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Abstract

For a graph G and a vertex v of G, let Gv(n1, n2, . . . , nd) be the graph
obtained from G by linking the paths on n1, n2, . . . , nd vertices to the
vertex v of G, respectively. We denote by dG(vi) (or di for short) the
degree of the vertex vi in G. Let f(x, y) > 0 be a real symmetric func-
tion in x and y. The function-weighted adjacency matrix Af (G) of a
graph G is a square matrix, where the (i, j)-entry is equal to f(di, dj) if
the vertices vi and vj are adjacent and 0 otherwise, in which di is the
degree of the vertex vi. In [Discrete Math. 347 (2024) 113772.], Shan
and Liu showed that the Aα-spectral radius of Gv (n1, n2, . . . , nd) will
increase according to the shortlex ordering of (n1, n2, . . . , nd). However,
we find some mistakes in their proof. In this paper, we will correct their
proof, and moreover, extend their results from the Aα-spectral radius
to the (Af )α-spectral radius. In addition, let Gc

v(n1, n2, . . . , nd) be the
graph obtained from G by identifying a vertex from each of the cycles
on n1, n2, . . . , nd vertices and the vertex v of G, respectively. We will
show that the (Af )α-spectral radius of Gc

v (n1, n2, . . . , nd) will decrease
according to the majorization ordering of (n1, n2, . . . , nd).
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1. Introduction

Let G = (V (G), E(G)) be a finite, undirected, and simple connected
graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set E(G). We
denote by |G| = |V (G)| the order of G. An edge e ∈ E(G) with end
vertices vi and vj is usually denoted by vivj. For i = 1, 2, . . . , n, we
denote by dG(vi) (or di for short) the degree of the vertex vi in G. A
vertex of degree 1 is called a pendent vertex.

For a weighted graph G = (V,E, ω) of order n, where ω : V×V → R≥0

is the edge weight function such that ω(vi, vj) = ω(vj, vi) > 0 if and only
if vivj ∈ E(G), the matrix Aw(G) = (aij)n×n with aij = w (vi, vj) if
vivj ∈ E(G) and 0 otherwise is called the weighted adjacency matrix of
G. Since G is a connected graph and ω(vi, vj) > 0, then Aw(G) is an
n×n nonnegative and irreducible matrix. By Perron-Frobenius theorem,
its spectral radius is the largest eigenvalue of Aw(G), denote by ρw(G).
As a special case, Aw(G) is equal to the adjacency matrix A(G) when
w(vi, vj) = 1 for each edge vivj ∈ E(G).

In molecular graph theory, the topological indices of molecular graphs
are used to reflect chemical properties of chemical molecules. There are
many topological indices and among them there is a family of degree-
based indices. The degree-based index TIf (G) of G with positive sym-
metric function f(x, y) is defined as

TIf (G) =
∑

vivj∈E(G)

f(di, dj).

Gutman [7] collected many important and well-studied chemical or topo-
logical indices; see them in Table 1. In order to study the discrimina-
tion property, Rada [20] introduced the exponentials of the best known
degree-based chemical or topological indices; see them in Table 2.

Each index maps a molecular graph into a single number. One of the
authors [14] proposed that if we use a matrix to represent the structure
of a molecular graph with weights separately on its pairs of adjacent ver-
tices, it will keep more structural information of the graph. For example,
the Randić matrix [21, 22], the Atom-Bond-Connectivity matrix [6], the
Arithmetic-Geometric matrix [25] and the Sombor matrix [12] were con-
sidered separately. Many different function-weighted adjacency matrixes
which correspond to the indexes have been studied one by one, but with-
out using unified approaches. In this paper, our main purpose is to use

2

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Function f(x,y) The corresponding index
x+ y first Zagreb index
xy second Zagreb index

(x+ y)2 first hyper-Zagreb index
(xy)2 second hyper-Zagreb index

x−3 + y−3 modified first Zagreb index
|x− y| Albertson index

(x/y + y/x)/2 extended index
(x− y)2 sigma index
1/
√
xy Randić index√
xy reciprocal Randić index

1/
√
x+ y sum-connectivity index

√
x+ y

reciprocal sum-connectivity
index

2/(x+ y) harmonic index√
(x+ y − 2)/(xy)

atom-bond-connectivity (ABC)
index

(xy/(x+ y − 2))3 augmented Zagreb index
x2 + y2 forgotten index

x−2 + y−2 inverse degree
2
√
xy/(x+ y) geometric-arithmetic (GA) index

(x+ y)/(2
√
xy) arithmetic-geometric (AG) index

xy/(x+ y) inverse sum index
x+ y + xy first Gourava index
(x+ y)xy second Gourava index

(x+ y + xy)2 first hyper-Gourava index
((x+ y)xy)2 second hyper-Gourava index

1/
√
x+ y + xy sum-connectivity Gourava index√
(x+ y)xy

product-connectivity Gourava
index√

x2 + y2 Sombor index

Table 1: Some well-studied chemical or topological indices
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Function f(x,y) The corresponding index
ex+y exponential first Zagreb index
exy exponential second Zagreb index

e1/
√
xy exponential Randić index

e
√

(x+y−2)/(xy) exponential ABC index
e2

√
xy/(x+y) exponential GA index

e2/(x+y) exponential harmonic index

e1/
√
x+y exponential sum-connectivity

index

e(xy/(x+y−2))3 exponential augmented Zagreb
index

Table 2: Some well-known exponential chemical or topological indices

unified approaches to consider the spectral properties of these matrices.
Based on these examples, the function-weighted adjacency matrix which
is denoted by Af (G) in this paper first appeared in Das et al. [5], and it
is defined as

Af (G)(i, j) =

{
f(di, dj), vivj ∈ E(G);

0, otherwise.

