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Abstract

For a graph G, let dv be the degree of a vertex v. Given a symmetric

real function f(x, y), the weight of edge uv in graph G is equal to the value

f(du, dv). The degree-based weighted adjacency matrix is defined as Af (G),

in which the (u, v)-entry is equal to f(du, dv) if uv is an edge of G and 0 oth-

erwise. In this paper, we consider the Li-Feng transformation and show that

if a graph G contains two pendant paths on a common vertex, the uniform

distribution of pendant paths increases the largest eigenvalue of Af (G), when

f(x, y) is increasing in x and the length of two pendant paths should be at

least 2. We also consider the cycle version of Li-Feng transformation and show

that if a graph G contains two pendant cycles on a common vertex, the uni-

form distribution of pendant cycles decreases the largest eigenvalue of Af (G),

when λ1(Af (G)) > 2f(2, 2). The purpose of this paper is to unify the study

of the graph operation on the largest eigenvalue for the degree-based weighted

adjacency matrix.
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1 Introduction

Let G = (V (G), E(G)) be a finite, undirected, simple and connected graph with

vertex set V (G) and edge set E(G). We denote by dv the degree of the vertex v in

G, NG(v) the set of neighbours of vertex v in G. An edge e ∈ E(G) with end vertices

u and v is usually denoted by uv.

In molecular graph theory, the topological indices of molecular graphs are used

to reflect chemical properties of chemical molecules. The degree-based index TIf (G)

of G with positive symmetric function f(x, y) is defined as

TIf (G) =
∑

uv∈E(G)

f(du, dv).

Gutman [11] collected many important and well-studied topological indices; see them

in Table 1. Based on one concrete index, a molecular graph has a single number,

obtained by summing up the edge-weights in a molecular graph with edge-weights

defined by the function f(x, y).

In algebraic graph theory, the study of matrices associated with a graph G is an

important topic. One of the authors Li in [17] proposed that if we use a matrix to

represent the structure of a molecular graph with weights separately on its pairs of

adjacent vertices, it will keep more structural information of the graph than an index.

For example, the Randić matrix [31, 32], the ABC matrix [5], the AG matrix [40] and

the Sombor matrix [12] were considered separately. The weighted adjacency matrix

Af (G) first appeared in [4], and it is defined as

Af (G)uv =

{
f(du, dv), uv ∈ E(G);

0, otherwise.

The largest eigenvalue of the weighted adjacency matrix Af (G) is λ1(Af (G)). If for

uv ∈ E(G), f(du, dv) = 1 and 0 otherwise, then Af (G) is the adjacency matrix A(G),

we omit the writing of f .

As one can see that from each index in Table 1, one can get a weighted matrix

defined by that index. There have been a lot of publications studying these indices

and matrices one by one separately. However, the methods used in these publications

are the same or similar. So in recent years, it is a trend to develop unified methods

to deal with such degree-based indices and function-weighted adjacency matrices, see

[2, 6, 7, 8, 14, 15, 19, 20, 21, 23, 24, 25, 26] and a survey paper [22]. About the

weighted adjacency matrix, Li and Wang [23] first tried to find unified methods to

study the extremal eigenvalues of Af (G). They obtained the trees with the largest
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Edge-weight function f(x,y) The corresponding index

x+ y first Zagreb index

xy second Zagreb index

(x+ y)2 first hyper-Zagreb index

(xy)2 second hyper-Zagreb index

x−3 + y−3 modified first Zagreb index

|x− y| Albertson index

(x/y + y/x)/2 extended index

(x− y)2 sigma index

1/
√
xy Randić index

√
xy reciprocal Randić index

1/
√
x+ y sum-connectivity index

√
x+ y reciprocal sum-connectivity index

2/(x+ y) harmonic index√
(x+ y − 2)/(xy) atom-bond-connectivity (ABC) index

(xy/(x+ y − 2))3 augmented Zagreb index

x2 + y2 forgotten index

x−2 + y−2 inverse degree

2
√
xy/(x+ y) geometric-arithmetic (GA) index

(x+ y)/(2
√
xy) arithmetic-geometric (AG) index

xy/(x+ y) inverse sum index

x+ y + xy first Gourava index

(x+ y)xy second Gourava index

(x+ y + xy)2 first hyper-Gourava index

((x+ y)xy)2 second hyper-Gourava index

1/
√
x+ y + xy sum-connectivity Gourava index√
(x+ y)xy product-connectivity Gourava index√
x2 + y2 Sombor index

Table 1: Some well-studied topological indices
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eigenvalue of Af (G) is star Sn or double star Sd,n−d, with the smallest eigenvalue of

Af (G) is Pn, when f(x, y) has some functional properties. Zheng et al. [39] added

a property P∗ to f(x, y) and studied the trees and unicyclic graphs with the largest

and smallest weighted adjacency eigenvalues. Li and Yang [26] gave some lower

and upper bounds of the largest weighted adjacency eigenvalue λ1(Af (G)). In [8],

Gao and Yang got the gap between two largest eigenvalues: λ1(Af (G)), λ1(Af (H)),

where H is obtained from G by some kinds of graph operations, including deleting

vertices, deleting an edge and subdividing an edge. They also obtained some bounds

for the largest weighted adjacency eigenvalue of irregular weighted graphs. Gao et

al. [7] considered the unimodality of the eigenvector x on an induced path of G,

and investigated how the largest weighted adjacency eigenvalue λ1(Af (G)) changes

when G is perturbed by vertex contraction or edge subdivision. In this paper, we

are interested in the effects on the largest weighted adjacency eigenvalue λ1(Af (G))

under two kinds of graph transformation.

Let v0 be a vertex of a connected graph G. Attaching two new paths: v0v1v2 . . . vp

and v0u1u2 . . . uq of length p and q, respectively, at v0, we obtain the connected graph

Gv0(p, q). It is clear that graph Gv0(p, q) contains two pendent paths. Li and Feng

[18] introduced a transformation by changing the lengths of these two pendant paths

and obtained the following result.

Theorem 1.1 (Li-Feng transformation [18]) If p ≥ q + 2 ≥ 2 in graph Gv0(p, q),

then

λ1(A(Gv0(p− 1, q + 1))) > λ1(A(Gv0(p, q))).

Since then, Theorem 1.1 has been extensively studied in spectral graph theory.

