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Abstract
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Introduction

Methods to determine the structural similarity or distance

between graphs have been applied in many areas of sciences. For

example, in mathematics [1,2,3], in biology [4,5,6], in chemistry

[7,8] and in chemoinformatics [9]. Other application-oriented

areas where graph comparison techniques have been employed

can be found in [10,11,12]. Note that the terms ‘graph similarity’

or ‘graph distance’ are not unique and strongly depend on the

underlying concept. The two main concepts which have been

explored extensively are exact and inexact graph matching, see

[13,3]. Exact graph matching [2,3] relates to match graphs based

on isomorphic relations. An important example is the so-called

Zelinka distance [3] which requires computing the maximum

common subgraphs of two graphs with the same number of

vertices. However, it is evident that this technique is computa-

tionally demanding as the subgraph graph isomorphism problem

is NP-complete [14]. In contrast to this, inexact or approximative

techniques for comparing graphs match graphs in an error-

tolerant way, see [13]. A highlight of this development has been

the well-known graph edit distance (GED) due to Bunke [15].

String-based techniques also fit into the scheme of approximative

graph comparison techniques [1,16]. This approach aims to derive

string representations which capture structural information of the

underlying networks. By using string alignment techniques, one is

able to compute similarity scores of the derived strings instead of

matching the graphs by using classical techniques. Concrete

examples thereof can be found in [1,16].

As mentioned, numerous graph similarity and distance mea-

sures have been explored. But in fact, there is still a lack of a

mathematical framework to explore interrelations of these

measures. Suppose let d1 : G|G?Rz and d2 : G|G?Rz be

two comparative graph measures (i.e., graph similarity or distance

measures) which are defined on the graph class G. Typical

questions in this idea group would be to prove interrelations of the

measures by means of inequalities such as d1 v

(w)
d2. For instance,

inequalities involving graph complexity measures have been

inferred by Dehmer et al. [17,18].

The main contribution of this paper is to infer interrelations of

graph distance measures. To the best of our knowledge, this

problem has not been tackled so far when using graph distance

measures. However, interrelations of topological indices inter-

preted as complexity measures have been studied, see

[7,19,20,17,18]. For instance, Bonchev and his co-workers

investigated interrelations of branching measures by means of

inequalities [7,19,20]. Dehmer [17] examined relations between

information-theoretic measures which are based on information

functionals and between classical and parametric graph entropies

[18]. We here put the emphasis on graph distance measures

which are based on so-called topological indices. These measures

themselves have not yet been studied. Note that we only consider

distance measures (without loss of generality) as they can be

easily transformed into graph similarity measures [21]. In order

to define these measures concrete, we employ an existing

distance measure (see Eq. (6)) and the well-known Randić index

[22], the Wiener index [23], eigenvalue-based measures [24],

and graph entropies [17,25]. Also, we discuss quality aspects of

the measures and state conjectures evidenced by numerical

results.
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Methods and Results

Topological Indices and Preliminaries
In this section, we introduce the topological indices which are

used in the paper. A topological index [23] is a graph invariant,

defined by

I : G?Rz: ð1Þ

Simple invariants are for instance the number of vertices, the

number of edges, vertex degrees, degree sequences, the matching

number, the chromatic number and so forth, see [26].

We emphasize that topological indices are graph invariants

which characterize its topology. They have been used for

examining quantitative structure-activity relationships (QSARs)

extensively in which the biological activity or other properties of

molecules are correlated with their chemical structures [27].

Topological graph measures have also been applied in ecology

[28], biology [29] and in network physics [30,31]. Note that

various properties of topological graph measures such as their

uniqueness and correlation ability have been examined too

[32,33].

Suppose G~(V ,E) is a connected graph. The distance between

the vertices u and v of G is denoted by d(u,v). The Wiener index of

G is denoted by W (G) and defined by

W (G)~
X

u,v(V

d(u,v): ð2Þ

The name Wiener index or Wiener number for the quantity

defined is common in the chemical literature, since Wiener [34] in

1947 seems was the first who considered it. For more results on the

Wiener index of trees, we refer to [35].

In 1975, Randić [36] proposed the topological index R (R{1

and R{1
2
) by using the name branching index or connectivity index,

suitable for measuring the extent of branching of the carbon-atom

skeleton of saturated hydrocarbons. Nowadays this index is also

called the Randić index. In 1998, Bollobás and Erdös [37]

generalized this index by replacing {
1

2
by any real number a,

which is called the general Randić index. In fact, the Randić index

and the general Randić index became the most popular and most

frequently employed structure descriptors used in structural

chemistry [38]. For a graph G~(V ,E), the Randić index R(G)

of G has been defined as the sum of (d(u)d(v)){1=2 over all edges

uv of G, i.e.,

R(G)~
X
uv[E

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(d(u)d(v))

p , ð3Þ

where d(u) is degree of a vertex u of G. The zeroth-order Randić

index due to Kier and Hall [6] is

0R(G)~
X

u[V (G)

1ffiffiffiffiffiffiffiffiffi
d(u)

p : ð4Þ

For more results on the Randić index and the zeroth-order

Randić index, we refer to [39,22,38].

For a given graph G with n vertices, l1,l2, . . . ,ln are the

eigenvalues of G. The energy of a graph G, denoted by E(G), has

been defined by

E(G)~
Xn

i~1

jlij, ð5Þ

due to Gutman in 1977 [40]. For more results on the graph

energy, we refer to [41,24,42].

Novel Graph Distance Measures
Now we define the distance measure [21]

d(x,y)~1{e{
x{y

sð Þ2 , ð6Þ

which is a mapping d : R|R?Rz. Obviously it holds

d(x,x)~0, d(x,y)§0, and d(x,y)~d(y,x). In order to translate

this concept to graphs, we employ topological indices and obtain

dI (G,H) :~d(I(G),I(H))~1{e{
I(G){I(H)

s

� �2

ð7Þ

Further we infer a relation between the maximum value of dI

and the extremal values of I .

Observation 1. Let G be a class of graphs. Suppose G,H[G, then

G,H are the two graphs attaining the maximum value of dI if and only if

G,H are the graphs attaining the maximum and minimum value of I ,

respectively.

Proof. Let x~jI(G){I(H)j, then dI is a monotone increasing

function on x. Therefore, the maximum value of dI is attained if

and only if the maximum value of jI(G){I(H)j is attained. %

From Observation 1 and some existing extremal results of

topological indices, we obtain some sharp upper bounds of dI for

some classes of graphs. As an example, we list some of those results

for trees.

