
A CLASSIFICATION RESULT ABOUT BASIC 2-ARC-TRANSITIVE
GRAPHS

JING JIAN LI, ZAI PING LU, RUO YU SONG, AND XIAO QIAN ZHANG

Abstract. A connected graph Γ = (V,E) is called a basic 2-arc-transitive graph if
its full automorphism group has a 2-arc-transitive subgroup G, and every minimal
normal subgroup of G has at most two orbits on V . In 1993, Praeger proved that
every finite 2-arc-transitive connected graph is a cover of some basic 2-arc-transitive
graph, and proposed the classification problem of finite basic 2-arc-transitive graphs.
In this paper, a classification is given for basic 2-arc-transitive non-bipartite graphs
of order rasb and basic 2-arc-transitive bipartite graphs of order 2rasb, where r and
s are distinct primes.
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1. Introduction

All graphs considered in this paper are assumed to be finite, simple and undirected.

Let Γ = (V,E) be a graph with vertex set V and edge set E. An arc of Γ is
an ordered pair of adjacent vertices, and a 2-arc is a triple (α, β, γ) of vertices with
{α, β}, {β, γ} ∈ E and α 6= γ. Denote by Aut(Γ) the full automorphism group of the
graph Γ, and call every subgroup of Aut(Γ) an (automorphism) group of Γ. A group
G of Γ is said to be vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive
if G acts transitively on the vertices, edges, arcs or 2-arcs of Γ, respectively. A graph
is said to be vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive if it
admits a vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive group,
respectively.

A connected graph Γ = (V,E) with at least 3 vertices is called a basic 2-arc-
transitive graph if it has a 2-arc-transitive group G such that every minimal normal
subgroup of G has at most two orbits on the vertex set V . Praeger [24, 25] observed
that every connected 2-arc-transitive graph is a cover of some basic 2-arc-transitive
graph, and proposed the following problem.

Problem 1.1 ([25], Problem 1.2). Classify all finite basic 2-arc-transitive graphs.

Let Γ = (V,E) be a basic 2-arc-transitive graph with respect to a group G. Put
G∗ = 〈Gα, Gβ〉 for an edge {α, β} ∈ E. It is well-known that |G : G∗| 6 2, and Γ is
bipartite if and only if |G : G∗| = 2, refer to [30, Exercise 3.8]. Praeger [24, 25] proved
that either Γ is a complete bipartite graph, or G∗ is a quasiprimitive group of type
HA, AS, PA or TW (see [26] for the notation) on each G∗-orbit of vertices except for
one case when Γ is bipartite. Inspired by Praeger’s work, a lot of remarkable pro-
gresses have been made on classification or characterization of basic 2-arc-transitive
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graphs. For example, a construction of the graphs associated with quasiprimitive
groups of type TW is given in [1], the graphs associated with quasiprimitive groups
of type HA are classified in [15], the graphs associated with Suzuki simple groups, Ree
simple groups and 2-dimensional projective linear groups are classified in [8, 9, 14]
respectively. Besides, one can read out the basic 2-arc-transitive graphs of prime
power order from [17]. In this paper, we focus on those basic 2-arc-transitive graphs
of some given orders.

Let a, b be positive integers, r and s be distinct primes. Let Γ = (V,E) be a basic
2-arc-transitive graph of valency k with respect to a group G. Assume that Γ is either
non-bipartite and of order rasb or bipartite and of order 2rasb. It is easy to see that
Γ is not a cycle. For the case where k is an odd prime, the graph Γ is determined
in [22]. Recently, for an arbitrary valency k, it is shown in [23] that either Γ is a
complete bipartite graph or G is an almost simple group. This allows us to give a
classification of such graphs Γ. In Sections 4-6 of this paper, we prove a classification
result stated as follows.

Theorem 1.2. Let a and b be positive integers, r and s be distinct primes. Let
Γ = (V,E) be a basic 2-arc-transitive graph with respect to a group G, let {α, β} ∈ E
and G∗ = 〈Gα, Gβ〉. Assume that G is an almost simple group with socle T , and G∗

has an orbit on V of length rasb. Then Γ is isomorphic to one of the following graphs:

(1) the complete graph Krasb and its standard double cover;
(2) the Odd graph O4 of valency 4 and its standard double cover;
(3) the point-hyperplane incidence graph and non-incidence graph of the projective

geometry PG(n− 1, q), where n > 3 and rasb = qn−1
q−1

;

(4) the incidence graph of the generalized quadrangle GQ(4, 22i), where i > 1;
(5) the graphs in Examples 3.1, 3.2, 3.4-3.10, the standard double covers of the

graph in Examples 3.1 and 3.2, and the graphs described as in Tables 4.2 and
6.7;

(6) T = PSL2(p2i), Tα = Z2i

p :Z
p2
i−1

2i0+1

, and Γ is of valency p2i, where p is an odd

prime, 1 6 i0 < i and rasb = (p2i + 1)2i0.

Remark 1.3. We have no idea how to give a precise list for the graphs satisfying
(6) of Theorem 1.2. The reader is referred to [14, Section 6] for the vertex-stabilizers
and existence of such graphs.

2. Local structures and normal subgroups

Let Γ = (V,E) be a connected graph, G 6 Aut(Γ) and {α, β} ∈ E. Denote by

G
Γ(α)
α the permutation group induced by Gα on Γ(α), the neighborhood of α in Γ.

Let G
[1]
α be the kernel of Gα acting on Γ(α). Then G

Γ(α)
α
∼= Gα/G

[1]
α .

If G is arc-transitive on Γ then there is some x ∈ G such that (α, β)x = (β, α), and
the next simple fact follows, see [22, Lemma 2.1] for example.

Lemma 2.1. Let Γ = (V,E) be a connected graph, and {α, β} ∈ E. If G is an
arc-transitive group of Γ, then |G{α,β} : Gαβ| = 2 and 〈Gα, G{α,β}〉 = G; in particular,
|NG(Gαβ) : Gαβ| is even and 〈NG(Gαβ), Gα〉 = G.

Assume next that G is 2-arc-transitive on Γ. Then G
Γ(α)
α is a 2-transitive group. In

particular, the socle soc(G
Γ(α)
α ) is either a nonabelian simple group or an elementary
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abelian group of prime power order. Since G is 2-arc-transitive on Γ, the arc-stabilizer
Gαβ acts transitively on Γ(β)\{α}. Let K be the kernel of Gαβ acting on Γ(β)\{α}.
Since G

[1]
β 6 Gαβ 6 Gβ and G

[1]
β fixes Γ(β)\{α} point-wise, we have G

[1]
β 6 K 6 G

[1]
β ,

and so K = G
[1]
β . Since G

[1]
α is normal in Gαβ, we have

(2.1) (G[1]
α )Γ(β) �G

Γ(β)
αβ
∼= Gαβ/G

[1]
β .

Take x ∈ G with (α, β)x = (β, α). Then Gβ = Gx
α and Γ(β) = Γ(α)x. It follows that

(2.2) (G[1]
α )Γ(β) � (G

Γ(β)
β )α = G

Γ(β)
αβ
∼= G

Γ(α)
αβ = (GΓ(α)

α )β.

Thus, if G
Γ(α)
α is solvable then (G

Γ(α)
α )β is solvable, and hence (G

[1]
α )Γ(β) is solvable.

Note the kernel of G
[1]
α acting on Γ(β) is equal to the edge-kernel G

[1]
αβ := G

[1]
α ∩

G
[1]
β . We have (G

[1]
α )Γ(β) ∼= G

[1]
α /G

[1]
αβ. It is well-known that G

[1]
αβ has order a prime

power, see [11]. Then (G
[1]
α )Γ(β) is solvable if and only if G

[1]
α is solvable. Recalling

that G
Γ(α)
α
∼= Gα/G

[1]
α , if G

Γ(α)
α is solvable then Gα is solvable. Noting that Gα =

G
[1]
αβ.(G

[1]
α )Γ(β).G

Γ(α)
α . It follows that every insolvable composition factor of Gα occurs

as a composition factor of (G
[1]
α )Γ(β) or G

Γ(α)
α .

Recall that G
Γ(α)
α is 2-transitive and (G

[1]
α )Γ(β) is isomorphic to a normal subgroup

of (G
Γ(α)
α )β. By [21, Corollary 2.5], (G

Γ(α)
α )β has at most one insolvable composition

factor. Checking one by one the finite 2-transitive groups given in [4, pages 195-197,
Tables 7.3 and 7.4], we have the following lemma.

Lemma 2.2. Let Γ = (V,E) be a connected graph, G 6 Aut(Γ) and {α, β} ∈ E.

Assume that G is 2-arc-transitive on Γ and Gα is insolvable. Then G
Γ(α)
α has a unique

insolvable composition factor and G
[1]
α has at most one insolvable composition factor.

