ON 2-ARC-TRANSITIVE GRAPHS OF PRODUCT ACTION TYPE

ZAI PING LU

ABSTRACT. In this paper, we discuss the structural information about 2-arc-transitive (non-bipartite and bipartite) graphs of product action type. It is proved that a 2-arc-transitive graph of product action type requires certain restrictions on either the vertex-stabilizers or the valency. Based on the existence of some equidistant linear codes, a construction is given for 2-arc-transitive graphs of non-diagonal product action type, which produces several families of such graphs. Besides, a nontrivial construction is given for 2-arc-transitive bipartite graphs of diagonal product action type.

KEYWORDS. 2-arc-transitive graph, locally primitive graph, quasiprimitive group, product action, equidistant linear code.

1. Introduction

All graphs considered in this paper are assumed to be finite, simple and undirected.

Let $\Gamma = (V, E)$ be a connected graph with vertex set V and edge set E. An arc in Γ is an ordered pair of adjacent vertices, and a 2-arc is a triple (α, β, γ) of distinct vertices with $\{\alpha, \beta\}, \{\beta, \gamma\} \in E$. Denote by $\operatorname{Aut}(\Gamma)$ the automorphism group of Γ . For a subgroup $G \leq \operatorname{Aut}(\Gamma)$, the graph Γ is said to be (G, 2)-arc-transitive (or (G, 2)-arc-regular) if G acts transitively (or regularly) on the set of 2-arcs of Γ , while the group G is called a 2-arc-transitive (or 2-arc-regular) group of Γ . For a vertex $\alpha \in V$, let $G_{\alpha} = \{g \in G \mid \alpha^g = \alpha\}$ and $\Gamma(\alpha) = \{\beta \in V \mid \{\alpha, \beta\} \in E\}$, called the stabilizer and the neighborhood of α in G and Γ , respectively. It is elementary to show that G is 2-arc-transitive if and only if G acts transitively on V and, for $\alpha \in V$, the stabilizer G_{α} acts 2-transitively on $\Gamma(\alpha)$.

Assume that G is 2-arc-transitive on some connected graph $\Gamma = (V, E)$, and $\{\alpha, \beta\} \in E$. Put $G^* = \langle G_{\alpha}, G_{\beta} \rangle$, the subgroup of G generated by $G_{\alpha} \cup G_{\beta}$. Then $|G:G^*| \leq 2$ with the equality holds if and only if Γ is bipartite and G^* is the bipartition preserving subgroup of G, refer to [23]. Assume further that Γ is not a complete bipartite graph, and every minimal normal subgroup of G contained in G^* acts transitively on each of the G^* -orbits on V. In 1993, Praeger [19, 20] proved that, except for one case when Γ is a bipartite graph, G^* is a quasiprimitive permutation group of type HA, TW, AS or PA on each of its orbits, refer to [19, Theorem 2], [20, Theorems 2.1 and 2.3] and [21, Theorem 6.1]. (Recall that a permutation group G is quasiprimitive if every minimal normal subgroup of G is transitive.) Roughly stated, either (G, Γ) is described as in [20, Theorem 2.1 (c)], or G^* has a unique minimal normal subgroup say M, and one of the following four cases occurs for M (and G^*):

²⁰¹⁰ Mathematics Subject Classification. 05C25, 05E18, 20B25, 94B05.

Supported by the National Natural Science Foundation of China (12471328, 12331013) and the Fundamental Research Funds for the Central Universities.

- HA (Holomorph Affine): M is abelian;
- TW (Twisted Wreath product): M is nonabelian and regular on each of G^* -orbits;
- AS (Almost Simple group): M is a nonabelian simple group;
- PA (Product Action): $M = T_1 \times \cdots \times T_n$ for some integer $n \ge 2$ and isomorphic nonabelian simple groups T_i , and for $\alpha \in V$ there are isomorphic subgroups $1 \ne R_i < T_i$ such that M_{α} is a subdirect product of $R_1 \times \cdots \times R_n$, that is, M_{α} projects surjectively onto every R_i .

For convenience, we say a connected (G, 2)-arc-transitive graph Γ is of HA, TW, AS or PA type if the case HA, TW, AS or PA holds for M (and G^*), respectively. In addition, according to [16], the type PA is said to be diagonal if each of the projections $M_{\alpha} \to R_i$ is injective, and non-diagonal otherwise.

After Praeger's work, the existence of 2-arc-transitive non-bipartite graphs with HA, TW or AS type was confirmed in just a few years. For example, the classification for those graphs with HA type was given in [14], constructions and examples of graphs with TW type were given in [2] and [19, Section 6], and some classification results of graphs with AS type were given in [7, 8, 11]. The existence problem of graphs with PA type was not answered until 2006 when Li and Seress [16] constructed five families of 2-arc-transitive non-bipartite graphs, four of them consist of graphs with diagonal PA type, and the other one consists of graphs of valency 9 with non-diagonal PA type.

In this paper, we first discuss some further structural information about 2-arc-transitive (non-bipartite and bipartite) graphs with PA type. The following result is proved in Section 4, which is helpful for us to understand the behavior of M_{α} in the product action of a 2-arc-transitive group on some connected graph.

Theorem 1.1. Let $\Gamma = (V, E)$ be a connected (G, 2)-arc-transitive graph with PA type, and let $M = T_1 \times \cdots \times T_n$, G^* and R_1 be defined as above. Then, for $\alpha \in V$, one of the following holds.

- (1) Γ is of diagonal PA type.
- (2) $M_{\alpha} \cong (\mathbb{Z}_p^k \times \mathbb{Z}_{m_1}).\mathbb{Z}_m$, $|\Gamma(\alpha)| = p^k$, and $|R_1|$ is indivisible by p^k , where p is a prime, $m_1 \mid m$, $m \mid (p^d 1)$ for some divisor d of k with d < k; in addition,
 - (i) n is divisible by some prime r, where either r is an arbitrary primitive prime divisor of $p^k 1$, or (p, k) = (2, 6) and $r \in \{3, 7\}$; or
 - (ii) (p, k) = (2, 6), and M acts regularly on either the edge set or the arc set of Γ ; or
 - (iii) k = 2, and p is a Mersenne prime.

Li and Seress [16] proved that, employing an equidistant linear $[4,2]_3$ code (see Section 5 for the definition), one can construct 2-arc-transitive graphs of valency 9 with non-diagonal PA type from connected cubic graphs which admit a simple 2-arc-regular group. This motivates us to develop a broader construction for graphs with non-diagonal PA type. In Section 5, we confirm that, for some suitable prime power q, there exist equidistant linear $[q+1,2]_q$ codes which admit a cyclic group of order q^2-1 acting regularly on the set of nonzero codewords. This allows us to construct some qusiprimitive permutation groups of PA type with a point stabilizer isomorphic

to the affine group $AGL_1(q^2)$, and then give a construction for 2-arc-transitive graphs with non-diagonal PA type. Thus, in Section 6, we construct some 2-arc-transitive graphs of valency q^2 with non-diagonal PA type, which meet Theorem 1.1 (2)(i) or (iii). Then, combining [16, Lemma 5.2 and Example 5.3], we have the following result.

Theorem 1.2. Let $q \ge 3$ be a prime power. Assume that q+1 has at most two distinct prime divisors, and either q is even or $q \equiv -1 \pmod{4}$. Then there are connected 2-arc-transitive graphs of valency q^2 with non-diagonal PA type.

We also construct in Section 6 some graphs of valency 2^6 and order $2^{57} \cdot 3^{42} \cdot 7^{21}$, which give examples for Theorem 1.1 (2)(ii), see Example 6.6.

For a graph $\Sigma = (V_0, E_0)$, the standard double cover $\Sigma^{(2)}$ is defined as the bipartite graph with vertex set $V_0 \times \mathbb{Z}_2$ such that $(\alpha_0, 0)$ and $(\beta_0, 1)$ are adjacent if and only if $\{\alpha_0, \beta_0\} \in E_0$. It is well-known that $\Sigma^{(2)}$ is connected if and only if Σ is connected and non-bipartite. Define a map

$$\iota: V_0 \times \mathbb{Z}_2 \to V_0 \times \mathbb{Z}_2, \ (\alpha_0, i) \mapsto (\alpha_0, i+1).$$

Then $\iota \in \operatorname{Aut}(\Sigma^{(2)})$. We view $\operatorname{Aut}(\Sigma)$ as a subgroup of $\operatorname{Aut}(\Sigma^{(2)})$ in the following way

$$(\alpha_0, i)^g = (\alpha_0^g, i), \ \alpha_0 \in V_0, \ i \in \mathbb{Z}_2, \ g \in \operatorname{Aut}(\Sigma).$$

Then $\operatorname{Aut}(\Sigma^{(2)})$ has a subgroup $\operatorname{Aut}(\Sigma) \times \langle \iota \rangle$. Thus, if Σ is $(G_0, 2)$ -arc-transitive (and of some type) then $\Sigma^{(2)}$ is a $(G_0 \times \langle \iota \rangle, 2)$ -arc-transitive bipartite graph (of the same type).

Employing the standard double covers of graphs, one can easily get some firsthand examples of bipartite 2-arc-transitive graphs with HA, TW, AS or PA type, which admit groups G of the form of $G^* \times \mathbb{Z}_2$, where G^* is the subgroup of G generated by the stabilizer of two adjecent vertices. In Section 7, we give a construction for 2-arc-transitive bipartite graphs of diagonal PA type, which admit certain groups G and are not standard double covers of $(G^*, 2)$ -arc-transitive graphs.

2. On locally transitive graphs

In this section and the next section, we make some preparation for the proof of Theorem 1.1.

Let $\Gamma = (V, E)$ be a graph, and $G \leq \operatorname{Aut}(\Gamma)$. The graph Γ is said to be G-locally transitive or G-locally primitive if for every $\alpha \in V$, the stabilizer G_{α} acts transitively or primitively on $\Gamma(\alpha)$, respectively.

Let $\Gamma = (V, E)$ be a connected graph, $\{\alpha, \beta\} \in E$, $G \leq \operatorname{Aut}(\Gamma)$ and $G^* = \langle G_{\alpha}, G_{\beta} \rangle$. Assume that G_{α} and G_{β} act transitively on $\Gamma(\alpha)$ and $\Gamma(\beta)$, respectively. Then G^* acts transitively on the vertex set V if Γ is not bipartite, refer to [23, Exercise 3.8]. If Γ is not bipartite then $|G^*:G_{\alpha}|=|V|=|G:G_{\alpha}|$, yielding $G=G^*$. Suppose that Γ is bipartite with two parts, say U and W. Then G^* fixes and acts transitively on both U and W. Without loss of generality, let $\alpha \in U$ and $|U| \geqslant |W|$. We have

$$2|G^*: G_{\alpha}| = 2|U| \ge |V| \ge |G: G_{\alpha}|.$$

It follows that either $G = G^*$, or $|G : G^*| = 2$ and G is transitive on V. In particular, G^* is the bipartition preserving subgroup of G, and thus $G_{\gamma} \leq G^*$ for every $\gamma \in V$. Now let $\gamma \in V$. Recalling that either G^* is transitive or G^* has two orbits on V, we set $\gamma = \delta^x$ for some $x \in G^*$, where $\delta \in \{\alpha, \beta\}$. Then $\Gamma(\gamma) = \Gamma(\delta)^x$ and $G_{\gamma} = G_{\delta}^x$. This implies that G_{γ} acts transitively on $\Gamma(\gamma)$, and the action is primitive if and only if G_{δ} acts primitively on $\Gamma(\delta)$. In summary, we have the following lemma.