For i = 1, 2, . . . , n, we denote by dfG(vi) the sum of the weight of all
the edges incident with the vertex vi in G. Let Df (G) = (dij)n×n be
the function-weighted diagonal matrix with dii = dfG(vi). If f(x, y) ≡ 1,
then Df (G) is exactly the degree diagonal matrix of G, which is denoted
by D(G). Q(G) = D(G) + A(G) is called the signless Laplacian matrix
of G. As usual, denote by ρ(G) and µ(G) the spectral radius, signless
Laplacian spectral radius of G, respectively. To unify the study of A(G)
and Q(G), Nikiforov [16] put forward the concept of the Aα-matrix of a
graph G, denote by Aα(G), where

Aα(G) = αD(G) + (1− α)A(G)

and 0 ≤ α < 1. The spectral radius of Aα(G) is denoted by ρα(G) and
called Aα-spectral radius of G. From the definition, we have ρ(G) =
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ρ0(G) and 2ρ0.5(G) = µ(G).
Here we should point out that in literature Af is usually used for

the function-weighted adjacency matrix Af . However, we also have the
matrix Aα. In order to avoid confusion, we adopt Af for Af .

In this paper, we consider the Aα-spectral radius of the function-
weighted adjacency matrix Af (G). We define it as

(Af )α(G) = αDf (G) + (1− α)Af (G)

where 0 ≤ α < 1. Throughout this paper, the spectral radius of (Af )α(G)
is denoted by ρfα(G) and called (Af )α-spectral radius of the graph G. For
α = 0, (Af )α(G) is the function-weighted adjacency matrix Af (G), the
spectral radius of Af (G) is denoted by ρf (G) and called the function-
weighted adjacency spectral radius of graph G. By Perron-Frobenius
theorem, there exist positive real vectors x = (x1, x2, . . . , xn)

⊺ such that
Af

α(G)x = ρfα(G)x. Throughout this paper, we choose x such that ∥x∥2 =
1 and xi corresponds to vertex vi, and we call the unique unit positive
vector x the principal eigenvector of G.

Let P(k) denote the set of all vectors whose elements are nonde-
creasing sequences of positive integers with sums all equal to k. Let
P(k, p) be the subset of P(k) such that each vector of which contains
exactly p elements, where p ≤ k. Throughout this paper, we will use
a = [a1, a2, . . . , ap] to indicate a vector belonging to P(k, p). The short-
lex ordering of vectors in P(k) is defined as follows:

Definition 1.1. For two vectors a = [a1, a2, . . . , ap] and b = [b1, b2, . . . , bq]
in P(k), we write a ≺lex b if either p < q or, when p = q, ai < bi holds
for the smallest index i at which the two vectors differ, and we say that
a ≺lex b satisfies the shortlex ordering.

Let X = (x1, . . . , xk) and Y = (y1, . . . , yk), where x1 ≥ · · · ≥ xk and
y1 ≥ · · · ≥ yk are real. We say X majorizes Y and let X ⪰M Y , if for
every j, 1 ≤ j ≤ k,

∑j
i=1 xi ≥

∑j
i=1 yi, with equality if j = k. The name

majorization appeared first in 1959 by Hardy, Littlewood and Polya. The
theory of majorization is very useful in so many diverse fields. For more
details on this concept we refer to Arnold [1]. In this paper, we consider
the majorization ordering of vectors in P(k), in which the elements are
with nondecreasing sequences, then we have the following definition:
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Definition 1.2. For two vectors a = [a1, a2, . . . , ap] and b = [b1, b2, . . . , bp]
in P(k, p), we write a ⪰M b if for every j, 1 ≤ j ≤ p,

∑j
i=1 ai ≤

∑j
i=1 bi,

withe equality if j = p, and we say that a majorizes b.

Clearly, for any two vectors a ̸= b in P(k, p), if a ⪰M b, then for
every j, 1 ≤ j ≤ p,

∑j
i=1 ai ≤

∑j
i=1 bi. Thus ai < bi holds for the smallest

index i at which the two vectors differ. We have a ≺lex b. These two
orderings are contrary relationship.

Let a+b denote the concatenation of two vectors a and b and a∗s de-
note the concatenation of s copies of vector a. For example, if a = [1, 2, 4]
and b = [3, 2], then a+ b = [1, 2, 4, 3, 2] and a∗3 = [1, 2, 4, 1, 2, 4, 1, 2, 4].
Here, we agree that a = [a1, a2, . . . , ap] = [a1, a2, . . . , ap, 0, . . . , 0], and
a+ [0] = a.

Let G be a connected graph and v be a vertex of G (V (G) = {v} is
allowed). Let Gv(a) with a = [n1, n2, . . . , nd] be the graph obtained from
G by linking the paths on n1, n2, . . . , nd vertices to the vertex v of G,

respectively. Then |Gv(a)| = |G| +
d∑

i=1

ni and Gv(a) is called the graph

with starlike branch tree. In what follows, if Gv(a) is a starlike tree, then
we always simplify rewrite Gv(a) as Sv(a).

