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ABSTRACT. A connected graph T' = (V| E) is called a basic 2-arc-transitive graph if
its full automorphism group has a 2-arc-transitive subgroup G, and every minimal
normal subgroup of G has at most two orbits on V. In 1993, Praeger proved that
every finite 2-arc-transitive connected graph is a cover of some basic 2-arc-transitive
graph, and proposed the classification problem of finite basic 2-arc-transitive graphs.
In this paper, a classification is given for basic 2-arc-transitive non-bipartite graphs
of order r%s? and basic 2-arc-transitive bipartite graphs of order 2r®s®, where r and
s are distinct primes.

KEYWORDS. 2-arc-transitive graph, quasiprimitive group, almost simple group.

1. INTRODUCTION

All graphs considered in this paper are assumed to be finite, simple and undirected.

Let I' = (V, E) be a graph with vertex set V' and edge set E. An arc of T is
an ordered pair of adjacent vertices, and a 2-arc is a triple (a, 3,7) of vertices with
{a, B}, {8,7} € E and « # 7. Denote by Aut(T") the full automorphism group of the
graph I'; and call every subgroup of Aut(I') an (automorphism) group of I'. A group
G of T is said to be vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive
if G acts transitively on the vertices, edges, arcs or 2-arcs of I', respectively. A graph
is said to be vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive if it
admits a vertex-transitive, edge-transitive, arc-transitive or 2-arc-transitive group,
respectively.

A connected graph I' = (V, E) with at least 3 vertices is called a basic 2-arc-
transitive graph if it has a 2-arc-transitive group G such that every minimal normal
subgroup of G has at most two orbits on the vertex set V. Praeger [24], 25] observed
that every connected 2-arc-transitive graph is a cover of some basic 2-arc-transitive
graph, and proposed the following problem.

Problem 1.1 ([25], Problem 1.2). Classify all finite basic 2-arc-transitive graphs.

Let I' = (V| E) be a basic 2-arc-transitive graph with respect to a group G. Put
G* = (G4, Gp) for an edge {a, B} € E. It is well-known that |G : G*| < 2, and T is
bipartite if and only if |G : G*| = 2, refer to [30, Exercise 3.8]. Praeger [24 [25] proved
that either I' is a complete bipartite graph, or G* is a quasiprimitive group of type
HA, AS, PA or TW (see [26] for the notation) on each G*-orbit of vertices except for
one case when I' is bipartite. Inspired by Praeger’s work, a lot of remarkable pro-
gresses have been made on classification or characterization of basic 2-arc-transitive
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graphs. For example, a construction of the graphs associated with quasiprimitive
groups of type TW is given in [I], the graphs associated with quasiprimitive groups
of type HA are classified in [15], the graphs associated with Suzuki simple groups, Ree
simple groups and 2-dimensional projective linear groups are classified in [8], 9] [14]
respectively. Besides, one can read out the basic 2-arc-transitive graphs of prime
power order from [I7]. In this paper, we focus on those basic 2-arc-transitive graphs
of some given orders.

Let a, b be positive integers, r and s be distinct primes. Let I' = (V, E') be a basic
2-arc-transitive graph of valency k with respect to a group G. Assume that I' is either
non-bipartite and of order r%s® or bipartite and of order 2r®s®. It is easy to see that
I' is not a cycle. For the case where k is an odd prime, the graph I' is determined
in [22]. Recently, for an arbitrary valency k, it is shown in [23] that either I' is a
complete bipartite graph or GG is an almost simple group. This allows us to give a
classification of such graphs I'. In Sections of this paper, we prove a classification
result stated as follows.

Theorem 1.2. Let a and b be positive integers, r and s be distinct primes. Let
' = (V, E) be a basic 2-arc-transitive graph with respect to a group G, let {a, B} € E
and G* = (G, Gg). Assume that G is an almost simple group with socle T', and G*
has an orbit on'V of length r®s®. Then T is isomorphic to one of the following graphs:

(1) the complete graph K,ag and its standard double cover;
(2) the Odd graph Oy of valency 4 and its standard double cover;
(3) the point-hyperplane incidence graph and non-incidence graph of the projective

geometry PG(n — 1,q), where n > 3 and risb = q;%ll;

(4) the incidence graph of the generalized quadrangle GQ(4,22"), where i > 1;

(5) the graphs in Examples the standard double covers of the
graph in Examples[3.1] and and the graphs described as in Tables[d.2] and
(6) T = PSLy(p?), T = Z2°Z i,

201

prime, 1 <ig < i and rs® = (p* + 1)2%.

and T" is of valency p2i, where p is an odd

Remark 1.3. We have no idea how to give a precise list for the graphs satisfying
(6) of Theorem [1.2] The reader is referred to [14, Section 6] for the vertex-stabilizers
and existence of such graphs.

2. LOCAL STRUCTURES AND NORMAL SUBGROUPS

Let I' = (V, E) be a connected graph, G < Aut(I') and {a, 3} € E. Denote by
GL@ the permutation group induced by G, on I'(«), the neighborhood of « in T
Let G& be the kernel of G, acting on ['(a). Then G = Ga/Gg].

If G is arc-transitive on I then there is some x € G such that («, 5)* = (5, «), and
the next simple fact follows, see [22 Lemma 2.1] for example.

Lemma 2.1. Let I' = (V,E) be a connected graph, and {a,} € E. If G is an
arc-transitive group of I', then |Gapy @ Gag| = 2 and (Gq, Gia,py) = G in particular,
ING(Gap) : Gagl is even and (Ng(Gap), Ga) = G.

Assume next that G is 2-arc-transitive on I'. Then GL'® is a 2-transitive group. In

particular, the socle SOC(GE(O‘)) is either a nonabelian simple group or an elementary
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abelian group of prime power order. Since G is 2-arc-transitive on I', the arc-stabilizer
Gap acts transitively on I'(8) \ {a}. Let K be the kernel of G,z acting on I'(5) \ {a}.

Since G[Bl] < Gap < Gg and Gg} fixes I'(5) \ {a} point-wise, we have G[ﬁl] <K < G’B],

and so K = Gg]. Since GY is normal in Gap, we have

(2.1) (GO 9 GLY) = Gop/GY.
Take x € G with («, 5)* = (ﬂ a). Then Gz = GZ and I'(B) = I'(a)*. It follows that
(22) (G[l ) (Gr(ﬂ)) _ Gr(ﬁ ~ GF(Q) (GI‘(a )

Thus, if GR'® is solvable then (Go®)g is solvable, and hence (Gh')T®) is solvable.
Note the kernel of G([l1 acting on I'(f) is equal to the edge- kernel Gg]ﬂ = GWn
G[Bl]. We have (G[I]) ~ Gf /G s M Tt is well-known that G has order a prime
power, see [I1]. Then (GE])FW) is solvable if and only if GL is solvable. Recalling
that GL©® =~ Ga/G[o}], it GE@ is solvable then G, is solvable. Noting that G, =
G, ] 5-(G 1])F ®).GE™ Tt follows that every insolvable composition factor of G, occurs
as a composition factor of (G 1])F ®) or GL!

Recall that Go® is 2-transitive and (G )F(ﬁ) is isomorphic to a normal subgroup

of (Ga(a)) 5. By [21, Corollary 2.5], (Ga )) has at most one insolvable composition
factor. Checking one by one the finite 2-transitive groups given in [4, pages 195-197,
Tables 7.3 and 7.4], we have the following lemma.

Lemma 2.2. Let I' = (V, E) be a connected graph, G < Aut(I") and {a,B} € E.
Assume that G is 2-arc-transitive on I' and G, is insolvable. Then G ) has a unique
imsolvable composition factor and GY has at most one insolvable composition factor.
If further GY s insolvable then one of the following holds:

(1) Gg(a) is an almost simple 2-transitive group, G, has two nonisomorphic in-
solvable composition factors;

(2) GL s an affine 2-transitive group, G, has two isomorphic insolvable com-
position factors.

