

k
.

For every v, we use Gv to denote G[N(v)]. Firstly we apply Lemma 2.11 on Gv with density d and obtain

an (ε, d)-regular partition V (Gv) = V0 ∪ V1 ∪ . . . ∪ Vr for some 1/ε ≤ r ≤ M and |Vi| = m ≥ (1−ε)|Gv|
r for

each i ∈ [r]. Let R = R(ε, d) be the reduced graph for this partition. Note that

δ(Gv) ≥ (
k

k + 1
+ γ)n− (n− |Gv|)

≥ |Gv| −
1

k + 1
n+ γn

≥ (1− 1

k
)|Gv|+ γn.

The last inequality follows since |Gv| ≥ ( k
k+1 + γ)n. As ε≪ d≪ γ, we have δ(R) ≥

(
1− 1

k + γ − d− 2ε
)
r ≥(

k−1
k + γ

2

)
r. It follows that every k vertices in R have at least γr common neighbors. Hence we can greedily

find a copy of P k
2k in R, denoted by H. Let V (H) = {u1, . . . , u2k}, and V1, . . . , V2k be the corresponding

clusters. By Definition 2.12, (Vi, Vj) is (ε, d)-regular if uiuj is an edge of H in R. By Corollary 2.14, there

exists c > 0 such that Gv[V1 ∪ . . .∪ V2k] contains at least cm2k ≥ c′n2k compatible copies of P k
2k, where c′ is

a constant depending on ε and c.

We claim that for any 0 < β2 < c′/2, there exists a family P of at least c′

2 n
2k compatible copies of P k

2k

such that every end of them has at least β2n
k mates in G. For otherwise, let x < c′

2 n
2k be the number of

compatible copies of P k
2k such that every end of them has at least β2n

k mates. Then the number of k-tuples

which have at least β2n
k mates is at least x

nk , and so the number of k-tuples which have less than β2n
k

mates is at most nk− x
nk . Hence the total number of compatible copies of P k

2k in Gv[V1∪ . . .∪V2k] is at most

x+ (nk − x

nk
) · β2n

k < (
c′

2
+ β2 −

c′

2
β2)n

2k < c′n2k,

a contradiction.

Among those copies in P, at least ( c
′

2 − 2µ)n2k of them are β2-absorbers for v. Indeed, since (G,F) is an

(n, k
k+1 + γ, µ)-incompatibility system, there are at most µn2 incompatible pairs vv1, vv2 and for each such

pair vv1, vv2, there are at most n2k−2 copies of P k
2k containing v1 and v2. Moreover, at most µn2 ·n2k−2 copies

contain an edge v1v2 which is incompatible with vv1. Hence we obtain at least ( c
′

2 − 2µ)n2k β2-absorbers for

v. As µ, β1 ≪ ε, c, we can greedily find β1n vertex-disjoint β2-absorbers for v.

10



4 Almost cover

Proof of Lemma 2.4. Given γ, τ > 0 and k ∈ N, we choose

1

n
≪ µ, β, λ≪ ε, c≪ η, d≪ γ, τ,

1

k

and fix (G,F) to be an (n, k
k+1 + γ, µ)-incompatibility system. We apply Lemma 2.11 on G to obtain

an (ε, d)-regular partition V (G) = V0 ∪ V1 ∪ . . . ∪ Vr for some 1/ε ≤ r ≤ M and |Vi| = m ≥ (1−ε)n
r

for each i ∈ [r]. Let R = R(ε, d) be the reduced graph for this partition. Since ε ≪ d ≪ γ, we have

δ(R) ≥
(

k
k+1 + γ − d − 2ε

)
r ≥

(
k

k+1 + γ
2

)
r. By the Hajnal–Szemerédi theorem [11], R has a Kk+1-

tiling K = {K(1),K(2), . . . ,K⌊ r
k+1 ⌋} covering all but at most k vertices. Next, we shall pick vertex-disjoint

compatible k-th power of long paths within the corresponding k + 1 clusters for every K(i) ∈ K. Without

loss of generality, we may take K(1) for instance and assume that the corresponding clusters of K(1) are

V1, . . . , Vk+1. It suffices to prove the following result.

Claim 4.1. For any collection of subsets Ui ⊆ Vi, i ∈ [k+1] with |Ui| ≥ η
2m, there exists, in G[U1, . . . , Uk+1],

a compatible copy of P k
s which satisfies the following properties:

(C1) s ∈ (k + 1)N and s ≥ λn;

(C2) both ends have at least βnk mates.

Thus taking this for granted, we greedily pick a family of vertex-disjoint compatible copies of P k
s , which

altogether leave less than η
2m vertices in each Vi (i ∈ [k + 1]) uncovered. Applying this for every K(i) ∈ K,

we obtain a desired family of vertex-disjoint compatible copies of P k
s and the number of vertices uncovered

is at most

km+
η

2
m · r + εn < τn.