The graph operation that decreases or increases its spectral radius
plays an important role in the study of spectral graph theory. For 1 ≤
a ≤ b, let a = [a, b],b = [a − 1, b + 1]. If a ≥ 2, then a and b belong to
P(k, 2) and b ≺lex a, Li and Feng firstly showed that:

Theorem 1.3. [13] Let G be a connected graph with v ∈ V (G).Then

ρ (Gv(b)) < ρ (Gv(a)) .

The theorem is also well-known as the Li-Feng Grafting Theorem.
Later, Cvetković and Simić [4] showed that the Li-Feng Grafting Theorem
also holds for the signless Laplacian spectral radius, that is,

Theorem 1.4. [4] Let G be a connected graph with v ∈ V (G). Then

µ (Gv(b)) < µ (Gv(a)) .

By employing the Aα-spectral radius, Nikiforov and Rojo [17] con-
sidered the unified result of Theorems 1.3 and 1.4. They conjectured
that
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Conjecture 1.5. [17] Let G be a connected graph with v ∈ V (G) and
0 ≤ α < 1. Then

ρα (Gv(b)) < ρα (Gv(a)) .

In the same paper [17], Nikiforov and Rojo mentioned that they can

show Conjecture 1.5 for ρα (Gv(a)) ≥ 9

4
. In the sequel, Lin, Huang

and Xue [11] completely proved Conjecture 1.5 (independently, Guo and
Zhou in [8]). Recently, in [9], we considered the property of the function-
weighted adjacency spectral radius and obtained

Theorem 1.6. [9] Assume that f(x, y) > 0 is increasing in variable x.
If 5 ≤ a+ 2 ≤ b, then

ρf (Gv(b)) < ρf (Gv(a)).

Oboudi [19] considered the problem for the adjacency spectral radius
of starlike trees, which are obtained by appending at least three paths
or varying number of paths and the order of this paths satisfies the ma-
jorization ordering. They obtained the following theorem with a contrary
relationship.

Theorem 1.7. [19] Suppose that a,b ∈ P(k, p) and Sv(a) ≇ Sv(b).
Assume that a ⪯M b. Then ρ(Sv(a)) ≥ ρ(Sv(b)).

In [18], Oliveira, Stevanović and Trevisan considered the problem for
the starlike trees such that the order of the paths satisfies the shortlex
ordering and they obtained the following theorem.

Theorem 1.8. [18] Suppose that a,b ∈ P(k) and Sv(a) ≇ Sv(b). Then,
ρ(Sv(a)) < ρ(Sv(b)) if and only if a ≺lex b.

Recently, Li and Guo [15] considered the problem for the adjacency
spectral radius of the general graph Gv(a) and got

Theorem 1.9. [15] Let G be a connected graph with vertex v. Then

ρ (Gv(a)) < ρ (Gv(b))

if and only if a ≺lex b.

In [23], Shan and Liu extended Theorem 1.9 from the spectral radius
to Aα-spectral radius for α ∈ [0, 1) and proved
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Theorem 1.10. [23] Let G be a connected graph with vertex v. If α ∈
[0, 1) and a ≺lex b, then

ρα (Gv(a)) ≤ ρα (Gv(b))

where the equality holds if and only if Gv(a) ∼= Gv(b) is a path graph.

The proof of Theorem 1.10 depends on the following theorem.

Theorem 1.11. [23] Let e = [a] ∗ s + [b] and f = [c] ∗ s + [d], where
a, b, c, d and s are five integers such that a+ b = c+ d, a > max{c, d} ≥
min{c, d} > b ≥ 0 and s > 0. If v is a vertex of the connected graph G
and α ∈ [0, 1), then

ρα (Gv(e)) ≤ ρα (Gv(f))

where the equality holds if and only if α = 0 and G is a trivial graph.

From this result, we obtain that if α = 0 and G is a trivial graph,
then ρα (Gv(e)) = ρα (Gv(f)). However, if we take

e = [5] ∗ 2 + [2] and f = [4] ∗ 2 + [3],

by calculation, we get

ρ0 (Sv(e)) ≈ 2.084 < ρ0 (Sv(f)) ≈ 2.0928,

that is to say the result dose not hold. In Section 3, we will correct it
and get the following theorem.

Theorem 1.12. Let e = [a]∗s+[b] and f = [c]∗s+[d], where a, b, c, d and
s are five integers such that a + b = c + d, a > max{c, d} ≥ min{c, d} >
b ≥ 0 and s > 0. If v is a vertex of the connected graph G and α ∈ [0, 1),
then

ρα (Gv(e)) ≤ ρα (Gv(f))

where the equality holds if and only if G is a trivial graph, α = 0 and
s = 1 or s > 1 with c = b+ 1.

In addition, we will extend Theorem 1.10 for the (Af )α-spectral radius
and obtain the following result.

Theorem 1.13. Let G be a connected graph with vertex v and α ∈
[0, 1). Assume that the weight function f(x, y) > 0 satisfies that f(1, x) ≤
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f(1, 2) = f(2, x) for any x. For two vectors a = [a1, a2, . . . , ap] and
b = [b1, b2, . . . , bp] ∈ P(k, p) with a ̸= b, if a ≺lex b, then

ρfα (Gv(a)) ≤ ρfα (Gv(b)) .

where the equality holds if and only if Gv(a) ∼= Gv(b) is a path graph.

Let Gc
v(a) with a = [n1, n2, . . . , nd], ni ≥ 3 be the graph obtained from

G by identifying the vertex v of G and a vertex from each of the cycles on
n1, n2, . . . , nd vertices, respectively. From the definition, if V (G) = {v}
(that is, G is a trivial graph with vertex v), then Gc

v(a) is isomorphic to
a bouquet graph. Xue et al. [24] considered the cycle version of Li-Feng
transformation of the spectral radius and they obtained the following
result.