Theorem 1. Let T and T 0 be two trees with n vertices. Denote by Sn

and Pn the star graph and path graph with n vertices, respectively.

(i). The maximum value of dW (T ,T 0) is attained when T and

T 0 are Sn and Pn, respectively.

(ii). The maximum value of dR(T ,T 0) is attained when T and

T 0 are Sn and Pn, respectively.

(iii). The maximum value of d0R(T ,T 0) is attained when T and

T 0 are Sn and Pn, respectively.

(iv). The maximum value of dE(T ,T 0) is attained when T and

T 0 are Sn and Pn, respectively.

Interrelations of Graph Distance Measures
Observe that 0ƒdI (G,H)v1, which implies that

0ƒe{
I(G){I(H)

sð Þ2
v1. Some trivial properties of dI are as follows.

Let G be a class of graphs and G,H[G. We get

dI (G,G)~dI (H,H)~0; ð8Þ

dI (G,H)§dI (G,G)~0; ð9Þ

Interrelations of Graph Distance Measures
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dI (G,H)~dI (H,G): ð10Þ

However, dI is not a metric graph distance measure, since the

triangle inequality dI (G,H)zdI (H,K)§dI (G,K) for G,H,K[G,

does not hold generally. Actually, we obtain a modified version of

the triangle inequality.

Theorem 2. Let I be a topological index. Let G be a class of graphs

and G,H,K[G. If

jI(G){I(K)jƒjI(G){I(H)j or jI(G){I(K)jƒjI(H){I

(

K

)

j,ð
11

Þ

then we have dI (G,H)zdI (H,K)§dI (G,K).

Proof. We now suppose jI(G){I(K)jƒjI(G){I(H)j, since the

proof of the other case is similar.

From the inequality jI(G){I(K)jƒjI(G){I(H)j, we get

e{(
I(G){I(K)

s )2
§e{(

I(G){I(H)
s )2 : ð12Þ

Since e{
I(H){I(K)

sð Þ2
ƒ1, together with Eq. (12), we have

1ze{(
I(G){I(K)

s )2
§e{(

I(G){I(H)
s )2ze{

I(H){I(K)
s

� �2

: ð13Þ

Therefore, we have the following inequality,

1{e{(
I(G){I(H)

s )2z1{e{
I(H){I(K)

s

� �2

{(1{e{(
I(G){I(K)

s )2 )§0,ð14Þ

i.e., dI (G,H)zdI (H,K)§sI (G,K). %

We emphasize if the Inequalities 11 are satisfied, the modified

triangle inequality holds. In practice, the triangle inequality may

not be absolutely necessary (e.g., for clustering and classification

problems) and is often required to prove properties of the

measures.

Theorem 3. Let I1 and I2 be two topological indices. Let G be a class

of graphs and G,H[G. If

jI1(G){I1(H)j§ajI2(G){I2(H)j, ð15Þ

then

1{dI1
(G,H)ƒ(1{dI2

(G,H))a2
, ð16Þ

where aw0 is a constant.

Proof. Since

jI1(G){I1(H)j§ajI2(G){I2(H)j, ð17Þ

we obtain

(I1(G){I1(H))2
§a2(I2(G){I2(H))2: ð18Þ

Thus

1{e
{

(I1(G){I1(H))2

s2
§

1{e
{

a2(I2(G){I2(H))2

s2 ~1{ e
{

(I2(G){I2(H))2

s2

 !a2

,

ð19Þ

i.e.,

1{e
{

(I1(G){I1(H))2

s2
§1{ 1{(1{e

{
(I2(G){I2(H))2

s2 )

 !a2

: ð20Þ

Thus,

dI1
(G,H)§1{ 1{dI2

(G,H)
� �a2

: ð21Þ

The proof is complete. %

Suppose I3 is also a topological index. Then if

jI1(G){I1(H)jƒbjI3(G){I3(H)j, ð22Þ

we derive similarly

1{dI1
(G,H)§(1{dI3

(G,H))b2
, ð23Þ

where bw0 is a constant. Therefore, we obtain the following

theorem.

Theorem 4. Let I1, I2 and I3 be three topological indices. Let G be a

class of graphs and G,H[G. If

bjI3(G){I3(H)j§jI1(G){I1(H)j§ajI2(G){I2(H)j, ð24Þ

then we infer

(1{dI3
(G,H))b2

ƒ1{dI1
(G,H)ƒ(1{dI2

(G,H))a2
, ð25Þ

where a,bw0 are constants.

Theorem 5. Let I1 and I2 be two topological indices. Let G be a class

of graphs and G,H[G. If

Interrelations of Graph Distance Measures
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jI1(G){I1(H)j§jI2(G){I2(H)jza, ð26Þ

then we get

1{dI1
(G,H)ƒe

{a2

s2 e

{2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln 1{dI2

(G,H)

� �r
s (1{dI2

(G,H)), ð27Þ

where aw0 is a constant.

Proof. Since

jI1(G){I1(H)j§jI2(G){I2(H)jza, ð28Þ

we infer

(I1(G){I1(H))2
§(I2(G){I2(H))2z2ajI2(G){I2(H)jza2: ð29Þ

And therefore,

1{e
{

(I1(G){I1(H))2

s2
§1{e

{
(I2(G){I2(H))2z2ajI2(G){I2(H)jza2

s2 ð30Þ

~1{e
{a2

s2 e
{

2ajI2(G){I2(H)j
s2 e

{
(I2(G){I2(H))2

s2 ð31Þ

~1{e
{a2

s2 e
{

2ajI2(G){I2(H)j
s2 1{(1{e

{
(I2(G){I2(H))2

s2 )

 !
: ð32Þ

Hence,

1{dI1
(G,H)ƒe

{a2

s2e
{2ajI2(G){I2(H)j

s2 (1{dI2
(G,H)): ð33Þ

From the definition of dI2
, i.e.,

dI2
(G,H)~1{e

{
I2(G){I2(H)

s

� �2

, ð34Þ

we obtain that

jI2(G){I2(H)j~s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln (1{dI2

(G,H))
q

: ð35Þ

Finally, by substituting (35) into (33), we get the desired result.