Proof of Claim 4.1. By Corollary 2.14 applied with h = k + 1, there exists c = c(k, d − ε) > 0 such

that the (k + 1)-partite graph G[U1, . . . , Uk+1] contains at least c(η2m)k+1 ≥ c1n
k+1 compatible copies of

Kk+1 for a constant c1 > 0. We construct an auxiliary (k + 1)-uniform (k + 1)-partite hypergraph H on

V (H) := U1 ∪ . . . ∪ Uk+1 with

E(H) :=
{
{v1, v2, . . . , vk+1} : vi ∈ Ui, i ∈ [k + 1], and v1, . . . , vk+1 induce a compatible copy of Kk+1

}
.

Thus H has at least c1n
k+1 hyperedges. Now we claim that H has a subgraph H ′ such that every k-set

is contained in either at least c1
2 n hyperedges or zero hyperedge. In fact, we can proceed by iteratively

removing the edges from H as follows. If a k-set S is contained in less than c1
2 n hyperedges in the current

hypergraph, then we remove all hyperedges containing S. Note that in the process, we remove at most
c1
2 n ·m

k · (k + 1) ≤ c1
2 n

k+1 hyperedges in total. The process terminates at a nonempty hypergraph H ′ as

desired.

Now we pick a longest compatible k-th power of a path, denoted as P = u1 . . . us′ in G[U1, . . . , Uk+1], such

that for every i ∈ [s′−k], {ui, . . . , ui+k} is a hyperedge of H ′. Suppose for contradiction that s′ < 2λn. Note

that in H ′, the k-set S = {us′−k+1, . . . , us′} has a set of at least c1
2 n− s′ ≥ c1

4 n neighbors in V (H ′) \ V (P ),
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denoted as A. In particular, as F is µn-bounded, there are at most k2µn vertices v such that for some

i ∈ {s′ − k + 1, . . . , s′} and j ∈ {i − k, . . . , i − 1}, the edges uiv and uiuj are not compatible at ui. By the

choice of µ≪ ε and thus |A| > k2µn, we can pick a vertex from A to extend P as required, a contradiction.

Thus by consecutively removing vertices from one end of P , we can obtain a compatible k-th power of a

subpath on s vertices with s ∈ (k + 1)N and s ≥ λn.

It remains to prove (C2). In fact, we can extend every k-set from a hyperedge to at least ( c14 n−k
2µn)k ≥

βnk compatible copies of P k
2k as above. This is because in each step, we have at least c1

4 n− k2µn choices for

the next vertex. This completes the entire proof. ■

5 Connecting two ends

We will make use of a result of Komlós–Sárközy–Szemerédi [15].

Lemma 5.1. [15] For every γ > 0 and k ∈ N, there exists L ∈ N such that the following holds for sufficiently

large n ∈ N. Let R be an n-vertex graph with δ(R) ≥ ( k
k+1 + γ)n and e1, e2 be two disjoint k-tuples of

vertices, each of which induces a copy of Kk. Then there exists a k-th power of a path P of length at most

L, whose ends are ←−e 1 and ←−e 2.

Proof of Lemma 2.5. For any β, γ > 0, we choose

1

n
≪ µ≪ ε, c≪ d≪ β, γ,

1

k
, and additionally

1

L
≪ γ.

We fix (G,F) to be an (n, k
k+1 + γ, µ)-incompatibility system, and W ⊆ V (G) with |W | < min{β2n,

γ
2n},

and ei,Mi with |Mi| ≥ βnk, i = 1, 2. Without loss of generality, we write

e1 = (u1, . . . , uk) and e2 = (v1, . . . , vk).

Let V ′ = V (G) \ (W ∪ V (e1) ∪ V (e2)). For i ∈ [2], we define the family

Hi = {f ∈Mi : f lies inside V ′}.

Then by the choice of |W | < min{γ2n,
β
2n}, it is easy to see that |Hi| ≥ β

4n
k for i ∈ [2]. We then uniformly

and randomly partition V ′ into 2k parts of nearly equal size, denoted as U1, U2, . . . , U2k. Let X1 (or X2)

be the family of mates f = (f1, . . . , fk) in H1 (resp. in H2) with fi ∈ Ui for i ∈ [k] (resp. fi ∈ Uk+i

for i ∈ [k]). It follows that E(|Xi|) ≥ β
4(2k)k

nk. Then by a standard application of Janson’s inequality1,

there exists a partition such that |Xi| ≥ 1
2E(|Xi|) ≥ β

8(2k)k
nk for every i ∈ [2]. Let U ′

i = V (X1) ∩ Ui and

U ′
k+i = V (X2) ∩ Uk+i for every i ∈ [k]. Then it is easy to observe the following properties:

(D1) |U ′
i | ≥

β
8

n
2k for every i ∈ [2k];

(D2) Combined with e1, every copy of Kk in the resulting k-partite graph G[U ′
1, U

′
2, . . . , U

′
k] can form a copy

of P k
2k. The same assertion also holds for e2 and G[U ′

k+1, U
′
k+2, . . . , U

′
2k].