Theorem 1.14. [24] Let a = [a, b] and b = [a− 1, b+ 1]. If 4 ≤ a ≤ b,
then ρ(Gc

v(a)) < ρ(Gc
v(b)).

In [9], the authors considered the property of the function-weighted
adjacency spectral radius and obtained

Theorem 1.15. [9] Let a = [a, b] and b = [a − 1, b + 1]. If 4 ≤ a ≤ b
and 2f(2, 2) < ρf (Gc

v(a)), then ρf (Gc
v(a)) < ρf (Gc

v(b)).

For the vectors belonging to P(k, p), in section 4 we will consider
the relationship between the majorization ordering of vectors and the
(Af )α-spectral radii of graphs Gc

v(a), and we obtain the following result.

Theorem 1.16. Let G be a connected graph and v ∈ V (G). Assume
that the weight function f(x, y) > 0 satisfies that f(2, 2) ≤ f(2, x) for
any x ≥ 2. For two vectors a = [a1, a2, . . . , ap] and b = [b1, b2, . . . , bp] in
P(k, p) with 3 ≤ a1 and 3 ≤ b1, if α ∈ [0, 1) and a ⪯M b, then

ρfα (G
c
v(a)) ≤ ρfα (G

c
v(b))

where the equality holds if and only if a = b.

The rest of this paper is organized as follows. We will introduce some
preliminary results in Section 2. Based on this, in Section 3 we will
correct Theorem 1.11 and give it a more detailed proof, and then extend
the result from the Aα-spectral radius to (Af )α-spectral radius, as well
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as give the proof of Theorem 1.13. In section 4, we firstly consider the
cycle version of the Li-Feng transformation of (Af )α-spectral radius and
prove Theorem 1.16.

2. Some preliminary results

In this section, we provide some knowledge on matrix theory for non-
negative matrices, the characteristic polynomial of weighted graphs and
the majorization ordering of two vectors, which will be used in the sequel.

Theorem 2.1. [10] Let A and B be n × n nonnegative symmetric ma-
trices. Then ρ(A + B) ≥ ρ(A). Furthermore, if A is irreducible and B
is not null, then ρ(A+B) > ρ(A).

Theorem 2.2. [2] Let A be an n× n real symmetric matrix and B be a
principal submatrix of A. Then ρ(A) ≥ ρ(B).

Let G1 and G2 be two disjoint weighted graphs with v1 ∈ V (G1) and
v2 ∈ V (G2). The coalescence of G1 and G2, denoted by G1 (v1) ·G2 (v2)
(or G1 ·G2 for short), is obtained from G1 and G2 by identifying v1 and v2
to form a new vertex u and the edge weight function ω of G1 (v1) ·G2 (v2)
will be defined as

ω(e) =


ωGi

(e), if e ∈ E (Gi) \ {(vi, vi)} for i = 1, 2

ωG1 (v1, v1) + ωG2 (v2, v2) if e = (u, u)

0, otherwise

Assume that the weighted characteristic polynomial of a weighted graph
G is defined by ϕ(G) = det(xI − Aw(G)). Recently, Shan et al. [23]
proved

Theorem 2.3. Let G,H be two nontrivial connected weighted graphs
with u ∈ V (G) and v1, v2 ∈ V (H) Take Gi = G(u) ·H (vi) for i = 1, 2.
If ϕ (H − v2) > ϕ (H − v1) for x ≥ ρw (H − v1), then ρw (G2) > ρw (G1).

For j, k ∈ {1, . . . , n} with j ≥ k, let ej = (0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

) and

ej,k = ej − ek = (0, . . . , 0︸ ︷︷ ︸
k−1

,−1, 0, . . . , 0︸ ︷︷ ︸
j−1−k

, 1, 0, . . . , 0︸ ︷︷ ︸
n−j

).
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For any

a = [a1, a2, . . . , ak, . . . , aj, . . . , aq] ∈ P(k, q) with q ≥ j ≥ k

denote

a+ ej,k = [a1, a2, . . . , ak − 1, . . . , aj + 1, . . . , aq] ∈ P(k, q).

In [19], Oliveira considered the majorization ordering of two vectors and
obtained the following theorem.

Theorem 2.4. Let a,b ∈ P(k, q) and a ̸= b. Assume that a ⪯M b.
Then there exists a sequence a = a0 ⪯M a1 ⪯M · · · ⪯M at = b such that
for every i ∈ {1, . . . , t}, ai = ai−1 + eji,ki for some ji > ki.

3. Proof of Theorem 1.13

Firstly, we will give some lemmas which can be proven by using the
same ideas as Proposition 10, Lemma 11 and the analysis in Section 3 in
[23] and so we omit their proofs here.

Suppose that n ≥ 2 and u is an end vertex of the path Pn+1 on
n+ 1 vertices. Let Bn be the principal submatrix of Af

α (Pn+1) obtained
by deleting the row and column corresponding to the vertex u. Let
hn(x) (for short hn) be the characteristic polynomial of Bn and θn be the
maximum eigenvalue of Bn. We have the following result.

Lemma 3.1. Let p, q, l be three positive integers with q = p + l and
the weight function f(x, y) satisfy f(1, 2) = f(2, 2). Assume that h0 =
1, h1 = x− f(2, 2)α. Then for α ∈ [0, 1), when x ≥ θl it holds that

hq−1hp > hqhp−1.