The next result on 2-arc-transitive graphs is formulated from [28] 29, [30].

Theorem 2.3. Let I' = (V, E) be a connected graph of valency k > 3, and let G be
a 2-arc-transitive group of I'. Assume that G[l] # 1 for {a,B} € E. Then Gg}ﬁ s a

p-group for some prime p, PSLy(p’) < GL! k= pf _1, and either d > 3 or one of
the following holds:

(1) Gy = [p*]:(c.PGL(2,p’)).[0], where ¢ = % ando | (3,p" —1)f;
(2) p=2 and G, = [2°/]:GL(2,2/).e, where e | f;

(3) p=3 and G, = [3*]:GL(2,3/).e, where e | f.
In particular, Gy is solvable if and only if (k,d,p’) = (3,2,2) or (4,2,3).

Assume that G is a 2-arc-transitive group of I', and N < G with N, # 1. Then
N, acts transitively on I'(«), and N is edge-transitive on I, see [19, Lemma 2.5] for

example. Note that No (@) is a transitive normal subgroup of the 2-transitive group
GL™ . Tt forces that soc(N&™) = soc(Ga'™). For the case where Go® is almost
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simple, it follows from [4, page 197, Table 7.4] that soc(N(S (a)) is a 2-transitive normal
subgroup of Ga® unless soc(GA'™) = PSL(2,8) acting on 28 points.

Lemma 2.4. Let ' = (V| E) be a connected graph, and {«,3} € E. Assume that
G is a 2-arc-transitive group of I' and GL s an affine 2-transitive group of degree
IT(a)| = p°. Then one of the following holds:

(1) 0,(Ga) = s0c(Ge™) = Z¢, and Gy = 0,(Go):Gag;
(2) p =3, and G, is one of S4 and 2 X S4,
(3) p® =4, and G, is one of 3%:GLy(3) and [3°]:GLx(3).

If further N <G and N, # 1 then either N, is solvable, or one of the following holds:

(4) N, acts 2-transitively on I'(a);
(5) N acts primitively on T'(a), Z2:SLy(5) < Ne@ g Gh < 22:(Zp—1 0 SLy(5)),
IT(a)| = p?, where p € {19,29,59}.

Proof. By [21], Proposition 3.4], either part (1) holds or p© € {3,4} and GE}B # 1. For
the latter case, part (2) or (3) follows from Theorem [2.3] depending on whether Gg}ﬁ
is a 2-group or a 3-group, see also |2, page 126] and [20, Lemma 2.6].

Let N <G with N, # 1. By [21, Corollary 2.5], either one of (4) and (5) holds or
(N(E (a)) 3 is solvable. Assume next that the latter case occurs. Then NE®
as No® = soc(GH™):(Na)4. Since G is arc-transitive on T, taking z € G with
(o, B)" = (B,), we have N3z = (Gap N N)* = Gap NN = Nug. Since ['(a)® =T(P),
we have Niéﬁ) = Nr(a) (N&“))4. Noting that (NI < N ), it follows that
(NO[CH)F('B) is solvable, and then N, is solvable as N, = N(%.(NO[}]) B) NS . This
completes the proof. 0

is solvable

Lemma 2.5. Let I' = (V| E) be a connected graph, and let G be a 2-arc-transitive
group of I'. Let N QG and {«, B} € E. Assume that N, is the dihedral group Do, of

order 2n, where n = 3. Then n = p or 2p, |I'(«a)| = p and Gh®) = AGL;(p), where
p 1s an odd prime.

Proof. Let K be the unique cyclic subgroup of N, with order n. Then K is normal
in G,,. Thus either K < GQ] or K acts transitively on I'(«). Suppose that K < G[al].
Then Na® = Z,. Since N& is transitive on I'(r), it follows that T' is a cycle. Then
N, <G, = Zs, a contradiction.

Now K acts transitively on I'(a). Then soc(Go'®) = soc(N&™) = soc(KT(@) =
Z,, where p = |I'(«)| is an odd prime. Moreover, GR® = AGL;(p), and N,p = D27n.
(Here, Dy = Zy and Dy = Z3.) Suppose that n > 2p. Noting that N, = Nz = Dy, it
follows that N,g contains the unique cyclic subgroup L of both NV, and N with order
%. Clearly, L is characteristic in both N, and Ng, and then L is normal in both G,
and Gg. Thus L < (G,,Gs) = G*. Since G* is edge-transitive, L fixes every edge of
['. By the connectedness of T', we have L = 1; however |L| = & 2 3, a contradiction.
Then the lemma follows. U
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3. CONSTRUCTIONS OF 2-ARC-TRANSITIVE GRAPHS

The purpose of this section is to construct some graphs involved in Theorem as
the coset graphs of almost simple groups or the orbital graphs of rank three primitive
groups.

3.1. Orbital graphs. For a graph I' = (V| E), @ € V and a group G of T, if G is
arc-transitive then I'(«v) is a self-paired suborbit of G (as a transitive subgroup of the
symmetric group Sym(V')). Conversely, if G is a transitive subgroup of Sym(V') with
a self-paired suborbit A(«) at «, then we have an arc-transitive graph on V, called
an orbital graph of G, which has arc set {(«, 5)9 | 8 € A(«a),g € G}, the orbital of
G on V with respect to A(«). Note, the orbital graph is independent of the choice
of a, and if G, acts 2-transitively on A(«) then G is a 2-arc-transitive group of the
graph.

We next construct some 2-arc-transitive graphs from primitive groups of rank 3.
Note that the primitivity insures the connectedness of the resulting graphs.

Example 3.1. Let G be an almost simple group with socle 7" = My,. Then G is
contained in the automorphism group of the Steiner system S(3,6,22). Let V' be the
set of 77 hexads of S(3,6,22). Then G is a primitive group on V of rank 3 with
suborbits of length 1, 16 and 60. Define a graph I" on V such «, 8 € V are adjacent
if and only if @ and § are disjoint hexads. By the information given in the Atlas [6],
every hexad « is disjoint from 16 others, T, = 2*:Ag, T,5 = Ag and Tya 5y = My for
a hexad S disjoint from a. Then I' is a connected 2-arc-transitive graph of order 77
and valency 16. U

Example 3.2. Let G be an almost simple group with socle T = PSU,(q), where ¢ =
22" for some integer i > 1. Consider the action of G on the set V of (¢+1)*(¢> —q+1)
isotropic lines. Then G is a primitive group of rank 3 with suborbits of length 1, ¢*
and q(¢®> + 1). For an isotropic line a, the suborbit at a of length ¢* consists of all
isotropic lines disjoint from «. Define a graph I' on V' such o, 5 € V' are adjacent if
and only if o and [ are disjoint isotropic lines. Then I is a connected 2-arc-transitive
graph of order (q + 1)?(¢*> — ¢ + 1) and valency ¢*. O

3.2. Coset graphs. It is well-known that, for a group G, every transitive action of
G on a nonempty set is equivalent to the action induced by the multiplication of G
on the right cosets of some subgroup in . This fact leads to an efficient construction
for 2-arc-transitive graphs as follows, refer to [12], 13, 22].

Let G be a finite group, and H, K < G with |K : (K N H)| = 2 such that H is
core-free in G, i.e., NgegHY = 1, and K N H is maximal and non-normal in H. Define
a graph Cos(G,H,K) on |G : H] :={Hg | g € G} such that {Hxz, Hy} is an edge if
and only if yz=' € HKH \ H. It is easily shown that G is an arc-transitive group of
Cos(G, H, K), where G acts on |G : H| by right multiplication. Taking =z € K \ H,
we have that HKH = H U HxH, and the subgroups H, H N K and K serve as the
stabilizers of the vertex H, arc (H, Hz) and edge {H, Hx}, respectively.

By [8, Theorem 2.1] and [22] Lemma 2.2], a characterization for 2-arc-transitive
graphs is given as follows.