Because this is a powerful tool to investigate the graph with maximum or minimum

spectral radius among a given class of graphs, see [1, 9, 16, 27, 29, 30, 33, 34, 35, 36,

38]. Using Theorem 1.1, Berman and Zhang [1] studied the spectral radius of graphs

with n vertices and k cut vertices and described the graph that has the maximal

spectral radius in this class; Simić et al. [33] considered the set of caterpillars with

a fixed order and diameter, or with a fixed degree sequence, whose spectral radius

is maximal; Guo [9] determined graphs with the largest spectral radius among all

the unicyclic and all the bicyclic graphs with n vertices and k pendant vertices,

respectively; Stevanović and Hansen [35] obtained the minimum spectral radius of

graphs with a given clique number. Furthermore, researchers considered the Li-Feng

transformation for the largest eigenvalues of the Laplacian matrix [10], the signless

Laplacian matrix [3], the Aα-matrix [28]. These results have been extensively proved

to be efficient in ordering graphs by the largest eigenvalue, and will be very important
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for our future research. Here, we consider the Li-Feng transformation for the largest

eigenvalues of the weighted adjacency matrix.

Moreover, in [37], Xue et al. considered the cycle version of Li-Feng transfor-

mation. Let v0 be a vertex of a connected graph G. Attaching two new cycles:

v0v1v2 . . . vk−1v0 and v0u1u2 . . . ul−1v0 of length k and l, respectively, at v0, we obtain

the connected graph Gc
v0
(k, l). It is clear that graph Gc

v0
(k, l) contains two pendent

cycles. They obtained the following theorem.

Theorem 1.2 [37] If k ≥ l ≥ 4 in graph Gc
v0
(k, l), then

λ1(A(G
c
v0
(k + 1, l − 1))) > λ1(A(G

c
v0
(k, l))).

The cycle version of Li-Feng transformation tells us that the uniform distribution

of pendant cycles decreases the spectral radius. Hence, this result provides us a

direction for future research on the extremal spectral radius of graphs containing

cycles. This is an important graph operation in our study. Next, we also consider

the cycle version of Li-Feng transformation for the largest eigenvalues of the weighted

adjacency matrix.

2 Some preliminary results

In this section, we provide some preliminary results of matrix theory and weighted

adjacency matrix that will be used in the subsequent sections.

Lemma 2.1 [13] Let M be an n × n nonnegative and symmetric matrix. Then

λ1(M) ≥ yTMy for any unit vector y, and the equality holds if and only if My =

λ1(M)y.

Lemma 2.2 (Perron–Frobenius [13]) Let M be a nonnegative irreducible square ma-

trix. Then the largest eigenvalue λ1(M) is simple, with a corresponding eigenvector

whose entries are all positive.

We call such a positive unit eigenvector x corresponding to the largest eigenvalue

of M is a principal eigenvector. In this paper, for a principal eigenvector x of Af (G),

we use xv to denote the entry of x corresponding to this vertex v. Note that in the

remainder of this paper, we always assume that the edge-weight f(du, dv) > 0 for any

edge uv ∈ E(G).
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Lemma 2.3 [7] Let v1v2 . . . vk−1 be an induced path of G such that dvi = 2 for

1 ≤ i ≤ k−1, and x be a principal eigenvector of λ1(Af (G)). If λ1(Af (G)) > 2f(2, 2),

then the following statements hold.

(1) If xv1 = xvk−1
, then

xv1 > xv2 > · · · > xv⌊ k
2 ⌋

= xv⌈ k
2 ⌉

< · · · < xvk−2
< xvk−1

and xvi = xvk−i
for 2 ≤ i ≤ k − 2.

(2) If xv1 < xvk−1
, then there is an integer 1 ≤ j ≤ ⌊k

2
⌋ such that

xv1 > xv2 > · · · > xvj ≥ xvj+1
< · · · < xvk−2

< xvk−1

or

xv1 > xv2 > · · · > xvj < xvj+1
< · · · < xvk−2

< xvk−1
.

Moreover, xvi < xvk−i
for 2 ≤ i ≤ ⌈k

2
⌉ − 1.

Theorem 2.4 [7] Let G ̸= Cn be a connected graph of order n. If f(x, y) > 0 is

increasing in variable x and G contains a cycle, then λ1(Af (G)) > 2f(2, 2).

3 Main results

In this section, we first consider the cycle version of Li-Feng transformation with

respect to the largest eigenvalue of Af (G), and then consider the Li-Feng transfor-

mation with respect to the largest eigenvalue of Af (G). Before proving Theorem 3.2,

we first compare two entries xv1 , xu1 of a principal eigenvector x on two cycles in

graph Gc
v0
(k, l).

Lemma 3.1 If k ≥ l ≥ 4 in graph Gc
v0
(k, l) and λ1(Af (G

c
v0
(k, l))) > 2f(2, 2), then

xv1 ≤ xu1 .

In particular, xv1 < xu1 if k > l ≥ 4.

Proof. Let x be a principal eigenvector of Af (G
c
v0
(k, l)). First, we consider the

induced path v1v2 . . . vk−1, where dvi = 2 for 1 ≤ i ≤ k − 1. We have

λ1(Af (G
c
v0
(k, l)))xvi = f(2, 2)xvi−1

+ f(2, 2)xvi+1
,
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for 2 ≤ i ≤ k − 2. Hence,

λ1(Af (G
c
v0
(k, l)))

f(2, 2)
xvi = xvi−1

+ xvi+1
,

for 2 ≤ i ≤ k − 2. This is a recurrence relation and the characteristic equation is

t2 −
λ1(Af (G

c
v0
(k, l)))

f(2, 2)
t+ 1 = 0.

Because λ1(Af (G
c
v0
(k, l))) > 2f(2, 2), the equation above has two unequal real roots

t1 and t2 such that {
t1 + t2 =

λ1(Af (G
c
v0

(k,l)))

f(2,2)
,

t1 · t2 = 1.

Without loss of generality, we assume that t2 > 1 > t1 > 0. Let xv1 and xvk−1
be

the initial conditions. We obtain the solution of this linear homogeneous recurrence

relation with constant coefficients is

xvi =
1

tk−1
2 − tk−3

1

((xv1t
k
2 − xvk−1

t22)t
i
1 + (xvk−1

− xv1t
k−2
1 )ti2).