Lemma 2.1. Let $\Gamma = (V, E)$ be a connected graph, $\{\alpha, \beta\} \in E$, $G \leq \operatorname{Aut}(\Gamma)$ and $G^* = \langle G_{\alpha}, G_{\beta} \rangle$. Assume that G_{α} and G_{β} act transitively on $\Gamma(\alpha)$ and $\Gamma(\beta)$, respectively. Then Γ is G^* -locally transitive, and Γ is G^* -locally primitive if and only if G_{α} and G_{β} act primitively on $\Gamma(\alpha)$ and $\Gamma(\beta)$, respectively. Moreover, either

- (1) Γ is not bipartite, and $G = G^*$ is transitive on V; or
- (2) Γ is a bipartite graph with two parts the G^* -orbits on V, and $|G:G^*| \leq 2$, where the equality holds if and only if G is transitive on V.

For locally primitive graphs, the next result holds by [15, Lemmas 2.5 and 2.6], see also [10, Lemma 5.1].

Lemma 2.2. Assume $\Gamma = (V, E)$ is a connected G-locally primitive graph, and N is a normal subgroup of G.

- (1) If G is transitive on V and $N_{\alpha} \neq 1$ for some $\alpha \in V$ then Γ is N-locally transitive.
- (2) If N is intransitive on each of the G^* -orbits on V, then either
 - (i) N is semiregular on V, that is, $N_{\alpha} = 1$ for all $\alpha \in V$, and N itself is the kernel of G^* acting on the N-orbits; or
 - (ii) G is transitive on V, N has two orbits on V, and either N is semiregular on V or Γ is N-locally transitive.

The next lemma says that some conclusions in Lemma 2.2 are also true for a bipartite graph Γ under some weaker conditions. For $U_1, W_1 \subseteq V$, denote by $[U_1, W_1]$ the subgraph of Γ induced by $U_1 \cup W_1$.

Lemma 2.3. Let $\Gamma = (V, E)$ be a connected G-locally transitive bipartite graph, $\{\alpha, \beta\} \in E$ and $G^* = \langle G_{\alpha}, G_{\beta} \rangle$. Assume that G_{α} acts primitively on $\Gamma(\alpha)$, and that G^* has a normal subgroup N which is intransitive on each of the G^* -orbits. Then N is semiregular on V, and N itself is the kernel of G^* acting on the N-orbits.

Proof. Let U and W be the G^* -orbits containing α and β , respectively. For an arbitrary $\gamma \in U$, we have $\gamma = \alpha^x$ for some $x \in G^*$, and thus $\Gamma(\gamma) = \Gamma(\alpha)^x$ and $G_{\gamma} = G_{\alpha}^x$, it follows that G_{γ} acts primitively on $\Gamma(\gamma)$.

Let \mathcal{U} and \mathcal{W} be the sets of N-orbits on U and W, respectively. Pick $U_1 \in \mathcal{U}$ and $\gamma \in U_1$. Then $\{\Gamma(\gamma) \cap W_1 \mid W_1 \in \mathcal{W}, \Gamma(\gamma) \cap W_1 \neq \emptyset\}$ is a G_{γ} -invariant partition of $\Gamma(\gamma)$. Since G_{γ} acts primitively on $\Gamma(\gamma)$, either $\Gamma(\gamma) \subseteq W_1$ for some $W_1 \in \mathcal{W}$, or $[U_1, W_1]$ is a matching without isolated vertex for every $W_1 \in \mathcal{W}$ with $\Gamma(\gamma) \cap W_1 \neq \emptyset$.

Suppose first that $\Gamma(\gamma) \subseteq W_1$ for some $W_1 \in \mathcal{W}$. Then every vertex in U_1 has no neighbor in $W \setminus W_1$ and, since W_1 is an N-orbit, every vertex in W_1 has neighbors in U_1 . Let $\delta \in W_1$, and pick two neighbors γ_1 and γ_2 of δ with $\gamma_1 \in U_1$. Let U_2 be the N-orbit containing γ_2 . Then $U_1^y = U_2$, where $y \in G_\delta$ with $\gamma_1^y = \gamma_2$. Noting that

 $W_1^y = W_1$, it follows that $[U_1, W_1]$ and $[U_2, W_1]$ are isomorphic. Thus every vertex in U_2 has no neighbor in $W \setminus W_1$. Let U_0 be the set of vertices which have neighbors in W_1 . By the above argument, every vertex in U_0 has no neighbor in $W \setminus W_1$ and, by the choice of U_0 , every vertex in W_1 has no neighbor in $U \setminus U_0$. It follows that $\Gamma = [U_0, W_1]$, and then $W_1 = W$, which contradicts that N is intransitive on W.

Now, for arbitrary $U_1 \in \mathcal{U}$ and $W_1 \in \mathcal{W}$, the subgraph $[U_1, W_1]$ is either a empty graph or a matching without isolated vertex. Let K be the kernel of G^* acting on $\mathcal{U} \cup \mathcal{W}$. We have $N \leq K$. In the following, we will show that $K_{\gamma} = 1$ for all $\gamma \in V$, and then the lemma follows.

Let $\gamma, \delta \in V$. Since Γ is connected, pick a path $\gamma = \alpha_0, \alpha_1, \ldots, \alpha_n = \delta$ from γ to δ . For $0 \leq i \leq n$, let V_i be the N-orbit containing α_i . Suppose that K_{γ} fixes α_{i-1} . Noting that K_{γ} fixes both V_{i-1} and V_i set-wise, since α_{i-1} has a unique neighbor in V_i , it follows that $K_{\gamma} \leq K_{\alpha_i}$. By induction, we have $K_{\gamma} \leq K_{\delta}$. Thus K_{γ} fixes V point-wise, and hence $K_{\gamma} = 1$. This completes the proof.

Lemma 2.4. Let $\Gamma = (V, E)$ be a connected G-locally transitive graph, $\{\alpha, \beta\} \in E$ and $N \subseteq G$. Suppose that $(|N_{\alpha}|, |\Gamma(\alpha)|) = 1 = (|N_{\beta}|, |\Gamma(\beta)|)$. Then N is semiregular on V.

Proof. Let γ be an arbitrary vertex of Γ . By the assumption, since G acts transitively on E, we have $(|N_{\gamma}|, |\Gamma(\gamma)|) = 1$. Note that $N_{\gamma} \leq G_{\gamma}$ and G_{γ} acts transitively on $\Gamma(\gamma)$. Then all N_{γ} -orbits on $\Gamma(\gamma)$ have the same length, which is a common divisor of $|\Gamma(\gamma)|$ and $|N_{\gamma}|$. It follows that N_{γ} fixes $\Gamma(\gamma)$ point-wise. In particular, $N_{\gamma} \leq N_{\delta}$ for $\delta \in \Gamma(\gamma)$. Again since $(|N_{\delta}|, |\Gamma(\delta)|) = 1$, a similar argument implies that N_{δ} fixes $\Gamma(\delta)$ point-wise, and so N_{γ} fixes $\Gamma(\delta)$ point-wise. Thus, since Γ is connected, we conclude that N_{γ} fixes V point-wise, and so $N_{\gamma} = 1$. Then N is semiregular on V.

3. Two elementary results on primitive affine groups

For a group X and subgroups $Y, Z \leq X$, we put $\mathbf{C}_Y(Z) = \{y \in Y \mid yz = zy \text{ for all } z \in Z\}$, which is called the centralizer of Z in Y.

Recall that, for positive integers p, k > 1, a primitive prime divisor of $p^k - 1$ is a prime which divides $p^k - 1$ but does not divide $p^i - 1$ for all $1 \le i < k$. If r is a primitive prime divisor of $p^k - 1$, then k is the smallest positive integer with $p^k \equiv 1 \pmod{r}$, and thus k is a divisor of r - 1; if further $r \mid (q^l - 1)$ with $l \ge 1$ then $k \mid l$. These facts yield a criterion for affine primitive permutation groups.

Lemma 3.1. Let H be a permutation group on a set Ω , and $\alpha \in \Omega$. Suppose that H has a regular normal subgroup $P \cong \mathbb{Z}_p^k$, where $k \geqslant 2$ and p is a prime. Suppose that $p^k - 1$ has a primitive prime divisor r, and $|H_{\alpha}|$ is divisible by r. Then H is primitive on Ω .

Proof. Let Q be a Sylow r-subgroup of H_{α} . Then $Q \neq 1$ as r is a divisor of $|H_{\alpha}|$. Set K = PQ. Then $K_{\alpha} = Q$. We next show that K is primitive on Ω , and then H is primitive. It suffices to prove that Q is a maximal subgroup of K.

By Maschke's Theorem (refer to [13, p.123, I.17.7]), since (p, |Q|) = 1, we have $P = P_1 \times \cdots \times P_l$, where P_i are minimal Q-invariant subgroups of P. Considering

the conjugation of Q on P_i , the group Q induces a subgroup of the automorphism group $\operatorname{Aut}(P_i)$ of P_i with kernel $\mathbf{C}_Q(P_i)$. Then $\operatorname{Aut}(P_i)$ is isomorphic to the general linear group $\operatorname{GL}_{k_i}(p)$, and so

$$Q/\mathbf{C}_Q(P_i) \lesssim \operatorname{Aut}(P_i) \cong \operatorname{GL}_{k_i}(p), \ 1 \leqslant i \leqslant l.$$

Suppose that l > 1. Then $k_i < k$ for every i, and so $|\operatorname{GL}_{k_i}(p)|$ is indivisible by r. It follows that $Q = \mathbf{C}_Q(P_i)$ for all i, and thus Q centralizes P. Then $Q \leq K$, which is impossible as $1 \neq Q = K_{\alpha}$. Therefore, l = 1, which yields that P is a minimal normal subgroup of K.

Let L be a maximal subgroup of K with $Q \leq L$. Then $K > L = PQ \cap L = (P \cap L)Q$, and so $P \cap L \neq P$. Since P is abelian and $P \subseteq K$, we have $P \cap L \subseteq P$ and $P \cap L \subseteq L$, and thus $P \cap L \subseteq \langle P, L \rangle = K$. Then $P \cap L = 1$ as P is a minimal normal subgroup of K. Thus $L = (P \cap L)Q = Q$. This says that Q is a maximal subgroup of K, and then K is primitive on Ω . Noting that $K \leq H$, the lemma follows. \square

A transitive permutation group H on a set Ω is called a Frobenius group if $H_{\alpha} \neq 1$ for $\alpha \in \Omega$, and $H_{\alpha\beta} = 1$ for all $\beta \in \Omega \setminus \{\alpha\}$. The following lemma gives a characterization of imprimitive Frobenius groups with abelian socle, see [18, Lemma 2.2] for example. Recall that, for a finite group X, the socle $\operatorname{soc}(X)$ of X is generated by all minimal normal subgroups of X.