%

Suppose I3 is also a topological index. Then if

jI1(G){I1(H)jƒjI3(G){I3(H)jzb, ð36Þ

we have

1{dI1
(G,H)§e

{
b2

s2 e

{2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln 1{dI3

(G,H)

� �r
s (1{dI3

(G,H)), ð37Þ

where bw0 is a constant. Therefore, we obtain the following

theorem.

Theorem 6. Let I1 I2 and I3 be three topological indices. Let G be a

class of graphs and G,H[G. If

jI3(G){I3(H)jzb§jI1(G){I1(H)j§jI2(G){I2(H)jza, ð38Þ

then we have

1{dI1
(G,H)§e

{
b2

s2 e

{2b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln 1{dI3

(G,H)

� �r
s (1{dI3

(G,H)) ð39Þ

and

1{dI1
(G,H)ƒe

{a2

s2 e

{2a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln 1{dI2

(G,H)

� �r
s (1{dI2

(G,H)), ð40Þ

where a, bw0 are constants.

Theorem 7. Let I1, I2 and I3 be three topological indices. Let G be a

class of graphs and G,H[G. If

jI1(G){I1(H)j§jI2(G){I2(H)j:jI3(G){I3(H)j, ð41Þ

then we infer

ln (1{dI1
(G,H))ƒ{s2 ln (1{dI2

(G,H)): ln (1{dI3
(G,H)): ð42Þ

Proof. Since

jI1(G){I1(H)j§jI2(G){I2(H)j:jI3(G){I3(H)j, ð43Þ

we derive

(I1(G){I1(H))2
§jI2(G){I2(H)j2:jI3(G){I3(H)j2: ð44Þ

And therefore,

1{e
{

(I1(G){I1(H))2

s2
§1{e

{
(I2(G){I2(H))2:(I3(G){I3(H))2

s2

§1{ e
{

(I3(G){I3(H))2

s2

 !(I2(G){I2(H))2

,

ð45Þ

Interrelations of Graph Distance Measures
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i.e., dI1
(G,H)§1{(1{dI3

(G,H))(I2(G){I2(H))2

. Hence we obtain

1{dI1
(G,H)ƒ(1{dI3

(G,H))(I2(G){I2(H))2 , ð46Þ

which implies that

ln (1{dI1
(G,H))ƒ(I2(G){I2(H))2: ln (1{dI3

(G,H)): ð47Þ

By substituting (35) into (47), we easily obtain the assertion of

the theorem. %

By performing a similar proof as in Theorem 7, we obtain a

more general result.

Theorem 8. Let I , I1 I2,I3, . . . , Ik be topological indices. Let G be

a class of graphs and G,H[G. If

DI(G){I(H)D§ P
k

j~1
Ij(G){Ij(H)D, ð48Þ

we infer

ln (1{dI (G,H))ƒ({1)k{1s2k{2 P
k

j~1
ln (1{dIj

(G,H)): ð49Þ

Theorem 9. Let I1, I2 and I3 be three topological indices. Let G be a

class of graphs and G,H[G. If

jI1(G){I1(H)j~c1jI2(G){I2(H)jzc2jI3(G){I3(H)j, ð50Þ

where c1,c2w0, then we get

dI1
(G,H)~1{(1{dI2

(G,H))
c2
1

:(1{dI3
(G,H))

c2
2 :e

{2c1c2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln (1{dI2

(G,H)) ln (1{dI3
(G,H))

p
:

ð51Þ

Proof. Since

jI1(G){I1(H)j~c1jI2(G){I2(H)jzc2jI3(G){I3(H)j, ð52Þ

we derive

I1(G){I1(H)j j2~c2
1DI2(G){I2(H)D2zc2

2 I3(G){I3(H)j j2

z2c1c2jI2(G){I2(H)jjI3(G){I3(H)j: (53)

Therefore,

1{e
{

(I1(G){I1(H))2

s2 ~

1{e
{

c2
1
jI2(G){I2(H)j2zc2

2
jI3(G){I3(H)j2z2c1c2jI2(G){I2(H)jjI3(G){I3(H)j

s2

ð54Þ

~1{e
{

c2
1

(I2(G){I2(H))2

s2 e
c2
2

(I3(G){I3(H))2

s2

e
{

2c1c2 DI2(G){I2(H)DDI3(G){I3(H)D
s2 ,

ð55Þ

which implies

dI1
(G,H)~1{(1{dI2

(G,H))
c2
1 (1{dI3

(G,H))
c2
2

e
{

2c1c2 DI2(G){I2(H)DDI3(G){I3(H)D

s2 :

ð56Þ

By applying the substitutions

jI2(G){I2(H)j~s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln (1{dI2

(G,H))
q

ð57Þ

and

jI3(G){I3(H)j~s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln (1{dI3

(G,H))
q

ð58Þ

into (56), we obtain the final result. %

By performing a similar proof as in Theorem 9, we obtain a

more general result again.

Theorem 10. Let I , I1 I2,I3, . . . , Ik be topological indices. Let G
be a class of graphs and G,H[G. If

jI(G){I(H)j~
Xk

j~1

cj jIj(G){Ij(H)j, ð59Þ

where cj w0 for 1ƒjƒk, then we infer

dI (G,H)~1{ P
k

j~1
(1{dIj

(G,H))
c2
j

: P
a,b[½k�, a=b

e
{2cacb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln (1{dIa (G,H)) ln (1{dIb

(G,H))
p

:

ð60Þ

Graph Distance Measures Based on Randić Index
In this section, we consider the values of the graph distance

measure based on the Randić index and other topological indices

for some classes of graphs. Denote by W and R the Wiener index

and Randić index, respectively.

Theorem 11. Let G be a class of regular graphs with n vertices and I
is an arbitrary topological index. For two graphs G,H[G, we infer

dI (G,H)§dR(G,H)~0: ð61Þ

Proof. Let G and H be two regular graphs of order n. By the

definition of the Randić index, we obtain that R(G)~R(H)~
n

2
,

which implies that R(G){R(H)~0. Therefore, we infer

dR(G,H)~0. Since dI (G,H)§0 for any topological index, then

we obtain the desired inequality.

Interrelations of Graph Distance Measures
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By using the definition of the zeroth-order Randić index for two

graphs with the same degree sequences, we obtain that
0R(G)~0R(H). Therefore, we get the following theorem.