Theorem 3.3. Let I' = (V, E) be a connected regular graph of valency k > 3, and
G < Aut(I'). Then G is 2-arc-transitive on I' if and only if I' = Cos(G, H, K), where
H, K < G satisfy the following conditions:
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(I) H is core-free in G, G = (H,K), |K : (KNH)|=2and |H: (KNH)| =k
(IT) H acts 2-transitively on the set [H : (K N H)| by right multiplication.

Let G be a finite group. In order to determine whether or not there exist connected
graphs admitting GG as a 2-arc-transitive group, it suffices to find all feasible pairs
(H, K) satisfying the above conditions (I) and (II). In practice, up to isomorphism
of graphs, the vertex-stabilizer H is chosen up to the conjugation under Aut(G),
and the edge-stabilizer K is chosen from the normalizer N¢(L) with |K : L| = 2,
while L is an intended arc-stabilizer K N H chosen up to the conjugation under
Naut(e)(H). Nevertheless, for a given pair (G, H), different edge-stabilizers K might
give isomorphic graphs.

Example 3.4. Let G = PSL3(3).2 with socle 7' = PSL3(3). Then G has a unique
conjugacy class of subgroups isomorphic to 3%:2A; = ASL,(3), confirmed by GAP
[10]. Let H = 3%2A, < T and L = 2A4 < H. Then Ng(L) = 25;:2 = 2A4.2?, and
N¢(L) has two subgroups Ky, Ky with K7 = Ky = 2S, and Ky, Ky € T, confirmed
by GAP. Thus we have two connected bipartite graphs Cos(G, H, K;), i € {1,2},
which have valency 9, order 52 and admit G as a 2-arc-transitive group. U

Example 3.5. Let G = PGLy(7) and T" = PSLy(7). Then T has two conjugacy
classes of subgroups A4, which are merged into one class in G. Take Ay 2 H < T,
and Z3s = L < H. Then Ng(L) = Dis, which contains three subgroups of order 6,
one of them, say K = Zg, together with H generate G, the other two are dihedral
and each of them together with H generate a maximal subgroup S, of 1. Thus we
get a 2-arc-transitive graph Cos(G, H, K), which has order 28 and valency 4. O

Example 3.6. Let G = PGLy(11) and T' = PSLy(11). Then T has a unique conju-
gacy class of subgroups A, and G has a unique conjugacy class of maximal subgroups
S4. LetH1:A4<T, L1:Zg,<H1<H2:S4<GandL2:Sg<H2. Then the
following hold, confirmed by GAP.

(1) Nz(Ly) = Dy2 contains three subgroups of order 6, one of them is cyclic, say
K11, which together with H; generate T', the other two are dihedral and each
of them together with H; generate a maximal subgroup As of T’

(2) Ng(Ly) = Dy contains five subgroups of order 6, three of them are contained
in T, each of the other two, say K, and K3, together with H, generate G;

(3) KQ = Ng(LQ) == D12 7<\ T and K2 NT = LQ.

Thus we get four 2-arc-transitive tetravalent graphs Cos(T, Hy, K11), Cos(G, Hy, K3),
Cos(G, Hy, K15) and Cos(G, Hy, K13). Note, the first two graphs are isomorphic and
of order 55, the last two graphs are bipartite and of order 110. O

Example 3.7. Let T = PSLy(23). Then T has two conjugacy classes of maximal
subgroups Sy, which are merged into one class in PGLy(23). Take Sy, &2 H < T', and
S3 =2 L < H. Then Np(L) = Dy and (H,Nr(L)) = T, confirmed by GAP. Thus
Cos(T, H,Nr(L)) is a 2-arc-transitive graph of order 253 and valency 4. O

Example 3.8. The alternating group Ag has two conjugacy classes of subgroups
23:PSL3(2), which are merged into one class in Sy. Take 23:PSL3(2) = H < Ag < A,.
Consider the natural action of Sg on 2 = {1,2,...,9}. We may assume that H fixes
the point 9 and acts 2-transitively on €; = Q\ {9}. Then, up to conjugation, H has
two subgroups PSL3(2), one of them is 2-transitive on {2y, the other one say L fixes
2 and is 2-transitive on € \ {2}. Moreover, Ng (L) = Ng,x(29)(L) = L x ((29)).
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Then (H,Ng, (L)) is 2-transitive on €2 and contains a transposition (29). This yields
that (H,Ng,(L)) = S, see [, page 77, Theorem 3.3A]. Thus Cos(Sg, H, Ng, (L)) is a
2-arc-transitive bipartite graph of order 2 - 3% - 5 and valency 8. O

Example 3.9. Let " = PSL,(¢) with n > 3 and ¢ a prime power, and let M =
q”*1:SLn_1(q).% be a point-stabilizer of T acting on the projective geometry
PG(n —1,q). Take x € Aut(T) such that M* is a hyperplane-stabilizer of T" acting
on PG(n —1,¢q) and M @ — M. Identifying T with its inner automorphism group,
set X = T(x). Let ¢"":SL,_1(q).0 = Hy < M. Then H, is a characteristic subgroup
of M, and so 2> € Nx(Hy). Set H = Hy(z?) and K = (Hy N HE){x). Then X is a
2-arc-transitive group of Cos(X, H, K), and one of the following holds:

(1) |H: (HNEK)|=q""
(2) |H: (HNK)| =<1

q—1
Note, if we take Hy = M then the resulting graph is just the point-hyperplane
incidence or non-incidence graph of PG(n — 1,¢). We can get examples for Theorem
with further limitations on ¢ and n, refer to [I8, Table 4.1] and [22, Remark
5.2]. O

Example 3.10. Let G = T.2 be an almost simple group with socle T' = Py (2).
By the Atlas [6], T has three conjugacy classes of maximal subgroups 2°:PSL4(2).
One of them consists of the stabilizers of isotropic points. The other two classes are
merged into one class in G and consist of respectively the stabilizers of T acting on
two orbits of maximal isotropic subspaces. Let H be a stabilizer of some maximal
isotropic subspace in 7. Then all subgroups [2°]:PSL3(2) of H are self-normalized
(confirmed by GAP) in T, and such subgroups form two classes in G according to
whether or not they have normalizer [2°):(PSL3(2) x 2). Let H > L = [29]:PSL3(2)
with N (L) = [29):(PSL3(2) x 2). Then Cos(G, H,Ng(L)) is a 2-arc-transitive graph
of order 270 and valency 15. U

3.3. Standard double covers. For a graph I' = (V, E), the standard double cover
I'® of T is a bipartite graph with vertex set V x Z, such that {(a,0),(8,1)} is an
edge if and only if {a, 8} € E. It is well-known that I'® is connected if and only if
I' is connected and non-bipartite.

Define a map 7 : V X Zg — V X Zs, (a,i) — («,i+ 1). It is easily shown that
7 € Aut(T?), and 7 interchanges V x {0} and V x {1}. Moreover, if G < Aut(T)
then G can be viewed as a subgroup of Aut(I'®) by

(a,i)? = (a%i), a €V, g € G.

Thus, if G is a 2-arc-transitive group of I' then G x (7) is a 2-arc-transitive group of
I'®. Further, the following lemma is easily shown.

Lemma 3.11. LetI' = (V| E) be a graph, and Gy < G < Aut(I") with |G : Go| = 2. If
Gy is 2-arc-transitive then Go(xT) is a 2-arc-transitive group of ¥, where x € G\G.
Example 3.12. Let Q = {1,2,3,...,2k — 1} for integer £ > 3. The Odd graph Oy

is defined on the set of (k — 1)-subsets of 2 with two vertices adjacent if and only
if they are disjoint (k — 1)-subsets. The graph Oy has valency k& and automorphism

group Sox_1, while Agy 4 is a 2-arc-transitive group of O,. By Lemma O,(f) has a
2-arc-transitive group isomorphic to Sox_1. Note, up to isomorphism, the graph ng)
is also constructed on the (k — 1)-subsets and k-subsets of 2 by the inclusion of sets.
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Lemma 3.13. Let I' = (V, E) be a connected bipartite graph of valency k, and let
G be a 2-arc-transitive group of I'. Assume that G* acts faithfully and equivalently
on both parts of I'. If G* has a unique suborbit of length k on one part of I', then
I’ is isomorphic to the standard double cover of some graph which admits G* as a
2-arc-transitive group.

