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Abstract. By using Mař́ık’s theorem and the theory of multiplier sequences, we give

some sufficient conditions for proving the higher order Turán inequalities for nonnegative

sequences. As an immediate consequence, we present a simple proof of the higher order

Turán inequalities for the Boros-Moll sequence, which were recently established by Jeremy

Guo and then reproved by James Zhao.

AMS Mathematics Subject Classification 2010: 05A20, 30C15
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1 Introduction

Recently, the higher order Turán inequalities for real sequences have been widely studied; see

Chen, Jia and Wang [6], Guo [15], Hou and Li [17], Wang [31] and references therein. Recall

that a sequence {ak}∞k=0 of real numbers is said to satisfy the higher order Turán inequalities

if for k ≥ 1,

4
(
a2k − ak−1ak+1

) (
a2k+1 − akak+2

)
− (akak+1 − ak−1ak+2)

2 ≥ 0.

The main objective of this paper is to provide some sufficient conditions to prove the higher

order Turán inequalities for nonnegative sequences.

A basic tool to prove the higher order Turán inequalities is Mař́ık’s theorem [24], which

can be stated as follows.

Theorem 1.1 ([24]). If the real polynomial

f(x) =
n∑

k=0

ak
k!(n− k)!

xk

of degree n ≥ 3 has only real zeros, then the sequence {ak}nk=0 satisfies the higher order Turán

inequalities.
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The above theorem bulids a connection between the real-rootedness of a polynomial and

the higher order Turán inequalities for its coefficient sequence.

An interesting application of Theorem 1.1 is to prove the higher order Turán inequali-

ties for the Maclaurin coefficients of a real entire function in the Laguerre-Pólya class; see

Dimitrov [12]. Recall that a real entire function

ψ(x) =
∞∑
k=0

γk
xk

k!

is said to belong to the Laguerre-Pólya class, denoted by ψ(x) ∈ LP , if

ψ(x) = cxme−αx2+βx

∞∏
k=1

(
1 +

x

xk

)
e
− x

xk ,

where c, β, xk are real numbers, α ≥ 0, m is a nonnegative integer and
∑
x−2
k < +∞.

Those functions in the LP class have many essential properties. For more information, see

[27, 26, 21, 9, 11, 29]. Jensen [18] showed that ψ(x) belongs to the LP class if and only if

for any positive integer m, the m-th associated Jensen polynomial

Jm(x) =
m∑
k=0

(
m

k

)
γkx

k

has only real zeros. Thus, Jensen’s theorem and Mař́ık’s theorem imply that if ψ(x) ∈ LP ,

then {γk}nk=0 for any n ≥ 1, and hence {γk}k≥0, satisfies the higher order Turán inequalities.

As noted by Dimitrov and Lucas [13], the main interest for the LP class is the fact that it

is closely related to the celebrated Riemann hypothesis. Recall that the Riemann Xi function

is defined by

Ξ(z) =
1

2

(
−z2 − 1

4

)
π

iz
2
− 1

4Γ

(
−iz

2
+

1

4

)
ζ

(
−iz + 1

2

)
,

where ζ(z) is the Riemann ζ-function and Γ(z) is the gamma function. It is known that [28]

the Riemman hypothesis is equivalent to Ξ(z) ∈ LP , or equivalently, for any nonnegative

integers m and n, the Jensen polynomial of degree m and shift n associated to the Maclaurin

coefficients {γ̂k}∞k=0 of 1
8
ξ
(

i
√
x

2

)
, which is defined by

Ĵm,n(x) =
m∑
k=0

(
m

k

)
γ̂n+kx

k,

has only real zeros. Though the Riemman hypothesis is widely open, some progress has

been made. Dimitrov and Lucas [13] proved that {γ̂k}∞k=0 satisfies the higher order Turán
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inequalities, or equivalently, the polynomial Ĵ3,n(x) has only real zeros. Griffin, Ono, Rolen,

and Zagier [14] proved that for each m ≥ 1, Ĵm,n(x) has only real zeros for sufficiently large

n.