If further G
[1]
α is insolvable then one of the following holds:

(1) G
Γ(α)
α is an almost simple 2-transitive group, Gα has two nonisomorphic in-

solvable composition factors;

(2) G
Γ(α)
α is an affine 2-transitive group, Gα has two isomorphic insolvable com-

position factors.

The next result on 2-arc-transitive graphs is formulated from [28, 29, 30].

Theorem 2.3. Let Γ = (V,E) be a connected graph of valency k > 3, and let G be

a 2-arc-transitive group of Γ. Assume that G
[1]
αβ 6= 1 for {α, β} ∈ E. Then G

[1]
αβ is a

p-group for some prime p, PSLd(p
f ) � G

Γ(α)
α , k = pfd−1

pf−1
, and either d > 3 or one of

the following holds:

(1) Gα = [p2f ]:(c.PGL(2, pf )).[o], where c = pf−1
(3,pf−1)

and o
∣∣ (3, pf − 1)f ;

(2) p = 2 and Gα = [23f ]:GL(2, 2f ).e, where e
∣∣ f ;

(3) p = 3 and Gα = [35f ]:GL(2, 3f ).e, where e
∣∣ f .

In particular, Gα is solvable if and only if (k, d, pf ) = (3, 2, 2) or (4, 2, 3).

Assume that G is a 2-arc-transitive group of Γ, and N � G with Nα 6= 1. Then
Nα acts transitively on Γ(α), and N is edge-transitive on Γ, see [19, Lemma 2.5] for

example. Note that N
Γ(α)
α is a transitive normal subgroup of the 2-transitive group

G
Γ(α)
α . It forces that soc(N

Γ(α)
α ) = soc(G

Γ(α)
α ). For the case where G

Γ(α)
α is almost
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simple, it follows from [4, page 197, Table 7.4] that soc(N
Γ(α)
α ) is a 2-transitive normal

subgroup of G
Γ(α)
α unless soc(G

Γ(α)
α ) = PSL(2, 8) acting on 28 points.

Lemma 2.4. Let Γ = (V,E) be a connected graph, and {α, β} ∈ E. Assume that

G is a 2-arc-transitive group of Γ and G
Γ(α)
α is an affine 2-transitive group of degree

|Γ(α)| = pe. Then one of the following holds:

(1) Op(Gα) ∼= soc(G
Γ(α)
α ) = Zep, and Gα = Op(Gα):Gαβ;

(2) pe = 3, and Gα is one of S4 and 2× S4;
(3) pe = 4, and Gα is one of 32:GL2(3) and [35]:GL2(3).

If further N�G and Nα 6= 1 then either Nα is solvable, or one of the following holds:

(4) Nα acts 2-transitively on Γ(α);

(5) Nα acts primitively on Γ(α), Z2
p:SL2(5)�N

Γ(α)
α �G

Γ(α)
α �Z2

p:(Zp−1 ◦ SL2(5)),

|Γ(α)| = p2, where p ∈ {19, 29, 59}.

Proof. By [21, Proposition 3.4], either part (1) holds or pe ∈ {3, 4} and G
[1]
αβ 6= 1. For

the latter case, part (2) or (3) follows from Theorem 2.3 depending on whether G
[1]
αβ

is a 2-group or a 3-group, see also [2, page 126] and [20, Lemma 2.6].

Let N �G with Nα 6= 1. By [21, Corollary 2.5], either one of (4) and (5) holds or

(N
Γ(α)
α )β is solvable. Assume next that the latter case occurs. Then N

Γ(α)
α is solvable

as N
Γ(α)
α = soc(G

Γ(α)
α ):(N

Γ(α)
α )β. Since G is arc-transitive on Γ, taking x ∈ G with

(α, β)x = (β, α), we have Nx
αβ = (Gαβ ∩N)x = Gαβ ∩N = Nαβ. Since Γ(α)x = Γ(β),

we have N
Γ(β)
αβ
∼= N

Γ(α)
αβ = (N

Γ(α)
α )β. Noting that (N

[1]
α )Γ(β) � N

Γ(β)
αβ , it follows that

(N
[1]
α )Γ(β) is solvable, and then Nα is solvable as Nα = N

[1]
αβ.(N

[1]
α )Γ(β).N

Γ(α)
α . This

completes the proof. �

Lemma 2.5. Let Γ = (V,E) be a connected graph, and let G be a 2-arc-transitive
group of Γ. Let N �G and {α, β} ∈ E. Assume that Nα is the dihedral group D2n of

order 2n, where n > 3. Then n = p or 2p, |Γ(α)| = p and G
Γ(α)
α = AGL1(p), where

p is an odd prime.

Proof. Let K be the unique cyclic subgroup of Nα with order n. Then K is normal

in Gα. Thus either K 6 G
[1]
α or K acts transitively on Γ(α). Suppose that K 6 G

[1]
α .

Then N
Γ(α)
α
∼= Z2. Since N

Γ(α)
α is transitive on Γ(α), it follows that Γ is a cycle. Then

Nα �Gα
∼= Z2, a contradiction.

Now K acts transitively on Γ(α). Then soc(G
Γ(α)
α ) = soc(N

Γ(α)
α ) = soc(KΓ(α)) ∼=

Zp, where p = |Γ(α)| is an odd prime. Moreover, G
Γ(α)
α = AGL1(p), and Nαβ

∼= D 2n
p

.

(Here, D2 = Z2 and D4 = Z2
2.) Suppose that n > 2p. Noting that Nα

∼= Nβ
∼= D2n, it

follows that Nαβ contains the unique cyclic subgroup L of both Nα and Nβ with order
n
p
. Clearly, L is characteristic in both Nα and Nβ, and then L is normal in both Gα

and Gβ. Thus L� 〈Gα, Gβ〉 = G∗. Since G∗ is edge-transitive, L fixes every edge of
Γ. By the connectedness of Γ, we have L = 1; however |L| = n

p
> 3, a contradiction.

Then the lemma follows. �
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3. Constructions of 2-arc-transitive graphs

The purpose of this section is to construct some graphs involved in Theorem 1.2 as
the coset graphs of almost simple groups or the orbital graphs of rank three primitive
groups.

3.1. Orbital graphs. For a graph Γ = (V,E), α ∈ V and a group G of Γ, if G is
arc-transitive then Γ(α) is a self-paired suborbit of G (as a transitive subgroup of the
symmetric group Sym(V )). Conversely, if G is a transitive subgroup of Sym(V ) with
a self-paired suborbit ∆(α) at α, then we have an arc-transitive graph on V , called
an orbital graph of G, which has arc set {(α, β)g | β ∈ ∆(α), g ∈ G}, the orbital of
G on V with respect to ∆(α). Note, the orbital graph is independent of the choice
of α, and if Gα acts 2-transitively on ∆(α) then G is a 2-arc-transitive group of the
graph.

We next construct some 2-arc-transitive graphs from primitive groups of rank 3.
Note that the primitivity insures the connectedness of the resulting graphs.

Example 3.1. Let G be an almost simple group with socle T = M22. Then G is
contained in the automorphism group of the Steiner system S(3, 6, 22). Let V be the
set of 77 hexads of S(3, 6, 22). Then G is a primitive group on V of rank 3 with
suborbits of length 1, 16 and 60. Define a graph Γ on V such α, β ∈ V are adjacent
if and only if α and β are disjoint hexads. By the information given in the Atlas [6],
every hexad α is disjoint from 16 others, Tα ∼= 24:A6, Tαβ ∼= A6 and T{α,β} ∼= M10 for
a hexad β disjoint from α. Then Γ is a connected 2-arc-transitive graph of order 77
and valency 16. �

Example 3.2. Let G be an almost simple group with socle T = PSU4(q), where q =

22i for some integer i > 1. Consider the action of G on the set V of (q+1)2(q2−q+1)
isotropic lines. Then G is a primitive group of rank 3 with suborbits of length 1, q4

and q(q2 + 1). For an isotropic line α, the suborbit at α of length q4 consists of all
isotropic lines disjoint from α. Define a graph Γ on V such α, β ∈ V are adjacent if
and only if α and β are disjoint isotropic lines. Then Γ is a connected 2-arc-transitive
graph of order (q + 1)2(q2 − q + 1) and valency q4. �

3.2. Coset graphs. It is well-known that, for a group G, every transitive action of
G on a nonempty set is equivalent to the action induced by the multiplication of G
on the right cosets of some subgroup in G. This fact leads to an efficient construction
for 2-arc-transitive graphs as follows, refer to [12, 13, 22].

Let G be a finite group, and H,K < G with |K : (K ∩ H)| = 2 such that H is
core-free in G, i.e., ∩g∈GHg = 1, and K∩H is maximal and non-normal in H. Define
a graph Cos(G,H,K) on [G : H] := {Hg | g ∈ G} such that {Hx,Hy} is an edge if
and only if yx−1 ∈ HKH \H. It is easily shown that G is an arc-transitive group of
Cos(G,H,K), where G acts on [G : H] by right multiplication. Taking x ∈ K \H,
we have that HKH = H ∪HxH, and the subgroups H, H ∩K and K serve as the
stabilizers of the vertex H, arc (H,Hx) and edge {H,Hx}, respectively.