Since

λ1(Af (G
c
v0
(k, l)))xv1 = f(dv0 , 2)xv0 + f(2, 2)xv2 ,

we have

xv0 =
1

f(dv0 , 2)
(λ1(Af (G

c
v0
(k, l)))xv1 − f(2, 2)xv2)

=
1

f(dv0 , 2)
((t1 + t2)f(2, 2)xv1 − f(2, 2)xv2)

=
f(2, 2)

f(dv0 , 2)
((t1 + t2)xv1 −

1

tk−1
2 − tk−3

1

((xv1t
k
2 − xvk−1

t22)t
2
1 + (xvk−1

− xv1t
k−2
1 )t22))

=
f(2, 2)

f(dv0 , 2)

(
tk2 − tk−2

1

tk−1
2 − tk−3

1

xv1 +
1− t22

tk−1
2 − tk−3

1

xvk−1

)
.

Recall that xv1 = xvk−1
. It follows that

xv0 =
f(2, 2)

f(dv0 , 2)
· t

k
2 − tk−2

1 + 1− t22
tk−1
2 − tk−3

1

xv1 . (3.1)

If we consider the induced path u1u2 . . . ul−1, with the same method, then we obtain

xv0 =
f(2, 2)

f(dv0 , 2)
· t

l
2 − tl−2

1 + 1− t22
tl−1
2 − tl−3

1

xu1 . (3.2)

Now, let

h(x) =
tx2 − tx−2

1 + 1− t22
tx−1
2 − tx−3

1

.
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By calculating the first-order derivative of h(x), we get

h
′
(x) =

t2 ln t2(t
x−2
2

2 − t
x−2
2

1 )2(t22 − 1)

(tx−1
2 − tx−3

1 )2
> 0,

for t2 > 1. This means that h(x) is monotonically increasing in x.

From the definition of the graph Gc
v0
(k, l), we know that v0 is the common vertex

of cycles v0v1v2 . . . vk−1v0 and v0u1u2 . . . ul−1v0. From equations (3.1), (3.2) and the

monotonicity of h(x), we can obtain our result directly. �

Now we give the cycle version of Li-Feng transformation with respect to the largest

eigenvalue of Af (G). The following result means that if a graph contains two pendant

cycles on a common vertex, the uniform distribution of pendant cycles decreases the

largest weighted adjacency eigenvalue. This conclusion is the same as Theorem 1.2.

Theorem 3.2 If k ≥ l ≥ 4 in graph Gc
v0
(k, l) and λ1(Af (G

c
v0
(k, l))) > 2f(2, 2), then

λ1(Af (G
c
v0
(k + 1, l − 1))) > λ1(Af (G

c
v0
(k, l))).

Proof. Let x be a principal eigenvector of Af (G
c
v0
(k, l)). Since xv1 = xvk−1

and

xu1 = xul−1
, from Lemma 2.3 (1), we have

xv1 > xv2 > · · · > xv⌊ k
2 ⌋

and

xu1 > xu2 > · · · > xu⌊ l
2 ⌋
.

Furthermore, we have

xvi =
xv1

tk−1
2 − tk−3

1

(tk−i
2 − ti−2

1 + ti2 − tk−2−i
1 ),

for 1 ≤ i ≤ k − 1, and

xui
=

xu1

tl−1
2 − tl−3

1

(tl−i
2 − ti−2

1 + ti2 − tl−2−i
1 ),

for 1 ≤ i ≤ l − 1. Next, we consider four cases.

Case 1. Suppose that k and l are both even. Set k = 2p and l = 2q. It follows

that

xvp =
2

tp−1
2 + tp−1

1

xv1

and

xuq =
2

tq−1
2 + tq−1

1

xu1 .
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Since p ≥ q, from Lemma 3.1, we know xv1 ≤ xu1 . And 2

tp−1
2 +tp−1

1

≤ 2

tq−1
2 +tq−1

1

, thus

xvp ≤ xuq . Recall that xv1 > xv2 > · · · > xvp . We consider two subcases.

Subcase 1.1 There exists an integer 1 ≤ i ≤ p− 1 such that xvi ≥ xuq ≥ xvi+1
.

Suppose that Gc
v0
(k+1, l−1) is a graph obtained from Gc

v0
(k, l) by deleting edges

uquq−1, uquq+1, vivi+1 and adding edges uq−1uq+1, uqvi, uqvi+1. We have

1

2
(xTAf (G

c
v0
(k + 1, l − 1))x− xTAf (G

c
v0
(k, l))x)

= f(duq−1 , duq+1)xuq−1xuq+1 + f(duq , dvi)xuqxvi + f(duq , dvi+1
)xuqxvi+1

−
f(duq , duq−1)xuqxuq−1 − f(duq , duq+1)xuqxuq+1 − f(dvi , dvi+1

)xvixvi+1

= f(2, 2)(xuq−1xuq+1 + xuqxvi + xuqxvi+1
− xuqxuq−1 − xuqxuq+1 − xvixvi+1

)

= f(2, 2)(x2
uq−1

+ xuqxvi + xuqxvi+1
− 2xuqxuq−1 − xvixvi+1

)

= f(2, 2)((xuq − xuq−1)
2 + (xvi − xuq)(xuq − xvi+1

))

> 0.

From Lemma 2.1, thus λ1(Af (G
c
v0
(k + 1, l − 1))) > λ1(Af (G

c
v0
(k, l))).

Subcase 1.2 xuq > xv1 .

Suppose that Gc
v0
(k+1, l−1) is a graph obtained from Gc

v0
(k, l) by deleting edges

uquq−1, uquq+1, v0v1 and adding edges uq−1uq+1, uqv0, uqv1. We have

1

2
(xTAf (G

c
v0
(k + 1, l − 1))x− xTAf (G

c
v0
(k, l))x)

= f(duq−1 , duq+1)xuq−1xuq+1 + f(duq , dv0)xuqxv0 + f(duq , dv1)xuqxv1−
f(duq , duq−1)xuqxuq−1 − f(duq , duq+1)xuqxuq+1 − f(dv0 , dv1)xv0xv1

= f(2, 2)x2
uq−1

+ f(2, dv0)xuqxv0 + f(2, 2)xuqxv1 − 2f(2, 2)xuqxuq−1 − f(2, dv0)xv0xv1

= f(2, 2)(xuq − xuq−1)
2 + (f(2, dv0)xv0 − f(2, 2)xuq)(xuq − xv1)

> 0.