Lemma 3.2. Let K be an imprimitive Frobenius group on Ω with $soc(K) = P \cong \mathbb{Z}_p^k$, where p is a prime and $k \geq 2$. Then K_{α} is isomorphic to an irreducible subgroup of the general linear group $GL_l(p)$ for some l, and $|K_{\alpha}|$ is a divisor of $p^d - 1$, where $2l \leq k$ and d is a common divisor of k and l.

Lemma 3.3. Let H be a 2-transitive affine group of degree 2^6 on a set Ω , and let $1 \neq K \subseteq H$. Assume that $K_{\alpha} \neq 1$ for $\alpha \in V$, and K is imprimitive on Ω . Then

- (1) $K_{\alpha} \cong \mathbb{Z}_s$ with $s \in \{3,7\}$, and there is $x \in H_{\alpha}$ such that $K_{\alpha}\langle x \rangle \cong \mathbb{Z}_{21}$; and
- (2) for each $x \in H_{\alpha}$ with $K_{\alpha}\langle x \rangle \cong \mathbb{Z}_{21}$, the subgroup $K\langle x \rangle$ is primitive on Ω .

Proof. By [6, pp.215-217, Theorems 7.2C and 7.2E], K is an imprimitive Frobenius group. Applying Lemma 3.2, we get $K_{\alpha} \cong \mathbb{Z}_s$, where $s \in \{3,7\}$. Calculation with GAP [9] shows that there are exactly eleven 2-transitive affine groups of degree 2^6 , which contain an imprimitive normal Frobenius subgroup. Checking one by one these groups, we conclude that K_{α} is contained in a cyclic subgroup of order 21 in H_{α} . Then part (1) of this lemma follows.

Assume that $x \in H_{\alpha}$ with $K_{\alpha}\langle x \rangle \cong \mathbb{Z}_{21}$, and set $X = K\langle x \rangle$. Then $\operatorname{soc}(H) \unlhd X$ and $X_{\alpha} \cong \mathbb{Z}_{21}$. Without loss of generality, we assume that $K_{\alpha} \cap \langle x \rangle = 1$, let $\langle x \rangle \cong \mathbb{Z}_r$ and write $X_{\alpha} = \langle y \rangle \times \langle x \rangle$ with $K_{\alpha} = \langle y \rangle \cong \mathbb{Z}_s$.

By Maschke's Theorem, we have $\mathbb{Z}_2^6 \cong \operatorname{soc}(H) = P_1 \times \cdots \times P_l$, where P_i are minimal X_{α} -invariant subgroup of $\operatorname{soc}(H)$. Since K is an imprimitive Frobenius group, y does not centralize every P_i , and s is a divisor of $|P_i|-1$, refer to [1, p.191, (35.25)]. Suppose that l > 1. Then either s = 3, $P_i \cong \mathbb{Z}_2^2$ and l = 3, or s = 7, $P_i \cong \mathbb{Z}_2^3$ and l = 2, where $1 \leq i \leq l$. Note that $X_{\alpha}/\mathbb{C}_{X_{\alpha}}(P_i) \lesssim \operatorname{Aut}(P_i)$. Assume first that s = 3. Then r = 7, and $\operatorname{Aut}(P_i) \cong \operatorname{GL}_2(2) \cong \operatorname{S}_3$. This implies that x centralizes every P_i . Thus $\langle x \rangle \subseteq H$,

which is impossible as $1 \neq \langle x \rangle \leqslant X_{\alpha}$. Now let s = 7. Then l = 2, and $P_1 \cong P_2 \cong \mathbb{Z}_2^3$. We have $\langle y \rangle \cong (\langle y \rangle \mathbf{C}_{X_{\alpha}}(P_i))/\mathbf{C}_{X_{\alpha}}(P_i) \leqslant X_{\alpha}/\mathbf{C}_{X_{\alpha}}(P_i) \lesssim \mathrm{Aut}(P_i) \cong \mathrm{GL}_3(2)$. By the Atlas [5], $\mathrm{GL}_3(2)$ has no element of order 21. It follows that x centralizes every P_i , which leads to a similar contradiction as above. Therefore, l = 1, and then $\mathrm{soc}(H)$ is a minimal normal subgroup of X. Thus X_{α} is a maximal subgroup of X, and part (2) of this lemma follows.

4. The proof of Theorem 1.1

Let $\Gamma = (V, E)$ be a connected graph of valency no less than 3, and $G \leq \operatorname{Aut}(\Gamma)$. Let $G^* = \langle G_{\alpha_1}, G_{\alpha_2} \rangle$ for some $\{\alpha_1, \alpha_2\} \in E$, and let $M = \operatorname{soc}(G^*)$. Assume that Γ is (G, 2)-arc-transitive, and G^* is a quasiprimitive group of PA type on each of the G^* -orbits. Then both G^* and M have the same orbits on V. By [19, 20], we have

- (I) $M = T_1 \times T_2 \times \cdots \times T_n$ is the unique minimal normal subgroup of G^* , where $n \ge 2$ and T_i are isomorphic nonabelian simple groups; and
- (II) for $\alpha \in V$, there are subgroups $R_i < T_i$ such that $M_{\alpha} \leq R_1 \times \cdots \times R_n$ and, for every i, the projection

$$\pi_i: M_\alpha \to R_i, \ x_1x_2 \cdots x_n \mapsto x_i, \ \text{where } x_j \in R_j \text{ for all } j$$

is a surjective group homomorphism.

Note that T_1, T_2, \ldots, T_n are all minimal normal subgroups of M, refer to [13, p.51, I.9.12]. Since M is a minimal normal subgroup of G^* , we have

(III) G_{α} acts transitively on $\{T_1, T_2, \dots, T_n\}$ by conjugation.

Clearly, $M_{\alpha} \subseteq G_{\alpha}$. For $1 \leqslant i, i' \leqslant n$, letting $T_i^h = T_{i'}$ for some $h \in G_{\alpha}$, we have

$$R_{i'} = \pi_{i'}(M_{\alpha}) = \pi_{i'}(M_{\alpha}^h) \geqslant \pi_i(M_{\alpha})^h = R_i^h.$$

Similarly, since $T_{i'}^{h^{-1}} = T_i$, we have $R_i \geqslant R_{i'}^{h^{-1}}$, and so $R_i^h = R_{i'}$. It follows that

(IV) G_{α} acts transitively on $\{R_1, R_2, \dots, R_n\}$ by conjugation; in particular, $R_1 \cong \dots \cong R_n$.

For convenience, we set $N_i = \prod_{j \neq i} T_j$, where $1 \leqslant i \leqslant n$. Then

- (V) $N_i \leq M$, and the kernel $\ker(\pi_i)$ of $\pi_i : M_\alpha \to R_i$ equals to $(N_i)_\alpha$. Note that N_1, \ldots, N_n are all maximal normal subgroups of M, refer to [13, p.51, I.9.12]. We have
 - (VI) G_{α} acts transitively on both $\{N_1, N_2, \dots, N_n\}$ and $\{\ker(\pi_1), \dots, \ker(\pi_n)\}$ by conjugation; in particular, $\ker(\pi_1) \cong \dots \cong \ker(\pi_n)$.

In addition, the following lemma holds.

Lemma 4.1. Every N_i is intransitive on each of the M-orbits on V.

Proof. Suppose that some N_i acts transitively on some M-orbit. Then $M = N_i M_{\gamma}$ for some $\gamma \in V$. Thus $T_i \cong M/N_i = N_i M_{\gamma}/N_i \cong M_{\gamma}/(N_i)_{\gamma}$. Then M_{γ} has a composition factor isomorphic to T_i , which is impossible as $M_{\gamma} \cong M_{\alpha} \leqslant R_1 \times \cdots \times R_n$. This completes the proof.

By Lemma 2.2, Γ is M-locally transitive. If Γ is M-locally primitive, then Theorem 1.1 is true by the following simple lemma.

Lemma 4.2. Assume Γ is M-locally primitive. Then every π_i is injective; in particular, $M_{\alpha} \cong R_i$ for all i.

Proof. Suppose that some π_i is not injective. Then π_i has nontrivial kernel $\ker(\pi_i) = (N_i)_{\alpha}$. Then, by Lemmas 2.1 and 2.2, N_i is transitive on one of the M-orbits on V, which contradicts Lemma 4.1. This completes the proof.

We next deal with the case where Γ is not M-locally primitive. For a subgroup $X \leq G$, denote by $X_{\alpha}^{[1]}$ the kernel of X_{α} acting on $\Gamma(\alpha)$, and by $X_{\alpha}^{\Gamma(\alpha)}$ the permutation group induced by X_{α} on $\Gamma(\alpha)$. By [18], we have the following lemma.

Lemma 4.3. If Γ is not M-locally primitive, then one of the following holds.

- (1) $M_{\alpha} \cong (\mathbb{Z}_p^k \times \mathbb{Z}_{m_1}).\mathbb{Z}_m$, $|\Gamma(\alpha)| = p^k$ and $M_{\alpha}^{[1]} \cong \mathbb{Z}_{m_1}$, where $m_1 \mid m, m \mid (p^d 1)$ for some divisor d of k with d < k;
- (2) $M_{\alpha} \cong (\mathbb{Z}_3^4 \times Q).Q_8$, $|\Gamma(\alpha)| = 3^4$ and $M_{\alpha}^{[1]} \cong Q$, where Q is isomorphic to a subgroup of the quaternion group Q_8 .

Together with Lemmas 4.2 and 4.3, the following lemma fulfills the proof of Theorem 1.1.

Lemma 4.4. Assume that $|\Gamma(\alpha)| = p^k$ and M_{α} is described as in (1) or (2) of Lemma 4.3. Let p^l be the highest power of p that divides $|R_1|$.

- (1) If l = k then every π_i is injective.
- (2) If l < k then one of the follows holds.
 - (i) n is divisible by some prime r, where either r is an arbitrary primitive prime divisor of $p^k 1$, or (p, k) = (2, 6) and $r \in \{3, 7\}$;
 - (ii) (p,k) = (2,6), and M acts regularly on the edge set or arc set of Γ ;
 - (iii) k = 2, and p is a Mersenne prime.

Proof. Recalling that $\pi_1: M_{\alpha} \to R_1$ is a surjective homomorphism, we have $l \leq k$. Assume that l = k. Then every $\ker(\pi_i)$ has order indivisible by p. Recalling that $(N_i)_{\alpha} = \ker(\pi_i)$, by Lemma 2.4, $\ker(\pi_i) = 1$, and part (1) of this lemma is true.

Assume that l < k from now on. If $p^k - 1$ has no primitive prime divisor then, by Zsigmondy's Theorem (see [24]), either (p,k) = (2,6), or k=2 and p is a Mersenne prime. The latter case is just the case (iii) of the lemma. For (p,k) = (2,6), if $M_{\alpha} \cong \mathbb{Z}_2^6$ then we get the case (ii) of this lemma.