Theorem 12. Let G be a class of graphs with the same degree

sequences and I is an arbitrary topological index. Then for two graphs

G,H[G, we infer

dI (G,H)§d0R
(G,H)~0: ð62Þ

For a given graph G of order n, we get
ffiffiffiffiffiffiffiffiffiffi
n{1
p

ƒR(G)ƒ
n

2
(see

[39]). Thus,

jR(G){R(H)jƒ n

2
{

ffiffiffiffiffiffiffiffiffiffi
n{1
p

: ð63Þ

From (63), we infer an upper bound for dR(G,H).
Theorem 13. Let G and H be two connected graphs of order n. Then

we get

dR(G,H)ƒ1{e
{n2z4n{4{4n

ffiffiffiffiffiffiffi
n{1
p

4s2 : ð64Þ

The equality holds if and only if G and G 0 are Sn and a regular

graph, respectively.

A path P~x0x1x2 . . . xk is pendent if d(x0)§3, d(xk)~1 and

d(xi)~2 for all 1ƒiƒk. Especially, a vertex v is pendent if d(v)~1.

Suppose u and v are two pendent vertices, and u0 the unique

neighbor of u. We define an operation as follows: deleting the edge

uu0 and adding the edge uv. We call this operation ‘‘transfer u to

v’’.

Theorem 14. Let G~(V ,E) be a graph with n vertices. Denote by

P1 and P2 the two pendent paths attaching to the same vertex such that

jP1j§jP2j§1. Denote by H the graph obtained by transferring the pendent

vertex of P2 to the pendent vertex of P1. Then we have

dW (G,H)wdR(G,H): ð65Þ

Proof. Let G~(V ,E) be a graph with n vertices. Suppose

P1~uu1u2 . . . ua and P2~uv1v2 . . . vb with a§b§1. Since P1

and P2 are two pendent paths attaching to the same vertex, then

we get

n{a{b§2: ð66Þ

By using the definition of H , we infer H~G{vb{1vbzuavb.

By using the definition of dI , we only need to show

jW (G){W (H)jwjR(G){R(H)j: ð67Þ

Observe that V(G)~V (H)~V . We will discuss the difference

of the distances between two vertices in G and H . Let x and y be

two vertices of G. If x,y[V \fvbg, then we have dH (x,y)~dG(x,y).
Now we suppose x~vb. If y1V (P1)|V (P2), then

dH (x,y){dG(x,y)~(az1){b~a{bz1: ð68Þ

Observe that

dG(vb,u)z
Xb{1

i~1

dG(vi)z
Xa

j~1

dG(uj)~

dH (vb,u)z
Xb{1

i~1

dH (vi)z
Xa

j~1

dH (uj):

ð69Þ

Therefore, we have

W (H){W (G)~
X

y=[V (P1)|V(P2)

dH (x,y){dG(x,y)ð Þ~

(n{a{b{1)(a{bz1)w0,

ð70Þ

i.e,

jW (G){W (H)j~(n{a{b{1)(a{bz1): ð71Þ

For b§3, it is easy to verify R(G)~R(H). Therefore

jW (G){W (H)jwjR(G){R(H)j holds.

For b~2, from (66), we have 2ƒaƒn{4 and

jW (G){W (H)j~(n{a{3)(a{1). By performing some elemen-

tary calculations, we get

(n{a{3)(a{1)w
n

2
{

ffiffiffiffiffiffiffiffiffiffi
n{1
p

, ð72Þ

i.e.,

a2{(n{2)az
3n

2
{

ffiffiffiffiffiffiffiffiffiffi
n{1
p

{3v0 ð73Þ

for 2ƒaƒn{4 and each value of n. Therefore, from (63), we infer

jW (G){W (H)jwjR(G){R(H)j.
For b~1, from (66), we have 1ƒaƒn{3 and

jW (G){W (H)j~a(n{a{2). By performing some elementary

calculations, we obtain

a(n{a{2)w
n

2
{

ffiffiffiffiffiffiffiffiffiffi
n{1
p

, ð74Þ

i.e.,

a2{(n{2)az
n

2
{

ffiffiffiffiffiffiffiffiffiffi
n{1
p

v0 ð75Þ

for 1ƒaƒn{3 and each value of n. Therefore, from (63), we infer

jW (G){W (H)jwjR(G){R(H)j. The proof is complete. %

This theorem can be used to compare the values of the distance

measure by using trees. Let T n be the set of trees with n vertices

and
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T 0
n~fT0 : T0[T n and each pendent path of T 0 has length oneg:

ð76Þ

Observe that for every T[T n\T 0
n, there must be a tree T0[T 0

n

such that T can be obtained from T0 by repeatedly transferring

pendent vertices. Therefore, we obtain the following corollary.

Corollary 1. Let T[T n\T 0
n, there exists a tree T0[T 0

n such that

dW (T ,T0)wdR(T ,T0).

Actually, numerical experiments show that for any two trees

T ,T 0[T n, the inequality dW (T ,T 0)wdR(T ,T 0) holds. We state the

result as a conjecture.

Conjecture 1. Let T and T 0 be any two trees with n vertices. Then

dW (T ,T 0)§dR(T ,T 0) ð77Þ

holds.

As an example, we consider (all) 23 trees with 8 vertices and

calculate all possible values of dW (T ,T 0) (blue) and dR(T ,T 0) (red)

as shown in Figure 1. From Figure 1, we observe that

dW (T ,T 0)§dR(T ,T 0) holds for each pair of trees T and T 0.

Graph Distance Measures Based on Graph Entropy
In this section, we consider graph distance measures which are

based on graph entropy and other topological indices for some

classes of graphs.

In order to start, we reproduce the definition of Shannon’s

entropy [43]. Let p~(p1,p2, . . . ,pn) be a probability vector,

namely, 0ƒpiƒ1 and
Xn

i~1
pi~1. The Shannon’s entropy of p

has been defined by

I(p)~{
Xn

i~1

pi log pi: ð78Þ

We denote by dIp the graph distance measure based on I(p).

In the following, we infer an upper bound for dIp(G,H).

Theorem 15. Let G and H be two graphs with the same vertex set.

Denote by p~(p1,p2, . . . ,pn) and p0~(p01,p02, . . . ,p0n) be the probability

vectors of G and H, respectively. If piƒp0i for each i, then we infer

dIp(G,H)v1{e
{A2

s2 , ð79Þ

where A~
Xn

i~1

p0i log (1z
1

p0i
)z log (p0iz1)

� �
.