Because

f(2, dv0)xv0 − f(2, 2)xuq = f(2, dv0) ·
f(2, 2)

f(2, dv0)
· t

2q
2 − t2q−2

1 + 1− t22
t2q−1
2 − t2q−3

1

xu1 − f(2, 2) · 2(tq2 − tq−2
1 )

t2q−1
2 − t2q−3

1

xu1

= f(2, 2)
(t

q
2
2 − t

q
2
1 )

2(tq2 − tq−2
1 )

t2q−1
2 − t2q−3

1

xu1

> 0,
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the inequality above holds. From Lemma 2.1, thus λ1(Af (G
c
v0
(k + 1, l − 1))) >

λ1(Af (G
c
v0
(k, l))).

Case 2. Suppose that k is even and l is odd. Set k = 2p and l = 2q + 1. It

follows that

xvp =
2

tp−1
2 + tp−1

1

xv1

and

xuq =
t2 + 1

tq2 + tq−1
1

xu1 .

Since k > l, from Lemma 3.1, we know xv1 < xu1 . And p ≥ q + 1, we have

(t2 + 1)(tp−1
2 + tp−1

1 ) = tp2 + tp−2
1 + tp−1

2 + tp−1
1 > 2(tq2 + tq−1

1 ).

Thus xvp < xuq . Recall that xv1 > xv2 > · · · > xvp . We divided into two subcases.

Subcase 2.1 There exists an integer 1 ≤ i ≤ p− 1 such that xvi ≥ xuq ≥ xvi+1
.

Suppose that Gc
v0
(k+1, l−1) is a graph obtained from Gc

v0
(k, l) by deleting edges

uquq−1, uquq+1, vivi+1 and adding edges uq−1uq+1, uqvi, uqvi+1. We have

1

2
(xTAf (G

c
v0
(k + 1, l − 1))x− xTAf (G

c
v0
(k, l))x)

= f(duq−1 , duq+1)xuq−1xuq+1 + f(duq , dvi)xuqxvi + f(duq , dvi+1
)xuqxvi+1

−
f(duq , duq−1)xuqxuq−1 − f(duq , duq+1)xuqxuq+1 − f(dvi , dvi+1

)xvixvi+1

= f(2, 2)(xuqxvi + xuqxvi+1
− x2

uq
− xvixvi+1

)

= f(2, 2)(xvi − xuq)(xuq − xvi+1
)

≥ 0.

If 1
2
(xTAf (G

c
v0
(k + 1, l − 1))x − xTAf (G

c
v0
(k, l))x) = 0, because xvi > xvi+1

, then

either xuq = xvi or xuq = xvi+1
. This implies that

λ1(Af (G
c
v0
(k+1, l−1))) = xTAf (G

c
v0
(k+1, l−1))x = xTAf (G

c
v0
(k, l))x = λ1(Af (G

c
v0
(k, l))).

We assume that xuq = xvi , then it is not difficult for us to deduced that{
λ1(Af (G

c
v0
(k + 1, l − 1)))xvi = f(dvi−1

, 2)xvi−1
+ f(2, 2)xuq ,

λ1(Af (G
c
v0
(k, l)))xvi = f(dvi−1

, 2)xvi−1
+ f(2, 2)xvi+1

.

Because xuq > xvi+1
, this is a contradiction. From Lemma 2.1, thus λ1(Af (G

c
v0
(k +

1, l − 1))) > λ1(Af (G
c
v0
(k, l))).

Subcase 2.2 xuq > xv1 .
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Suppose that Gc
v0
(k+1, l−1) is a graph obtained from Gc

v0
(k, l) by deleting edges

uquq−1, uquq+1, v0v1 and adding edges uq−1uq+1, uqv0, uqv1. We have

1

2
(xTAf (G

c
v0
(k + 1, l − 1))x− xTAf (G

c
v0
(k, l))x)

= f(duq−1 , duq+1)xuq−1xuq+1 + f(duq , dv0)xuqxv0 + f(duq , dv1)xuqxv1−
f(duq , duq−1)xuqxuq−1 − f(duq , duq+1)xuqxuq+1 − f(dv0 , dv1)xv0xv1

= f(2, dv0)xuqxv0 + f(2, 2)xuqxv1 − f(2, 2)x2
uq

− f(dv0 , 2)xv0xv1

= (f(2, dv0)xv0 − f(2, 2)xuq)(xuq − xv1)

> 0.

Because

f(2, dv0)xv0 − f(2, 2)xuq

= f(2, dv0) ·
f(2, 2)

f(2, dv0)
· t

2q+1
2 − t2q−1

1 + 1− t22
t2q2 − t2q−2

1

xu1 − f(2, 2) · t
q+1
2 − tq−2

1 + tq2 − tq−1
1

t2q2 − t2q−2
1

xu1

= f(2, 2)
(tq2 − 1)(t2 − tq1)(t

q
2 − tq−1

1 )

t2q2 − t2q−2
1

xu1

> 0,

the inequality above holds. From Lemma 2.1, thus λ1(Af (G
c
v0
(k + 1, l − 1))) >

λ1(Af (G
c
v0
(k, l))).

Case 3. Suppose that k and l are both odd. Set k = 2p + 1 and l = 2q + 1. It

follows that

xvp =
t2 + 1

tp2 + tp−1
1

xv1

and

xuq =
t2 + 1

tq2 + tq−1
1

xu1 .

Since k ≥ l, from Lemma 3.1, we know xv1 ≤ xu1 . And t2+1

tp2+tp−1
1

≤ t2+1

tq2+tq−1
1

, thus

xvp ≤ xuq . Recall that xv1 > xv2 > · · · > xvp . We also consider two subcases. Since

the proof in this case is similar to subcases 2.1 and 2.2, we omit it for the sake of

brevity.

Case 4. Suppose that k is odd and l is even. Set k = 2p + 1 and l = 2q. It

follows that

xvp =
t2 + 1

tp2 + tp−1
1

xv1

and

xuq =
2

tq−1
2 + tq−1

1

xu1 .

11



Since k > l, from Lemma 3.1, we know xv1 < xu1 . And p ≥ q, we have

2(tp2 + tp−1
1 ) > (t2 + 1)(tp−1

2 + tp−1
1 ) ≥ (t2 + 1)(tq−1

2 + tq−1
1 ).

Thus xvp < xuq . Recall that xv1 > xv2 > · · · > xvp . We can divided into two subcases.