It is worth mentioning that the work of Griffin, Ono, Rolen, and Zagier [14] was motivated

by the study of the higher order Turán inequalities for the partition function in [6]. Chen,

Jia and Wang [6] confirmed a conjecture of Chen [4], which illustrates that for n ≥ 95, the

partition function p(n) satisfy the higher order Turán inequalities. Chen, Jia and Wang [6]

further conjectured that for every integer m ≥ 1, there exists a positive integer N(m) such

that for any n ≥ N(m) the Jensen polynomial of degree m and shift n associated to the

partition function p(n), which is defined by

Jm,n(x) =
m∑
k=0

(
m

k

)
p(n+ k)xk,

has only real zeros. In [14], Griffin, Ono, Rolen and Zagier confirmed this conjecture for all

m ≥ 1. Furthermore, Larson and Wagner [20] gave the precise values N(3) = 94, N(4) = 206

and N(5) = 381, as well as the optimal upper bound N(m) ≤ (3m)24m(50m)3d
2
.

Except for the partition function, the higher order Turán inequalities for other sequences

of combinatorial significance were also studied. Wang [31] gave a unified approach to proving

the higher order Turán inequalities for the sequence {an/n!}n≥0 where an are the Motzkin

numbers, the fine numbers, the Franel numbers of order 3 and the Domb numbers. Hou

and Li [17] gave a sufficient condition for determining the higher order Turán inequalities

asymptotically, and they further applied their criterion to a P -recursive sequence {an}n≥0

and gave a method to find a lower bound N such that {an}n≥N satisfies the higher order

Turán inequalities.

In the past two decades, the Boros-Moll sequence was extensively studied; for instance

see [25, 19, 7, 3, 5, 8]. The higher order Turán inequalities for the Boros-Moll sequence was

first proved by Guo [15], and then reproved by Zhao [32] by using Hou and Li’s sufficient

condition [17]. We would like to point out that Mař́ık’s theorem was not used in Zhao’s proof.

In Guo’s proof, Mař́ık’s theorem was used to prove the higher order Turán inequalities of a

variation of the Boros-Moll sequence, but not directly for the original Boros-Moll sequence.

Both proofs rely on some techniques for proving inequalities. It is certainly desirable to

derive the higher order Turán inequalities for the Boros-Moll sequence directly from Mař́ık’s

theorem. This motivated us to look for some criteria for higher order Turán inequalities in

the spirit of Mař́ık’s theorem.

Note that, to prove the higher order Turán inequalities for a finite sequence {ak}nk=0 by

using Mař́ık’s theorem, the key is to prove the real-rootedness of f(x) =
∑n

k=0
ak

k!(n−k)!
xk,
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which could be very difficult sometimes. However, in some cases this difficulty can be

overcome by proving the real-rootedness of its certain variations. One choice for our purpose

is the polynomial
∑n

k=0
ak
k!
xk, and the other is

∑n
k=0

ak
(n−k)!

xk. The main result of this paper

is as follows.

Theorem 1.2. Let n ≥ 3, and {ak}nk=0 be a sequence of positive integers. If one of the

following polynomials

(1) f1(x) =
∑n

k=0 akx
k,

(2) f2(x) =
∑n

k=0
ak
k!
xk,

(3) f3(x) =
∑n

k=0
ak

(n−k)!
xk,

has only real zeros, then the sequence {ak}nk=0 satisfies the higher order Turán inequalities.

In the next section we will give a proof of the above theorem. In Section 3, we will present

two applications of Theorem 1.2, one of which provides a new and simple proof of the higher

order Turán inequalities for the Boros-Moll sequence.

2 Proof of Theorem 1.2

The aim of this section is to prove Theorem 1.2. The basic idea of the proof is to prove

the real-rootedness of
∑n

k=0
ak

k!(n−k)!
xk and then to derive the desired higher order Turán

inequalities from Mař́ık’s theorem. In order to prove the real-rootedness of
∑n

k=0
ak

k!(n−k)!
xk,

we need the theory of multiplier sequences.

Let us now recall some definitions and results on multiplier sequences. A sequence Γ =

{γk}∞k=0 of real numbers is a multiplier sequence if whenever any real polynomial

f(x) =
n∑

k=0

akx
k

has only real zeros, so does the polynomial

Γ[f(x)] =
n∑

k=0

γkakx
k.