In the following, we assume further that either (p,k)=(2,6) and $M_{\alpha}\not\cong\mathbb{Z}_{2}^{6}$, or $p^{k}-1$ has a primitive prime divisor r. Noting that G_{α} acts 2-transitively on $\Gamma(\alpha)$, it follows that $p^{k}-1$ is a divisor of $|G_{\alpha\beta}|$ for $\beta\in\Gamma(\alpha)$, and then either 21 or r is a divisor of $|G_{\alpha\beta}|$, respectively. In addition, for (p,k)=(2,6), we have $M_{\alpha}^{\Gamma(\alpha)}\cong\mathbb{Z}_{2}^{6}:\mathbb{Z}_{s}$ with $s\in\{3,7\}$ by Lemma 4.3; in this case, we set $r=\frac{21}{s}$.

Claim 1. If (p, k) = (2, 6) then there is an element $x \in G_{\alpha\beta}$ of order r such that $M_{\alpha\beta}\langle x \rangle = M_{\alpha\beta} \times \langle x \rangle$, where $\beta \in \Gamma(\alpha)$.

Assume that (p, k) = (2, 6). By Lemma 4.3, we conclude that $M_{\alpha\beta}$ is an abelian group of order s or s^2 . Then $M_{\alpha\beta} \cong \mathbb{Z}_s$, \mathbb{Z}_s^2 or \mathbb{Z}_{s^2} , and thus $\operatorname{Aut}(M_{\alpha\beta})$ has order s-1, $s(s-1)(s^2-1)$ or s(s-1), respectively. Since $M_{\alpha\beta} \subseteq G_{\alpha\beta}$, every element in

 $G_{\alpha\beta}$ induces an automorphism of $M_{\alpha\beta}$ by conjugation. If s=3 then $|\operatorname{Aut}(M_{\alpha\beta})|$ is indivisible by r=7, and so $M_{\alpha\beta}$ is centralized by every element of order 7 in $G_{\alpha\beta}$, our claim is true in this case.

Now let s = 7 and r = 3. Then a Sylow 3-subgroup of $\operatorname{Aut}(M_{\alpha\beta})$ is isomorphic to \mathbb{Z}_3 , \mathbb{Z}_3^2 or \mathbb{Z}_3 when $M_{\alpha\beta} \cong \mathbb{Z}_7$, \mathbb{Z}_7^2 or \mathbb{Z}_{7^2} , respectively. Noting that the 2-transitive affine group $G_{\alpha}^{\Gamma(\alpha)}$ has a normal subgroup isomorphic to $\mathbb{Z}_2^6:\mathbb{Z}_7$, calculation with GAP [9] shows that $(G_{\alpha}^{\Gamma(\alpha)})_{\beta}$ has a subgroup isomorphic to \mathbb{Z}_9 . Pick a Sylow 3-subgroup Q of $G_{\alpha\beta}$. Then Q acts unfaithfully on $M_{\alpha\beta}$ by conjugation; otherwise, $Q \lesssim \mathbb{Z}_3^2$, which is impossible. Thus $\mathbf{C}_Q(M_{\alpha\beta}) \neq 1$, and every element of order 3 in $\mathbf{C}_Q(M_{\alpha\beta})$ is a desired x. Then Claim 1 follows.

Now fix an element $x \in G_{\alpha\beta}$ of order r, where either r is a primitive prime divisor of $p^k - 1$, or (p, k) = (2, 6), $r = \frac{21}{s}$ and x is described as in Claim 1. Then $M \cap \langle x \rangle = M_{\alpha} \cap \langle x \rangle = 1$. Set $X = M \langle x \rangle$. Clearly, Γ is X-locally transitive, and $|X_{\gamma}| = r|M_{\alpha}|$ for all $\gamma \in V$. In addition, for (p, k) = (2, 6), we have $X_{\alpha\beta} = M_{\alpha\beta} \times \langle x \rangle$.

Claim 2. Either X_{α} acts primitively on $\Gamma(\alpha)$, or X_{β} acts primitively on $\Gamma(\beta)$.

By Lemma 4.3, either $M_{\alpha} \cong \mathbb{Z}_2^2$ or $|\Gamma(\alpha)| \geqslant 8$. Assume first $M_{\alpha} \cong \mathbb{Z}_2^2$. Then $r=3,\ X_{\alpha}=M_{\alpha}\langle x\rangle,\ X_{\beta}=M_{\beta}\langle x\rangle$ and $X_{\alpha\beta}=\langle x\rangle$. Suppose that $X_{\alpha}^{[1]}\neq 1\neq X_{\beta}^{[1]}$. Then $X_{\alpha}^{[1]}=X_{\beta}^{[1]}=X_{\alpha\beta}=\langle x\rangle$, yielding $\langle x\rangle \trianglelefteq \langle X_{\alpha},X_{\beta}\rangle$. Note that $\langle X_{\alpha},X_{\beta}\rangle$ acts transitively on E, refer to [23, Exercise 3.8]. It follows that $\langle x\rangle$ fixes every edge of Γ , and thus $\langle x\rangle=1$, a contradiction. We have $X_{\alpha}^{[1]}=1$ or $X_{\beta}^{[1]}=1$. Then one of $X_{\alpha}^{\Gamma(\alpha)}$ and $X_{\beta}^{\Gamma(\beta)}$ is a 2-transitive group of degree 4, and Claim 2 is true in this case.

Assume that $|\Gamma(\alpha)| \geqslant 8$. Then, by [23, Theorem 4.7], $G_{\alpha}^{[1]} \cap G_{\beta}^{[1]} = 1$, and so $X_{\alpha}^{[1]} \cap X_{\beta}^{[1]} = 1$. Considering the actions of $X_{\alpha\beta}$ on $\Gamma(\alpha)$ and $\Gamma(\beta)$, we have

$$X_{\alpha\beta}^{\Gamma(\alpha)} \cong X_{\alpha\beta}/X_{\alpha}^{[1]}, \ X_{\alpha\beta}^{\Gamma(\beta)} \cong X_{\alpha\beta}/X_{\beta}^{[1]}.$$

If neither $|X_{\alpha\beta}^{\Gamma(\alpha)}|$ nor $|X_{\alpha\beta}^{\Gamma(\beta)}|$ is divisible by r, then all Sylow r-subgroups are contained in both $X_{\alpha}^{[1]}$ and $X_{\beta}^{[1]}$, which contradicts that $X_{\alpha}^{[1]} \cap X_{\beta}^{[1]} = 1$. Without loss of generality, we assume that $|X_{\alpha\beta}^{\Gamma(\alpha)}|$ is divisible by r. If r is a primitive prime divisor of $p^k - 1$, then $X_{\alpha}^{\Gamma(\alpha)}$ is primitive by Lemma 3.1. Now let (p, k) = (2, 6). Noting that $\mathbb{Z}_s \cong M_{\alpha\beta}^{\Gamma(\alpha)} \subseteq X_{\alpha\beta}^{\Gamma(\alpha)}$ and $X_{\alpha\beta}\langle x \rangle = M_{\alpha\beta} \times \langle x \rangle$, we have $X_{\alpha\beta}^{\Gamma(\alpha)} \cong \mathbb{Z}_{21}$. Then $X_{\alpha}^{\Gamma(\alpha)}$ is primitive by Lemma 3.3. Thus Claim 2 follows.

Finally, consider the action of $\langle x \rangle$ on $\{T_1, \ldots, T_n\}$ by conjugation. Suppose that some T_i , say T_1 without loss of generality, is normalized by x. Then $N_1 = \prod_{j \neq 1} T_j$ is also normalized by x, and thus $N_1 \leq X$. Note that N_1 is intransitive on each of the M-orbits, see Lemma 4.1. Assume that Γ is not bipartite. Then, by Claim 2 and Lemma 2.2, N_1 is semiregular on V, and so $\ker(\pi_1) = (N_1)_{\alpha} = 1$, yielding $M_{\alpha} \cong R_1$. Thus k = l, which is not the case. If Γ is bipartite then, by Claim 2 and Lemma 2.3, N_1 is semiregular on V, we have a similar contradiction as above. Therefore, $\langle x \rangle$ acts faithfully and semiregularly on $\{T_1, \ldots, T_n\}$. Then r is a divisor of n, and case (i) of this lemma follows. This completes the proof.

5. A CONSTRUCTION OF EQUIDISTANT LINEAR CODES

Let $q = p^f$ for some prime p and integer $f \ge 1$. Denote by \mathbb{F}_q the field of order q, and \mathbb{F}_q^n the n-dimensional row vector space over \mathbb{F}_q , where $n \ge 1$. For a vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{F}_q^n$, letting $\mathsf{supp}(\mathbf{v}) = \{i \mid v_i \ne 0, 1 \le i \le n\}$, the weight $\mathsf{wt}(\mathbf{v})$ is defined as $|\mathsf{supp}(\mathbf{v})|$, i.e., the number of nonzero coordinates of \mathbf{v} .

Let k be an integer with $1 \leq k \leq n$. Every k-dimensional subspace \mathcal{C} of \mathbb{F}_q^n is called a linear $[n,k]_q$ code, where n is called the length of \mathcal{C} , and the vectors in \mathcal{C} are called codewords. A linear $[n,k]_q$ code \mathcal{C} is said to be equidistant if all nonzero codewords have the same weight say ω , while ω is called the weight of \mathcal{C} and write $\mathsf{wt}(\mathcal{C}) = \omega$.

Let \mathcal{C} be an equidistant linear $[n,2]_q$ code with $\mathsf{wt}(\mathcal{C}) = \omega$. For $\mathbf{0} \neq \mathbf{w} \in \mathcal{C}$, define

$$C_{\mathbf{w}} = \{ \mathbf{u} \in C \mid \mathsf{supp}(\mathbf{u}) = \mathsf{supp}(\mathbf{w}) \text{ or } \emptyset \}.$$

Then it is easily shown that $C_{\mathbf{w}}$ is a 1-dimensional subspace of \mathcal{C} , and every 1-dimensional subspace of \mathcal{C} is obtained in the form of $C_{\mathbf{w}}$. Let $1 \leq \ell \leq q+1$, and choose $\mathbf{w}_{\ell} \in \mathcal{C}$, with $\mathcal{C} = \bigcup_{\ell=1}^{q+1} \mathcal{C}_{\mathbf{w}_{\ell}}$. Set $\Delta = \bigcup_{\ell=1}^{q+1} \operatorname{supp}(\mathbf{w}_{\ell})$, and view \mathcal{C} as an $[m,2]_q$ code, where $m = |\Delta|$. Then $\omega \leq m-1$ by the Singleton bound, refer to [12, p.73, Corollary 2.50]. Consider the linear maps $\pi_i : \mathcal{C} \to \mathbb{F}_q$ given by $(v_1, \ldots, v_n) \mapsto v_i$, where $i \in \Delta$. Clearly, every π_i is surjective, and $\ker(\pi_i)$ is 1-dimensional. Then, for each $i \in \Delta$, there is some \mathbf{w}_{ℓ} with $i \not\in \operatorname{supp}(\mathbf{w}_{\ell})$ and $\ker(\pi_i) = \mathcal{C}_{\mathbf{w}_{\ell}}$. It follows that the subsets $\Delta \setminus \operatorname{supp}(\mathbf{w}_{\ell})$ of Δ are pairwise disjoint. Noting that $|\Delta \setminus \operatorname{supp}(\mathbf{w}_{\ell})| = m - \omega$, we have

$$q+1 \leqslant \frac{m}{m-\omega} \leqslant \frac{n}{n-\omega}.$$

Then we get the following fact.