Because the proof in this case is similar to subcases 1.1 and 1.2, we omit it for the

sake of brevity.

In each case, we obtain the largest weighted adjacency eigenvalue ofGc
v0
(k+1, l−1)

is greater than the largest weighted adjacency eigenvalue ofGc
v0
(k, l). Hence, the proof

of the theorem is complete. �

Remark 1. If f(x, y) > 0 is increasing in variable x, from Lemma 2.4, then we

have λ1(Af (G
c
v0
(k, l))) > 2f(2, 2). Thus Theorem 3.2 is hold, when the edge-weight

functions f(x, y) is increasing in variable x.

Next, we consider the Li-Feng transformation with respect to the largest eigen-

value of Af (G). We first give a result about pendant paths. Assume that f(x, y) > 0

is increasing in invariable x, the entries of a principle eigenvector x on an induced

path have the monotone property.

Lemma 3.3 Let v0v1v2 . . . vp−1vp be a pendant path in graph G with dv0 ≥ 3. If

f(x, y) > 0 is increasing in invariable x and λ1(Af (G)) > 2f(2, 2), then xv1 > xv2 >

· · · > xvp.

Proof. Let x be a principal eigenvector of Af (G). It is not difficult for us to have{
λ1(Af (G))xvp = f(2, 1)xvp−1 ,

λ1(Af (G))xvp−1 = f(2, 1)xvp + f(2, 2)xvp−2 .

If xvp ≥ xvp−1 , then f(2, 1)xvp−1 ≥ f(2, 1)xvp + f(2, 2)xvp−2 . From Lemma 2.2, we

know xvp−2 > 0, this is a contradiction. Thus xvp < xvp−1 .

Since λ1(Af (G)) > 2f(2, 2), we have λ1(Af (G))xvp−1 = f(2, 1)xvp +f(2, 2)xvp−2 >

f(2, 2)xvp−1 + f(2, 2)xvp−1 . Recall that f(x, y) is increasing in invariable x and xvp <

xvp−1 . It follows that f(2, 1)xvp < f(2, 2)xvp−1 . Hence xvp−2 > xvp−1 . From Lemma

2.3 (2), we obtain xv1 > xv2 > · · · > xvp . �

In graph Gv0(p, q), if f(x, y) > 0 is increasing in variable x and q ≥ 2, the uniform

distribution of pendent paths increases the largest weighted adjacency eigenvalue.

This conclusion is the same as Theorem 1.1.
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Theorem 3.4 Assume that f(x, y) > 0 is increasing in variable x. If p ≥ q + 2 ≥ 4

in graph Gv0(p, q), then

λ1(Af (Gv0(p− 1, q + 1))) > λ1(Af (Gv0(p, q))).

Proof. Let x be a principal eigenvector of Gv0(p, q). First, we claim that there is

no integer 1 ≤ i ≤ q − 1 such that xui
= xvi+1

. By way of contradiction, suppose

that there exists an integer i0 such that xui0
= xvi0+1

. Deleting edges ui0ui0+1 and

vi0+1vi0+2 and adding edges ui0vi0+2 and vi0+1ui0+1 in graph Gv0(p, q), we obtain graph

Gv0(p− 1, q + 1). It is not difficult for us to have

1

2
(xTAf (Gv0(p− 1, q + 1))x− xTAf (Gv0(p, q))x)

= f(2, dvi0+2
)xui0

xvi0+2
+ f(2, dui0+1

)xvi0+1
xui0+1

− f(2, dui0+1
)xui0

xui0+1
− f(2, dvi0+2

)xvi0+1
xvi0+2

= 0.

This means that x is a principal eigenvector of Gv0(p− 1, q + 1). Thus{
λ1(Af (Gv0(p, q)))xui0

= f(2, dui0−1
)xui0−1

+ f(2, dui0+1
)xui0+1

,

λ1(Af (Gv0(p− 1, q + 1)))xui0
= f(2, dui0−1

)xui0−1
+ f(2, dvi0+2

)xvi0+2
.

If dui0+1
= 2, since p ≥ q + 2, then we have dvi0+2

= 2. Thus xui0+1
= xvi0+2

.

Repeat this process, we can get xuq−1 = xvq . So{
λ1(Af (Gv0(p, q)))xuq−1 = f(2, duq−2)xuq−2 + f(2, 1)xuq ,

λ1(Af (Gv0(p− 1, q + 1)))xuq−1 = f(2, duq−2)xuq−2 + f(2, 2)xvq+1 .

Because f(x, y) is increasing in variable x, this means that xvq+1 ≤ xuq . However,

recall that x is a principal eigenvector of Af (Gv0(p, q)), hence{
λ1(Af (Gv0(p, q)))xuq = f(2, 1)xuq−1 ,

λ1(Af (Gv0(p, q)))xvq+1 = f(2, 2)xvq + f(2, dvq+2)xvq+2 .

From Lemma 2.2, xvq+2 > 0 and f(x, y) is increasing in variable x, we can deduced

that xvq+1 > xuq . This is a contradiction.

If dui0+1
= 1, then xui0

= xuq−1 , that is xuq−1 = xvq . As we discussed above, we

can also have a contradiction. Next, we consider two cases.

Case 1. xu1 < xv2 .

Subcase 1.1 xv0 ≥ xv1 .
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Suppose that Gv0(p−1, q+1) is a graph obtained from Gv0(p, q) by deleting edges

v1v2 and v0u1 and adding edges v1u1 and v0v2. We have

1

2
(xTAf (Gv0(p− 1, q + 1))x− xTAf (Gv0(p, q))x)

= f(2, 2)xv1xu1 + f(dv0 , 2)xv0xv2 − f(2, 2)xv1xv2 − f(dv0 , 2)xv0xu1

= (f(dv0 , 2)xv0 − f(2, 2)xv1)(xv2 − xu1).

Since f(x, y) is increasing in variable x, we have f(dv0 , 2)xv0 − f(2, 2)xv1 ≥ 0. From

Lemma 2.1, thus λ1(Af (Gv0(p− 1, q + 1))) > λ1(Af (Gv0(p, q))).

Subcase 1.2 xv0 < xv1 .