We first recall two fundamental results in the theory of distribution of zeros of polyno-

mials, which produce several classical and important multiplier sequences.
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Theorem 2.1 (Laguerre’s Theorem [26]). Let f(x) =
∑n

k=0 akx
k be an arbitary real polyno-

mial of degree n, and let ψ(x) ∈ LP. Suppose that none of the zeros of ψ lie in the interval

(0, n). Then we have

Zc

(
n∑

k=0

ψ(k)akx
k

)
≤ Zc

(
n∑

k=0

akx
k

)
= Zc (f(x)) ,

where Zc(p(x)) denotes the number of non-real zeros, counting multiplicities, of a given

polynomial p(x).

Theorem 2.2 (The Malo-Schur Composition Theorem [26, 30]). Let

f(x) =
m∑
k=0

akx
k and g(x) =

n∑
k=0

bkx
k

be polynomials with only real zeros. Besides, the zeros of polynomial g(x) are of the same

sign. Then the polynomials
t∑

k=0

k!akbkx
k and

t∑
k=0

akbkx
k

have only real zeros, where t = min{m,n}.

The following result is a consequence of the Malo-Schur Composition Theorem and La-

guerre’s Theorem, and its proof was also hinted in [10] immediately after stating these two

theorems. Since this result is critical for our main theorem, we include the proof here for

the sake of completeness.

Lemma 2.3 ([10]). For any positive n, the sequences{
1

k!

}∞

k=0

,

{
1

(n− k)!

}∞

k=0

and

{
1

k!(n− k)!

}∞

k=0

are multiplier sequences, where we set 1
(n−k)!

= 1
k!(n−k)!

= 0 for k > n.

Proof. Apply Theorem 2.1 to the function ψ(x) = 1
Γ(x+1)

, which belongs to the LP class and

has non-positive zeros. We see that the sequence {1/k!}∞k=0 will not increase the number of

non-real zeros when applied to any real polynomials, and therefore it is a multiplier sequence.

For the remaining two sequences, set g(x) = (x+ 1)n in Theorem 2.2. Then both
m∑
k=0

k!

(
n

k

)
akx

k and
m∑
k=0

(
n

k

)
akx

k

have only real zeros, for any positive integer m. By definition, we obtain that the sequences{
1

(n− k)!

}∞

k=0

, and

{
1

k!(n− k)!

}∞

k=0

are multiplier sequences. This completes the proof.
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Now we are in the position to prove Theorem 1.2.

Proof of Theorem 1.2. Let

f(x) =
n∑

k=0

ak
k!(n− k)!

xk.

Note that

f(x) = Γ1[f1(x)] = Γ2[f2(x)] = Γ3[f3(x)],

where

Γ1 =

{
1

k!(n− k)!

}∞

k=0

, Γ2 =

{
1

(n− k)!

}∞

k=0

and Γ3 =

{
1

k!

}∞

k=0

.

By Lemma 2.3, if one of f1(x), f2(x) and f3(x) has only real zeros, so does f(x). Then by

Theorem 1.1 we get the desired result. This completes the proof.

Theorem 1.2 enables us to give more sufficient conditions for proving higher order Turán

inequalities. We would like to point out that these conditions might be easier to verify than

those conditions in Theorem 1.2, though the former are stronger than the latter. By using

(1) and (2) of Theorem 1.2, we obtain the following result.

Corollary 2.4. Let n ≥ 3, and {ak}nk=0 be a sequence of positive integers. If one of the

following polynomials:

(1) h1(x) =
∑n

k=0
ak

(k+1)···(k+m)
xk, for some m ≥ 1,

(2) h2(x) =
∑n

k=0
ak

(k+m)!
xk, for some m ≥ 1,

has only real zeros, then the sequence {ak}nk=0 satisfies the higher order Turán inequalities.

Proof. We may first assume that h1(x) has only real zeros. Let

g(x) = xmh1(x) =
n∑

k=0

ak
(k + 1) · · · (k +m)

xk+m.

It is clear that g(x) has only real zeros. Since the derivative operator preserves real-rootedness

of polynomials, the m-th derivative of g(x),

g(m)(x) =
n∑

k=0

akx
k,

has only real zeros. Then by (1) of Theorem 1.2, the sequence {ak}nk=0 satisfies the higher

order Turán inequalities.
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Now assume that h2(x) has only real zeros. We set

p(x) = xmh2(x) =
n∑

k=0

ak
(k +m)!

xk+m.