Let a = [a] ∗ s+ [b]. For the graph Gv(a), suppose that Df
1 (G) is the

diagonal matrix obtained from Df (G) by replacing the diagonal entry
corresponding to vertex v with dfG(v) + (s − 1)f(2, 2). Take Q′(G) =
αDf

1 (G) + (1− α)Af (G) and denote the weighted graph associated with
Q′(G) by G̃. Notice that G̃ is trivial if and only if α = 0 and G is trivial.

Let Ps(a, b) be the weighted path on the vertex set {u0, u1, . . . , ua+b}
whose edge weights are f(2, 2) except for ω(ua−1, ua) =

√
sf(2, 2). Take

Q′(Ps(a, b)) = αDf (Ps(a, b))+(1−α)Af (Ps(a, b)) and denote the weighted

11
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graph associated with Q′(Ps(a, b)) by P̃s(a, b). Let Gs(v; a, b) be the
weighted graph obtained from G̃ and P̃s(a, b) by coalescing vertices v
and ua.

If the weight function f(x, y) > 0 satisfies that f(1, x) ≤ f(1, 2) =
f(2, x) for any x, then we get

Lemma 3.2. For the graph Gv(a) with a = [a] ∗ s+ [b], we have

ρfα (Gv(a)) ≤ ρfα (Gs(v; a, b))

where the equality holds if and only if a and b are greater than or equal
to 2, or f(1, x) = f(1, 2) for any x, or Gv(a) is a path graph.

In the proof of Theorem 1.11 in [23], if α = 0 and G is a trivial graph
but s ̸= 1, the weighted graphs Gs(v; a, b) and Gs(v; c, d) are not both
isomorphic to Ps(a, b). Moreover, by the proof we can only get

ρ (Gs(v; a, b)) < ρ (Gs(v; b+ 1, a− 1))

rather than
ρ (Gs(v; a, b)) < ρ (Gs(v; a− 1, b+ 1)) .

In the following, we will give a detailed proof of Theorem 1.12 and
extend the result from the Aα-spectral radius to the (Af )α-spectral ra-
dius. As well, we will extend Theorem 1.10 from the Aα-spectral radius
to the (Af )α-spectral radius for the vectors belonging to P(k, p).

3.1. The proof of Theorem 1.12
From Lemma 3.2, we have

ρα (Gv(e)) = ρ (Gs(v; a, b)) and ρα (Gv(f)) = ρ (Gs(v; c, d)) .

If G is a trivial graph, α = 0 and s = 1. The weighted graphs
Gs(v; a, b) and Gs(v; c, d) are both isomorphic to Ps(a, b). It follows that
ρα (Gv(e)) = ρα (Gv(f)).

Next, we will distinguish the cases that G is a trivial graph, α = 0
with s > 1, or G is a nontrivial graph, or α > 0.
Case 1. G is a trivial graph, α = 0 with s > 1.
Subcase 1.1 a = b+ 2.

12
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Since a = b+ 2, we have c = d = a− 1 = b+ 1. By

Gs(v; a, b) ∼= Gs(v; b+ 1, a− 1) ∼= Gs(v; c, d),

we have

ρα (Gs(v; a, b)) = ρα (Gs(v; c, d))

i.e., ρα (Gv(e)) = ρα (Gv(f)).
Subcase 1.2 a > b+ 2 and max{c, d} = a− 1.

If c = b+ 1 < a− 1 = d, then

Gs(v; a, b) ∼= Gs(v; b+ 1, a− 1) ∼= Gs(v; c, d).

We have ρα (Gv(e)) = ρα (Gv(f)).
If c = a− 1 > b+ 1 = d, then

ρα (Gs(v; a, b)) = ρα (Gs(v; b+ 1, a− 1))

< ρα (Gs(v; a− 1, b+ 1))

= ρα (Gs(v; c, d)) .

Thus we obtain ρα (Gv(e)) < ρα (Gv(f)).
Subcase 1.3 a > b+ 2 and max{c, d} < a− 1.

Similarly, if a− 1 > c ≥ d > b+ 1, then, by

ρα (Gs(v; a, b)) = ρα (Gs(v; b+ 1, a− 1))

< ρα (Gs(v; a− 1, b+ 1)) ,

we have
ρα (Gs(v; a− 1, b+ 1)) ≤ ρα (Gs(v; c, d)) .

Thus, ρα (Gv(e)) < ρα (Gv(f)).
Analogously, if a− 1 > d > c > b+ 1, we have

ρα (Gs(v; c, d)) > ρα (Gs(v; d+ 1, c− 1))

≥ ρα (Gs(v; a− 1, b+ 1))

> ρα (Gs(v; a, b)) .

Hence, ρα (Gv(e)) < ρα (Gv(f)).
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Case 2. G is a nontrivial graph or α > 0.
Let H = P̃s(a, b) and rewrite vertices ua, ua−1 as v1, v2, respectively.

Then

Gs(v; a, b) = G̃(v) ·H (v1) and Gs(v; b+ 1, a− 1) = G̃(v) ·H (v2) .

Since
ϕ (H − v1) = hahb and ϕ (H − v2) = ha−1hb+1,

when x ≥ ρα (Gs(v; a, b)) > θa, by Lemma 3.1 we have

hahb < ha−1hb+1.

Hence,
ϕ (H − v1) < ϕ (H − v2) .