Suppose that Gv0(p− 1, q+1) is a graph obtained from Gv0(p, q) by removing all

neighbors of v0 except for u1, v1, to v1. We have

1

2
(xTAf (Gv0(p− 1, q + 1))x− xTAf (Gv0(p, q))x)

=
∑

vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvjxv1 + f(2, 2)xv0xu1 + f(dv0 , 2)xv1xv2−

∑
vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvjxv0 − f(2, dv0)xv0xu1 − f(2, 2)xv1xv2

=
∑

vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvj(xv1 − xv0) + (f(2, dv0)− f(2, 2))(xv1xv2 − xv0xu1).

Since f(x, y) is increasing in variable x, we have f(2, dv0)−f(2, 2) ≥ 0. From Lemma

2.1, thus λ1(Af (Gv0(p− 1, q + 1))) > λ1(Af (Gv0(p, q))).

Case 2. xu1 > xv2 .

Subcase 2.1 xuq−1 > xvq .

If xuq > xvq+1 , we delete edge vq+1vq+2 and add edge uqvq+2 in graph Gv0(p, q), to

obtain graph Gv0(p− 1, q + 1). It is clearly that

1

2
(xTAf (Gv0(p− 1, q + 1))x− xTAf (Gv0(p, q))x)

= f(2, 2)xuq−1xuq + f(2, dvq+2)xuqxvq+2 + f(2, 1)xvqxvq+1 − f(2, 1)xuq−1xuq

− f(2, dvq+2)xvq+1xvq+2 − f(2, 2)xvqxvq+1

= (f(2, 2)− f(2, 1))(xuq−1xuq − xvqxvq+1) + f(2, dvq+2)xvq+2(xuq − xvq+1).
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Since f(x, y) is increasing in variable x, we have f(2, 2)− f(2, 1) ≥ 0. From Lemma

2.1, thus λ1(Af (Gv0(p− 1, q + 1))) > λ1(Af (Gv0(p, q))).

If xuq ≤ xvq+1 , we delete edges uq−1uq and vqvq+1 and add edges uq−1vq+1 and uqvq

in graph Gv0(p, q), to obtain graph Gv0(p− 1, q + 1). It is clearly that

1

2
(xTAf (Gv0(p− 1, q + 1))x− xTAf (Gv0(p, q))x)

= f(2, 2)xuq−1xvq+1 + f(2, 1)xuqxvq − f(2, 1)xuq−1xuq − f(2, 2)xvqxvq+1

= (f(2, 2)xvq+1 − f(2, 1)xuq)(xuq−1 − xvq).

Since f(x, y) is increasing in variable x, we have f(2, 2)xvq+1 − f(2, 1)xuq ≥ 0. From

Lemma 2.1, thus λ1(Af (Gv0(p− 1, q + 1))) > λ1(Af (Gv0(p, q))).

Subcase 2.2 xuq−1 < xvq .

If q = 3, we delete edges u1u2 and v2v3 and add edges v2u2 and u1v3 in graph

Gv0(p, 3), to obtain Gv0(p− 1, 4). We have

1

2
(xTAf (Gv0(p− 1, 4))x− xTAf (Gv0(p, 3))x)

= f(2, 2)xu1xv3 + f(2, 2)xu2xv2 − f(2, 2)xu1xu2 − f(2, 2)xv2xv3

= f(2, 2)(xu1 − xv2)(xv3 − xu2)

> 0.

From Lemma 2.1, thus λ1(Af (Gv0(p− 1, 4))) > λ1(Af (Gv0(p, 3))).

If q ≥ 4, we consider two induced paths u1u2 . . . uq−1 and v2v3 . . . vq. Let xu1 , xuq−1

and xv2 , xvq be the initial conditions. We obtain

xui
=

1

tq−1
2 − tq−3

1

((xu1t
q
2 − xuq−1t

2
2)t

i
1 + (xuq−1 − xu1t

q−2
1 )ti2)

=
1

tq−1
2 − tq−3

1

((tq−i
2 − tq−2−i

1 )xu1 + (ti2 − ti−2
1 )xuq−1)

and

xvi+1
=

1

tq−1
2 − tq−3

1

((tq−i
2 − tq−2−i

1 )xv2 + (ti2 − ti−2
1 )xvq).

Suppose that

g(i) = (xvi+1
− xui

)(tq−1
2 − tq−3

1 ) = (tq−i
2 − tq−2−i

1 )(xv2 − xu1) + (ti2 − ti−2
1 )(xvq − xuq−1)

= (tq−i
2 − ti+2−q

2 )(xv2 − xu1) + (ti2 − t2−i
2 )(xvq − xuq−1).
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By calculating the first-order derivative of g(i), since xu1 > xv2 and xuq−1 < xvq , we

have

g
′
(i) = (xu1 − xv2)(t

q−i
2 ln t2 + ti+2−q

2 ln t2) + (xvq − xuq−1)(t
i
2 ln t2 + t2−i

2 ln t2) > 0.

Because g(1) < 0, g(q−1) > 0, it means that there exists an integer 1 ≤ i ≤ q−2 such

that xui
> xvi+1

and xui+1
< xvi+2

. Deleting edges uiui+1 and vi+1vi+2 and adding

edges uivi+2 and vi+1ui+1 in graph Gv0(p, q), we obtain graph Gv0(p − 1, q + 1). It

follows that
1

2
(xTAf (Gv0(p− 1, q + 1))x− xTAf (Gv0(p, q))x)

= f(2, 2)xui
xvi+2

+ f(2, 2)xui+1
xvi+1

− f(2, 2)xui
xui+1

− f(2, 2)xvi+1
xvi+2

= f(2, 2)(xui
− xvi+1

)(xvi+2
− xui+1

)

> 0.

From Lemma 2.1, thus λ1(Af (Gv0(p− 1, q + 1))) > λ1(Af (Gv0(p, q))).

In each case, we have the largest weighted adjacency eigenvalue of Gv0(p−1, q+1)

is greater than the largest weighted adjacency eigenvalue of Gv0(p, q), when f(x, y)

is increasing in invariable x and p ≥ q + 2 ≥ 4. This completes the proof. �

Remark 2. Theorem 3.4 is suitable for the edge-weight functions f(x, y) from

fourteen indices in Table 1, including the first Zagreb index, second Zagreb index, first

hyper-Zagreb index, second hyper-Zagreb index, reciprocal sum-connectivity index,

reciprocal Randić index, first Gourava index, second Gourava index, first hyper-

Gourava index, second hyper-Gourava index, product-connectivity Gourava index,

forgotten index, Sombor index and inverse sum index.