Proof. Since piƒp0i for each i, then we obtain pivp0iz1 and

log piv log (p0iz1). Then we have

pi log piv(p0iz1) log (p0iz1) ð80Þ

~p0i log (p0iz1)z log (p0iz1) ð81Þ

~p0i log p0i(1z
1

p0i
)

� �
z log (p0iz1) ð82Þ

~p0i log p0izp0i log (1z
1

p0i
)z log (p0iz1): ð83Þ

Therefore, we get the inequality,

I(p)~{
Xn

i~1

pi log piwI(p0){

Xn

i~1

p0i log (1z
1

p0i
)z log (p0iz1)

� �
~I(p0){A,

ð84Þ

i.e., I(p0){I(p)vA. Hence,

dIp(G,H)~1{e
{

(I(p){I(p0))2
s2

v1{e
{A2

s2 : ð85Þ

The desired inequality holds. %

In [25], Dehmer and Mowshowitz generalized the definition of

graph entropy by using information functionals. Let G~(V ,E) be

a connected graph. For a vertex vi[V , we define

p(vi) :~
f (vi)PjV j

j~1 f (vj)
, ð86Þ

Figure 1. All the values of dW (T,T 0) (blue) and dR(T,T 0) (red). The
Y-axis denotes the values of the distance measure and the X-axis
denotes the graph pairs.
doi:10.1371/journal.pone.0094985.g001
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where f represents an arbitrary information functional. By

substituting p(vi) to (78), we have

If (G)~ log
XjV j
i~1

f (vi)

 !
{
XjV j
i~1

f (vi)PjV j
j~1

f (vj)

log f (vi): ð87Þ

We denote by dIf the graph distance measure based on If .

Relations between dE(G,H) and dIg(G,H)
Denote by l1,l2, . . . ,ln the eigenvalues of a graph G. By setting

f (vi)~jlij in (87), we obtain a new expression of the graph

entropy namely

Ig(G)~ log
Xn

i~1

jlij
 !

{
1Pn

i~1 jlij
Xn

i~1

jlij log jlij: ð88Þ

Recall that the energy of G is defined as E(G)~
Xn

i~1
jlij.

Then we infer

Ig(G)~ log E(G)ð Þ{ 1

E(G)

Xn

i~1

jlij log jlij: ð89Þ

From the definition of Ig(G), it is interesting to investigate the

relation between the graph distance measures dE and dIg.

Theorem 16. Let G and H be two graphs of order n with

E(G)wE(H). Denote by l1,l2, . . . ,ln and l01,l02, . . . ,l0n the eigenvalues

of G and H , respectively. Let l0~ max1ƒiƒnfjl0ijg and

l~ min1ƒiƒnfjlijg. Then we get

ln (1{dIg(G,H))§

ln(1{dE(G,H))

(j ln 2)2
{

2( log
l0

l
)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ln(1{dE(G,H))

p
sj ln 2

{
( log

l0

l
)2

s2
,

ð90Þ

where j[(E(H),E(G)) is a constant.

Proof. Let G and H be two graphs of order n. Let E~E(G) and

E0~E(H) with EwE0. Then we get

Ig(G){Ig(H)~

log Eð Þ{1

E
Xn

i~1

jlij log jlij
 !

{ log E0ð Þ{ 1

E0
Xn

i~1

jl0ij log jl0ij
 !

ð91Þ

~ log Eð Þ{log E0ð Þð Þz 1

E0
Xn

i~1

jl0ij log jl0ij{
1

E
Xn

i~1

jlij log jlij
 !

ð92Þ

ƒ log Eð Þ{ log E0ð Þð Þz log l0

E0
Xn

i~1

jl0ij{
log l

E
Xn

i~1

jlij
 !

ð93Þ

~(E{E0): 1

j ln 2
z log

l0

l

� �
, ð94Þ

where j[(E0,E). Thus,

dIg(G,H)~1{e
{

(Ig(G){Ig(H))2

s2 ð95Þ

ƒ1{e
{ 1

s2
: (E{E0): 1

j ln 2
z log l0

l

� �� �2

ð96Þ

~1{e
{

(E{E0)2
s2

: 1

(j ln 2)2 :e
{E{E

0
s2

:2 log l0
l

� �
j ln 2 :e

{ 1
s2

log l0
l

� �� �2

ð97Þ

~1{ 1{dE(G,H)ð Þ
1

(j ln 2)2 :e
{

2 l0
l

� �
sj ln 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln (1{dE (G,H))
p

:e
{

l0
l

� �2

s2 , ð98Þ

i.e.,

1{dIg(G,H)§

1{dE(G,H)ð Þ
1

(j ln 2)2 :e
{

2 l0
l

� �
sj ln 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ ln (1{dE (G,H))
p

:e
{

l0
l

� �2

s2 :

ð99Þ

Taking logarithm for the two sides of the above inequality, we

have

Figure 2. Values of dE(T,T 0) (red) and dIg(T,T 0) (blue). The Y-axis
denotes the values of the distance measure and the X-axis denotes the
graph pairs.
doi:10.1371/journal.pone.0094985.g002

Interrelations of Graph Distance Measures

PLOS ONE | www.plosone.org 8 April 2014 | Volume 9 | Issue 4 | e94985



ln (1{dIg(G,H))§

ln(1{dE(G,H))

(j ln 2)2
{

2( log
l0

l
)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ln (1{dE(G,H))

p
sj ln 2

{
( log

l0

l
)2

s2
:

ð100Þ

The required inequality holds. %

Actually, numerical experiments show that for any two distinct

trees T ,T 0[T n, dE(T ,T 0)§dIg(T ,T 0) holds. See Figure 2 as an

example, in which we consider (all) 23 trees with 8 vertices and

calculate all possible values of dE(T ,T 0) (red) and dIg(T ,T 0) (blue).

We state this observation as a conjecture.

Conjecture 2. Let T and T 0 be any two distinct trees with n vertices.

Then

dE(T ,T 0)§dIg(T ,T 0) ð101Þ

holds.

Using a similar proof method of Theorem 16, we can obtain a

generalization for the distance measure based on If (see Eq. (87)).

Let f be an arbitrary information functional and

f (G)~
Xn

i~1
f (vi) be a topological index.