Lemma 5.1. Let C be an equidistant linear $[n, 2]_q$ code with $\mathsf{wt}(C) = \omega$. If n = q + 1 then $\omega = n - 1$, and $\ker(\pi_i)$, $1 \le i \le n$, are distinct 1-dimensional subspaces of C.

Let n=q+1 from now on. Denote by \mathbb{F}_q^* the multiplicative group of \mathbb{F}_q , and write $\mathbb{F}_q^* = \langle \eta, \lambda \rangle$, where λ has odd order, and η has order a power of 2. Clearly, $\mathbb{F}_q^* = \langle \eta \lambda \rangle = \langle \eta \lambda^2 \rangle$. Note that $\eta = 1$ if q is even, and $(\eta \lambda)^{\frac{q-1}{2}} = -1 = (\eta \lambda^2)^{\frac{q-1}{2}}$ if q is odd. Pick two invertible $n \times n$ matrices over \mathbb{F}_q :

$$\mathbf{D} = \begin{pmatrix} \eta \lambda & 0 & \mathbf{0} \\ 0 & \lambda & \mathbf{0} \\ 0 & 0 & \eta \lambda \mathbf{I}_{n-2} \end{pmatrix}, \quad \mathbf{P} = \begin{pmatrix} \mathbf{0} & \mathbf{I}_{n-1} \\ 1 & \mathbf{0} \end{pmatrix},$$

where I_m denotes the identity matrix of order m. Let A = DP. Then

$$\mathbf{A}^n = \eta^{n-1} \lambda^n \mathbf{I}_n = \eta \lambda^2 \mathbf{I}_n.$$

In particular, **A** has order n(q-1) as an element of the general linear group $GL_n(q)$.

View **A** as the linear transformation of \mathbb{F}_q^n given by right multiplication on the row vectors

$$(u_1, u_2, \dots, u_n)\mathbf{A} = (\eta \lambda u_n, \eta \lambda u_1, \lambda u_2, \eta \lambda u_3, \eta \lambda u_4, \dots, \eta \lambda u_{n-1}).$$

Then we have an action of the cyclic group $\langle \mathbf{A} \rangle$ on \mathbb{F}_q^n . A linear $[n,k]_q$ code \mathcal{C} is said to be $\langle \mathbf{A} \rangle$ -invariant if $\mathbf{u} \mathbf{A} \in \mathcal{C}$ for all $\mathbf{u} \in \mathcal{C}$, and $\langle \mathbf{A} \rangle$ -irreducible if further \mathcal{C}

does not contain $\langle \mathbf{A} \rangle$ -invariant linear $[n, k']_q$ codes for some $1 \leq k' < k$. An $\langle \mathbf{A} \rangle$ -invariant linear $[n, k]_q$ code \mathcal{C} is said to be faithful if $\langle \mathbf{A} \rangle$ acts faithfully on \mathcal{C} , that is, no nonidentity matrix in $\langle \mathbf{A} \rangle$ fixes \mathcal{C} point-wise.

Lemma 5.2. Let C be an $\langle \mathbf{A} \rangle$ -irreducible linear $[n,k]_q$ code, where n=q+1. Then either k=2, or k=1, q is even and C is spanned by the vector $(1,1,\ldots,1)$. If further C is faithful, then $\langle \mathbf{A} \rangle$ is regular on the nonzero codewords; in particular, C is an equidistant $[n,2]_q$ code of weight q.

Proof. Assume that **A** induces an invertible linear transformation of order m on C. Then m is a divisor of the order $q^2 - 1$ of **A** in $GL_n(q)$. Now k is the smallest positive integer such that $q^k - 1 \equiv 0 \pmod{m}$, refer to [13, p.165, II.3.10]. Thus $k \leq 2$.

Suppose that k = 1. Then m is a divisor of q - 1, and the kernel of $\langle \mathbf{A} \rangle$ acting on \mathcal{C} contains the unique subgroup $\langle \mathbf{A}^{q-1} \rangle$ of order q + 1. Thus $\mathbf{u} \mathbf{A}^{q-1} = \mathbf{u}$ for all $\mathbf{u} \in \mathcal{C}$. If q is odd, then $(\mathbf{A}^{q-1})^{\frac{q+1}{2}} = (\mathbf{A}^n)^{\frac{q-1}{2}} = (\eta \lambda^2)^{\frac{q-1}{2}} \mathbf{I}_n = -\mathbf{I}_n$, yielding $\mathbf{u} = \mathbf{u}(\mathbf{A}^{q-1})^{\frac{q+1}{2}} = -\mathbf{u}$, which is impossible. Therefore, q is a even. For an arbitrary codeword $\mathbf{u} = (u_1, u_2, \dots, u_n) \in \mathcal{C}$, calculation shows that

$$(u_1, u_2, \dots, u_n)$$
 $\mathbf{A}^{q-1} = (u_3, u_4, u_5, \dots, u_n, u_1, u_2).$

Since $\mathbf{u}\mathbf{A}^{q-1} = \mathbf{u}$, we have $u_1 = u_2 = \cdots = u_n$. Then \mathcal{C} is spanned by the vector $(1, 1, \ldots, 1)$, and the first part of this lemma follows.

Now assume that C is faithful. Then k = 2. Noticing the Singleton bound, we may choose a nonzero codeword \mathbf{w}_1 with $\mathbf{wt}(\mathbf{w}_1) \leq n - 1$. Let $\mathbf{w}_2 = \mathbf{w}_1 \mathbf{A}$. Recalling that $C_{\mathbf{w}_1}$ is 1-dimensional, it is not $\langle \mathbf{A} \rangle$ -invariant, and thus $C_{\mathbf{w}_1} \neq C_{\mathbf{w}_2}$. In particular, we have $C = C_{\mathbf{w}_1} \oplus C_{\mathbf{w}_2}$. Assume that \mathbf{A}^i fixes \mathbf{w}_1 for some i. Then $\mathbf{w}_2 \mathbf{A}^i = \mathbf{w}_1 \mathbf{A}^{i+1} = \mathbf{w}_1 \mathbf{A} = \mathbf{w}_2$. It follows that \mathbf{A}^i fixes C point-wise. This implies that $\mathbf{A}^i = \mathbf{I}_n$. Then $\langle \mathbf{A} \rangle$ is regular on $C \setminus \{\mathbf{0}\}$, and the lemma follows from Lemma 5.1

Theorem 5.3. Assume that $n = q + 1 = 2^s r^t$ for some odd prime r and integers $s, t \geq 0$. Then there exists a faithful $\langle \mathbf{A} \rangle$ -irreducible linear $[n, 2]_q$ code. If q is a Mersenne prime then \mathbb{F}_q^n is a direct sum of faithful $\langle \mathbf{A} \rangle$ -irreducible linear $[n, 2]_q$ codes.

Proof. Appealing to Maschke's Theorem, refer to [13, p.123, I.17.7], we write

$$\mathbb{F}_q^n = \bigoplus_{i=1}^m \mathcal{C}_i,$$

where C_i are $\langle \mathbf{A} \rangle$ -irreducible $[n, k_i]_q$ codes. By Lemma 5.2, we assume that $k_1 = \cdots = k_{m-1} = 2$, and either $k_m = 2$ or q is even and C_m is spanned by $(1, 1, \ldots, 1)$.

Let K_i be the kernel of $\langle \mathbf{A} \rangle$ acting on C_i , where $1 \leq i \leq m$. Recalling that $\mathbf{A}^n = \eta \lambda^2 \mathbf{I}_n$, we know that $\langle \mathbf{A}^n \rangle$ is semiregular on the set of nonzero codewords of every C_i , and thus $K_i \cap \langle \mathbf{A}^n \rangle = 1$. Then $|K_i|$ is a divisor of q + 1. Now it suffices to show that $|K_i| = 1$ for some i, and if q is a Mersenne prime then $|K_i| = 1$ for all i.

Assume first q is even. Then $n = r^t$, and $\langle \mathbf{A} \rangle$ contains a unique subgroup of order r. It follows that either $|K_i| = 1$ for some i, or all K_i contains a common subgroup of order r. The latter case implies that $\langle \mathbf{A} \rangle$ is unfaithful on \mathbb{F}_q^n , which is impossible.

Now let q be odd. Then $\langle \mathbf{A}^n \rangle$ has even order q-1. Recalling that $K_i \cap \langle \mathbf{A}^n \rangle = 1$ for all i, since $\langle \mathbf{A} \rangle$ has a unique involution, it follows that every $|K_i|$ is an odd divisor

of q+1. Thus, since $\langle \mathbf{A} \rangle$ is faithful on \mathbb{F}_q^n , we have $|K_i|=1$ for some i. If further q is a Merdenne prime, then $|K_i|=1$ for all i. This completes the proof.

Remark 5.4. By the definitions, it is easy to see that each faithful $\langle \mathbf{A} \rangle$ -irreducible linear $[n,2]_q$ code gives a minimal normal subgroup of the semidirect product $\mathbb{F}_q^n:\langle \mathbf{A} \rangle$ isomorphic to \mathbb{Z}_p^{2f} .

6. A CONSTRUCTION OF GRAPHS WITH NON-DIAGONAL PA TYPE

For a finite group G and $H \leq G$, denote by [G:H] the set of right cosets of H in G. Assume that H is core-free in G, that is, $\bigcap_{g \in G} H^g = 1$. Then we have a faithful and transitive action of G on [G:H] by right multiplication, and thus we identify G with a transitive permutation group on [G:H]. For an element $g \in G \setminus H$ with $g^2 \in H$, the coset graph $\operatorname{Cos}(G,H,g)$ is defined as the graph with vertex set [G:H] such that Hx and Hy are adjacent if and only if $yx^{-1} \in HgH$. It is well-known that $\operatorname{Cos}(G,H,g)$ is G-arc-transitive and of valency $|H:(H\cap H^g)|$, and that up to isomorphism every arc-transitive graph is constructed in this way. As a graph automorphism, the element g maps the vertex H to one of its neighbors, it follows that $\operatorname{Cos}(G,H,g)$ is connected if and only if $G = \langle H,g \rangle$, refer to [3, p.118, 17B].

In the following, for some prime power q, we will construct a quasiprimitive group G of (non-diagonal) PA type with a point stabilizer H isomorphic to the affine group $AGL_1(q^2)$, and then produce a connected coset graph Cos(G, H, g) of valency q^2 . If this is so then, noting that H acts 2-transitively on $[H: (H \cap H^g)]$ by right multiplication, Cos(G, H, g) is (G, 2)-arc-transitive by [7, Theorem 2.1]; of course, such a graph satisfies Theorem 1.1 (2).