Proof. Assume that G* has a unique suborbit of length k£ on one part of I', say U.
Let ¥ be the orbital graph of G* with respect to this suborbit. Take o, 5 € V with
a€Uand e V\Uand G, = Gg. Since I' is bipartite, we have I'(8) C U, and
so I'(B) is a Gg-orbit on U as Gg acts transitively on I'(5). Then both I'(5) and

Y(a) are G,-orbits on U. Since G* has a unique suborbit of length k£ on U, we have
['(B) = ¥(a). Thus G, acts 2-transitively on X(«), and G* is a 2-arc-transitive group
of ¥. Define amap ¢ : V — U X Zs by

a’ = (a®,0), 57— (o, 1), x € G™.

It is easy to show that ¢ is a graph isomorphism, and the lemma follows. O

4. GRAPHS WITH PRIME VALENCY OR SOLVABLE STABILIZERS

Throughout the rest of this paper, r and s are distinct primes, a and b are positive
integers, I' = (V| E) denotes a basic 2-arc-transitive graph of valency k with respect
to an almost simple group G, T = soc(G), G* = (G4, Gp), and |G* : G| =
where {a, B} € E. Since a cycle has solvable automorphism group, we have k > 3.

Clearly, T'< G*, and T is transitive on each G*-orbit on V. Then |T": T,| = |G* :
Go|, and G* = TG,, yielding that G*/T = G, /T,. Since G is almost simple, G/T is
solvable, and so G*/T is solvable. Then G, /T, is solvable, and thus G, is solvable
if and only if T, is solvable. Moreover, since T" has a subgroup T, of index rs®, T
is one of the simple groups given in [18 Tables 3.1,3,2,4.1-4.5, 5.1] and [22], Remark
5.2]. In this and the following two sections, we will prove T heorem n 1.2[in three cases:

(A) elther T, is solvable or k is an odd prime, see Theorems |4.1] E 4.2 and 4.4 -
(B) G a () is an insolvable affine 2-transitive group, see Theorem 5
) G a ) is an almost simple 2-transitive group, and k is not prime, see Theorems

6.1] and [6.6
In this section we first deal with the case (A).

Theorem 4.1. Assume that T, is solvable. Then one of the following holds:

(1) either k =4 or k is a prime;

(2) T is a complete graph or the standard double cover of a complete graph,
(3) T is a bipartite graph described as in Example [3.4]
(

4) T = PSLy(p?), in:pél_ =T, < Gy < ATLi(p¥), and T is of valency p*,

210+1 -
where p is an odd prime and 1 < ig < 7.

Proof. Noting that G, is solvable, GL(®) s a solvable 2-transitive group, and k = p°
for some prime p and integer e > 1. If e = 1 or k = 4 then the result holds.

Assume that e > 1 and k = p® > 4. First, by Lemma 2.5, T, is not a dihedral
group. Since GL @ is solvable, we can read out GA from [4, page 195, Table 7.3],
see also |21, Theorem 2.4]. Then one of the following holds:
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(i) k= 1", (Ga'™)s < (0 = 1)ie;
(i) k = 3%, (G5 < 21454,
(iii) & =52 (Ga™)s = Qs:3 or Qs.6
(v) k=7, (GE) = QuiSs, 3 <Q8 2) or 3 x (Qu:Sy);
(v) k=1

Moreover, by Lemma E, 0,(G,) = soc(Ga (a)) Zy and G, = Op(Ga):Gap. Recall-

ing that soc(Ta ™) = soc(Ga'™), we have Ty, = O,(Ga):Tag and O,(Ty) = 0,(Gy).
Since k > 4, we have Gg}ﬁ = 1 by Theorem and thus G is isomorphic to a

normal subgroup of (GEJ‘”) 3. In particular, |G| has the form of p®m, where m is a

divisor of \(GE(“))BP. Then either O,(G,,) is a Sylow subgroup of G, and of T, or p is
a divisor of e and G, has a Sylow p-subgroup of order at most p?¢. Further, recalling
that G, /T, = G*/T, it follows that |G,| = |T,||G* : T|, which is divisible by p® — 1.
With these limitations, we read out the pair (7', T,) from [I8, Tables 3.1,3.2,4.1-4.5,
5.1] and [22, Remark 5.2]. Then the pair (T,T,) is described as in Table [4.1]

T Ty resP k = p°

Ag 32:2,32:4 [ 22.5,2-5 | 32

M1y My:2 5-11 32

PSLa(p°) | p©:m (p*+ 1)l |p° ml = (21’;%11), e>1,p° >4
PSL3(3) [3%:2A4 |2-13 3?

PSU3(4) [5%2:S3 [2°-13 52 |G* T =|Go : To| =4

TABLE 4.1. Candidates of T for k£ > 4 with solvable stabilizers

We first exclude the groups My; and PSU3(4). If T'= My, then T'= G, and hence
I has odd order and odd valency, which is impossible. Suppose that 7' = PSUj3(4).
Then T, is maximal in T, G = PSU3(4).4 and G, = 5%(4 x S3). In particular,
Gap = 4 x S3. Checking the maximal subgroups of G in the Atlas [6], we conclude
that Ng(Gap) < Ga, which contradicts Lemma

Assume that T = PSL3(3). If T, # G, then G = PSL3(3).2 and G, = 3%:2S, < T
a contradiction. Thus T, = G,, and either G = T or I' is bipartite and G* = T.
Suppose that G = T. Then G, = 3%:2A,, Gup = 2A, and Ng(G,p) = 2S,, where
B € I'(a). It follows that G, and Ng(G,p) are both contained in a subgroup 32:2S,
of G, a contradiction. Then I' is a bipartite graph described as in Example

Assume that T = PSLy(p°), T,, = p©:m, r%s* = (p® + 1)l and ml = é’;ﬁ 1y Where
e>1and p® > 4. If |l =1 then T is 2-transitive on each T-orbit on V', and thus
I' is a complete graph or the standard double cover of a complete graph. Now let
[ > 1. Suppose that p = 2. Then ([,2° + 1) = 1, since (2° + 1)l = r%s®, we conclude
that e = 27 for some j > 1. Tt follows that |G* : T| is a divisor of 2/. Then
|G| = |T,||G" : T| = 2°27°2=L for some jo < j, and thus |G, is indivisible by 2¢ —1,
a contradiction. Therefore, p is an odd prime. Since e > 1, it is easily shown that p®+1
is not a power of 2. Noting that (p +1,p°—1) = 2 and (p°+1)l = r®s®, it follows that

[ =2 and e = 2, where ig,7 > 1. In particular, |G* : T is a divisor of 2. Setting
|G* : T| = 2 for some i; < i, we have m = 2180+1 and |G| = |T.||G* : T| = pe2= ;0111

Since |G| has a divisor p® — 1, we have i + 1 < 41 < 7, and so iy < 7. Checking the
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maximal subgroups of G, it follows from [3, page 377, Table 8.1] that G, < AT'L;(p?),
desired as in part (4) of this theorem.

Finally, let T'= Ag. Noting that Ag = PSL5(9), by the above argument, we have
T, % 3%2. Then T, = 324, and thus I is either the complete graph Ky or the
standard double cover of Kig. This completes the proof. U

For the case where k is a prime, we can read out the 2-arc-transitive members from
the graphs given in [22].