According to Theorem 2.3, it follows that

ρα (Gs(v; a, b)) < ρα (Gs(v; b+ 1, a− 1)) . (1)

by equation Because a > b, by theorems 2.1 and 2.2, we get

ρα (Gs(v; a, b)) < ρα (Gs(v; a− 1, b+ 1)) .

If c ≥ d, it is easy to see that

ρα (Gv(e)) < ρα (Gv(f)) .

Otherwise, c < d. Then c− 1 < d+ 1. By equation (1), we have

ρα (Gs(v; d+ 1, c− 1)) < ρα (Gs(v; c, d)) .

Because a ≥ d+ 1 ≥ c− 1 ≥ b, we obtain

ρα (Gs(v; a, b)) ≤ ρα (Gs(v; d+ 1, c− 1)) .

Thus, we have ρα (Gv(e)) < ρα (Gv(f)).
Next we extend the result from the Aα-spectral radius to the (Af )α-

spectral radius with b ≥ 1.

Lemma 3.3. Let e = [a]∗s+[b] and f = [c]∗s+[d], where a, b, c, d and s
are five integers such that a+b = c+d, a > max{c, d} ≥ min{c, d} > b ≥
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1 and s > 0. Let the weight function f(x, y) > 0 satisfy that f(1, x) ≤
f(1, 2) = f(2, x) for any x. If v is a vertex of the connected graph G and
α ∈ [0, 1), then

ρfα (Gv(e)) ≤ ρfα (Gv(f))

where the equality holds if and only if one of the following conditions
hold:

(i) G is a trivial graph, α = 0 and s = 1;

(ii) G is a trivial graph, α = 0, s > 1, c = b + 1 and b ≥ 2 or
f(1, dG(v) + s+ 1) = f(2, dG(v) + s+ 1).

Proof. If G is a trivial graph, α = 0 and s = 1, then Gv(e) ∼= Gv(f) is a
path graph. We have ρfα (Gv(e)) = ρfα (Gv(f)).

If b ≥ 2 or f(1, dG(v)+s+1) = f(2, dG(v)+s+1), the proof is similar
to that of Theorem 1.12.

Next, we consider the case that b = 1 and f(1, dG(v) + s + 1) <
f(2, dG(v) + s+ 1) = f(1, 2). By Theorems 2.1 and 2.2, we have

ρfα (Gv(e)) < ρfα (Gs(v; a, b)) .

From
ρfα (Gs(v; a, b)) ≤ ρfα (Gv(f)) ,

the proof follows immediately.

3.2. The proof of Theorem 1.13
For two vectors a = [a1, a2, . . . , ap] and b = [b1, b2, . . . , bp] ∈ P(k, p)

with a ̸= b, since (P(k), ≺lex) is linearly ordered set, by the property of
shortlex ordering, there exists some 1 ≤ i ≤ p−1 such that aj = bj for any
j < i, bi = bi+1 = · · · = bp−1 = ai + 1. And, bp = ap +

∑p−1
j=i (aj − ai − 1)

such that bp + 1 ≥ ap.
Take c = [a1, a2, . . . , ai−1, ai] + [bp + 1] ∗ (p− i).
If ai+1 = ai+2 = · · · = ap = bp + 1, then

ρfα (Gv(a)) = ρfα (Gv(c)) .

Assume that p− i ≥ 2. Then bp = ai, which contradicts the fact that
the elements of b are nondecreasing. Thus p− i + 1 = 2. We have that
a = [a1, a2, . . . , ai−1, ai, ai+1] and b = [a1, a2, . . . , ai−1, ai + 1, ai+1 − 1].
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By Lemma 3.3, if Gv(a) ∼= Gv(b) is a path graph, then we have

ρfα (Gv(a)) = ρfα (Gv(b))

Otherwise, we obtain

ρfα (Gv(a)) < ρfα (Gv(b)) .

If ai+1 = ai+2 = · · · = ap = bp+1 dose not hold, then since the weight
function f(x, y) > 0 satisfies that f(1, x) ≤ f(1, 2) = f(2, x) for any x,
by Theorems 2.1 and 2.2 we get that

ρfα (Gv(a)) < ρfα (Gv(c)) .

Similarly, by Lemma 3.3 it is easy to see that

ρfα (Gv(c)) ≤ ρfα (Gv(b)) .

Thus we obtain
ρfα (Gv(a)) < ρfα (Gv(b)) .

Remark 3.4. This result works for the weighted adjacency matrices de-
fined by the augmented Zagreb index and exponential augmented Zagreb
index listed in Tables 1 and 2. It is interesting to consider the weighted
adjacency matrices correspond to other indices.

Remark 3.5. We not only use unified approaches to consider the spectral
properties of these matrices, but also obtain Theorem 1.9 by taking α = 0,
f(x, y) ≡ 1 and Theorem 1.10 by taking f(x, y) ≡ 1 directly.

4. Proof of Theorem 1.16

Recall that a path P = v0v1 . . . vk in G is an internal path if dG (vi) =
2 for every 1 ≤ i ≤ k − 1. Suppose that the spectral radius of G is
ρfα (G) > 2f(2, 2). Let x be a principal eigenvector of G, and xvi be the
entry of x corresponding to vi. Note that xvi satisfies that

f(2, 2)(1− α)xvi−1
− [ρfα (G)− 2f(2, 2)α]xvi + f(2, 2)(1− α)xvi+1

= 0
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for 2 ≤ i ≤ k − 2, that is

xvi−1
− [ρfα (G)− 2f(2, 2)α]

f(2, 2)(1− α)
xvi + xvi+1

= 0.