For the rest of this section, we always assume that

- (C1) $q = p^f$ for some prime p and integer $f \ge 1$, and $n := q + 1 = 2^s r^t > 3$, where $t \ge 0$, r is an odd prime, and either $s \ge 2$ or q is even;
- (C2) X is an almost simple group with socle T, $|X:T| \leq 2$, X has a subgroup $R = F:(\langle b \rangle \times \langle c \rangle)$ isomorphic to $\mathrm{AGL}_1(q)$, where $F \cong \mathbb{Z}_p^f$, b has order $\frac{q-1}{(2,q-1)}$, c has order (2,q-1), and if |X:T|=2 then q is odd and $c \notin T$;
- (C3) $\tau = (1, 2, ..., n) \in S_n$, and $W = X \wr \langle \tau \rangle$, the wreath product of X by $\langle \tau \rangle$, where

$$(x_1, x_2, \dots, x_n)^{\tau} = (x_n, x_1, x_2, \dots, x_{n-1}) \text{ for } x_i \in X, 1 \leqslant i \leqslant n;$$

(C4) $\pi_i: (x_1, x_2, \dots, x_n) \mapsto x_i, 1 \leq i \leq n$, are the projections of X^n onto X.

The next lemma follows easily from (C1) and (C2).

Lemma 6.1. $R \cap T = F:\langle b, c^{|X:T|} \rangle$.

Proof. Note that F is the unique minimal normal subgroup of R. Since $T \subseteq X$, we have $F \cap T \subseteq R$, yielding $F \cap T = 1$ or $F \leqslant T$. If $F \cap T = 1$ then |X| is divisible by |F||T| = q|T|, yielding $|X:T| \geqslant q \geqslant 3$, a contradiction. Thus $F \leqslant T$. Since $|X:T| \leqslant 2$, we have $b \in T$. Then

$$R \cap T = F:(\langle b, c \rangle \cap T) = F\langle b \rangle (\langle c \rangle \cap T) = F:\langle b, c^{|X:T|} \rangle,$$

as desired. This completes the proof.

For $Y \leq X$, we always deal with the direct product Y^n of n copies Y as a subgroup of W. Also, $\langle \tau \rangle$ is viewed as a subgroup of W, so that $W = X^n : \langle \tau \rangle$. Sometimes, we use boldface type for the elements in X^n . Pick three elements in R^n as follows:

$$\mathbf{b} = (b, b, \dots, b), \mathbf{c} = (c, c, \dots, c), \mathbf{d}_0 = (bc, b, bc, bc, \dots, bc).$$

Then **b**, **c** and **d**₀ have order $\frac{q-1}{(2,q-1)}$, (2, q-1) and q-1, respectively. Let $\theta = \mathbf{d}_0 \tau$.

Calculation shows that

$$\theta^n = (b^2c, b^2c, b^2c, \dots, b^2c) = \mathbf{b}^2\mathbf{c}.$$

It follows that θ has order $n(q-1) = q^2 - 1$, and $\langle \theta^n \rangle = \langle \mathbf{b}^2 \rangle \times \langle \mathbf{c} \rangle$.

It is easy to check that $\mathbf{C}_{\langle\theta\rangle}(F^n)=1$, $F^n\cap\langle\theta\rangle=1$ and F^n is normalized by θ . In addition, for $(x_1,x_2,\ldots,x_n)\in F^n$, we have

$$(x_1, x_2, \dots, x_n)^{\theta} = (x_n^{bc}, x_1^{bc}, x_2^{b}, x_3^{bc}, x_4^{bc}, \dots, x_{n-1}^{bc}).$$

Recall that $R = F:(\langle b \rangle \times \langle c \rangle) \cong \mathrm{AGL}_1(q)$. If we deal with F as the field \mathbb{F}_q , then b and c may be chosen such that $x^b = \lambda x$ and $x^c = \eta x$ for $x \in F$, where $\lambda, \eta \in \mathbb{F}_q^*$ have order $\frac{q-1}{(2,q-1)}$ and (2,q-1) respectively. Thus, viewing F^n as the n-dimensional vector space \mathbb{F}_q^n , the next lemma follows directly from Lemma 5.1, Theorem 5.3 and Remark 5.4.

Lemma 6.2. $F^n:\langle\theta\rangle$ has a minimal normal subgroup E such that

- $(1) E \cong \mathbb{Z}_p^{2f};$
- (2) $\langle \theta \rangle$ acts transitively on $E \setminus \{1\}$ by conjugation, in particular, $E: \langle \theta \rangle \cong AGL_1(q^2)$;
- (3) $\pi_i(E) = F$ and $\ker(\pi_i) \cap E \neq \ker(\pi_j) \cap E$, where $1 \leq i < j \leq n$.

Using Lemma 6.2, we can easily construct a quasiprimitive permutation group of PA type, which is described as in the following result.

Theorem 6.3. Let $G = T^n \langle \theta \rangle$, and let E be a minimal normal subgroup of $F^n: \langle \theta \rangle$ satisfying (1)-(3) of Lemma 6.2. Let $H = E: \langle \theta \rangle$. Then G is a quasiprimitive group on [G: H] of (non-diagonal) PA type, where $T^n \cap H$ is a subdirect product of $(R \cap T)^n$.

Proof. First, it is easily shown that $\mathbf{C}_{\langle\theta\rangle}(T^n)=1$, and $\langle\theta\rangle$ normalizes T^n and acts transitively by conjugation on the set of simple direct factors of T^n . This implies that G is a group and has a unique minimal normal subgroup T^n , and hence H is core-free in G. Thus it suffices to show that $\pi_i(T^n\cap H)=R\cap T$ for $1\leqslant i\leqslant n$.

Calculation shows that $\theta^m \in T^n$ if and only if m is divisible by n|X:T|. It follows that $T^n \cap \langle \theta \rangle = \langle \theta^{n|X:T|} \rangle = \langle \mathbf{b}^{2|X:T|}, \mathbf{c}^{|X:T|} \rangle$. Since either $q \equiv -1 \pmod{4}$ or q is even, \mathbf{b} has odd order $\frac{q-1}{(2,q-1)}$. Noting that 2|X:T| is a divisor of 4, we have $\langle \mathbf{b}^{2|X:T|} \rangle = \langle \mathbf{b} \rangle$. Then $T^n \cap \langle \theta \rangle = \langle \mathbf{b}, \mathbf{c}^{|X:T|} \rangle$. Now

$$T^n \cap H = T^n \cap (E:\langle \theta \rangle) = E:(T^n \cap \langle \theta \rangle) = E:(\langle \mathbf{b}, \mathbf{c}^{|X:T|} \rangle).$$

By Lemmas 6.1 and 6.2, we have

$$R \cap T = F(\langle b, c^{|X:T|} \rangle) = \pi_i(E)\pi_i(\langle \mathbf{b}, \mathbf{c}^{|X:T|} \rangle) = \pi_i(T^n \cap H),$$

as desired. This completes the proof.

Now we are ready to give a construction for graphs of non-diagonal PA type.

Theorem 6.4. Let G and H be as in Theorem 6.3. Suppose that $\mathbf{N}_X(\langle b, c \rangle)$ contains an involution o of T such that $X = \langle F, b, c, o \rangle$. Let $\mathbf{o} = (o, o, \dots, o)$ and $\Gamma(X) = \operatorname{Cos}(G, H, \mathbf{o})$. Then $\Gamma(X)$ is connected, (G, 2)-arc-transitive and of valency q^2 .

Proof. Noting that $H \cong AGL_1(q^2)$, if $H \cap H^{\mathbf{o}}$ has order $q^2 - 1$ then $\Gamma(X)$ have valency q^2 , which then yields the 2-arc-transitivity of G on the graph $\Gamma(X)$. Thus it suffices to confirm that $|H \cap H^{\mathbf{o}}| = q^2 - 1$ and $G = \langle H, \mathbf{o} \rangle$.

By the choice of o, we know that o centralizes c and normalizes $\langle b \rangle$. Let $\mathbf{c}_0 = (c, 1, c, c, \ldots, c)$. Then \mathbf{o} centralizes \mathbf{c}_0 and normalizes $\langle \mathbf{b} \rangle$. Clearly, \mathbf{o} centralizes τ . Then \mathbf{o} centralizes $\mathbf{c}_0\tau$. Noting that $\langle \theta \rangle = \langle \mathbf{d}_0\tau \rangle = \langle \mathbf{b} \rangle \times \langle \mathbf{c}_0\tau \rangle$, it follows that $\langle \theta \rangle^{\mathbf{o}} = \langle \theta \rangle$, and so $\langle \theta \rangle \leqslant H \cap H^{\mathbf{o}}$. Suppose that $|H \cap H^{\mathbf{o}}| > q^2 - 1$. Since $\langle \theta \rangle$ is maximal in H, we have $H \cap H^{\mathbf{o}} = H$, which yields that E is normalized by \mathbf{o} . Then $\pi_1(E) = F$ is normalized by \mathbf{o} . Since $\langle F, b, c, o \rangle = X$, we have $F \subseteq X$, which is impossible. Thus $|H \cap H^{\mathbf{o}}| = q^2 - 1$, as desired.

By the choice of (X, T, o), we have $T = \langle F, b, c^{|X:T|}, o \rangle$. Recalling that $\theta^n = \mathbf{b}^2 \mathbf{c}$, since \mathbf{b} has odd order, we have $\langle \theta^n \rangle = \langle \mathbf{b} \rangle \times \langle \mathbf{c} \rangle$. By Lemma 6.2, $\pi_i(E) = F$ for all i. We have $\pi_i(T^n \cap \langle H, \mathbf{o} \rangle) \geqslant \langle F, b, c^{|X:T|}, o \rangle = T$, yielding $\pi_i(T^n \cap \langle H, \mathbf{o} \rangle) = T$, where $1 \leqslant i \leqslant n$. Let $K_i = \ker(\pi_i) \cap T^n$. Then

$$(T^n \cap \langle H, \mathbf{o} \rangle)/K_i \cong T, \ 1 \leqslant i \leqslant n.$$

Again by Lemma 6.2, $\ker(\pi_1) \cap E$, $\ker(\pi_2) \cap E$, ..., $\ker(\pi_n) \cap E$ are distinct. Then K_1, \ldots, K_n are distinct normal subgroups of $T^n \cap \langle H, \mathbf{o} \rangle$. It follows that $T^n \cap \langle H, \mathbf{o} \rangle \cong T^n$, refer to [6, p.113, Lemma 4.3A]. Then $T^n \cap \langle H, \mathbf{o} \rangle = T^n$, and so $\langle H, \mathbf{o} \rangle \geqslant \langle T^n, \theta \rangle = G$. Thus $G = \langle H, \mathbf{o} \rangle$, as desired. This completes the proof.

The following example collects some almost simple groups, which support Theorem 6.4. Thus there do exist 2-arc-transitive graphs which satisfy (2) of Theorem 1.1 (i) or (iii).