By [8, Theorem 2.1] and [22, Lemma 2.2], a characterization for 2-arc-transitive
graphs is given as follows.

Theorem 3.3. Let Γ = (V,E) be a connected regular graph of valency k > 3, and
G 6 Aut(Γ). Then G is 2-arc-transitive on Γ if and only if Γ ∼= Cos(G,H,K), where
H,K < G satisfy the following conditions:
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(I) H is core-free in G, G = 〈H,K〉, |K : (K ∩H)| = 2 and |H : (K ∩H)| = k;
(II) H acts 2-transitively on the set [H : (K ∩H)] by right multiplication.

Let G be a finite group. In order to determine whether or not there exist connected
graphs admitting G as a 2-arc-transitive group, it suffices to find all feasible pairs
(H,K) satisfying the above conditions (I) and (II). In practice, up to isomorphism
of graphs, the vertex-stabilizer H is chosen up to the conjugation under Aut(G),
and the edge-stabilizer K is chosen from the normalizer NG(L) with |K : L| = 2,
while L is an intended arc-stabilizer K ∩ H chosen up to the conjugation under
NAut(G)(H). Nevertheless, for a given pair (G,H), different edge-stabilizers K might
give isomorphic graphs.

Example 3.4. Let G = PSL3(3).2 with socle T = PSL3(3). Then G has a unique
conjugacy class of subgroups isomorphic to 32:2A4

∼= ASL2(3), confirmed by GAP
[10]. Let H = 32:2A4 < T and L = 2A4 < H. Then NG(L) = 2S4:2 = 2A4.2

2, and
NG(L) has two subgroups K1, K2 with K1

∼= K2
∼= 2S4 and K1, K2 66 T , confirmed

by GAP. Thus we have two connected bipartite graphs Cos(G,H,Ki), i ∈ {1, 2},
which have valency 9, order 52 and admit G as a 2-arc-transitive group. �

Example 3.5. Let G = PGL2(7) and T = PSL2(7). Then T has two conjugacy
classes of subgroups A4, which are merged into one class in G. Take A4

∼= H < T ,
and Z3

∼= L < H. Then NG(L) ∼= D12, which contains three subgroups of order 6,
one of them, say K ∼= Z6, together with H generate G, the other two are dihedral
and each of them together with H generate a maximal subgroup S4 of T . Thus we
get a 2-arc-transitive graph Cos(G,H,K), which has order 28 and valency 4. �

Example 3.6. Let G = PGL2(11) and T = PSL2(11). Then T has a unique conju-
gacy class of subgroups A4 and G has a unique conjugacy class of maximal subgroups
S4. Let H1 = A4 < T , L1 = Z3 < H1 < H2 = S4 < G and L2 = S3 < H2. Then the
following hold, confirmed by GAP.

(1) NT (L1) = D12 contains three subgroups of order 6, one of them is cyclic, say
K11, which together with H1 generate T , the other two are dihedral and each
of them together with H1 generate a maximal subgroup A5 of T ;

(2) NG(L1) = D24 contains five subgroups of order 6, three of them are contained
in T , each of the other two, say K12 and K13, together with H1 generate G;

(3) K2 := NG(L2) = D12 66 T and K2 ∩ T = L2.

Thus we get four 2-arc-transitive tetravalent graphs Cos(T,H1, K11), Cos(G,H2, K2),
Cos(G,H1, K12) and Cos(G,H1, K13). Note, the first two graphs are isomorphic and
of order 55, the last two graphs are bipartite and of order 110. �

Example 3.7. Let T = PSL2(23). Then T has two conjugacy classes of maximal
subgroups S4, which are merged into one class in PGL2(23). Take S4

∼= H < T , and
S3
∼= L < H. Then NT (L) ∼= D12 and 〈H,NT (L)〉 = T , confirmed by GAP. Thus

Cos(T,H,NT (L)) is a 2-arc-transitive graph of order 253 and valency 4. �

Example 3.8. The alternating group A9 has two conjugacy classes of subgroups
23:PSL3(2), which are merged into one class in S9. Take 23:PSL3(2) ∼= H < A8 < A9.
Consider the natural action of S9 on Ω = {1, 2, . . . , 9}. We may assume that H fixes
the point 9 and acts 2-transitively on Ω1 = Ω \ {9}. Then, up to conjugation, H has
two subgroups PSL3(2), one of them is 2-transitive on Ω1, the other one say L fixes
2 and is 2-transitive on Ω1 \ {2}. Moreover, NS9(L) = NS7×〈(2 9)〉(L) = L × 〈(2 9)〉.
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Then 〈H,NS9(L)〉 is 2-transitive on Ω and contains a transposition (2 9). This yields
that 〈H,NS9(L)〉 = S9, see [7, page 77, Theorem 3.3A]. Thus Cos(S9, H,NS9(L)) is a
2-arc-transitive bipartite graph of order 2 · 33 · 5 and valency 8. �

Example 3.9. Let T = PSLn(q) with n > 3 and q a prime power, and let M ∼=
qn−1:SLn−1(q). q−1

(n,q−1)
be a point-stabilizer of T acting on the projective geometry

PG(n − 1, q). Take x ∈ Aut(T ) such that Mx is a hyperplane-stabilizer of T acting

on PG(n − 1, q) and Mx2 = M . Identifying T with its inner automorphism group,
set X = T 〈x〉. Let qn−1:SLn−1(q).o ∼= H0 6M . Then H0 is a characteristic subgroup
of M , and so x2 ∈ NX(H0). Set H = H0〈x2〉 and K = (H0 ∩Hx

0 )〈x〉. Then X is a
2-arc-transitive group of Cos(X,H,K), and one of the following holds:

(1) |H : (H ∩K)| = qn−1;

(2) |H : (H ∩K)| = qn−1−1
q−1

.

Note, if we take H0 = M then the resulting graph is just the point-hyperplane
incidence or non-incidence graph of PG(n− 1, q). We can get examples for Theorem
1.2 with further limitations on q and n, refer to [18, Table 4.1] and [22, Remark
5.2]. �

Example 3.10. Let G = T.2 be an almost simple group with socle T = PΩ+
8 (2).

By the Atlas [6], T has three conjugacy classes of maximal subgroups 26:PSL4(2).
One of them consists of the stabilizers of isotropic points. The other two classes are
merged into one class in G and consist of respectively the stabilizers of T acting on
two orbits of maximal isotropic subspaces. Let H be a stabilizer of some maximal
isotropic subspace in T . Then all subgroups [29]:PSL3(2) of H are self-normalized
(confirmed by GAP) in T , and such subgroups form two classes in G according to
whether or not they have normalizer [29]:(PSL3(2) × 2). Let H > L ∼= [29]:PSL3(2)
with NG(L) ∼= [29]:(PSL3(2)×2). Then Cos(G,H,NG(L)) is a 2-arc-transitive graph
of order 270 and valency 15. �

3.3. Standard double covers. For a graph Γ = (V,E), the standard double cover
Γ(2) of Γ is a bipartite graph with vertex set V × Z2 such that {(α, 0), (β, 1)} is an
edge if and only if {α, β} ∈ E. It is well-known that Γ(2) is connected if and only if
Γ is connected and non-bipartite.

Define a map τ : V × Z2 → V × Z2, (α, i) 7→ (α, i + 1). It is easily shown that
τ ∈ Aut(Γ(2)), and τ interchanges V × {0} and V × {1}. Moreover, if G 6 Aut(Γ)
then G can be viewed as a subgroup of Aut(Γ(2)) by

(α, i)g = (αg, i), α ∈ V, g ∈ G.
Thus, if G is a 2-arc-transitive group of Γ then G× 〈τ〉 is a 2-arc-transitive group of
Γ(2). Further, the following lemma is easily shown.

Lemma 3.11. Let Γ = (V,E) be a graph, and G0 < G 6 Aut(Γ) with |G : G0| = 2. If
G0 is 2-arc-transitive then G0〈xτ〉 is a 2-arc-transitive group of Γ(2), where x ∈ G\G0.

Example 3.12. Let Ω = {1, 2, 3, . . . , 2k − 1} for integer k > 3. The Odd graph Ok

is defined on the set of (k − 1)-subsets of Ω with two vertices adjacent if and only
if they are disjoint (k − 1)-subsets. The graph Ok has valency k and automorphism

group S2k−1, while A2k−1 is a 2-arc-transitive group of Ok. By Lemma 3.11, O
(2)
k has a

2-arc-transitive group isomorphic to S2k−1. Note, up to isomorphism, the graph O
(2)
k

is also constructed on the (k− 1)-subsets and k-subsets of Ω by the inclusion of sets.
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Lemma 3.13. Let Γ = (V,E) be a connected bipartite graph of valency k, and let
G be a 2-arc-transitive group of Γ. Assume that G∗ acts faithfully and equivalently
on both parts of Γ. If G∗ has a unique suborbit of length k on one part of Γ, then
Γ is isomorphic to the standard double cover of some graph which admits G∗ as a
2-arc-transitive group.