Theorem 4.2. If k is an odd prime then one of the following holds:

(1) T is either a complete graph or the standard double cover of a complete graph;,

(2) T is the point-hyperplane incidence graph of the projective geometry PG(n —
1,p%), where p is a prime and (n,p°) = (3,4), (4,p) or (6,2),

(3) T is the incidence graph of the generalized quadrangle GQ(4,2%), wherei > 1;

(4) T = Cos(G, H, K) with (G, H, K) listed in Table [4.2]

G H K ragP k Remark
As,Ss S3,D12 Z3,Ds 2.5 3 | Fo10
S5 Ss3 72 2.5 3 | F020A
Ss S3 Z4 2.5 3 | F020B, bipartite
PGL2(7), PSLa(7) D12,S3 Ds, Za 22.7 3 | F028
PGL2(7) S3 72 22.7 3 | Fo56B
PGL2(7) S3 Zy 2.7 3 | F056C, bipartite
PGL2(9),M10, PT'L2(9) | S4,S4,2 X S4 D16, QDqg,[2°] | 3-5 3 | F030, bipartite
PGL2(11) D12 Ds 511 3 | F110, bipartite
PGL2(13) Dio Dg 7-13 3 F182D, bipartite
PCL2(23) S4 Dis 11-23 | 3 | F506B, bipartite
PGL2(25), PTL2(25) S4,2 X Sy Dis, [2°] 52.13 3 | F650B*, bipartite,
PTL2(9), M1o 10:4, 5:4 [2%], Qs 22.32 5
Se 5:4 Za X Lo 22.32 |5
PTL2(9) 5:4 Zy X o 22.32 [ 5 | bipartite
Mi2.2 11:10 Da2o 26.33 11
PSL2(31) As S4 23.31 5
PGLa(p) As 84 2D [ 5 | bipartite

p € {19,29,59,61}
PSL5(2).2 26:(S3 x PSL3(2)) | [2%](S3 x S3):2 | 5-31 7 | bipartite
PSU3(3).2 PSL3(2) Sy x 2 22.32 | 7 | bipartite
PSU3(5).2,PSUs(5) S7, A7 Ag.22, Mo 52.9 7 Hoffman-Singleton
PSU3(5).2 Ar Mjio 52.2 7 | bipartite,
PSU3(4).4 13:12 S5 x 4 26.52 | 13 | bipartite
PSU5(2).2 PSLo(11) Ss 28.3% [ 11 | bipartite
Mi2.2 PSL2(11) Ss 24.32 11 | bipartite, H £ My
M2 PSL2(11) Ss 24.32 [ 11| H<Mny

TABLE 4.2. Some coset graphs of prime valency

Remark 4.3. (i) The names for cubic graphs in Table [4.2] follow from [5], the
graphs F506B and F650B* in Table [4.2] were missed in [22, Theorem 1.2 (1)].
(ii) Note the isomorphisms of graphs: F010 and Petersen graph Os, F020B and
O:(f), and F030, Tutte’s 8-cage and the incidence graph of GQ(4,2).
(iii) The graph in Table associated with PSLs(2).2 is in fact the line-plane
incidence graph of PG(4,2). This graph was missed in both [19, Theorem 1.1]
and [22], Theorem 1.2].

Theorem 4.4. If k = 4 then one of the following holds:
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(1) T is either the Odd graph O4 with G € {A7,S;} or the standard double cover
0P with G = S
(2) T is isomorphic to one of the three graphs in Examples and .

Proof. Assume that kK = 4. Then G, is one of Ay, Sy, 3 X Ay, (3 X Ay):2, S3 X Sy,
32:GLy(3) and [3°]:GLy(3), refer to [20, Lemma 2.6]. Combining Lemma it is
easily shown that either Oy(7T,) = O5(G,) = Z3 or O3(G,) > O3(T,) # 1. Further,
noting that G, /T, = G*/T < G/T, it follows that |G : T'| has a divisor |O3(G,) :
O3(T,)|. Then, checking one by one the simple groups given in [I8, Tables 3.1,3,2,4.1-
4.5, 5.1] and [22, Remark 5.2], all possible pairs (T, T,,) are described as in Table

T Tu ragP G

Ag Sq 3-5 Ag, Se(If T' bipartite)

A7 (3 X A4) 2157 A7, S7

PSLy(7) | Ay 2.7 | PSLy(7),PGLo(7)(If T bipartite)
PSLy(11) | Ay 7-13 | PSLy(11),PGLy(11)

PSL2(23) | Sy 11-23 | PSL2(23), PGL2(23)(If T bipartite)
PSL2(25) | Sy 52 .13 | PSLy(25), PXLo(25)(If T bipartite)

TABLE 4.3. Candidates of T for k =4

Suppose that T' = Ag. Checking the subgroups of every almost simple group with
socle Ag, since |G : Go| = 15 or 30, we conclude that T, = G,, and G = Ag or
Se. Computation by GAP shows that G, and Ng(G,ps) are contained in a maximal
subgroup Sy or 2 x S, of G, which contradicts Lemma [2.1]

Suppose T" = PSLy(25) and T, = S;. Then G, = T,, and G,3 = S;. Take a
maximal subgroup M; = Sy of T" and a maximal subgroup M, = S5 x 2 of PX1Ly(25)
such that G, < M; < M,. Computation by GAP shows that either G = PSLy(5)
and Dy = Ng(Gap) < My, or G = PXLy(25) and 2 x D1y = Ng(Gag) < Ms. Then
G # (Ga, Ng(Gap)), a contradiction.

Suppose that T'= A;. Then the action of T on each of its orbits is equivalent to
the action on 3-subsets induced by the natural action of A; of degree 7. Thus the
resulting graph is either the Odd graph O4 with G € {A7, S;} or the standard double
cover Of) with G = S7.

Suppose that "= PSLy(7) and T,, 2 Ay. Then G, =T, and Gop = Z3. f G =T
then N¢(Gap) = S3 and (Go, Ng(Gap)) = Sy, a contradiction. Thus G = PGLy(7),
and I' is isomorphic to the graph given in Example [3.5

Suppose that T' = PSLy(11) and T,, = A4. Then either G, = T, or G = PGLy(11)
and G, = S;. We have G,p = Z3 or Ss, respectively. Thus I' is isomorphic to of one
the graphs given in Example [3.6]

Finally, let 7" = PSLy(23) and T, = S;. Then G, = T,, and G,3 = S;. Com-
putation by GAP shows that N7 (Gag) = Npar,(23)(Gag) = Dia. Noting that Gy, is
maximal in 7", we have (G, N7(Gag)) = T. Then I is isomorphic to the graph given
in Example [3.7] O
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5. GRAPHS WITH AFFINE STABILIZERS

In this section, we deal with the case (B), see Section . Assume that Go® is an
insolvable affine 2-transitive group of degree |['(«a)| = p® > 5, where p is a prime and
e > 1. Let {a, 8} € E. By Lemma , since T, is insolvable, we have

(1) 0,(Ga) = O,(Tw) = s0c(Ga™) = soc(Ta') = Zg; and

(2) Go = O,(1,):Gap, T = O,(T,,):T,p; and either
(i) T is 2-transitive, in particular, |0,(T%,)| — 1 is a divisor of |T,gl; or
(ii) e =2, p € {19,29,59}, and Z2:SLy(5) T4 @ AGL™ 9Z2:(Z,, 1 0SLa(5)).

Checking one by one the simple groups given in [I8, Tables 3.1,3,2,4.1-4.5, 5.1] and
[22] Remark 5.2], we conclude that all possible T}, are described as follows:

(al) (T,T,,r%s" p°) is one of (Ag, 23:PSL3(2),3 - 5,2%), (Ag, 23:PSL3(2), 33 - 5,23),
(MQQ, 24ZA6, 7 117 24)7 (M23, 242A7, 11- 237 24), (PSL4<3), 24IS5, 35 . 13, 24),
(PSUL(3), 2% Ag, 3¢ - 7,2%) and (Ga(3), 23:PSLy(2), 3° - 13, 2%);

(a2) T = PSL,(p?) and T, = p™Y7:(SL,_1(pf).0), where SL,_(pf) is insolvable,

. L F
and o is a divisor of 22— :
(n7q71) !

(a3) T = PSU4(2%) and T, = 227:SLy(22"):(2%' — 1), where i > 1.
Lemma 5.1. Assume that (al) holds. Then T # Maz, PSL4(3), PSU4(3) or Ga(3).