Example 6.5. (1) Let $X = S_p$ and $T = A_p$, where $7 \leqslant p \equiv -1 \pmod{4}$, and p+1 has at most two distinct prime divisors. Note that S_p has a maximal subgroup $F:\langle a \rangle$ isomorphic to $\mathrm{AGL}_1(p)$, refer to [17], where $F \cong \mathbb{Z}_p$, and a is a (p-1)-cycle. Let $b = a^2$ and $c = a^{\frac{p-1}{2}}$. Then $F\langle b \rangle$ is a maximal subgroup of A_p except for $p \in \{7, 11, 23\}$, and c is a product of $\frac{p-1}{2}$ disjoint transpositions. It is easy to see that S_p contains an element d, which is a product of $\frac{p-1}{2}$ disjoint transpositions and inverts a by conjugation. Clearly, cd = dc. Let o = cd. We have oc = co, $o \in A_p$ and $\langle F, b, c, o \rangle = S_p$. Thus, by Theorem 6.4, we get a connected 2-arc-transitive graph $\Gamma(X)$ of valency p^2 .

(2) Let $X = \operatorname{PGL}_2(q)$ and $T = \operatorname{PSL}_2(q)$, where either $q \geqslant 4$ is even or $7 \leqslant q \equiv -1 \pmod{4}$, and q+1 has at most two distinct prime divisors. Note that all subgroups of X and T are explicitly known, refer to [4] and [13, p.213, II.8.27], respectively. In particular, X has a maximal subgroup $F:\langle a \rangle$ isomorphic to $\operatorname{AGL}_1(q)$, where |F| = q, and a has order q-1. Let $b=a^{(2,q-1)}$ and $c=a^{\frac{q-1}{(2,q-1)}}$. Then $F\langle b \rangle$ is a maximal

subgroup of T. Let $N = \mathbf{N}_X(\langle a \rangle)$. Then N is a dihedral group of order 2(q-1), and $N \cap T$ is a dihedral group of order $\frac{2(q-1)}{(2,q-1)}$. Pick an involution o in $N \cap T$. Then oc = co and $X = \langle F, b, c, o \rangle$. By Theorem 6.4, we get a connected 2-arc-transitive graph $\Gamma(X)$ of valency q^2 .

We end this section by an example, which gives some graphs satisfying Theorem 1.1 (2) (ii).

Example 6.6. Let $\operatorname{PSL}_2(8) = T < X = T.3 \cong \operatorname{Ree}(3)$, and let F be a Sylow 2-subgroup of T. By the Atlas [5], we have $\mathbf{N}_T(F) \cong \mathbb{Z}_2^3:\mathbb{Z}_7$ and $\mathbf{N}_X(F) \cong \mathbb{Z}_2^3:(\mathbb{Z}_7:\mathbb{Z}_3)$. Pick an element b of order 3 in $\mathbf{N}_X(F)$. Let τ be the 21-cycle $(1, 2, \ldots, 21)$ in S_{21} .

It is easily shown that the wreath product $X \wr \langle \tau \rangle$ has a normal subgroup $G = T^{21}:\langle \theta \rangle$, where $\theta = (b, 1, b, \dots, b)\tau$ has order 63. Let $M = T^{21}$. Then M is the unique minimal normal subgroup of G. Note that F^{21} is a $\langle \theta \rangle$ -invariant subgroup of M. Considering the conjugation of $\langle \theta \rangle$ on F^{21} , calculation with GAP [9] shows that

- (1) F^{21} has exactly 13 minimal $\langle \theta \rangle$ -invariant subgroups: one of them has order 2, one of them has order 2^2 , two of them have order 2^3 , and the other ones have order 2^6 ; in fact, F^{21} is the direct product of these 13 subgroups;
- (2) among those 9 subgroups of order 2^6 in (1), there are exactly 6 subgroups such that $\langle \theta \rangle$ acts regularly on the nonidentity elements, that is, each of these 6 subgroups together with θ generates a group isomorphic to AGL₁(2^6).

We fix a minimal $\langle \theta \rangle$ -invariant subgroup E of F^{21} with $E\langle \theta \rangle \cong \mathrm{AGL}_1(2^6)$, and let $H = E\langle \theta \rangle$. Then $M \cap H = E \cong \mathbb{Z}_2^6$, and G is a quasiprimitive group of (non-diagonal) PA type on [G:H]. Consider the normalizer of $\langle \theta \rangle$ in G. We have $\mathbf{N}_G(\langle \theta \rangle) = \mathbf{N}_M(\langle \theta \rangle) \langle \theta \rangle$. Again confirmed by GAP [9], we conclude that $\mathbf{N}_M(\langle \theta \rangle) \cong S_3$, $\mathbf{N}_G(\langle \theta \rangle) = \mathbf{N}_M(\langle \theta \rangle) \times \langle \theta \rangle$, and there is a unique 2-element $g \in \mathbf{N}_M(\langle \theta \rangle)$ (up to the double coset HgH) such that $G = \langle H, g \rangle$ and $g^2 \in H$. Thus we have a connected (G, 2)-arc-transitive graph $\mathrm{Cos}(G, H, g)$ of valency 2^6 and order $2^{57} \cdot 3^{42} \cdot 7^{21}$, where M acts regularly on the arc set of this graph.

Note, there are 6 choices for the group E, and so we may obtain 6 graphs. However, we do not know whether there are isomorphic ones among these graphs.

7. A CONSTRUCTION OF BIPARTITE GRAPHS WITH DIAGONAL PA TYPE

This section aims to construct some 2-arc-transitive bipartite graphs with diagonal PA type, which admit certain groups G and are not standard double covers of $(G^*, 2)$ -arc-transitive graphs.

Lemma 7.1. Let $\Gamma = (V, E)$ is a connected bipartite graph, $G \leq \operatorname{Aut}(\Gamma)$. Let G^* be the bipartition preserving subgroup of G. Assume that G is transitive on V. If Γ is the standard double cover of some graph admitting G^* , then $\{G_{\alpha} \mid \alpha \in V\}$ is a conjugacy class of subgroups in G^* .

Proof. Clearly, $G_{\alpha} \leq G^*$ for all $\alpha \in V$. Let U and W be the G^* -orbits on V. Then $\{G_{\alpha} \mid \alpha \in U\}$ and $\{G_{\beta} \mid \beta \in W\}$ are conjugacy classes of subgroups in G^* . Assume that Γ is the standard double cover of some graph admitting G^* . Then $\operatorname{Aut}(\Gamma)$ has an

involution ι which centralizes G^* and interchanges U and W. Let $\alpha \in U$ and $\beta = \alpha^{\iota}$. We have $\beta \in W$. Replacing G by $G^* \times \langle \iota \rangle$ if necessary, we have $G_{\beta} = G_{\alpha^{\iota}} = G_{\alpha}^{\iota} = G_{\alpha}$. It follows that $\{G_{\alpha} \mid \alpha \in U\} = \{G_{\beta} \mid \beta \in W\}$, and the lemma follows.

From now on, let $p \ge 5$ be a prime, and let $\tau = (1, 2, ..., p - 1) \in S_{p-1}$. Let $X = \operatorname{PGL}(2, p)$ or S_p with socle T. We will define a subgroup G of the wreath product $W = X \wr \langle \tau \rangle$, and construct connected (G, 2)-arc-transitive bipartite graphs.

Note that X has a subgroup R isomorphic to $AGL_1(p)$, and $T \cap R \cong \mathbb{Z}_p:\mathbb{Z}_{\frac{p-1}{2}}$. Choose $a, b \in R$ with order p and p-1, respectively. Then $R = \langle a \rangle : \langle b \rangle$. It is easily shown that b is contained in a dihedral subgroup D of X with order 2(p-1), which has the center $\langle b^{\frac{p-1}{2}} \rangle$ and intersects with T at a dihedral group of order p-1. Thus both T and $X \setminus T$ contain involutions which invert b and centralize $b^{\frac{p-1}{2}}$. Choose an involution $c \in X$ with $b^c = b^{-1}$ and $cb^{\frac{p-1}{2}} \notin T$. We have $D = \langle b, c \rangle$, and $X = \langle a, b, c \rangle$.

Pick three elements in W as follows:

$$\mathbf{a} = (a, a, \dots, a), \ \mathbf{b} = (b, b, \dots, b), \ \mathbf{o} = (c, bc, b^2c, \dots, b^{p-2}c).$$

Clearly, τ centralizes both **a** and **b**, and all coordinates of **o** are distinct. Since b has order p-1, we have $b^{p-2}=b^{-1}$. Calculation shows that

$$\mathbf{o}^{\tau} = \mathbf{b}^{-1}\mathbf{o}, \ \mathbf{b}^{\mathbf{o}} = \mathbf{b}^{-1}, \ \tau^{\mathbf{o}} = \mathbf{b}^{-1}\tau, \ \langle \mathbf{a}, \mathbf{b}, \tau \rangle = \langle \mathbf{a} \rangle : \langle \mathbf{b} \rangle \times \langle \tau \rangle, \ \langle \mathbf{a}, \mathbf{b} \rangle \cap T^{p-1} = \langle \mathbf{a}, \mathbf{b}^2 \rangle.$$
 Let

$$G^* = T^{p-1}\langle \mathbf{b}, \tau \rangle.$$

Suppose that $\mathbf{o} \in G^*$. We have $\mathbf{o} = (t_1, t_2, \dots, t_{p-1})\mathbf{b}^i$ for some i and $t_1, t_2, \dots, t_{p-1} \in T$. Then $(t_1, t_2, \dots, t_{p-1}) = \mathbf{o}\mathbf{b}^{-i} = (b^{-i}c, b^{1-i}c, \dots, b^{p-2-i}c)$. It follows that $b = b^{1-i}cb^{-i}c = t_2t_1 \in T$, a contradiction. Therefore, $\mathbf{o} \notin G^*$.

Let

$$G = G^*: \langle \mathbf{o} \rangle, H = \langle \mathbf{a}, \mathbf{b}, \tau \rangle.$$

Then $AGL_1(p) \times \mathbb{Z}_{p-1} \cong H < G^*$, and it is easily shown that T^{p-1} is the unique minimal normal subgroup of G^* and G. Thus we have the following lemma.

Lemma 7.2. The group G acts faithfully on [G:H] by right multiplication, G^* has two orbits on [G:H], G^* is a quasiprimitive group with diagonal PA type on each of its orbits, and $T^{p-1} \cap H = \langle \mathbf{a}, \mathbf{b}^2 \rangle$ is a diagonal subgroup of $(T \cap R)^{p-1}$.

Theorem 7.3. Let G, H and \mathbf{o} be as above, and let $\Gamma = \operatorname{Cos}(G, H, \mathbf{o})$. Then Γ is a connected (G, 2)-arc-transitive bipartite graph of valency p, and Γ is not the standard double cover of some graph whose automorphism group contains G^* .

Proof. Let $K = \langle \mathbf{b}, \tau \rangle$. Then |H : K| = p, and \mathbf{o} normalizes K. Thus $H \cap H^{\mathbf{o}} \geqslant K$. Suppose that $H \cap H^{\mathbf{o}} > K$. Then $H = H^{\mathbf{o}}$. Noting that $\langle \mathbf{a} \rangle$ is characteristic in H, it follows that \mathbf{o} normalizes $\langle \mathbf{a} \rangle$, and so c normalizes $\langle a \rangle$. Then $\langle a \rangle \leq \langle a, b, c \rangle = X$, a contradiction. Thus $H \cap H^{\mathbf{o}} = K$. It is easily shown that H acts 2-transitively on [H : K] by right multiplication. Then Γ is (G, 2)-arc-transitive and of valency p.