Then the m-th derivative of p(x),

p(m)(x) =
n∑

k=0

ak
k!
xk,

has only real zeros. Then by (2) of Theorem 1.2, we obtain the desired result.

Finally, we give another application of (2) of Theorem 1.2.

Corollary 2.5. Let n ≥ 3, and {ak}nk=0 be a sequence of positive integers. If for 1 ≤ m ≤
n− 3 the polynomial

h3(x) =
n∑

k=m

ak
(k −m)!

xk

has only real zeros, then the sequence {ak}nk=m satisfies the higher order Turán inequalities.

Proof. Since h3(x) can be written in the form of

xm
n−m∑
k=0

ak+m

k!
xk,

and the polynomial
n−m∑
k=0

ak+m

k!
xk

has only real zeros for m ≤ n. Then by (2) of Theorem 1.2, the sequence {ak+m}n−m
k=0 satisfies

the higher order Turán inequalities.

3 Applications

In this section, we give two applications of Theorem 1.2. Note that, to prove the higher order

Turán inequalities for a real sequence {ak}nk=0, it is sufficient to prove the real-rootedness

of f(x) =
∑n

k=0
ak

k!(n−k)!
xk by Mař́ık’s theorem. However, sometimes it is much easier to

establish the real-rootedness of f1(x), f2(x) or f3(x) in Theorem 1.2 or the real-rootedness

of h1(x), h2(x) or h3(x) in Corollary 2.4 and Corollary 2.5. In general it is a subtle question

which polynomial should be used for a specific sequence. As one can see below, it is natural

to choose f2(x) for the Boros-Moll sequence, while it is more appropriate to choose f3(x) for

a sequence involving Stirling numbers of the second kind.
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3.1 Boros-Moll sequences

The Boros-Moll sequence {dk(n)}nk=0 was introduced in [2], and defined by

dk(n) = 2−2n

n∑
i=k

2i
(
2n− 2i

n− i

)(
n+ i

n

)(
i

k

)
.

As mentioned in the introduction, Guo [15] obtained the following result.

Theorem 3.1 ([15]). The Boros-Moll sequence {dk(n)}nk=0 satisfies the higher order Turán

inequalities.

His proof is based on the result that the sequence {(n− k)!dk(n)}nk=0 satisfies the higher

order Turán inequalities and this result is an immediate consequence of Mař́ık’s theorem and

the real-rootedness of

Qn(x) =
n∑

k=0

dk(n)

k!
xk.

Note that the real-rootedness of Qn(x) was first conjectured by Brändén [3], and then was

proved by Chen, Dou and Yang [5] by establishing the recurrence relation

Qn+1(x) =

(
(2n+ 1)x

(n+ 1)2
+

8n2 + 8n+ 3

2(n+ 1)2

)
Qn(x)

− (4n− 1)(4n+ 1)

4(n+ 1)2
Qn−1(x) +

x

(n+ 1)2
Q′

n(x), for n ≥ 1

and using the real-rootedness criterion due to Liu and Wang [22]. In fact, Chen, Dou and

Yang [5] also proved that

Rn(x) =
n∑

k=0

dk(n)

(k + 2)!
xk

has only real zeros for any n by proving the following recurrence relation

Rn+1(x) =

(
(2n+ 1)x

(n+ 1)(n+ 3)
+

8n2 + 8n+ 7

2(n+ 1)(n+ 3)

)
Rn(x)

− (4n− 1)(4n+ 1)(n− 2)

4n(n+ 1)(n+ 3)
Rn−1(x) +

5x

(n+ 1)(n+ 3)
R′

n(x), for n ≥ 1.

Keeping in mind of Mař́ık’s theorem, it is natural to consider whether

Tn(x) =
n∑

k=0

dk(n)

k!(n− k)!
xk
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has only real zeros for any n. However, it seems that Tn(x) does not satisfy a simple

recurrence relation as Qn(x) or Rn(x). Here we give a new proof of Theorem 3.1 by using

Theorem 1.2.

Proof of Theorem 3.1. Combining (2) of Theorem 1.2 with the fact that the polynomial

Qn(x) has only real zeros for any n ≥ 0, we can obtain the desired result.