Clearly, this is a recurrence relation, and the characteristic equation is

t2 − [ρfα (G)− 2f(2, 2)α]

f(2, 2)(1− α)
t+ 1 = 0.

Suppose that t2 ≥ t1 are roots of the above equation. Since ρfα (G) >
2f(2, 2), we have t2 > 1 > t1 > 0 and t1t2 = 1. Let xv1 and xvk−1

be the
initial conditions. By solving this recurrence relation, we have

xvi =
1

tk−1
2 − tk−3

1

[(
xv1t

k
2 − xvk−1

t22
)
ti1 +

(
xvk−1

− xv1t
k−2
1

)
ti2
]

for 1 ≤ i ≤ k − 1. If xv1 = xvk−1
, then

xvi =
xv1

tk−1
2 − tk−3

1

(
tk−i
2 − ti−2

1 + ti2 − tk−i−2
1

)
=

xv1

tk−2
2 − tk−2

1

(
tk−i−1
2 − tk−i−1

1 + ti−1
2 − ti−1

1

)
.

Firstly, we prove the following proposition.

Proposition 4.1. For t2 > 1 > t1 > 0, t1t2 = 1 and 2 ≤ i ≤ k − 2,

xvi =
xv1

tk−2
2 − tk−2

1

(
tk−i−1
2 − tk−i−1

1 + ti−1
2 − ti−1

1

)
is strictly decreasing in k for fixed xv1 > 0.

Proof. Let

g(k) =
tk−i−1
2 − tk−i−1

1 + ti−1
2 − ti−1

1

tk−2
2 − tk−2

1

.

Due to t1t2 = 1, we have

g(k) =
t2k−i−3
2 + tk+i−3

2 − tk−i−1
2 − ti−1

2

t2k−4
2 − 1

.
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We obtain

g′(k) =

[(
2t2k−i−3

2 + tk+i−3
2 − tk−i−1

2

)
(t2k−4

2 − 1)
]
ln t2

(t2k−4
2 − 1)2

−
[
(t2k−i−3

2 + tk+i−3
2 − tk−i−1

2 − ti−1
2 )2t2k−4

2

]
ln t2

(t2k−4
2 − 1)2

=

[(
t2i−2
2 − 1

) (
2t2k−i−3

2 − t3k−i−5
2 − tk−i−1

2

)]
ln t2

(t2k−4
2 − 1)2

< 0.

Thus we get

xvi =
xv1

tk−2
2 − tk−2

1

(
tk−i−1
2 − tk−i−1

1 + ti−1
2 − ti−1

1

)
is strictly decreasing in k for fixed xv1 > 0.

Next, we will use Proposition 4.1 to prove the cycle version of Li-Feng
Grafting Theorem for (Af )α-spectral radius. The proofs of Theorem 1.14
and Theorem 1.15 are divided into four cases. Here, we firstly prove the
property of principal eigenvector. Then we only need to consider two
cases.

Lemma 4.2. Let a = [a, b] and b = [a−1, b+1]. If α ∈ [0, 1), 4 ≤ a ≤ b
and the weight function f(x, y) > 0 satisfies that f(2, 2) ≤ f(2, x) for
any x ≥ 2, then ρfα(G

c
v(a)) < ρfα(G

c
v(b)).

Proof. Let H = Gc
v(a). Since the weight function f(x, y) > 0 satisfies

that f(2, 2) ≤ f(2, x) for any x ≥ 2, we have ρfα(H) > 2f(2, 2). Then by
taking equation

xvi =
xv1

tk−2
2 − tk−2

1

(
tk−i−1
2 − tk−i−1

1 + ti−1
2 − ti−1

1

)
in mind, it is easy to see that xvi is monotonically decreasing for 1 ≤ i ≤
l = ⌊a

2
⌋. That is

xu1 > xu2 > · · · > xul−1
> xul

.

Similarly, we have

xv1 > xv2 > · · · > xvl−1
> xvl .

18
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Suppose that the pendant cycle of length a is C = vu1u2 . . . ua−1v and
the pendant cycle of length b is C ′ = vv1v2 . . . vb−1v.

Firstly, we show xv ≥ xu1 by negation. If xv < xu1 , then

(1− α) [2f(2, dH(v))xu1 + 2f(2, dH(v))xv1 ]

≤
[
ρfα(H)− 2f(2, dH(v))α

]
xv

<
{
ρfα(H)− α [f(2, dH(v)) + f(2, 2)]

}
xv

<
{
ρfα(H)− α [f(2, dH(v)) + f(2, 2)]

}
xu1

= (1− α) [f(2, dH(v))xv + f(2, 2)xu2 ] .

By xu1 > xu2 , we have xv > xu1 , which contradicts xv < xu1 . Hence
xv ≥ xu1 .

In addition, we prove xu1 ≥ xv1 . Since for the pendant cycle C, we
have {

ρfα(H)− α [f(2, dH(v)) + f(2, 2)]
}
xu1

= f(2, dH(v))(1− α)xv + f(2, 2)(1− α)xu2

= f(2, dH(v))(1− α)xv +
f(2, 2)(1− α)

(
ta−3
2 − ta−3

1 + t2 − t1
)
xu1

ta−2
2 − ta−2

1

.

Hence, we obtain{
ρfα(H)− α [f(2, dH(v)) + f(2, 2)]−

f(2, 2)(1− α)
(
ta−3
2 − ta−3

1 + t2 − t1
)

ta−2
2 − ta−2

1

}
xu1

= f(2, dH(v))(1− α)xv.