Theorem 17. Let G and H be two graphs of order n with

f (G)wf (H). Let l0~ max1ƒiƒnff (vi) : vi[Gg and

l~ min1ƒjƒnff (vj) : vj[Hg. Then we have

ln (1{dIf (G,H))§

ln(1{df (G,H))

(g ln 2)2
{

2(log
l0

l
)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ln (1{df (G,H))

p
sg ln 2

{
( log

l0

l
)2

s2
,

ð102Þ

where g[(f (H),f (G)) is a constant.

Dehmer and Mowshowitz [44] introduced a new class of

measures (called here generalized measures) that derive from

functions such as those defined by Rényi’s entropy and Daròczy’s

entropy. Let G be a graph of order n. Then

I1(G) : ~
Xn

i~1

f (vi)Pn
j~1 f (vj)

1{
f (vi)Pn

j~1 f (vj)

" #
: ð103Þ

If we let f (vi)~jlij, then we can obtain the new generalized

entropy based on eigenvalues. We denote the entropy by

Ig1(G) : ~
Xn

i~1

jlijPn
j~1 jlij

1{
jlijPn

j~1 jlij

" #
: ð104Þ

For a given graph G~(V ,E) with n vertices, denote by

l1,l2, . . . ,ln the eigenvalues of G. By substituting E~
Xn

i~1
jlij

into equality (104), we have

Ig1(G)~
Xn

i~1

jlijPn
j~1

jlij
1{

jlijPn
j~1

jlij

2
6664

3
7775 ð105Þ

~
Xn

i~1

jlij
E 1{

jlij
E

� �
~

1

E2

Xn

i~1

jlij(E{jlij) ð106Þ

~
1

E2
E2{

Xn

i~1

jlij2
 !

~1{
2m

E2
: ð107Þ

The last equality holds since
Xn

i~1
l2

i ~2m. By the following

theorem, we study the relation between dE and dIg1
.

Theorem 18. Let G be a class of graphs with n vertices and m edges.

For two graphs G,H[G, let E~E(G) and E0~E(H). Then we get

dE(G,H)wdIg1
(G,H) ð108Þ

and

dE(G,H)ƒdIg1
(G,H)z 1{

16m2

E3E 03

� �
(E{E 0)2

s2
ea, ð109Þ

where a[(1{
16m2

E3E 03
,1) is a constant.

Proof. Let G and H be two graphs with n vertices and m edges.

Without loss of generality, we suppose E§E0.
To show the first inequality, it suffices to prove

jE{E 0jwjIg1(G){Ig1(H)j: ð110Þ

Then from (107), we derive

Ig1(G){Ig1(H)~{
2m

E2
z

2m

E 02 ~
2m(E2{E 02)

E2E 02
: ð111Þ

If we want to prove

E{E0§ 2m(E2{E 02)

E2E 02
, ð112Þ

we only need to show

2m(EzE 0)ƒE2E 02: ð113Þ

From a well-known bound of energy E0§2
ffiffiffiffi
m
p

, we have

E02w2m and E2
w(EzE0). Therefore, dE(G,H)wdIg1

(G,H)

holds.

Now we show the second inequality. From (111), we have

jE{E0j{jIg1(G){Ig1(H)j~E{E0{ 2m(E2{E02)

E2E02
ð114Þ
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~(E{E 0) 1{
2m(EzE 0)
E2E 02

� �
ð115Þ

ƒ(E{E 0) 1{
2m:2

ffiffiffiffiffiffiffiffi
EE 0
p

E2E 02

 !
ð116Þ

~(E{E0) 1{
4m

E3=2E 03=2

� �
: ð117Þ

Therefore, we have

jIg1(G){Ig1(H)j§(E{E 0) 4m

(EE 0)3=2
:

From the definition of the distance measure, by some

elementary calculations, we finally infer

dE(G,H){dIg1
(G,H)~ 1{e

{
(E{E0)2

s2

 !
{ 1{e

{
(Ig1(G){Ig1(H))2

s2

 !
ð118Þ

~e
{

(Ig1(G){Ig1(H))2

s2 {e
{

(E{E0)2
s2 ð119Þ

ƒe
{

(E{E0)2
s2

: 16m2

(EE0)3{e
{

(E{E0)2
s2 ð120Þ

~ 1{
16m2

E3E 03

� �
(E{E 0)2

s2
ea, ð121Þ

where a[(1{
16m2

E3E03
,1) is a constant.

The proof is complete. %

Relations between dI (G,H) and dIf (G,H)
Let G~(V ,E) be a connected graph with n vertices, m edges

and degree sequence (d1,d2, . . . ,dn), where di~d(vi) for 1ƒiƒn.

By setting f (vi)~dk
i in (87), we can obtain the new entropy based

on degree powers, denoted by Ifk(G)

Ifk(G)~ log
Xn

i~1

dk
i

 !
{

1Pn
i~1 dk

i

Xn

i~1

dk
i log dk

i : ð122Þ

For k~{1=2, the expression
Xn

i~1
f (vi)~

Xn

i~1

1ffiffiffiffi
di

p is just

the zeroth-order Randić index 0R(G). Then by using Theorem 17,

we obtain the following result.

Theorem 19. Let G and H be two graphs of order n with
0R(G)w0R(H). Let

l0~ max
1ƒiƒn

f 1ffiffiffiffiffiffiffiffiffiffi
d(vi)

p : vi[Gg and l~ min
1ƒjƒn

f 1ffiffiffiffiffiffiffiffiffiffi
d(vj)

p : vj[Hg:
ð123Þ

Then we have

ln (1{dIf{1=2
(G,H))§

ln(1{d0R
(G,H))

(g ln 2)2
{

2(log
l0

l
)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{ln(1{d0R

(G,H))
q

sg ln 2
{

(log
l0

l
)2

s2
,

ð124Þ

where g[(f (H),f (G)) is a constant.

For k~1, we get

If1(G)~ log 2mð Þ{ 1

2m

Xn

i~1

di log di: ð125Þ

Furthermore, by the definition of Ifk(G), for two graphs with

the same degree sequences, we obtain that Ifk(G)~Ifk(H).
Therefore, we get the following result.

Theorem 20. Let G be a class of graphs with the same degree

sequences and I is an arbitrary topological index. Then for two graphs

G,H[G, we infer

dI (G,H)§d0R
(G,H)~dIfk

(G,H)~0: ð126Þ

By using the similar proof method applied in Theorem 14, we

obtain a weaker result.