Proof. Suppose that T'= Mz and T, = 2*:A;. Then G = T and G5 = A;7. Checking
the maximal subgroups of M3 containing N (Gap), we conclude that Ng(Gap) =
Gap, a contradiction.

Suppose that 7' = PSL4(3) and T, = 2*:S5. Assume that I" is not bipartite. Then
T is a 2-arc-transitive group of I', and thus 7" = (T,,, N1 (7,3)). Noting that T,5 = S;
and T, is contained in a maximal subgroup M = PSU4(2):2 of T, computation by
GAP shows that 2 x S5 = Np(T,5) < M. Thus (T, Nr(T,5)) < M, a contradiction.
Therefore, I' is bipartite, and G* = (G,, Gs) has index 2 in G. Note that G, /T, =
G*/T. Assume that T # G*. Then G* = T'2. Since |G* : G,| = |T : T,| = 3° - 13,
by the information given in the Atlas [6], we conclude that G, = 2%:S5 x 2. Then
0,(G,) = Z3, a contradiction. Thus we have G* =T, |G : T| = 2, G, = T,, and
Gop = T,p. Checking the maximal subgroups of G' containing Ny (7,3), we conclude
that either Ng(Ths) = Np(Tag) < M or Ng(Thg) = Np(Tas) < M x (g), where
g € G\ T. For both cases, we have (G, N¢g(T,3)) # G, a contradiction.

Suppose that T = PSUy(3) and T, = 2%:As. Then T, is maximal in T, and
Top = Ag. Confirmed by GAP, we have Ny (T,5) = T,s, and then G > T. Pick a
maximal subgroup M of G with G, < M £ T. Then M = 2*:Sq, 25:A4 or 2°:S.
Recall that G, /T, is solvable. It is easily shown that T, is characteristic in G,g,
and thus T,s < Ng(Gop). Then Ng(Gag) < Ng(Thp). Assume that Ng(T,5) € M.
Then Ng(Thp) = Tap.[20], where o = |G : T|. Thus o|T| = |G| > |[TNg(Tug)| =
%ﬁ?—m = 20|T|, yielding 1 > 2, a contradiction. Then N (Gop) < Ng(Top) < M,
and thus (Go, Ng(Gag)) < M # G, a contradiction.

Finally, for T = G2(3), computation by GAP shows that both G, and Ng(Gag)
are contained in a same maximal subgroup 2%:PSL3(2) or 2%:PSL3(2):2 of G, which
is not the case. Then the lemma follows. U

Lemma 5.2. If (al) holds then one of the following holds:
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(1) G =Ss and I is the point-line non-incidence graph of PG(3,2);
(2) T is isomorphic to one of the graphs in Examples and '
(3) G =Mg.2 and T" is the standard double cover of the graph in Example .

Proof. Assume that T = Ag and T, = 23:PSL3(2). Then T, = T = AGL3(2) =
GE("‘), yielding G, = T,,. Then G, = Top = PSL3(2), and T" as a permutation group
on each T-orbit is permutation isomorphic to PSL4(2) acting on the points or lines of
the projective geometry PG(3,2). Checking the maximal subgroups of T' containing
PSL3(2), we have Np(T,5) < T,. Thus G # T, and G = Sg. Then the resulting
graph T is the point-line non-incidence graph of PG(3, 2).

Assume that T = My, and T, = 2*:A4. Then the action of T on each of its orbits
is equivalent to that on the 77 hexads. Thus, if I' is not bipartite then G = My, or
Mys.2 and T is the graph in Example [3.1] if T is bipartite then G = Mgy.2 and T' is
the standard double cover of the graph in Example [3.1]

Assume that T = Ag and T, = 23:PSL3(2). Similarly as above, G, = T, and
Gop = Top = PSL3(2). Confirmed by GAP, we have Np(T,5) = T,p. It follows
that G = Sg. Further, checking the maximal subgroups of Sg, we conclude that T, is
contained in a subgroup Ag. Thus I' is isomorphic to the graph in Example 3.8 [J

For a finite group X, denote by X () the intersection of all subgroups appearing
the derived series of X.

Lemma 5.3. If (a2) holds then I is isomorphic to one of the graphs in Example .

Proof Assume that T = PSL,(p/) and T, = p™=D/:(SL,_1(p’).0). Then T =
p"YF:SL,_1(pf). Pick a maximal subgroup M of T with T, < M. Then M is a
stabilizer of T" acting on the point set or hyperplane set of the projective geometry
PG(n —1,p!), M) =T and M/TS® ~7Z ;_, . In particular, T, is character-

(n, f 1)

istic in M. Without loss of generality, we let M be the stabilizer of some point of
PG(n —1,p/).

Pick z € G with (o, 5)* = (8, «), and set X = T(z). Then X is a 2-arc-transitive
group of T', and so ' = Cos(X, Xq, X{a,) and X = (X,, X(a ). Clearly, 2 €
PTL,(p/). Then M*" is a point-stabilizer of T' acting on PG(n — 1, p/). Noting that
z? € X, we have 22 € Nx(T,). Thus T, < M N M*", forcing M = M**. Suppose
that M = M?. Then M(z) is maximal in X, and X, < Nx(T,) < Nx(T8) =
M (zx). Thus both X, and Xy, g are contained in M (x), a contradiction. Therefore,
M # M*.

Since T,, < M, we have T,,(M N M*) < M, and so |T,(M N M?*) : (M NM*%)| =
T : (T, N M™)|. Noting that T < M?®, it follows that |T,(M N M®) : (M N M?)]
is a divisor of |['(a)| = |1, : T,p|- Suppose that M* is a point-stabilizer of T" acting
on PG(n — 1,pf). Then |T,(M N M%) : (M N M*)| is divisible by M Thus

IT'(a)| has a divisor %, which is impossible. Therefore, M~ is a hyperplane-

stabilizer of T acting on PG(n — 1,p’). Noting N¢(T,,) = M and Nz (Tp) = M?, it
follows that T;, and T are not conjugate in 7. Then I is bipartite

Finally, since |T,,(MNM?*) : (M NM?)| is a divisor of |I'(«)| = D/ we conclude
that the hyperplane fixed by M* does not contain the point ﬁxed by M . Thus I is
isomorphic to one of the graphs in Example (1), and the lemma holds. O
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Theorem 5.4. If GA is an insolvable affine 2-transitive group then one of the
following holds:

(1) T is isomorphic to one of the graphs in Examples and ' or
(2) G = M.2 and I is the standard double cover of the graph in Ezample '

(3) G= PSU4(22i).2j and T' is the standard double cover of the graph in Example
where 1 < j < i+ 1.

Proof. Assume that G is an insolvable affine 2-transitive group. By Lemmas ,
and the argument ahead of Lemmal5.1], only the case (a3) is left. Thus we assume
that T = PSU4(2%) and T, = 22"7:SL,(22"):(2%' — 1), where i > 1. Then the action
of T on each of its orbits is equivalent to that on the set of (22' +1)2(2¥"" — 22" +1)
isotropic lines. If T' is not bipartite then I' is described as in Example [3.2] If T is
bipartite then, by Lemmas and , we have part (3), and the result follows. O

6. GRAPHS WITH ALMOST SIMPLE STABILIZERS

In this section, we deal with the case (C), see Section . Assume that GL' is

almost simple, and k = |T'(«)| is not a prime. Recall that soc(T,E(a)) = SOC(Gg(a)).