From Theorem 3.4, when q ≥ 2, we have proved the Li-Feng transformation. In

fact, there are still two cases: q = 1 and q = 0 that have to be considered. If q = 0,

based on the condition“f(x, y) > 0 is increasing in invariable x”, we add a condition

“the second-order derivative fxx ≥ 0”, then obtain a result as below.

Theorem 3.5 If f(x, y) > 0 is increasing in invariable x, fxx ≥ 0 and λ1(Af (Gv0(p, 0)) >

2f(2, 2), then

λ1(Af (Gv0(p− 1, 1))) > λ1(Af (Gv0(p, 0))),

where p ≥ 3.

Proof. Let x be a principal eigenvector of Af (Gv0(p, 0)). Now, we consider two cases.

Case 1. xv0 ≥ xv1 .
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Suppose that Gv0(p − 1, 1) is a graph obtained from Gv0(p, 0) by deleting edge

vpvp−1 and add edge vpv0. We have

1

2
(xTAf (Gv0(p− 1, 1))x− xTAf (Gv0(p, 0))x)

=
∑

vj∈NGv0 (p,0)(v0)\{v1}

f(dv0 + 1, dvj)xvjxv0 + f(dv0 + 1, 1)xv0xvp + f(dv0 + 1, 2)xv0xv1 + f(2, 1)xvp−2xvp−1

−
∑

vj∈NGv0 (p,0)(v0)\{v1}

f(dv0 , dvj)xvjxv0 − f(2, 1)xvpxvp−1 − f(dv0 , 2)xv0xv1 − f(2, 2)xvp−1xvp−2

=
∑

vj∈NGv0 (p,0)(v0)\{v1}

(f(dv0 + 1, dvj)− f(dv0 , dvj))xvjxv0 + (f(dv0 + 1, 1)xv0 − f(2, 1)xvp−1)xvp+

(f(dv0 + 1, 2)− f(dv0 , 2))xv0xv1 − (f(2, 2)− f(2, 1))xvp−1xvp−2 .

From Lemma 3.3 and xv0 ≥ xv1 , it follows that xv0 > xvp−1 and xv1 ≥ xvp−2 . Combine

with f(x, y) > 0 is increasing in invariable x and fxx ≥ 0, from Lemma 2.1, we get

λ1(Af (Gv0(p− 1, 1))) > λ1(Af (Gv0(p, 0))).

Case 2. xv0 < xv1 .

Subcase 2.1 xv0 ≤ xv2 .

Suppose that Gv0(p − 1, 1) is a graph obtained from Gv0(p, 0) by removing all

neighbors of v0 except for v1, to v1. We have

1

2
(xTAf (Gv0(p− 1, 1))x− xTAf (Gv0(p, 0))x)

=
∑

vj∈NGv0 (p,0)(v0)\{v1}

f(dv0 + 1, dvj)xvjxv1 + f(dv0 + 1, 1)xv0xv1 + f(dv0 + 1, 2)xv1xv2−

∑
vj∈NGv0 (p,0)(v0)\{v1}

f(dv0 , dvj)xvjxv0 − f(dv0 , 2)xv0xv1 − f(2, 2)xv1xv2

≥
∑

vj∈NGv0 (p,0)(v0)\{v1}

(f(dv0 + 1, dvj)xv1 − f(dv0 , dvj)xv0)xvj + (f(dv0 + 1, 2)− f(2, 2))xv1xv2−

(f(dv0 , 2)− f(1, 2))xv0xv1 .

Since f(x, y) > 0 is increasing in invariable x and fxx ≥ 0, the above inequality is

greater than 0. From Lemma 2.1, thus λ1(Af (Gv0(p− 1, 1))) > λ1(Af (Gv0(p, 0))).

Subcase 2.2 xv0 > xv2 .

Suppose that Gv0(p − 1, 1) is a graph obtained from Gv0(p, 0) by removing all

neighbors of v0 except for v1, to v1, and deleting edge v2v3 and adding edge v0v3. We

have
1

2
(xTAf (Gv0(p− 1, 1))x− xTAf (Gv0(p, 0))x)
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=
∑

vj∈NGv0 (p,0)(v0)\{v1}

f(dv0 + 1, dvj)xvjxv1 + f(dv0 + 1, 1)xv1xv2 + f(dv0 + 1, 2)xv0xv1 + f(2, 2)xv0xv3

−
∑

vj∈NGv0 (p,0)(v0)\{v1}

f(dv0 , dvj)xvjxv0 − f(2, 2)xv1xv2 − f(d0, 2)xv0xv1 − f(2, 2)xv2xv3

≥
∑

vj∈NGv0 (p,0)(v0)\{v1}

(f(dv0 + 1, dvj)xv1 − f(dv0 , dvj)xv0)xvj + (f(2, 2)xv0 − f(2, 2)xv2)xv3+

((f(dv0 + 1, 2)− f(dv0 , 2))xv0 − (f(2, 2)− f(2, 1))xv2)xv1 .

Since f(x, y) > 0 is increasing in invariable x and fxx ≥ 0, the above inequality is

greater than 0. From Lemma 2.1, thus λ1(Af (Gv0(p− 1, 1))) > λ1(Af (Gv0(p, 0))).

In each case, we have the largest weighted adjacency eigenvalue of Gv0(p − 1, 1)

is greater than the largest weighted adjacency eigenvalue of Gv0(p, 0), when f(x, y)

is increasing in invariable x and fxx ≥ 0. Our proof is completed. �

Remark 3. If f(x, y) > 0 is increasing in variable x and graph Gv0(p, 0) is not

a tree, from Lemma 2.4, then we have λ1(Af (Gv0(p, 0))) > 2f(2, 2). Thus, Theorem

3.5 is hold for the edge-weight functions f(x, y) from ten indices in Table 1, including

the first Zagreb index, second Zagreb index, first hyper-Zagreb index, second hyper-

Zagreb index, first Gourava index, second Gourava index, first hyper-Gourava index,

second hyper-Gourava index, forgotten index and Sombor index, when f(x, y) is

increasing in invariable x, fxx ≥ 0 and graph Gv0(p, 0) is not a tree.

If q = 1, the result below tells us that the largest weighted adjacency eigenvalue

of Gv0(p−1, 2) is greater than the largest weighted adjacency eigenvalue of Gv0(p, 1).