Theorem 21. Let T~(V ,E) be a tree with n vertices. Denote by P1

and P2 two pendent paths attaching to the same vertex such that

jP1j§jP2j§1. Denote by T 0 the tree obtained by transferring the pendent

vertex of P2 to the pendent vertex of P1. Then we have

dW (T ,T 0)wdIf1
(T ,T 0) and dR(T ,T 0)wdIf1

(T ,T 0): ð127Þ

Proof. Let T~(V ,E) be a tree with n vertices. Suppose

P1~uu1u2 . . . ua and P2~uv1v2 . . . vb with a§b§1. Denote by

x the degree of u, i.e., x~d(u). Since P1 and P2 are two pendent

paths attaching to the same vertex, then we have n{a{b§2. By

using the definition of T 0, we have T 0~T{vb{1vbzuavb. By

using the definition of dI , we only need to show

jW (T){W (T 0)jwjIf1(T){If1(T 0)j and

jR(T){R(T 0)jwjIf1(T){If1(T 0)j:
ð128Þ

For a tree T with n vertices, we get If1(Sn)ƒIf1(T)ƒIf1(Pn).
By performing elementary calculations, we get

jIf1(T){If1(T 0)jƒIf1(Pn){If1(Sn)~
log (n{1)

2
{

n{3

n{2
: ð129Þ

Observe that V (T)~V (T 0)~V . We first discuss the difference

of the distances between two vertices in T and T 0. Let x and y be
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two vertices of T . If x,y[V \fvbg, then we have dT 0 (x,y)~dT (x,y).
Now we suppose x~vb. If y1V(P1)|V (P2), then

dT 0 (x,y){dT (x,y)~(az1){b~a{bz1: Observe that

dT (vb,u)z
Xb{1

i~1

dT (vi)z
Xa

j~1

dT (uj)~

dT 0 (vb,u)z
Xb{1

i~1

dT 0 (vi)z
Xa

j~1

dT 0 (uj):

ð130Þ

Therefore, we get jW (T){W (T 0)j~(n{a{b{1)(a{bz1):

For b§2, it is easy to verify that If1(T)~If1(T 0), i.e.,

jIf1(T){If1(T 0)j~0. Then,

jW (T){W (T 0)jwjIf1(T){If1(T 0)j and

jR(T){R(T 0)jwjIf1(T){If1(T 0)j:
ð131Þ

In the following, we suppose b~1.

We obtain 1ƒaƒn{3 and jW (T){W (T 0)j~a(n{a{2). By

performing elementary calculations, we get

a(n{a{2)w
log (n{1)

2
{

n{3

n{2
, ð132Þ

for 1ƒaƒn{3 and each value of n. Therefore,

jW (T){W (T 0)jwjIf1(T){If1(T 0)j:
To prove the other inequality, we need more detailed

discussion. By using the definition of graph entropy, we get

jIf1(T){If1(T 0)j~ 1

2(n{1)
x log x{(x{1) log (x{1){2½ �:

ð133Þ

Let S be the set of the neighbors of vertex u, which does not

contain u1 and v1. Denote by dj the degree of a vertex in S, where

j~1,2, . . . ,x{3. If a~1, then

jR(T){R(T 0)j~

1ffiffiffi
2
p z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x{1)

p {
2ffiffiffi
x
p z

1ffiffiffiffiffiffiffiffiffiffi
x{1
p {

1ffiffiffi
x
p

� �Xx{3

j~1

1ffiffiffiffi
dj

p :
ð134Þ

By performing some calculations, we can show that for x§3
and n§9,

1ffiffiffi
2
p z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x{1)

p {
2ffiffiffi
x
p w

1

2(n{1)
x log x{(x{1) log (x{1){2½ �,

ð135Þ

i.e., jR(T){R(T 0)jwjIf1(T){If1(T 0)j for n§9. For smaller n, we

verify this inequality directly. If a§2, then we have

jR(T){R(T 0)j~

1

2
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x{1)

p {
1ffiffiffi
x
p {

1ffiffiffiffiffiffi
2x
p z

1ffiffiffiffiffiffiffiffiffiffi
x{1
p {

1ffiffiffi
x
p

� �Xx{3

j~1

1ffiffiffiffi
dj

p :
ð136Þ

We can show that for x§4 and n§13,

1

2
z

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2(x{1)

p {
1ffiffiffi
x
p {

1ffiffiffiffiffiffi
2x
p w

1

2(n{1)
x log x{(x{1) log (x{1){2½ �,

ð137Þ

i.e., jR(T){R(T 0)jwjIf1(T){If1(T 0)j for n§13. For smaller n,

we verify this inequality directly. Now suppose x~3, then there is

only one vertex in S whose degree is at most n{4. Therefore by

using (133) and (136), we get

jIf1(T){If1(T 0)j~ 1

2(n{1)
(3 log 3{4) ð138Þ

and

jR(T){R(T 0)jw1{
1ffiffiffi
3
p {

1ffiffiffi
6
p z

1ffiffiffi
2
p {

1ffiffiffi
3
p

� �
1ffiffiffiffiffiffiffiffiffiffi

n{4
p : ð139Þ

Figure 3. Values of dIf1
(T,T 0) (blue) and dR(T,T 0) (red). The Y-axis

denotes the values of the distance measure and the X-axis denotes the
graph pairs.
doi:10.1371/journal.pone.0094985.g003
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We can verify

1{
1ffiffiffi
3
p {

1ffiffiffi
6
p z

1ffiffiffi
2
p {

1ffiffiffi
3
p

� �
1ffiffiffiffiffiffiffiffiffiffi

n{4
p w

1

2(n{1)
(3 log 3{4) ð140Þ

for each n, i.e., jR(T){R(T 0)jwjIf1(T){If1(T 0)j. %
From Theorem 14 and 21, we obtain the following corollary.

Corollary 2. Let T~(V ,E) be a tree with n vertices. Denote by P1

and P2 the two pendent paths attaching to the same vertex such that

jP1j§jP2j§1. Denote by T 0 the tree obtained by transferring the pendent

vertex of P2 to the pendent vertex of P1. Then we have

dW (T ,T 0)wdR(T ,T 0)wdIf1
(T ,T 0): ð141Þ

Therefore, we obtain a similar result to comparing the values of

distance measures of trees.