1Similar to the proof of Claim 2.17.
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(D3) Moreover, for every i ∈ [k] and x ∈ U ′
i , the edges xui, xui+1, . . . , xuk are pairwise compatible at x;

similarly, for every j ∈ [k] and y ∈ U ′
k+j , the edges yvj , yvj+1, . . . , yvk are pairwise compatible at y.

It is worth to remark that (D3) follows from the existence of a mate f for e1 (resp. for e2) whose i-th

coordinate is x.

Let G′ = G[V ′] and n′ = |V ′|. Then δ(G′) ≥ δ(G)−|W |−2k ≥ ( k
k+1 +

γ
3 )n. We apply Lemma 2.11 to G′

to refine the current partition {U ′
1, U

′
2, . . . , U

′
2k, V

′ \
⋃2k

i=1 U
′
i}. Denote the resulting (ε, d)-regular partition

by P = {V0, V1, . . . , Vr} for some 1/ε ≤ r ≤ Mε, where |V0| ≤ εn and all clusters Vi with i ∈ [r] have the

same size, denoted as m. Let R = R(ε, d) be the reduced graph for this partition. Then as ε ≪ d ≪ γ, we

obtain that δ(R) ≥
(

k
k+1 + γ

3 − d− 2ε
)
r ≥

(
k

k+1 + γ
4

)
r.

We claim that there exists a copy of Kk in R, such that each of the corresponding k clusters comes

from a different part U ′
i where i ∈ [k]. For otherwise, by removing the edges (of G′) between irregu-

lar pairs, pairs with density less than d, and pairs incident to V0, we obtain a subgraph of the k-partite

graph G[U ′
1, U

′
2, . . . , U

′
k] which does not contain any copy of Kk. Thus the total number of copies of Kk in

G[U ′
1, U

′
2, . . . , U

′
k] is at most

(εr2 ·m2 + r2 · d ·m2 + εn′ · n)n′k−2 ≤ (2ε+ d)nk <
β

8(2k)k
nk ≤ |X1|,

yielding a contradiction. Similarly, we can find another copy of Kk in R, such that each of the corresponding

k clusters comes from a different part Ui where i ∈ [k + 1, 2k]. Without loss of generality, we may then

assume that Vi ⊆ U ′
i for every i ∈ [2k] and f1 := (V1, V2, . . . , Vk), f2 := (Vk+1, Vk+2, . . . , V2k) induce two

copies of Kk in R.

By Lemma 5.1 applied to R, there exists a copy of P k
ℓ with 2k ≤ ℓ ≤ L, whose ends are

←−
f 1 and

←−
f 2.

Suppose V1, . . . , Vℓ are the corresponding clusters in its base path. Applying Corollary 2.14 to G′ with

h = ℓ,H = P k
ℓ , Ui = Vi for every i ∈ [ℓ] and combining the choice of µ≪ ε≪ d, we obtain a family K of at

least cmℓ compatible copies of P k
ℓ (in G′) for some c = c(ℓ, d) > 0. Moreover, every two ends of such a copy

in K respect the orderings of
←−
f 1 and

←−
f 2, respectively. Recaping property (D2), we shall pick a copy of P k

ℓ

in K such that we can extend it to a desired compatible copy of P k
ℓ+2k whose ends are ←−e 1 and ←−e 2, which

completes the entire proof.

Recall that e1 = (u1, . . . , uk) and e2 = (v1, . . . , vk). For any fixed copy of P k
ℓ in K, its base path is

denoted as Q = w1w2 . . . wℓ such that the path u1 . . . ukw1w2 . . . wℓvk . . . v1 forms a copy of P k
ℓ+2k. Note that

wi ∈ U ′
i and wℓ−i+1 ∈ U ′

k+i for every i ∈ [k]. Combining (D3) and the fact of ℓ ≥ 2k, we obtain that if Q

fails to connect the ends ←−e 1 and ←−e 2 into a compatible copy of P k
ℓ+2k, then one of the following conditions

holds:

(E1) There exist ui (i ∈ [k]) and a pair {ws, wt} with s, t ∈ [ℓ] such that either {uiws, uiwt}, or {uiws, wswt}
forms an incompatible pair in (G,F).

(E2) There exist vj (j ∈ [k]) and a pair {ws, wt} with s, t ∈ [ℓ] such that either {vjws, vjwt}, or {vjws, wswt}
forms an incompatible pair in (G,F).
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Note that for any such ui (or vj) as in (E1) (resp. (E2)), the number of pair (ws, wt) is at most 2µn2. Hence

the number of copies of P k
ℓ in K satisfying (E1) or (E2) is at most

2k(2µn2 + 2µn2)nℓ−2 < cmℓ ≤ |K|,

where the first inequality follows since µ≪ ε, c, 1
k . Thus we can pick from K a compatible copy of P k

ℓ with

a base path Q as desired. This completes the entire proof.
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