By an argument similar to the proof in Proposition 4.1, it is easy to
see that xu1 ≥ xv1 for a ≤ b.

Then we consider the following two cases.
Case 1. a is even.

Then a = 2l. By Proposition 4.1 and xu1 ≥ xv1 , we have xul
≥

xvl . If xv1 ≥ xul
, then there exists an integer 1 ≤ i ≤ l − 1 such that

xvi ≥ xul
≥ xvi+1

. Let H ′ be a graph obtained from H by deleting
edges ulul−1, ulul+1, vivi+1 and adding edges ul−1ul+1, ulvi, ulvi+1. Then
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H ′ ∼= Gc
v(b). We have〈
Af

α (H
′)x,x

〉
− ⟨Af

α(H)x,x⟩
2f(2, 2)(1− α)

= xul−1
xul+1

+ xul
xvi + xul

xvi+1
− xul

xul−1
− xul

xul+1
− xvixvi+1

= x2
ul−1

+ xul
xvi + xul

xvi+1
− 2xul

xul−1
− xvixvi+1

=
(
xul−1

− xul

)2
+ (xvi − xul

)
(
xul

− xvi+1

)
> 0

and so,

ρfα (H
′) ≥

〈
Af

α (H
′)x,x

〉
> ⟨Af

α(H)x,x⟩ = ρfα(H).

That is,
ρfα(G

c
v(a)) < ρfα(G

c
v(b)).

Otherwise, xv ≥ xul
> xv1 . Let H ′ be a graph obtained from H

by deleting edges ulul−1, ulul+1, vv1 and adding edges ul−1ul+1, ulv, ulv1.
Then H ′ ∼= Gc

v(b). We have〈
Af

α (H
′)x,x

〉
− ⟨Af

α(H)x,x⟩
= [2f(2, 2)(1− α)]

[
xul−1

xul+1
+ xul

xv1 − xul
xul−1

− xul
xul+1

]
+ 2f(2, dH(v))(1− α) (xul

xv − xvxv1)

+ α [f(2, dH(v))− f(2, 2)]
[
x2
ul
− x2

v1

]
≥ 2f(2, 2)(1− α)

[(
xul

− xul−1

)2
+ (xv − xul

) (xul
− xv1)

]
+ α [f(2, dH(v))− f(2, 2)]

[
x2
ul
− x2

v1

]
> 0.

We obtain
ρfα(G

c
v(a)) < ρfα(G

c
v(b)).

Case 2. a is odd.
Then a = 2l + 1. Similarly, if xv1 ≥ xul

, then there exists an integer
1 ≤ i ≤ l − 1 such that xvi ≥ xul

≥ xvi+1
. Let H ′ be a graph ob-

tained from H by deleting edges ulul−1, ulul+1, vivi+1 and adding edges
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ul−1ul+1, ulvi, ulvi+1. Then H ′ ∼= Gc
v(b). And we obtain〈

Af
α (H

′)x,x
〉
− ⟨Af

α(H)x,x⟩
2f(2, 2)(1− α)

= xul−1
xul+1

+ xul
xvi + xul

xvi+1
− xul

xul−1
− xul

xul+1
− xvixvi+1

= xul
xvi + xul

xvi+1
− x2

ul
− xvixvi+1

= (xvi − xul
)
(
xul

− xvi+1

)
≥ 0.

If
〈
Af

α (H
′)x,x

〉
− ⟨Af

α(H)x,x⟩ = 0, then either xul
= xvi or xul

=
xvi+1

(suppose that xv0 = xv), which implies that x is not a principal
eigenvector of H ′. Thus

ρfα (H
′) >

〈
Af

α (H
′)x,x

〉
≥ ⟨Af

α(H)x,x⟩ = ρfα(H).

Otherwise, xv ≥ xul
> xv1 . Let H ′ be a graph obtained from H by delet-

ing edges ulul−1, ulul+1, vv1 and adding edges ul−1ul+1, ulv, ulv1. Then
H ′ ∼= Gc

v(b). Similarly, we have〈
Af

α (H
′)x,x

〉
− ⟨Af

α(H)x,x⟩ > 0.

Consequently, we get ρfα(G
c
v(a)) < ρfα(G

c
v(b)).

According to Theorem 2.4 and Lemma 4.2, it is easy to obtain The-
orem 1.16.

Remark 4.3. This result works for the weighted adjacency matrices de-
fined by almost half of the indices listed in Tables 1 and 2. Such as mod-
ified first Zagreb index, extended index, Randić index, sum-connectivity
index, harmonic index, atom-bond-connectivity (ABC) index, augmented
Zagreb index, arithmetic-geometric (AG) index, inverse sum index, sum-
connectivity Gourava index, exponential Randić index, exponential ABC
index, exponential harmonic index, exponential sum-connectivity index
and exponential augmented Zagreb index. It is interesting to consider the
weighted adjacency matrices correspond to other indices.
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5. Concluding remarks

In [23], Shan and Liu showed that the Aα-spectral radius of Gv (n1, n2, . . . , nd)
will increase according to the shortlex ordering of (n1, n2, . . . , nd). In this
paper, we improve their result and extend it from Aα-spectral radius to
the (Af )α-spectral radius. In addition, we consider the cycle version
of Li-Feng Grafting Theorem of (Af )α-spectral radius and obtain the
relationship between majorization ordering of (n1, n2, . . . , nd) and the
(Af )α-spectral radii of Gc

v (n1, n2, . . . , nd).
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