6.1. Graphs with non-trivial edge-kernel. Assume that GB}a # 1, where {a, B} €
E. Then soc(Th™) = soc(GA™) = PSLy(q) and k = ‘i;f by Theorem . Set

q = p/ for a prime p. By Theorem and [27], since k is not a prime, O,(G,) is
described as Table [6.4]

0,(Go) | d q | Ga

F_ .
[p*/] 2 p’ [pr]:((;;f_ﬂ)-PGL(pr))-[O] with o | (3,p/ = 1)f
[237] 2 27 [ [237]:GL(2,2) e, e | f,f > 2
[3%7] 2 37 [ [3%]:GL(2,3N) e, e | f,f > 1
pd(d_l)f Z 3 pf SLd*l(Q)XSLd(Q) < Ga/op(GOc)a (d7 Q) 7& (37 2)
pi{d EE: p! | 0.PSLu(q) 4 Ga/Op(Ga), 0 g —1,(d,q) # (3,2)
p 2z |23 |p/|0PSLi(g) <Ga/Oy(Ga) 0| q—1,(d,q) # (3,2)
[™] 3 27 | SLa(q) xSLs(g) < Ga/Op(Ga), q # 2
30 3 3 [ 35:SL;(3)
20+1 d>3[2 [29F1:8Ly(2)
211 2t 14 2 | 2M1:SL4(2), 21%:SLy(2)

TABLE 6.4. Stabilizers with non-trivial edge-kernel

It is easily shown that O,(7,) =T, N O,(G,). Then
0,(Ga)l = [0p(To)[[TaOp(Ga) : Tal-

Recalling that G /T, = G*/T, it follows that |O,(G,)| is a divisor of |O,(T4)||G* :
T'|. Combining Table [6.4] we read out all possible pairs (T, T,) from [I8] and [22] as
in Table [6.5] (Note, we deal with the alternating group Ag as PSL4(2).)

Theorem 6.1. Assume that G is almost simple, Gg]ﬁ # 1 and k = |['(a)] is not
a prime, where {«, 8} € E. Then one of the following holds:

(1) T is isomorphic to one of the graphs in Examples and [3.10};
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T T, d
_ f_
PSL,(p/) | p" "D/ :(SLy—1(p?).0) [ n—1]0 | (;"jl,%f_ll),(n,pf) #(3,2),(3,3),(4,2)
PSp,(27) | 23/:GLy(27) 2 f=2 fori>2
PQI(2) | 20:PSL4(2) 4

TABLE 6.5. Candidates of T" with non-trivial edge-kernel

(2) T is the incidence graph of the generalized quadrangle GQ(4, 221), where i > 1.

Proof. By the foregoing argument, we need only consider the simple groups listed in
Table . For T' = PSL,(p’), by a similar argument as in the proof of Lemma ,
T, and Tp are contained respectively in the stabilizers of a point and a hyperplane
in T, and then I is described as in (2) of Example [3.9

Assume that T = PQJ(2). Then k = 15 and |T : T,| = 135 is odd, and thus T is
bipartite. By the Atlas [6], checking the maximal subgroups of almost simple groups
with socle T', we have G = T.2. Then T is isomorphic to the graph in Example [3.10]

Now let T' = PSp,(27) and T, = 23/:GLy(2/). In this case, T, is maximal in 7,
k=2 +1and T : T, = (2/ +1)(2% + 1), which are odd. Thus I is bipartite,
each T-orbit on V may be identified with the point set or the line set of GQ(4,2%).
In particular, 7" has rank three on each orbit with suborbits of length 1, 23/ and
2/(27 4+ 1). 1If the actions of T on both orbits are equivalent, then k& = 23/ or
2/(2/ +1), a contradiction. Therefore, one T-orbit is the point set of GQ(4,2%"), and
the other one is the line set of GQ(4,2?). Then (2) of this theorem follows. O

6.2. Graphs with trivial edge-kernel Assume that G[lﬁ = 1, where {«, 8} € E.
Recall that soc(Gg(a)) soc(Th ) T : T,| = r®s® and k = |['(«)| is not a prime.
Combining the classification of almost s1mple 2 tran81tlve groups (see [4, page 197,
Table 7.4]), we can read out all poss1b1e soc(Go ') from [I8, Theorem 1.1] and [22]
Remark 5.2]. Since GaB =1, by and

to a normal subgroup of (Gg )p- It follows that one of the following holds:

(s1) 7@ — ghl@) ~ A7, k=15,and G, =T, = A; or PSLy(7) x Az;

(s2) Ta' = My; with k = 12, or 7o = M, with k = 22;

(s3) SOC(Gg(a)) = A., k > 6, and T, or GG, is isomorphic to one of Ay, Sy, Ax_1 XAy,
(Ag_1 X Ag).2 and Sp_1 X Sg;

(s4) Soc(Gg(a)) = PSUs(p/), k = p*/ + 1, and either TH =1 or pf < |0,(T%)| <

D g1ven in Sectlonl Gg] is isomorphic

(s5) soc(GA™) = PSp,y(2) with d > 3, k = 2%4~1 + 29-1 and T}, is isomorphic to
a normal subgroup of P25;(2).2 x PSp,,(2);
(s6) SOC(GE(O‘)) = PSL4(p/), k = de__ll, and either 7' = 1 or O (1) = VAN

Then, checking the groups given in [I8, Theorem 1.1] and [22] Remark 5.2], all possible
pairs (T, T},) are listed in Table [6.6]

Lemma 6.2. T # PSUs(2) or PQ,(3).

Proof. Suppose that 7' = PSUg(2). Then T, = My, = T}, k = 22 and T,,5 = PSL3(4).
In particular, 7}, is maximal in 7', and thus T is a primitive group of degree 28 - 3%
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T Ta rasP k Top

Ao A; 23 .32 15 PSL3(2)
Maz Ar 2411 15 PSL3(2)
PSpg(2) A; 2632 15 PSL3(2)
PSU3(5) Ar 2. 52 15 PSL3(2)
PSU4(3) Ar 24.34 15 PSL3(2)
M2 My 22.3 12 PSLo(11)
HS Maz 22 .52 22 PSL3(4)
McL Moo 3%1. 52 22 PSL3(4)
PSUg(2) Moz 28 .37 22 PSL3(4)
M1 Ag 211 6 As

Ay Ap_1 n n—1 Ap_o

An Sn—2 @ n—2 Sn—3

A, An_o n(n—1) n—2 A,_3
PSL3(4) Ag 237 6 As
PSp,(3) Se 22.32 6 Ss

PSp,(3) Ag 23.32 6 As
PSpg(2) Ss 22.32 8 S

PSpg(2) Ag 23 .32 8 Ay

Jo PSU3(3) 22.52 28 [33]:8

HS PSU;3(5).2 2711 126 [53]:8:2

HS PSU3(5) 25. 11 126 [53]:8
G2(3) PSU3(3):2 3%.13 28 [33]:8:2
PQ7(3) PSpg(2) 35.13 28,36 PSU4(2):2,Sg
PQJ (2) PSpo,,_2(2) [ 27~ 1. (2 —1) | 22m=3 £ 2m=2 [ PQE ~ (2).2,primem =2 +1>5
PQ; (2) PSpo,_o(2) | 271 (2™ +1) | 2273 £ 272 [ PQT  ,(2).2,m=2">4
Ag PSLy(5) 2.3 6 D1o

A PGL2(5) 3.7 6 5:4

A PSLa(7) 3.5 8 7:3

Ag PSL2(7) 3.5 8 7:3

As PSL2(9) 23.7 10 32:4

Ag Se 22.7 10 32:Dg

M1 PSTLo(11) 22.3 12 11:5

M1 PSL2(9) 2-11 10 32:4

M2 PSLo(11) 2%. 32 12 11:5

Mao PSL3(4) 211 21 2%:A5
PSL2(16) PSL2(5) 22.17 6 Do
PSL2(19) PSLy(5) 3-19 6 D1o
PSL2(25) PGL2(5) 513 6 5:4
PSL2(29) PSLy(5) 7-29 6 Dio
PSL2(31) PSL2(5) 23 .31 6 Dio
PSL2(59) PSLa(5) 29 .59 6 Do
PSL2(61) PSL2(5) 31-61 6 D1o
PSL3(4) PSL2(9) 237 10 32:4
PSL2(227 1) | PSLo(22") | 227 (227 +1) |22 +1 22722 —1),i>2
PSLy,(2) PSL,_1(2) |27 12" -1) on—-1 1 2"~2:PSL,,_2(2), odd prime n > 5
PSp,(3) PGL2(5) 23 .33 6 5:4
PSp,(3) PSL2(5) 2%1.33 6 Dio
PSp,(3) PXL2(9) 22.32 10 32:Dg
PSp4(3) PSL2(9) 23 .32 10 32:4
PSpg(2) PSL4(2) 23 .32 15 23:PSL3(2)
PSU3(3) PSL2(7) 22 .32 8 7:3
PSU3(5) Mio 52.7 10 32:Qs
PSU3(4) 5 x PSLa(5) | 2%-13 6 5 x D1g
PSU4(3) PSL3(4) 2.3% 21 2% A5
PSU5(2) PSLo(11) 28 .34 12 11:5
2F4(2) PSL2(25) 28 .32 26 52:12
G2(3) PSL2(13) 2%. 3% 14 13:6