Proof. Assume that G∗ has a unique suborbit of length k on one part of Γ, say U .
Let Σ be the orbital graph of G∗ with respect to this suborbit. Take α, β ∈ V with
α ∈ U and β ∈ V \ U and Gα = Gβ. Since Γ is bipartite, we have Γ(β) ⊆ U , and
so Γ(β) is a Gβ-orbit on U as Gβ acts transitively on Γ(β). Then both Γ(β) and
Σ(α) are Gα-orbits on U . Since G∗ has a unique suborbit of length k on U , we have
Γ(β) = Σ(α). Thus Gα acts 2-transitively on Σ(α), and G∗ is a 2-arc-transitive group
of Σ. Define a map φ : V → U × Z2 by

αx 7→ (αx, 0), βx 7→ (αx, 1), x ∈ G∗.

It is easy to show that φ is a graph isomorphism, and the lemma follows. �

4. Graphs with prime valency or solvable stabilizers

Throughout the rest of this paper, r and s are distinct primes, a and b are positive
integers, Γ = (V,E) denotes a basic 2-arc-transitive graph of valency k with respect
to an almost simple group G, T = soc(G), G∗ = 〈Gα, Gβ〉, and |G∗ : Gα| = rasb,
where {α, β} ∈ E. Since a cycle has solvable automorphism group, we have k > 3.

Clearly, T 6 G∗, and T is transitive on each G∗-orbit on V . Then |T : Tα| = |G∗ :
Gα|, and G∗ = TGα, yielding that G∗/T ∼= Gα/Tα. Since G is almost simple, G/T is
solvable, and so G∗/T is solvable. Then Gα/Tα is solvable, and thus Gα is solvable
if and only if Tα is solvable. Moreover, since T has a subgroup Tα of index rasb, T
is one of the simple groups given in [18, Tables 3.1,3,2,4.1-4.5, 5.1] and [22, Remark
5.2]. In this and the following two sections, we will prove Theorem 1.2 in three cases:

(A) either Tα is solvable or k is an odd prime, see Theorems 4.1, 4.2 and 4.4;

(B) G
Γ(α)
α is an insolvable affine 2-transitive group, see Theorem 5.4;

(C) G
Γ(α)
α is an almost simple 2-transitive group, and k is not prime, see Theorems

6.1 and 6.6.

In this section we first deal with the case (A).

Theorem 4.1. Assume that Tα is solvable. Then one of the following holds:

(1) either k = 4 or k is a prime;
(2) Γ is a complete graph or the standard double cover of a complete graph;
(3) Γ is a bipartite graph described as in Example 3.4;

(4) T = PSL2(p2i), p2i :p
2i−1

2i0+1 = Tα 6 Gα 6 AΓL1(p2i), and Γ is of valency p2i,
where p is an odd prime and 1 6 i0 < i.

Proof. Noting that Gα is solvable, G
Γ(α)
α is a solvable 2-transitive group, and k = pe

for some prime p and integer e > 1. If e = 1 or k = 4 then the result holds.

Assume that e > 1 and k = pe > 4. First, by Lemma 2.5, Tα is not a dihedral

group. Since G
Γ(α)
α is solvable, we can read out G

Γ(α)
α from [4, page 195, Table 7.3],

see also [21, Theorem 2.4]. Then one of the following holds:
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(i) k = pe, (G
Γ(α)
α )β 6 (pe − 1):e;

(ii) k = 34, (G
Γ(α)
α )β 6 21+4:5:4;

(iii) k = 52, (G
Γ(α)
α )β = Q8:3 or Q8.6;

(iv) k = 72, (G
Γ(α)
α )β = Q8:S3, 3× (Q8.2) or 3× (Q8:S3);

(v) k = 112, (G
Γ(α)
α )β = 5× (Q8:3) or 5× (Q8:S3);

(vi) k = 232, (G
Γ(α)
α )β = 11× (Q8:S3).

Moreover, by Lemma 2.4, Op(Gα) ∼= soc(G
Γ(α)
α ) = Zep and Gα = Op(Gα):Gαβ. Recall-

ing that soc(T
Γ(α)
α ) = soc(G

Γ(α)
α ), we have Tα = Op(Gα):Tαβ and Op(Tα) = Op(Gα).

Since k > 4, we have G
[1]
αβ = 1 by Theorem 2.3, and thus G

[1]
α is isomorphic to a

normal subgroup of (G
Γ(α)
α )β. In particular, |Gα| has the form of pem, where m is a

divisor of |(GΓ(α)
α )β|2. Then either Op(Gα) is a Sylow subgroup of Gα and of Tα, or p is

a divisor of e and Gα has a Sylow p-subgroup of order at most p2e. Further, recalling
that Gα/Tα ∼= G∗/T , it follows that |Gα| = |Tα||G∗ : T |, which is divisible by pe − 1.
With these limitations, we read out the pair (T, Tα) from [18, Tables 3.1,3.2,4.1-4.5,
5.1] and [22, Remark 5.2]. Then the pair (T, Tα) is described as in Table 4.1.

T Tα rasb k = pe

A6 32:2, 32:4 22 · 5, 2 · 5 32

M11 M9:2 5 · 11 32

PSL2(pe) pe:m (pe + 1)l pe ml = pe−1
(2,p−1) , e > 1, pe > 4

PSL3(3) 32:2A4 2 · 13 32

PSU3(4) 52 : S3 25 · 13 52 |G∗ : T | = |Gα : Tα| = 4

Table 4.1. Candidates of T for k > 4 with solvable stabilizers

We first exclude the groups M11 and PSU3(4). If T = M11 then T = G, and hence
Γ has odd order and odd valency, which is impossible. Suppose that T = PSU3(4).
Then Tα is maximal in T , G = PSU3(4).4 and Gα

∼= 52:(4 × S3). In particular,
Gαβ

∼= 4 × S3. Checking the maximal subgroups of G in the Atlas [6], we conclude
that NG(Gαβ) 6 Gα, which contradicts Lemma 2.1.

Assume that T = PSL3(3). If Tα 6= Gα then G = PSL3(3).2 and Gα
∼= 32:2S4 6 T ,

a contradiction. Thus Tα = Gα, and either G = T or Γ is bipartite and G∗ = T .
Suppose that G = T . Then Gα

∼= 32:2A4, Gαβ
∼= 2A4 and NG(Gαβ) ∼= 2S4, where

β ∈ Γ(α). It follows that Gα and NG(Gαβ) are both contained in a subgroup 32:2S4

of G, a contradiction. Then Γ is a bipartite graph described as in Example 3.4.

Assume that T = PSL2(pe), Tα = pe:m, rasb = (pe + 1)l and ml = pe−1
(2,p−1)

, where

e > 1 and pe > 4. If l = 1 then T is 2-transitive on each T -orbit on V , and thus
Γ is a complete graph or the standard double cover of a complete graph. Now let
l > 1. Suppose that p = 2. Then (l, 2e + 1) = 1, since (2e + 1)l = rasb, we conclude
that e = 2j for some j > 1. It follows that |G∗ : T | is a divisor of 2j. Then
|Gα| = |Tα||G∗ : T | = 2e2j0 2e−1

l
for some j0 6 j, and thus |Gα| is indivisible by 2e−1,

a contradiction. Therefore, p is an odd prime. Since e > 1, it is easily shown that pe+1
is not a power of 2. Noting that (pe+1, pe−1) = 2 and (pe+1)l = rasb, it follows that
l = 2i0 and e = 2i, where i0, i > 1. In particular, |G∗ : T | is a divisor of 2i. Setting
|G∗ : T | = 2i1 for some i1 6 i, we have m = pe−1

2i0+1 and |Gα| = |Tα||G∗ : T | = pe2i1 p
e−1

2i0+1 .
Since |Gα| has a divisor pe − 1, we have i0 + 1 6 i1 6 i, and so i0 < i. Checking the
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maximal subgroups of G, it follows from [3, page 377, Table 8.1] that Gα 6 AΓL1(p2i),
desired as in part (4) of this theorem.

Finally, let T = A6. Noting that A6
∼= PSL2(9), by the above argument, we have

Tα 6∼= 32:2. Then Tα ∼= 32:4, and thus Γ is either the complete graph K10 or the
standard double cover of K10. This completes the proof. �

For the case where k is a prime, we can read out the 2-arc-transitive members from
the graphs given in [22].

Theorem 4.2. If k is an odd prime then one of the following holds:

(1) Γ is either a complete graph or the standard double cover of a complete graph;
(2) Γ is the point-hyperplane incidence graph of the projective geometry PG(n −

1, pe), where p is a prime and (n, pe) = (3, 4), (4, p) or (6, 2);

(3) Γ is the incidence graph of the generalized quadrangle GQ(4, 22i), where i > 1;
(4) Γ ∼= Cos(G,H,K) with (G,H,K) listed in Table 4.2.