Corollary 3. Let T[T n\T 0
n, there exists a tree T0[T 0

n such that

dW (T ,T0)wdR(T ,T 0)wdIf1
(T ,T0).

Actually, our numerical results (see section ‘Numerical Results’)

show that for any two trees T ,T 0[T n, the following inequality may

hold.

Conjecture 3. Let T and T 0 be any two trees with n vertices. Then

dW (T ,T 0)§dR(T ,T 0)§dIf1
(T ,T 0) ð142Þ

holds.

By way of example, we consider all 23 trees of 8 vertices and

calculate all possible values of dIf1
(T ,T 0) (blue) and dR(T ,T 0) (red),

respectively, as shown in Figure 3. From Figure 3, we observe that

dIf1
(T ,T 0)ƒdR(T ,T 0) ð143Þ

holds for each pair of trees T and T 0.

Numerical Results

In this section, we interpret the numerical results. First, we

consider all trees with 8 vertices. The number of trees is 23 and the

number of pairs is 253 (see [45]). From the curves shown by

Figure 1, we see that both measures dW (T ,T 0) (blue) and dR(T ,T 0)
(red) satisfy the inequality Eq. (77). From the curves shown by

Figure 2, we observe that both measures dE(T ,T 0) (red) and

dIg(T ,T 0) (blue) satisfy the inequality Eq. (101). From the curves

shown by Figure 3, we also learn that both measures dIf1
(T ,T 0)

(blue) and dR(T ,T 0) (red) fulfill the inequality Eq. (143). By using

this method, several other inequalities could be generated and

verified graphically.

Figures 4 and 5 show the numerical results by using the graph

distance measures based on graph energy E, the Wiener index W
and the Randić index R, respectively. We consider all trees with

11 vertices. The number of trees is 235 and the number of pairs is

27495 (see [45]). By Figure 4, we depict the distributions of the

ranked distance values, that is, dE (red), dW (blue), and dR (yellow).

First and foremost, we see that the measured values of all three

measures cover the entire interval ½0,1�. This indicates that the

measures are generally useful as they are well defined. By

considering dW , we observe that only a relatively little number

of pairs have a measured value ƒ 0.8. But a large number of pairs

possess distance values § 0.8. When considering dR, the situation

is reverse. The distance values of dE seem to slightly increase with

some up- and downturns. However, Figure 4 does not comment

on the ability of the graph distance measures to classify graphs

Figure 4. Distributions of the ranked values of the distance
measure dE (red), dW (blue), dR (yellow). The X-axis denotes the
values of the distance measure. The Y-axis denotes the number of
graph pairs.
doi:10.1371/journal.pone.0094985.g004

Figure 5. The X-axis denotes the values of the distance
measures dE (red), dW (blue), dR (yellow). The Y-axis represents
the percentage rate of all graphs studied.
doi:10.1371/journal.pone.0094985.g005
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efficiently. This needs to be examined in the future and would far

beyond the scope of this paper.

Furthermore, we have computed the cumulative distributions

by using the measures dE (red), dW (blue), dR (yellow), respectively,

as shown in Figure 5. In general, the computation of the

cumulative distribution may serve as a preprocessing step when

analyzing graphs structurally. In fact, we see how many percent of

the 235 graphs have a distance value which is less or equal d. Also,

Figure 5 shows that the value distributions are quite different.

From Figure 5, we see that the curve for dW strongly differs from

dE and dR. When considering dR, we also observe that about 80%

of the 235 trees have a distance value approximately ƒ 0.5. That

means most of the trees are quite dissimilar according to dR. For

dW , the situation is absolutely reverse. Here 80% of the trees have

a distance value approximately ƒ 0.98. Finally evaluating the

graph distance measure dE on these trees reveals that about 80%

of the trees possess a distance value approximately ƒ 0.85. In

summary, we conclude from Figure 5 that all three measures

capture the distance between the graphs quite differently. But

nevertheless, this does not imply that the quality of one measure

may be worse than another. Again, an important issue of quality is

fulfilled as the measures turned out to be well defined, see Figure 4.

Another crucial issue would be evaluating the classification ability

which is future work.

Summary and Conclusion

In this paper, we have studied interrelations of graph distance

measures which are based on distinct topological indices. In order

to do so, we employed the Wiener index, the Randić index, the

zeroth-order Randić index, the graph energy, and certain graph

entropies [25]. In particular, we have obtained inequalities

involving the novel graph distance measures. Evidenced by a

numerical analysis we also found three conjectures dealing with

relations between the distance measures on trees.

From Theorem 1, we see that the star graph and the path graph

maximize dI among all trees with a given number of vertices, for

any topological index we considered here. Actually, this also holds

for some other topological indices, such as the Hosoya index

[46,47], the Merrifield-Simmons index [48,49,47], the Estrada

index [50,51,52], and the Szeged index [53,54]. All other

theorems we have proved in this paper shed light on the problem

of proving interrelations of the measures. We believe that such

statements help to understand the measures more thoroughly and,

finally, they are useful to establish new applications employing

quantitative graph theory [55]. We emphasize that the star graph

and the path graph are apparently the two most dissimilar trees

among all trees. Similar observations can also be obtained for

unicyclic graphs or bicyclic graphs. Therefore, in the future, we

would like to explore which classes of graphs have this property,

i.e., identifying graphs (such as the path graph and the star graph)

which maximize or minimize dI .

Another direction for future work is to compare the values of

dI (G,G0) where G,G0 are general graphs. For example, we could

assume that G and G0 are obtained by only one graph edit

operation, i.e., GED(G,G0) = 1, see [15]. Then, all the graph which

fulfill this equation are (by definition) similar. This construction

could help to study the sensitivity of the measures thoroughly.

Note that similar properties of topological indices have already

been investigated, see [56]. As a conclusive remark, we mention

that dynamics models on spatial graphs have been studied by Perc

and Wang and other researchers, see [57,58]. It would be

interesting to study the distance measures in this mathematical

framework as well.
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Časopis propest Mathematiky 100: 371–373.

4. Emmert-Streib F (2007) The chronic fatigue syndrome: A comparative pathway
analysis. J Comput Biology 14: 961–972.

5. Junker B, Schreiber F (2008) Analysis of Biological Networks. Wiley-
Interscience. Berlin.

6. Kier L, Hall L (2002) The meaning of molecular connectivity: A bimolecular

accessibility model. Croat Chem Acta 75: 371–382.
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