TABLE 6.6. Candidates of T with trivial edge-kernel

on each T-orbit. By the web version of [6], as a primitive group of degree 2% - 3%, the
group 71" has no suborbit of length 22. This forces that I' is bipartite, G = PSUg(2).2,
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Go =T, and G,3 = T,p = PSL3(4). Computation by Magma shows that either
N¢(Gop) = Gag, or both G, and G,p are contained in a maximal subgroup Ms,.2 of
G, which contradicts Lemma [2.1]

Suppose that 7" = PQ,(3). We have G < PGL;(3), G, = T, = PSpg(2), and
Gap = PSU4(2):2 or Sg. Consulting the 7-dimensional representation of PSpg(2) over
the field of order 3, computation by GAP shows that [Npgr,(3)(Gag) : Gag| = 3 or 1.
Thus |[Ng(Gap) : Gapl is odd, which contradicts Lemma O

Lemma 6.3. T # PQ5 (2) for m > 4.

Proof. Suppose that T = PQ3. (2) for some m > 4. Then each of T-orbits on V may
be viewed as a copy of the set of 2~1(2™ F 1) non-isotropic points. Thus T, has
exactly three orbits on the T-orbit say U containing «, which have length 1, 22m~2 —1
and 2m~1(2m~1 £ 1) respectively, refer to [16]. Then T is either an orbital graph of
T on U or the standard double cover of some orbital graph (see Lemma [3.13)). It
follows that |'(a)| = 22™72 — 1 or 2™ 1(2™~! F 1), a contradiction. O

Lemma 6.4. T # PSL, 221y or PSL,,(2), where i > 2, andn > 5 is a prime.
n ) ) p

Proof. First, the group PSLy(22"") is excluded by [14, Proposition 3.1].

Suppose next that 7' = PSL,(2) for some prime n > 5. In this case, T, =
PSL,_1(2). Consider the natural action of 7" on the n-dimensional vector space F3
over the field of order 2. It follows that T, is the stabilizer of some decomposition
of F4 into 1- and (n — 1)-dimensional subspaces. Thus we identify every vertex in
each T-orbit with an ordered pair ((u),U), where u and U satisfy F} = (u) & U and
dim(U) = n — 1. Assume that the first entries of some adjacent pairs are equal.
Then, since T is transitive on F, the first entries of every adjacent pairs are equal. It
follows that I' is the union of 2" — 1 copies of Kyn-1 or Kéi),l, which contradicts the
connectedness of I'. Similarly, if the second entries of some adjacent pairs are equal
then we also have a contradiction.

For {«, 8} € E, choosing a suitable base uy,us,...,u, of F} we may let a =
((ur), (ug,ug, ..., u,)), and B = ({ug + us), (ug + ug, ug, ..., u,)) or ({ug + us), (u; +
U, Ug, ..., Up)). Then T,z = T, N Tp is properly contained in the stabilizer of
((ug, ..., up), (ug,us, ..., u,)) in PSL,_1(2). Thus [I'(a)| = [Ta : Tap| > 2" + 1,
a contradiction. This completes the proof. U

Lemma 6.5. Assume that T = A,, and soc(T,) = Ay with k = |I'(«)|. Then I' is
either a complete graph or the standard double cover of a complete graph.

Proof. By Table[6.6, k =n—1orn—2. For k =n — 1, it is easily shown I' = K,, or
K%Q). Suppose next that k =n—2. Then T, = A,,_sor S,,_9, and T,,s = A,,_30r S,_3
respectively. Consider the natural action of S,, on an n-set 2. Then T, is contained
in the stabilizer of a 2-subset A, and 7,4 fixes a point § € Q \ A.

Assume that T, = S,,_5. Then G, =T, and G, = 1,3, and hence G4 has exactly
three orbits on €2, say {0}, A and 2\ (AU {0}). This implies that Ng(G,.p) fixes A
set-wise. Then (G4, Ng(Gap)) # G, which contradicts Lemma

Assume that T, = A,_5. Then T, fixes A point-wise, and T,z fixes A U {60}
point-wise. This implies that every 2-element in Ng, (7,,5) fixes at least one point
in AU {0}. Thus neither T" nor S,, can be generated by T, and a 2-element in
Ns, (Tap). By Lemma 2.1} G = (Gq, Giay), and so G = (G, z) for some 2-element
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x in Ng(Gap). It follows that G, # T,, and hence G, = S, 5 and G = S,,. This
forces that T is 2-arc-transitive on I'. Since I' is connected, (T,,z) = T for some
2-element = € Nz (T,p), again a contradiction. This completes the proof. O

For each of the rest simple groups in Table , consulting the Atlas [6] and com-
putation by GAP, we check all possible subgroups H of G with H = G, up to the
conjugation under Aut(7"), work out the subgroups L of H with L = G,z up to
the conjugation under Ny (r)(H ), and then compute the normalizer N¢(L) for each
L. Then, by Lemma [2 and Theorem [3.3] we can determine the graph I' up to
isomorphism. Thus we have the following result.

Theorem 6.6. Assume that Ga® is almost simple, and k = II'(a)| is not a prime.
If Gg]ﬁ =1 for {«a, 5} € E, then one of the following holds:

(1) T is either a complete graph or the standard double cover of a complete graph;
(2) T = Cos(G, H,K) with G, H and K listed in Table[6.7]

G H res® |k | K r
Mas.2 A, 2111 [ 15 | PSLy(7).2 bipartite
PSU3(5).2 | A; 2-5%2 |15 | PSLy(7).2 bipartite
PSU4(3).23 | A7 21.31 [ 15 [PSL3(2).2; | bipartite
Mjs.2 My 22.3 |12 [PSLe(11).2 |Ki212
HS.2 Myg.2° 22.5% [ 22 [ PSL3(4).2""! | Higman-Sims
HS.2 Mao 22.52 122 | PSL3(4).23 | bipartite
McL.2 Mao 3%.52 122 | PSL3(4).23 | bipartite
HS.2 PSU3(5).2 [ 2% 11 [ 126 | [5°]:[27] bipartite
S(; PSL2(5) 2-3 6 9:4 K6,6

S7 PSLy(7) 3-5 |8 |76 PG(3,2)
Mys.2! PSL3(4).2 2.11 [21 |2%%S; Koo
M22.2 PSL3(4) 2-11 21 24285 K22,22
PSL2(19) | PSL2(5) 3-19 [6 | Dy

PGL2(29) | PSLa(5) 7-29 |6 Dag bipartite
PGLy(31) | PSLa(5) 23.31 16 [ Dy bipartite
PSL2(59) | PSL2(5) 29-59 |6 | Do

PSLy(61) | PSLz(5) 31-61]6 |[Dag

PSL3(4).2° | PSLe(9).2° [23-7 |10 [3%:[23H]

PSL3(4).2° | PSLp(9).2°°1[23.7 |10 [3%[22H] bipartite
PSU,4(3).2% | PSL3(4).2 2-3% |21 [2°%:S; bipartite

TABLE 6.7. Some coset graphs with trivial edge-kernel

Finally, Theorem [.2] follows from Theorems [4.1], 4.2} [£.4] and [6.0]
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