G H K rasb k Remark

A5, S5 S3,D12 Z2
2,D8 2 · 5 3 F010

S5 S3 Z2
2 2 · 5 3 F020A

S5 S3 Z4 2 · 5 3 F020B, bipartite

PGL2(7),PSL2(7) D12, S3 D8,Z4 22 · 7 3 F028

PGL2(7) S3 Z2
2 22 · 7 3 F056B

PGL2(7) S3 Z4 22 · 7 3 F056C, bipartite

PGL2(9),M10,PΓL2(9) S4, S4, 2× S4 D16,QD16, [2
5] 3 · 5 3 F030, bipartite

PGL2(11) D12 D8 5 · 11 3 F110, bipartite

PGL2(13) D12 D8 7 · 13 3 F182D, bipartite

PGL2(23) S4 D16 11 · 23 3 F506B, bipartite

PGL2(25),PΓL2(25) S4, 2× S4 D16, [25] 52 · 13 3 F650B∗, bipartite,

PΓL2(9),M10 10:4, 5:4 [24],Q8 22 · 32 5

S6 5:4 Z4 × Z2 22 · 32 5

PΓL2(9) 5:4 Z4 × Z2 22 · 32 5 bipartite

M12.2 11:10 D20 26 · 33 11

PSL2(31) A5 S4 23 · 31 5

PGL2(p) A5 S4
p(p2−1)

120
5 bipartite

p ∈ {19, 29, 59, 61}
PSL5(2).2 26:(S3 × PSL3(2)) [28](S3 × S3):2 5 · 31 7 bipartite

PSU3(3).2 PSL3(2) S4 × 2 22 · 32 7 bipartite

PSU3(5).2,PSU3(5) S7,A7 A6.22,M10 52 · 2 7 Hoffman-Singleton

PSU3(5).2 A7 M10 52 · 2 7 bipartite,

PSU3(4).4 13:12 S3 × 4 26 · 52 13 bipartite

PSU5(2).2 PSL2(11) S5 28 · 34 11 bipartite

M12.2 PSL2(11) S5 24 · 32 11 bipartite, H 66 M11

M12 PSL2(11) S5 24 · 32 11 H < M11

Table 4.2. Some coset graphs of prime valency

Remark 4.3. (i) The names for cubic graphs in Table 4.2 follow from [5], the
graphs F506B and F650B∗ in Table 4.2 were missed in [22, Theorem 1.2 (1)].

(ii) Note the isomorphisms of graphs: F010 and Petersen graph O3, F020B and

O
(2)
3 , and F030, Tutte’s 8-cage and the incidence graph of GQ(4, 2).

(iii) The graph in Table 4.2 associated with PSL5(2).2 is in fact the line-plane
incidence graph of PG(4, 2). This graph was missed in both [19, Theorem 1.1]
and [22, Theorem 1.2].

Theorem 4.4. If k = 4 then one of the following holds:
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(1) Γ is either the Odd graph O4 with G ∈ {A7, S7} or the standard double cover

O
(2)
4 with G = S7;

(2) Γ is isomorphic to one of the three graphs in Examples 3.5, 3.6 and 3.7.

Proof. Assume that k = 4. Then Gα is one of A4, S4, 3 × A4, (3 × A4):2, S3 × S4,
32:GL2(3) and [35]:GL2(3), refer to [20, Lemma 2.6]. Combining Lemma 2.4, it is
easily shown that either O2(Tα) = O2(Gα) ∼= Z2

2 or O3(Gα) > O3(Tα) 6= 1. Further,
noting that Gα/Tα ∼= G∗/T 6 G/T , it follows that |G : T | has a divisor |O3(Gα) :
O3(Tα)|. Then, checking one by one the simple groups given in [18, Tables 3.1,3,2,4.1-
4.5, 5.1] and [22, Remark 5.2], all possible pairs (T, Tα) are described as in Table 4.3

T Tα rasb G
A6 S4 3 · 5 A6, S6(If Γ bipartite)
A7 (3×A4):2 5 · 7 A7, S7

PSL2(7) A4 2 · 7 PSL2(7),PGL2(7)(If Γ bipartite)
PSL2(11) A4 7 · 13 PSL2(11),PGL2(11)
PSL2(23) S4 11 · 23 PSL2(23),PGL2(23)(If Γ bipartite)
PSL2(25) S4 52 · 13 PSL2(25),PΣL2(25)(If Γ bipartite)

Table 4.3. Candidates of T for k = 4

Suppose that T = A6. Checking the subgroups of every almost simple group with
socle A6, since |G : Gα| = 15 or 30, we conclude that Tα = Gα, and G = A6 or
S6. Computation by GAP shows that Gα and NG(Gαβ) are contained in a maximal
subgroup S4 or 2× S4 of G, which contradicts Lemma 2.1.

Suppose T = PSL2(25) and Tα ∼= S4. Then Gα = Tα, and Gαβ
∼= S3. Take a

maximal subgroup M1
∼= S5 of T and a maximal subgroup M2

∼= S5 × 2 of PΣL2(25)
such that Gα 6 M1 6 M2. Computation by GAP shows that either G = PSL2(5)
and D12

∼= NG(Gαβ) 6 M1, or G = PΣL2(25) and 2× D12
∼= NG(Gαβ) 6 M2. Then

G 6= 〈Gα,NG(Gαβ)〉, a contradiction.

Suppose that T = A7. Then the action of T on each of its orbits is equivalent to
the action on 3-subsets induced by the natural action of A7 of degree 7. Thus the
resulting graph is either the Odd graph O4 with G ∈ {A7, S7} or the standard double

cover O
(2)
4 with G = S7.

Suppose that T = PSL2(7) and Tα ∼= A4. Then Gα = Tα, and Gαβ
∼= Z3. If G = T

then NG(Gαβ) ∼= S3 and 〈Gα,NG(Gαβ)〉 ∼= S4, a contradiction. Thus G = PGL2(7),
and Γ is isomorphic to the graph given in Example 3.5.

Suppose that T = PSL2(11) and Tα ∼= A4. Then either Gα = Tα, or G = PGL2(11)
and Gα

∼= S4. We have Gαβ
∼= Z3 or S3, respectively. Thus Γ is isomorphic to of one

the graphs given in Example 3.6.

Finally, let T = PSL2(23) and Tα ∼= S4. Then Gα = Tα, and Gαβ
∼= S3. Com-

putation by GAP shows that NT (Gαβ) = NPGL2(23)(Gαβ) ∼= D12. Noting that Gα is
maximal in T , we have 〈Gα,NT (Gαβ)〉 = T . Then Γ is isomorphic to the graph given
in Example 3.7. �
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5. Graphs with affine stabilizers

In this section, we deal with the case (B), see Section 4. Assume that G
Γ(α)
α is an

insolvable affine 2-transitive group of degree |Γ(α)| = pe > 5, where p is a prime and
e > 1. Let {α, β} ∈ E. By Lemma 2.4, since Tα is insolvable, we have

(1) Op(Gα) = Op(Tα) ∼= soc(G
Γ(α)
α ) = soc(T

Γ(α)
α ) = Zep; and

(2) Gα = Op(Tα):Gαβ, Tα = Op(Tα):Tαβ; and either

(i) T
Γ(α)
α is 2-transitive, in particular, |Op(Tα)| − 1 is a divisor of |Tαβ|; or

(ii) e = 2, p ∈ {19, 29, 59}, and Z2
p:SL2(5)�T

Γ(α)
α �G

Γ(α)
α �Z2

p:(Zp−1◦SL2(5)).

Checking one by one the simple groups given in [18, Tables 3.1,3,2,4.1-4.5, 5.1] and
[22, Remark 5.2], we conclude that all possible Tα are described as follows:

(a1) (T, Tα, r
asb, pe) is one of (A8, 2

3:PSL3(2), 3 · 5, 23), (A9, 2
3:PSL3(2), 33 · 5, 23),

(M22, 2
4:A6, 7 · 11, 24), (M23, 2

4:A7, 11 · 23, 24), (PSL4(3), 24:S5, 3
5 · 13, 24),

(PSU4(3), 24:A6, 3
4 · 7, 24) and (G2(3), 23:PSL3(2), 35 · 13, 23);

(a2) T = PSLn(pf ) and Tα ∼= p(n−1)f :(SLn−1(pf ).o), where SLn−1(pf ) is insolvable,

and o is a divisor of pf−1
(n,q−1)

;

(a3) T = PSU4(22i) and Tα ∼= 22i+2
:SL2(22i+1

):(22i − 1), where i > 1.

Lemma 5.1. Assume that (a1) holds. Then T 6= M23, PSL4(3), PSU4(3) or G2(3).

Proof. Suppose that T = M23 and Tα ∼= 24:A7. Then G = T and Gαβ
∼= A7. Checking

the maximal subgroups of M23 containing NG(Gαβ), we conclude that NG(Gαβ) =
Gαβ, a contradiction.