Remark 3.2. By (2) of Corollary 2.4, we can also prove Theorem 3.1 by using the real-

rootedness of Rn(x). However, it seems impossible to prove Theorem 3.1 by using (1) and

(3) of Theorem 1.2. Boros and Moll [1] proved that the polynomial

n∑
k=0

dk(n)x
k

has no real zeros for n even and a single real zero for n odd. We check that the polynomial

n∑
k=0

dk(n)

(n− k)!
xk

has non-real zeros for 6 ≤ n ≤ 100, and conjecture that it has non-real zeros for any n ≥ 6.

3.2 Stirling numbers of the second kind

In this subsection we aim to use the Stirling numbers of the second kind to construct a

sequence {ak}nk=0 satisfying the higher order Turán inequalities such that the corresponding

polynomial f3(x) in Theorem 1.2 has only real zeros.

Recall that the Stirling number of the second kind, denoted by S(n, k), satisfies the

following recurrence relation

S(n, k) = S(n− 1, k − 1) + kS(n− 1, k),

for 1 ≤ k ≤ n. Equivalently, the associated generating function Bn(x) =
∑n

k=0 S(n, k)x
k,

called the n-th Bell polynomial, satisfies

Bn(x) = xBn−1(x) + xB′
n−1(x)

with B0(x) = 1. By using the above recurrence relation, Harper [16] first proved that the

Bell polynomial Bn(x) has only real zeros for each n ≥ 1. As an application, Ma and Wang

[23] obtained the following result.
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Theorem 3.3 ([23]). For any n ≥ 1, the polynomial

Sn(x) =
n∑

k=0

(k + 1)!S(n+ 1, k + 1)xk

has only real zeros, which are all in the interval [−1, 0].

In fact, the above result can be also directly proved by using a recurrence relation of

Sn(x), namely,

Sn+1(x) = (1 + 2x)Sn(x) + x(x+ 1)S ′
n(x).

Based on the above theorem, we obtain the following result.

Corollary 3.4. For n ≥ 2, the sequence

{
S(n+1,k+1)

(n+1
k+1)

}n

k=0

satisfies the higher order Turán

inequalities, respectively.

In order to use Mař́ık’s theorem to prove the above result, it is natural to consider whether

Pn(x) =
n∑

k=0

S(n+ 1, k + 1)(
n+1
k+1

) /
(k!(n− k)!)xk

has only real zeros for any n. Nevertheless, it seems that Pn(x) does not satisfy a simple

recurrence relation as Sn(x). Hence we give a proof of Corollary 3.4 based on Theorem 1.2.

Proof of Corollary 3.4. In Theorem 1.2 take

ak =
S(n+ 1, k + 1)(

n+1
k+1

) . (3.1)

Note that

f3(x) =
n∑

k=0

ak
(n− k)!

xk = (n+ 1)!Sn(x),

which has only real zeros by Theorem 3.3. Therefore, by (3) of Theorem 1.2, the sequence

{ak}nk=0 satisfies the higher order Turán inequalities, as desired.

Remark 3.5. Comparing with Remark 3.2, we note that it seems impossible to prove Corol-

lary 3.4 by using (1) and (2) of Theorem 1.2. Letting ak be as given by (3.1), one can check

that the polynomial

f1(x) =
n∑

k=0

akx
k

has non-real zeros for 2 ≤ n ≤ 100, and the polynomial

f2(x) =
n∑

k=0

ak
k!
xk

has non-real zeros for 3 ≤ n ≤ 100. We conjecture that neither of these two polynomials has

only real zeros for n ≥ 3.
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summaries), Časopis Pěst. Mat. 89 (1964), pp. 5–9.

[25] V.H. Moll, The evaluation of integrals: A personal story, Notices Amer. Math. Soc. 49

(2002), pp. 311–317.

[26] N. Obreschkoff, Verteilung und Berechnung der Nullstellen reeller Polynome, VEB

Deutscher, Verlag der Wissenschaften, Berlin, 1963.

[27] G. Pólya, and J. Schur, Über zwei Arten von Faktorenfolgen in der Theorie der alge-

braischen Gleichungen, J. Reine Angew. Math. 144 (1914), pp. 89–113.

12
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