We next show that Γ is connected, that is, $G = \langle H, \mathbf{o} \rangle$. Let $G_0 = \langle \mathbf{a}, \mathbf{b}, \mathbf{o} \rangle$. Clearly, G_0 is a subgroup of X^{p-1} and normalized by τ . We have $G_0: \langle \tau \rangle = \langle \mathbf{a}, \mathbf{b}, \tau, \mathbf{o} \rangle = \langle H, \mathbf{o} \rangle$. Then it suffices to show $T^{p-1} \leq G_0$.

For $x \in X$, denote by $\mathbf{e}_{i,x}$ the element of X^{p-1} with the *i*th coordinate x and all other coordinates 1. Write $X^{p-1} = X_1 \times X_2 \times \cdots \times X_{p-1}$ and $T^{p-1} = T_1 \times T_2 \times \cdots \times T_{p-1}$, where

$$X_i = \{\mathbf{e}_{i,x} \mid x \in X\}, T_i = \{\mathbf{e}_{i,t} \mid t \in T\}, 1 \leqslant i \leqslant p - 1.$$

For $1 \le i < j \le p-1$, let π_i be the projection of G_0 to X_i , and define a group homomorphism:

$$\pi_{ij}: G_0 \to X_i \times X_j, \ \mathbf{e}_{1,x_1} \mathbf{e}_{2,x_2} \cdots \mathbf{e}_{p-1,x_{p-1}} \mapsto \mathbf{e}_{i,x_i} \mathbf{e}_{j,x_j}.$$

It is easy to see that

$$\pi_i(\ker(\pi_i)) \times \pi_i(\ker(\pi_i)) \leqslant \pi_{ij}(G_0).$$

In addition,

$$\pi_i(G_0) = \langle \mathbf{e}_{i,a}, \mathbf{e}_{i,b}, \mathbf{e}_{i,b^{i-1}c} \rangle = X_i \cong X, \ 1 \leqslant i \leqslant p-1.$$

Suppose that $\ker(\pi_i) = \ker(\pi_j)$ for some $1 \leq i \leq j \leq p-1$. Define $\theta: X_i \to X_j$, $\pi_i(\mathbf{x}) \mapsto \pi_j(\mathbf{x})$, where \mathbf{x} runs over the elements of G_0 . It is easily shown that θ is a bijection and preserves the operations of groups. Then θ is an isomorphism, and

$$\theta: \mathbf{e}_{i,a} \mapsto \mathbf{e}_{i,a}, \ \mathbf{e}_{i,b} \mapsto \mathbf{e}_{i,b}, \ \mathbf{e}_{i,b^{i-1}c} \mapsto \mathbf{e}_{i,b^{j-1}c}.$$

It follows that X has an automorphism σ with

$$\sigma: a \mapsto a, b \mapsto b, b^{i-1}c \mapsto b^{j-1}c.$$

Note that every automorphism of X is induced by the conjugation of some element in X. Then there is $x \in X$ such that

$$a^{x} = a, b^{x} = b, (b^{i-1}c)^{x} = b^{j-1}c.$$

The only possibility is that x = 1. Then $b^{i-1}c = b^{j-1}c$, yielding i = j. Therefore, $\ker(\pi_i) \neq \ker(\pi_j)$ for $1 \leq i < j \leq p-1$.

Recalling that G_0 is normalized by τ , it is easily shown that

$$(\ker(\pi_i))^{\tau} = \ker(\pi_{i^{\tau}}), \ 1 \leqslant i \leqslant p - 1.$$

In particular, we have $\ker(\pi_i) \neq 1$ for all i. Let $1 \leq i < j \leq p-1$. Since $\ker(\pi_i) \leq G_0$, we have $\pi_j(\ker(\pi_i)) \leq \pi_j(G_0) = X_j$. Noting that $\operatorname{soc}(X_j) = T_j \cong T$, either $T_j \leq \pi_j(\ker(\pi_i))$, or $\pi_j(\ker(\pi_i)) = 1$. The latter case implies that $\ker(\pi_i) = \ker(\pi_j)$, a contradiction. Thus $T_j \leq \pi_j(\ker(\pi_i))$. Similarly, we have $T_i \leq \pi_i(\ker(\pi_j))$. Then

$$T_i \times T_j \leqslant \pi_i(\ker(\pi_j)) \times \pi_j(\ker(\pi_i)) \leqslant \pi_{ij}(G_0).$$

By [22, p.79, Lemma 4.10], we have $T^{p-1} = T_1 \times T_2 \times \cdots \times T_{p-1} \leqslant G_0$, as desired.

Now Γ is a connected (G,2)-arc-transitive graph of valency p. Note that $H \leq G^*$, and G^* has two orbits on [G:H], see Lemma 7.2. Then Γ is bipartite. Suppose that H and $H^{\mathbf{o}}$ are conjugate in G^* . Since $G^* = T^{p-1}H$, there is some $\mathbf{t} \in T^{p-1}$ such that $H^{\mathbf{t}} = H^{\mathbf{o}}$. Note that H has center $\langle \tau \rangle$, and $H^{\mathbf{o}}$ has center $\langle \tau^{\mathbf{o}} \rangle$. Recalling that $\tau^{\mathbf{o}} = \mathbf{b}^{-1}\tau$, we have $(\tau^i)^{\mathbf{t}} = \mathbf{b}^{-1}\tau$ for some integer i > 0. Noting that τ^{-1} normalizes T^{p-1} , there exists $\mathbf{t}' \in T^{p-1}$ such that $\mathbf{t}^{\tau^{-1}} = \mathbf{t}'$, and so $\tau \mathbf{t} = \mathbf{t}'\tau$. Thus, $(\tau^i)^{\mathbf{t}} = \mathbf{t}^{-1}\tau^{i\mathbf{t}} \mathbf{t} = \mathbf{t}^{-1}\tau^{i-1}\mathbf{t}'\tau$. By induction on i, we have $(\tau^i)^{\mathbf{t}} = \mathbf{t}''\tau^i$ for some $\mathbf{t}'' \in T^{p-1}$. Then $\mathbf{b}^{-1}\tau = \mathbf{t}''\tau^i$. It follows that $i \equiv 1 \pmod{p-1}$, and $\mathbf{b}^{-1} = \mathbf{t}'' \in T^{p-1}$, yielding $\mathbf{b} \in T^{p-1}$. Then $\langle \mathbf{a}, \mathbf{b}^2 \rangle = T^{p-1} \cap H \geqslant \langle \mathbf{a}, \mathbf{b} \rangle$, which is impossible as \mathbf{b} has

even order p-1. Therefore, H and $H^{\mathbf{o}}$ are not conjugate in G^* . By Lemma 7.1, Γ is not a standard double cover. This complete the proof.

Remark 7.4. Let G, H, o and Γ be as in Theorem 7.3. Although Γ is not the standard double cover of any graph admitting G^* , we do not know if there exists a graph Σ such that $\Gamma \cong \Sigma^{(2)}$. This brings us to an interesting problem as follows.

Problem 7.5. Constructing or characterizing 2-arc-transitive bipartite graphs of (diagonal) PA type, which is not the standard double cover of any graph.

REFERENCES

- [1] M. Aschbacher, Finite group theory, Cambridge University Press, 1986.
- [2] R.W. Baddeley, Two-arc transitive graphs and twisted wreath products, *J. Algebra Combin* **2** (1993), 215–237.
- [3] N.L. Biggs, Algebraic graph theory, Cambridge University Press, Cambridge, 1974.
- [4] P.J. Cameron, H.R. Maimani, G.R. Omidi and B. Tayfeh-Rezaie, 3-Designs from PSL(2,q), Discrete Math. **306** (2006), 3063–3073.
- [5] J.H. Conway, R.T. Curtis, S.P. Noton, R.A. Parker and R.A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985.
- [6] D.J. Dixon and B. Mortimer, Permutation Groups, Springer-Verlag, New York, 1996.
- [7] X.G. Fang and C.E. Praeger, Finite two-arc transitive graphs admitting a Suzuki simple group, *Comm. Algebra* **27** (1999), 3727–3754.
- [8] X.G. Fang and C.E. Praeger, Finite two-arc transitive graphs admitting a Ree simple group, Comm. Algebra 27 (1999), 3755–3769.
- [9] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.11.1, 2021. http://www.gap-system.org
- [10] M. Giudici, C.H. Li and C.E. Praeger, Analysing finite locally s-arc transitive graphs, Trans. Amer. Math. Soc. 365 (2004), 291–317.
- [11] A. Hassani, L.R. Nochefranca and C.E. Praeger, Two-arc transitive graphs admitting a two-dimensional projective linear group, *J. Group Theory* 2 (1999), 335–353.
- [12] J.W.P. Hirschfeld, Projective Geometries over Finite Fields, 2nd ed., Clarendon Press, Oxford, 1998
- [13] B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, New York, 1982.
- [14] A.A. Ivanov and C.E. Praeger, On finite affine 2-arc-transitive graph, Eur. J. Combin. 14 (1993), 421–444.
- [15] C.H. Li, Z.P. Lu and G.X. Wang, Arc-transitive graphs of square-free order and small valency, Discrete Math. 339 (2016), 2907–2918.
- [16] C.H. Li and Á. Seress, Constructions of quasiprimitive two-arc transitive graphs of product action type, in: *Finite Geometries, Groups and Computation*, 2006, 115–124.
- [17] M.W. Liebeck, C.E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating group and symmetric groups, J. Algebra 111 (1987), 365–383.
- [18] Z.P. Lu and R.Y. Song, On basic 2-arc-transitive graphs, J. Algebra Combin 58 (2023), 1081– 1093.
- [19] C. E. Praeger, An O'Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London Math. Soc. 47 (1993), 227——239.
- [20] C.E. Praeger, On a reduction theorem for finite, bipartite 2-arc-transitive graphs, Austral. J. Combin. 7 (1993), 21–36.
- [21] C.E. Praeger, Finite quasiprimitive graphs, in: Surveys in combinatorics, London, 1997, London Math. Soc. Lect. Note Ser., vol. 241, Cambridge University Press, 1997, pp. 65–85.
- [22] C.E. Praeger and C. Schneider, Permutation Groups and Cartesian Decomposition, London Math. Soc. Lect. Note Ser., vol. 449, Cambridge University Press, Cambridge, 2018.

- [23] R. Weiss, s-Transitive graphs, in: Algebraic methods in graph theory, vols. I, II, Szeged, 1978, Colloq. Soc. Janos Bolyai, vol. 25, North-Holland, Amsterdam, New York, 1981, pp.827-847.
- [24] K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. für Math. u. Phys. 3(1892), 265-284.
- Z.P. Lu, Center for Combinatorics, LPMC, Nankai University, Tianjin 300071, P. R. China

Email address: lu@nankai.edu.cn