Suppose that T = PSL4(3) and Tα ∼= 24:S5. Assume that Γ is not bipartite. Then
T is a 2-arc-transitive group of Γ, and thus T = 〈Tα,NT (Tαβ)〉. Noting that Tαβ ∼= S5

and Tα is contained in a maximal subgroup M ∼= PSU4(2):2 of T , computation by
GAP shows that 2×S5

∼= NT (Tαβ) < M . Thus 〈Tα,NT (Tαβ)〉 6M , a contradiction.
Therefore, Γ is bipartite, and G∗ = 〈Gα, Gβ〉 has index 2 in G. Note that Gα/Tα ∼=
G∗/T . Assume that T 6= G∗. Then G∗ = T.2. Since |G∗ : Gα| = |T : Tα| = 35 · 13,
by the information given in the Atlas [6], we conclude that Gα

∼= 24:S5 × 2. Then
O2(Gα) ∼= Z5

2, a contradiction. Thus we have G∗ = T , |G : T | = 2, Gα = Tα and
Gαβ = Tαβ. Checking the maximal subgroups of G containing NT (Tαβ), we conclude
that either NG(Tαβ) = NT (Tαβ) < M or NG(Tαβ) = NT (Tαβ) < M × 〈g〉, where
g ∈ G \ T . For both cases, we have 〈Gα,NG(Tαβ)〉 6= G, a contradiction.

Suppose that T = PSU4(3) and Tα ∼= 24:A6. Then Tα is maximal in T , and
Tαβ ∼= A6. Confirmed by GAP, we have NT (Tαβ) = Tαβ, and then G > T . Pick a
maximal subgroup M of G with Gα 6 M 66 T . Then M ∼= 24:S6, 25:A6 or 25:S6.
Recall that Gα/Tα is solvable. It is easily shown that Tαβ is characteristic in Gαβ,
and thus Tαβ �NG(Gαβ). Then NG(Gαβ) 6 NG(Tαβ). Assume that NG(Tαβ) 66 M .
Then NG(Tαβ) = Tαβ.[2o], where o = |G : T |. Thus o|T | = |G| > |TNG(Tαβ)| =
|T ||NG(Tαβ)|
|NT (Tαβ)| = 2o|T |, yielding 1 > 2, a contradiction. Then NG(Gαβ) 6 NG(Tαβ) 6M ,

and thus 〈Gα,NG(Gαβ)〉 6M 6= G, a contradiction.

Finally, for T = G2(3), computation by GAP shows that both Gα and NG(Gαβ)
are contained in a same maximal subgroup 23:PSL3(2) or 23:PSL3(2):2 of G, which
is not the case. Then the lemma follows. �

Lemma 5.2. If (a1) holds then one of the following holds:
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(1) G = S8 and Γ is the point-line non-incidence graph of PG(3, 2);
(2) Γ is isomorphic to one of the graphs in Examples 3.1 and 3.8;
(3) G = M22.2 and Γ is the standard double cover of the graph in Example 3.1.

Proof. Assume that T = A8 and Tα ∼= 23:PSL3(2). Then Tα ∼= T
Γ(α)
α = AGL3(2) =

G
Γ(α)
α , yielding Gα = Tα. Then Gαβ = Tαβ ∼= PSL3(2), and T as a permutation group

on each T -orbit is permutation isomorphic to PSL4(2) acting on the points or lines of
the projective geometry PG(3, 2). Checking the maximal subgroups of T containing
PSL3(2), we have NT (Tαβ) < Tα. Thus G 6= T , and G = S8. Then the resulting
graph Γ is the point-line non-incidence graph of PG(3, 2).

Assume that T = M22 and Tα ∼= 24:A6. Then the action of T on each of its orbits
is equivalent to that on the 77 hexads. Thus, if Γ is not bipartite then G = M22 or
M22.2 and Γ is the graph in Example 3.1, if Γ is bipartite then G = M22.2 and Γ is
the standard double cover of the graph in Example 3.1.

Assume that T = A9 and Tα ∼= 23:PSL3(2). Similarly as above, Gα = Tα and
Gαβ = Tαβ ∼= PSL3(2). Confirmed by GAP, we have NT (Tαβ) = Tαβ. It follows
that G = S9. Further, checking the maximal subgroups of S9, we conclude that Tα is
contained in a subgroup A8. Thus Γ is isomorphic to the graph in Example 3.8. �

For a finite group X, denote by X(∞) the intersection of all subgroups appearing
the derived series of X.

Lemma 5.3. If (a2) holds then Γ is isomorphic to one of the graphs in Example 3.9.

Proof. Assume that T = PSLn(pf ) and Tα ∼= p(n−1)f :(SLn−1(pf ).o). Then T
(∞)
α
∼=

p(n−1)f :SLn−1(pf ). Pick a maximal subgroup M of T with Tα 6 M . Then M is a
stabilizer of T acting on the point set or hyperplane set of the projective geometry

PG(n− 1, pf ), M (∞) = T
(∞)
α and M/T

(∞)
α
∼= Z pf−1

(n,pf−1)

. In particular, Tα is character-

istic in M . Without loss of generality, we let M be the stabilizer of some point of
PG(n− 1, pf ).

Pick x ∈ G with (α, β)x = (β, α), and set X = T 〈x〉. Then X is a 2-arc-transitive
group of Γ, and so Γ ∼= Cos(X,Xα, X{α,β}) and X = 〈Xα, X{α,β}〉. Clearly, x2 ∈
PΓLn(pf ). Then Mx2 is a point-stabilizer of T acting on PG(n− 1, pf ). Noting that

x2 ∈ Xα, we have x2 ∈ NX(Tα). Thus Tα 6 M ∩Mx2 , forcing M = Mx2 . Suppose

that M = Mx. Then M〈x〉 is maximal in X, and Xα 6 NX(Tα) 6 NX(T
(∞)
α ) =

M〈x〉. Thus both Xα and X{α,β} are contained in M〈x〉, a contradiction. Therefore,
M 6= Mx.

Since Tα �M , we have Tα(M ∩Mx) 6 M , and so |Tα(M ∩Mx) : (M ∩Mx)| =
|Tα : (Tα ∩Mx)|. Noting that Tβ 6 Mx, it follows that |Tα(M ∩Mx) : (M ∩Mx)|
is a divisor of |Γ(α)| = |Tα : Tαβ|. Suppose that Mx is a point-stabilizer of T acting

on PG(n− 1, pf ). Then |Tα(M ∩Mx) : (M ∩Mx)| is divisible by pf (p(n−1)f−1)
pf−1

. Thus

|Γ(α)| has a divisor pf (p(n−1)f−1)
pf−1

, which is impossible. Therefore, Mx is a hyperplane-

stabilizer of T acting on PG(n − 1, pf ). Noting NT (Tα) = M and NT (Tβ) = Mx, it
follows that Tα and Tβ are not conjugate in T . Then Γ is bipartite.

Finally, since |Tα(M∩Mx) : (M∩Mx)| is a divisor of |Γ(α)| = p(n−1)f , we conclude
that the hyperplane fixed by Mx does not contain the point fixed by M . Thus Γ is
isomorphic to one of the graphs in Example 3.9 (1), and the lemma holds. �
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Theorem 5.4. If G
Γ(α)
α is an insolvable affine 2-transitive group then one of the

following holds:

(1) Γ is isomorphic to one of the graphs in Examples 3.1, 3.2, 3.8 and 3.9; or
(2) G = M22.2 and Γ is the standard double cover of the graph in Example 3.1;

(3) G = PSU4(22i).2j and Γ is the standard double cover of the graph in Example
3.2, where 1 6 j 6 i+ 1.

Proof. Assume that G
Γ(α)
α is an insolvable affine 2-transitive group. By Lemmas 5.2,

5.3 and the argument ahead of Lemma 5.1, only the case (a3) is left. Thus we assume

that T = PSU4(22i) and Tα ∼= 22i+2
:SL2(22i+1

):(22i−1), where i > 1. Then the action

of T on each of its orbits is equivalent to that on the set of (22i + 1)2(22i+1 − 22i + 1)
isotropic lines. If Γ is not bipartite then Γ is described as in Example 3.2. If Γ is
bipartite then, by Lemmas 3.11 and 3.13, we have part (3), and the result follows. �

6. Graphs with almost simple stabilizers

In this section, we deal with the case (C), see Section 4. Assume that G
Γ(α)
α is

almost simple, and k = |Γ(α)| is not a prime. Recall that soc(T
Γ(α)
α ) = soc(G

Γ(α)
α ).

6.1. Graphs with non-trivial edge-kernel. Assume that G
[1]
αβ 6= 1, where {α, β} ∈

E. Then soc(T
Γ(α)
α ) = soc(G

Γ(α)
α ) ∼= PSLd(q) and k = qd−1

q−1
by Theorem 2.3. Set

q = pf for a prime p. By Theorem 2.3 and [27], since k is not a prime, Op(Gα) is
described as Table 6.4.

Op(Gα) d q Gα

[p2f ] 2 pf [p2f ]:( pf−1
(3,pf−1)

.PGL(2, pf )).[o] with o
∣∣ (3, pf − 1)f

[23f ] 2 2f [23f ]:GL(2, 2f ).e, e
∣∣ f, f > 2

[35f ] 2 3f [35f ]:GL(2, 3f ).e, e
∣∣ f, f > 1

pd(d−1)f > 3 pf SLd−1(q)×SLd(q) �Gα/Op(Gα), (d, q) 6= (3, 2)

pdf > 3 pf o.PSLd(q) �Gα/Op(Gα), o
∣∣ q − 1, (d, q) 6= (3, 2)

p
d(d−1)f

2 > 3 pf o.PSLd(q) �Gα/Op(Gα), o
∣∣ q − 1, (d, q) 6= (3, 2)

[q20] 3 2f SL2(q)×SL3(q) �Gα/Op(Gα), q 6= 2
36 3 3 36:SL3(3)

2d+1 d > 3 2 2d+1:SLd(2)
211, 214 4 2 211:SL4(2), 214:SL4(2)

Table 6.4. Stabilizers with non-trivial edge-kernel

It is easily shown that Op(Tα) = Tα ∩Op(Gα). Then

|Op(Gα)| = |Op(Tα)||TαOp(Gα) : Tα|.
Recalling that Gα/Tα = G∗/T , it follows that |Op(Gα)| is a divisor of |Op(Tα)||G∗ :
T |. Combining Table 6.4, we read out all possible pairs (T, Tα) from [18] and [22] as
in Table 6.5. (Note, we deal with the alternating group A8 as PSL4(2).)

Theorem 6.1. Assume that G
Γ(α)
α is almost simple, G

[1]
αβ 6= 1 and k = |Γ(α)| is not

a prime, where {α, β} ∈ E. Then one of the following holds:

(1) Γ is isomorphic to one of the graphs in Examples 3.9 and 3.10;
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T Tα d

PSLn(pf ) p(n−1)f :(SLn−1(pf ).o) n− 1 o
∣∣ pf−1

(n,pf−1)
, (n, pf ) 6= (3, 2), (3, 3), (4, 2)

PSp4(2f ) 23f :GL2(2f ) 2 f = 2i for i > 2

PΩ+
8 (2) 26:PSL4(2) 4

Table 6.5. Candidates of T with non-trivial edge-kernel

(2) Γ is the incidence graph of the generalized quadrangle GQ(4, 22i), where i > 1.

Proof. By the foregoing argument, we need only consider the simple groups listed in
Table 6.5. For T = PSLn(pf ), by a similar argument as in the proof of Lemma 5.3,
Tα and Tβ are contained respectively in the stabilizers of a point and a hyperplane
in T , and then Γ is described as in (2) of Example 3.9.

Assume that T = PΩ+
8 (2). Then k = 15 and |T : Tα| = 135 is odd, and thus Γ is

bipartite. By the Atlas [6], checking the maximal subgroups of almost simple groups
with socle T , we have G = T.2. Then Γ is isomorphic to the graph in Example 3.10.

Now let T = PSp4(2f ) and Tα ∼= 23f :GL2(2f ). In this case, Tα is maximal in T ,
k = 2f + 1 and |T : Tα| = (2f + 1)(22f + 1), which are odd. Thus Γ is bipartite,

each T -orbit on V may be identified with the point set or the line set of GQ(4, 22i).
In particular, T has rank three on each orbit with suborbits of length 1, 23f and
2f (2f + 1). If the actions of T on both orbits are equivalent, then k = 23f or

2f (2f + 1), a contradiction. Therefore, one T -orbit is the point set of GQ(4, 22i), and

the other one is the line set of GQ(4, 22i). Then (2) of this theorem follows. �

6.2. Graphs with trivial edge-kernel. Assume that G
[1]
αβ = 1, where {α, β} ∈ E.

Recall that soc(G
Γ(α)
α ) = soc(T

Γ(α)
α ), |T : Tα| = rasb and k = |Γ(α)| is not a prime.

Combining the classification of almost simple 2-transitive groups (see [4, page 197,

Table 7.4]), we can read out all possible soc(G
Γ(α)
α ) from [18, Theorem 1.1] and [22,

Remark 5.2]. Since G
[1]
αβ = 1, by (2.1) and (2.2) given in Section 2, G

[1]
α is isomorphic

to a normal subgroup of (G
Γ(α)
α )β. It follows that one of the following holds:

(s1) T
Γ(α)
α = G

Γ(α)
α
∼= A7, k = 15, and Gα = Tα ∼= A7 or PSL2(7)× A7;

(s2) T
Γ(α)
α
∼= M11 with k = 12, or T

Γ(α)
α = M22 with k = 22;

(s3) soc(G
Γ(α)
α ) = Ak, k > 6, and Tα orGα is isomorphic to one of Ak, Sk, Ak−1×Ak,

(Ak−1 × Ak).2 and Sk−1 × Sk;

(s4) soc(G
Γ(α)
α ) = PSU3(pf ), k = p3f + 1, and either T

[1]
α = 1 or pf 6 |Op(Tα)| 6

p3f ;

(s5) soc(G
Γ(α)
α ) = PSp2d(2) with d > 3, k = 22d−1 ± 2d−1, and Tα is isomorphic to

a normal subgroup of PΩ±2d(2).2× PSp2d(2);

(s6) soc(G
Γ(α)
α ) = PSLd(p

f ), k = pdf−1
pf−1

, and either T
[1]
α = 1 or Op(Tα) ∼= Z(d−1)f

p .

Then, checking the groups given in [18, Theorem 1.1] and [22, Remark 5.2], all possible
pairs (T, Tα) are listed in Table 6.6.

Lemma 6.2. T 6= PSU6(2) or PΩ7(3).

Proof. Suppose that T = PSU6(2). Then Tα ∼= M22
∼= Tβ, k = 22 and Tαβ ∼= PSL3(4).

In particular, Tα is maximal in T , and thus T is a primitive group of degree 28 · 34
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T Tα rasb k Tαβ
A9 A7 23 · 32 15 PSL3(2)

M22 A7 24 · 11 15 PSL3(2)

PSp6(2) A7 26 · 32 15 PSL3(2)

PSU3(5) A7 2 · 52 15 PSL3(2)

PSU4(3) A7 24 · 34 15 PSL3(2)

M12 M11 22 · 3 12 PSL2(11)

HS M22 22 · 52 22 PSL3(4)

McL M22 34 · 52 22 PSL3(4)

PSU6(2) M22 28 · 34 22 PSL3(4)

M11 A6 2 · 11 6 A5

An An−1 n n− 1 An−2

An Sn−2
n(n−1)

2
n− 2 Sn−3

An An−2 n(n− 1) n− 2 An−3

PSL3(4) A6 23 · 7 6 A5

PSp4(3) S6 22 · 32 6 S5

PSp4(3) A6 23 · 32 6 A5

PSp6(2) S8 22 · 32 8 S7

PSp6(2) A8 23 · 32 8 A7

J2 PSU3(3) 22 · 52 28 [33]:8

HS PSU3(5).2 24 · 11 126 [53]:8:2

HS PSU3(5) 25 · 11 126 [53]:8

G2(3) PSU3(3):2 33 · 13 28 [33]:8:2

PΩ7(3) PSp6(2) 35 · 13 28, 36 PSU4(2):2, S8

PΩ+
2m(2) PSp2m−2(2) 2m−1 · (2m − 1) 22m−3 ± 2m−2 PΩ±2m−2(2).2,prime m = 2i + 1 > 5

PΩ−2m(2) PSp2m−2(2) 2m−1 · (2m + 1) 22m−3 ± 2m−2 PΩ±2m−2(2).2,m = 2i > 4

A6 PSL2(5) 2 · 3 6 D10

A7 PGL2(5) 3 · 7 6 5:4

A7 PSL2(7) 3 · 5 8 7:3

A8 PSL2(7) 34 · 5 8 7:3

A8 PSL2(9) 23 · 7 10 32:4

A8 S6 22 · 7 10 32:D8

M11 PSL2(11) 22 · 3 12 11:5

M11 PSL2(9) 2 · 11 10 32:4

M12 PSL2(11) 24 · 32 12 11:5

M22 PSL3(4) 2 · 11 21 24:A5

PSL2(16) PSL2(5) 22 · 17 6 D10

PSL2(19) PSL2(5) 3 · 19 6 D10

PSL2(25) PGL2(5) 5 · 13 6 5 : 4

PSL2(29) PSL2(5) 7 · 29 6 D10

PSL2(31) PSL2(5) 23 · 31 6 D10

PSL2(59) PSL2(5) 29 · 59 6 D10

PSL2(61) PSL2(5) 31 · 61 6 D10

PSL3(4) PSL2(9) 23 · 7 10 32:4

PSL2(22
i+1

) PSL2(22
i
) 22

i
(22

i+1
+ 1) 22

i
+ 1 22

i
:(22

i − 1), i > 2

PSLn(2) PSLn−1(2) 2n−1(2n − 1) 2n−1 − 1 2n−2:PSLn−2(2), odd prime n > 5

PSp4(3) PGL2(5) 23 · 33 6 5:4

PSp4(3) PSL2(5) 24 · 33 6 D10

PSp4(3) PΣL2(9) 22 · 32 10 32:D8

PSp4(3) PSL2(9) 23 · 32 10 32:4

PSp6(2) PSL4(2) 23 · 32 15 23:PSL3(2)

PSU3(3) PSL2(7) 22 · 32 8 7:3

PSU3(5) M10 52 · 7 10 32:Q8

PSU3(4) 5× PSL2(5) 24 · 13 6 5×D10

PSU4(3) PSL3(4) 2 · 34 21 24:A5

PSU5(2) PSL2(11) 28 · 34 12 11:5
2F4(2)′ PSL2(25) 28 · 32 26 52:12

G2(3) PSL2(13) 24 · 35 14 13:6

Table 6.6. Candidates of T with trivial edge-kernel

on each T -orbit. By the web version of [6], as a primitive group of degree 28 · 34, the
group T has no suborbit of length 22. This forces that Γ is bipartite, G = PSU6(2).2,
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Gα = Tα and Gαβ = Tαβ ∼= PSL3(4). Computation by Magma shows that either
NG(Gαβ) = Gαβ, or both Gα and Gαβ are contained in a maximal subgroup M22.2 of
G, which contradicts Lemma 2.1.

Suppose that T = PΩ7(3). We have G < PGL7(3), Gα = Tα ∼= PSp6(2), and
Gαβ
∼= PSU4(2):2 or S8. Consulting the 7-dimensional representation of PSp6(2) over

the field of order 3, computation by GAP shows that |NPGL7(3)(Gαβ) : Gαβ| = 3 or 1.
Thus |NG(Gαβ) : Gαβ| is odd, which contradicts Lemma 2.1. �

Lemma 6.3. T 6= PΩ±2m(2) for m > 4.

Proof. Suppose that T = PΩ±2m(2) for some m > 4. Then each of T -orbits on V may
be viewed as a copy of the set of 2m−1(2m ∓ 1) non-isotropic points. Thus Tα has
exactly three orbits on the T -orbit say U containing α, which have length 1, 22m−2−1
and 2m−1(2m−1 ∓ 1) respectively, refer to [16]. Then Γ is either an orbital graph of
T on U or the standard double cover of some orbital graph (see Lemma 3.13). It
follows that |Γ(α)| = 22m−2 − 1 or 2m−1(2m−1 ∓ 1), a contradiction. �

Lemma 6.4. T 6= PSL2(22i+1
) or PSLn(2), where i > 2, and n > 5 is a prime.

Proof. First, the group PSL2(22i+1
) is excluded by [14, Proposition 3.1].

Suppose next that T = PSLn(2) for some prime n > 5. In this case, Tα ∼=
PSLn−1(2). Consider the natural action of T on the n-dimensional vector space Fn2
over the field of order 2. It follows that Tα is the stabilizer of some decomposition
of Fn2 into 1- and (n − 1)-dimensional subspaces. Thus we identify every vertex in
each T -orbit with an ordered pair (〈u〉, U), where u and U satisfy Fn2 = 〈u〉 ⊕ U and
dim(U) = n − 1. Assume that the first entries of some adjacent pairs are equal.
Then, since T is transitive on E, the first entries of every adjacent pairs are equal. It

follows that Γ is the union of 2n − 1 copies of K2n−1 or K
(2)

2n−1 , which contradicts the
connectedness of Γ. Similarly, if the second entries of some adjacent pairs are equal
then we also have a contradiction.

For {α, β} ∈ E, choosing a suitable base u1, u2, . . . , un of Fn2 , we may let α =
(〈u1〉, 〈u2, u3, . . . , un〉), and β = (〈u1 + u3〉, 〈u1 + u2, u3, . . . , un〉) or (〈u2 + u3〉, 〈u1 +
u2, u3, . . . , un〉). Then Tαβ = Tα ∩ Tβ is properly contained in the stabilizer of
(〈u3, . . . , un〉, 〈u2, u3, . . . , un〉) in PSLn−1(2). Thus |Γ(α)| = |Tα : Tαβ| > 2n−1 + 1,
a contradiction. This completes the proof. �

Lemma 6.5. Assume that T = An and soc(Tα) ∼= Ak with k = |Γ(α)|. Then Γ is
either a complete graph or the standard double cover of a complete graph.

Proof. By Table 6.6, k = n− 1 or n− 2. For k = n− 1, it is easily shown Γ = Kn or

K
(2)
n . Suppose next that k = n−2. Then Tα ∼= An−2 or Sn−2, and Tαβ ∼= An−3 or Sn−3

respectively. Consider the natural action of Sn on an n-set Ω. Then Tα is contained
in the stabilizer of a 2-subset ∆, and Tαβ fixes a point δ ∈ Ω \∆.

Assume that Tα ∼= Sn−2. Then Gα = Tα and Gαβ = Tαβ, and hence Gαβ has exactly
three orbits on Ω, say {δ}, ∆ and Ω \ (∆ ∪ {δ}). This implies that NG(Gαβ) fixes ∆
set-wise. Then 〈Gα,NG(Gαβ)〉 6= G, which contradicts Lemma 2.1.

Assume that Tα ∼= An−2. Then Tα fixes ∆ point-wise, and Tαβ fixes ∆ ∪ {δ}
point-wise. This implies that every 2-element in NSn(Tαβ) fixes at least one point
in ∆ ∪ {δ}. Thus neither T nor Sn can be generated by Tα and a 2-element in
NSn(Tαβ). By Lemma 2.1, G = 〈Gα, G{α,β}〉, and so G = 〈Gα, x〉 for some 2-element
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x in NG(Gαβ). It follows that Gα 6= Tα, and hence Gα
∼= Sn−2 and G = Sn. This

forces that T is 2-arc-transitive on Γ. Since Γ is connected, 〈Tα, x〉 = T for some
2-element x ∈ NT (Tαβ), again a contradiction. This completes the proof. �

For each of the rest simple groups in Table 6.6, consulting the Atlas [6] and com-
putation by GAP, we check all possible subgroups H of G with H ∼= Gα up to the
conjugation under Aut(T ), work out the subgroups L of H with L ∼= Gαβ up to
the conjugation under NAut(T )(H), and then compute the normalizer NG(L) for each
L. Then, by Lemma 2.1 and Theorem 3.3, we can determine the graph Γ up to
isomorphism. Thus we have the following result.

Theorem 6.6. Assume that G
Γ(α)
α is almost simple, and k = |Γ(α)| is not a prime.

If G
[1]
αβ = 1 for {α, β} ∈ E, then one of the following holds:

(1) Γ is either a complete graph or the standard double cover of a complete graph;
(2) Γ ∼= Cos(G,H,K) with G, H and K listed in Table 6.7.

G H rasb k K Γ
M22.2 A7 24 · 11 15 PSL2(7).2 bipartite
PSU3(5).2 A7 2 · 52 15 PSL2(7).2 bipartite
PSU4(3).23 A7 24 · 34 15 PSL3(2).21 bipartite
M12.2 M11 22 · 3 12 PSL2(11).2 K12,12

HS.2i M22.2
i 22 · 52 22 PSL3(4).2i+1 Higman-Sims

HS.2 M22 22 · 52 22 PSL3(4).23 bipartite
McL.2 M22 34 · 52 22 PSL3(4).23 bipartite
HS.2 PSU3(5).2 24 · 11 126 [53]:[25] bipartite
S6 PSL2(5) 2 · 3 6 5:4 K6,6

S7 PSL2(7) 3 · 5 8 7:6 PG(3, 2)
M22.2

i PSL3(4).2i 2 · 11 21 24+i:S5 K22

M22.2 PSL3(4) 2 · 11 21 24:S5 K22,22

PSL2(19) PSL2(5) 3 · 19 6 D20

PGL2(29) PSL2(5) 7 · 29 6 D20 bipartite
PGL2(31) PSL2(5) 23 · 31 6 D20 bipartite
PSL2(59) PSL2(5) 29 · 59 6 D20

PSL2(61) PSL2(5) 31 · 61 6 D20

PSL3(4).2i PSL2(9).2i 23 · 7 10 32:[23+i]
PSL3(4).2i PSL2(9).2i−1 23 · 7 10 32:[22+i] bipartite
PSU4(3).22 PSL3(4).2 2 · 34 21 25:S5 bipartite

Table 6.7. Some coset graphs with trivial edge-kernel

Finally, Theorem 1.2 follows from Theorems 4.1, 4.2, 4.4, 5.4, 6.1 and 6.6.
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