Theorem 3.6 If f(x, y) > 0 is increasing in invariable x and f(dv0 , 2) − f(2, 2) >

f(dv0 , 1)− f(2, 1), then

λ1(Af (Gv0(p− 1, 2))) > λ1(Af (Gv0(p, 1))),

where p ≥ 3.

Proof. Let x be a principal eigenvector of Af (Gv0(p, 1)). Now, we consider two cases.

Case 1. xu1 < xv2 .

Subcase 1.1 xv0 ≥ xv1 .

Suppose that Gv0(p − 1, 2) is a graph obtained from Gv0(p, 1) by deleting edges

v1v2, v0u1 and adding edges v1u1, v0v2. We have

1

2
(xTAf (Gv0(p− 1, 2))x− xTAf (Gv0(p, 1))x)
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= f(2, 1)xv1xu1 + f(dv0 , 2)xv0xv2 − f(2, 2)xv1xv2 − f(dv0 , 1)xv0xu1

= xv0(f(dv0 , 2)xv2 − f(dv0 , 1)xu1)− xv1(f(2, 2)xv2 − f(2, 1)xu1)

≥ xv0((f(dv0 , 2)− f(2, 2))xv2 − (f(dv0 , 1)− f(2, 1))xu1).

Since f(x, y) > 0 is increasing in invariable x, thus f(2, 2)xv2 −f(2, 1)xu1 > 0, the in-

equality above is hold. We know that f(dv0 , 2)−f(2, 2) > f(dv0 , 1)−f(2, 1), it follows

that the inequality above is greater than 0. From Lemma 2.1, thus λ1(Af (Gv0(p −
1, 2))) > λ1(Af (Gv0(p, 1))).

Subcase 1.2 xv0 < xv1 .

Suppose that Gv0(p − 1, 2) is a graph obtained from Gv0(p, 1) by removing all

neighbors of v0 except for u1, v1 to v1. We have

1

2
(xTAf (Gv0(p− 1, 2))x− xTAf (Gv0(p, 1))x)

=
∑

vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvjxv1 + f(2, 1)xv0xu1 + f(dv0 , 2)xv1xv2−

∑
vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvjxv0 − f(1, dv0)xv0xu1 − f(2, 2)xv1xv2

=
∑

vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvj(xv1 − xv0) + (f(2, dv0)− f(2, 2))xv1xv2−

(f(1, dv0)− f(2, 1))xv0xu1 .

Since f(dv0 , 2) − f(2, 2) > f(dv0 , 1) − f(2, 1), the equality above is greater than 0.

From Lemma 2.1, thus λ1(Af (Gv0(p− 1, 2))) > λ1(Af (Gv0(p, 1))).

Case 2. xu1 ≥ xv2 .

Subcase 2.1 xv0 ≥ xv1 .

Suppose that Gv0(p − 1, 2) is a graph obtained from Gv0(p, 1) by deleting edge

v2v3 and adding edge u1v3. We have

1

2
(xTAf (Gv0(p− 1, 2))x− xTAf (Gv0(p, 1))x)

= f(dv0 , 2)xv0xu1 + f(2, 2)xu1xv3 + f(2, 1)xv1xv2 − f(dv0 , 1)xv0xu1 − f(2, 2)xv2xv3 − f(2, 2)xv1xv2

= f(2, 2)xv3(xu1 − xv2) + (f(dv0 , 2)− f(dv0 , 1))xv0xu1 − (f(2, 2)− f(2, 1))xv1xv2

> 0.

From Lemma 2.1, thus λ1(Af (Gv0(p− 1, 2))) > λ1(Af (Gv0(p, 1))).
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Subcase 2.2 xv0 < xv1 .

Suppose that Gv0(p − 1, 2) is a graph obtained from Gv0(p, 1) by removing all

neighbors of v0 except for v1, to v1, and deleting edges v1v2, v2v3 and adding edges

v0v2, u1v3. We have

1

2
(xTAf (Gv0(p− 1, 2))x− xTAf (Gv0(p, 1))x)

=
∑

vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvjxv1 + f(2, 1)xv0xv2 + f(dv0 , 2)xv1xu1 + f(2, 2)xu1xv3−

∑
vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvjxv0 − f(2, 2)xv1xv2 − f(1, dv0)xv0xu1 − f(2, 2)xv2xv3

=
∑

vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvj(xv1 − xv0) + f(2, 2)xv3(xu1 − xv2)+

xu1(f(2, dv0)xv1 − f(dv0 , 1)xv0)− xv2(f(2, 2)xv1 − f(2, 1)xv0)

≥
∑

vj∈NGv0 (p,q)(v0)\{u1,v1}

f(dv0 , dvj)xvj(xv1 − xv0) + f(2, 2)xv3(xu1 − xv2)+

xu1((f(2, dv0)− f(2, 2))xv1 − (f(1, dv0)− f(2, 1))xv0)

Since f(x, y) > 0 is increasing in invariable x, thus f(2, 2)xv1 − f(2, 1)xu0 > 0, the

inequality above is hold. Recall that f(dv0 , 2)−f(2, 2) > f(dv0 , 1)−f(2, 1). It follows

that the inequality above is greater than 0. From Lemma 2.1, thus λ1(Af (Gv0(p −
1, 2))) > λ1(Af (Gv0(p, 1))).

In each case, we have the largest weighted adjacency eigenvalue of Gv0(p− 1, 2) is

greater than the largest weighted adjacency eigenvalue of Gv0(p, 1), when f(x, y) is

increasing in invariable x and f(dv0 , 2)− f(2, 2) > f(dv0 , 1)− f(2, 1). This completes

the proof. �

Remark 4. Theorem 3.6 covers the edge-weight functions f(x, y) from ten in-

dices in Table 1, including the second Zagreb index, first hyper-Zagreb index, second

hyper-Zagreb index, reciprocal Randić index, first Gourava index, second Gourava

index, first hyper-Gourava index, second hyper-Gourava index, product-connectivity

Gourava index and inverse sum index.

4 Concluding

In this paper, we mainly consider the Li-Feng transformation and the cycle version

of Li-Feng transformation of the largest eigenvalue of Af (G), respectively. As we
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can see, if k ≥ l ≥ 4 and λ1(Af (G
c
v0
(k, l))) > 2f(2, 2), then λ1(Af (G

c
v0
(k + 1, l −

1))) > λ1(Af (G
c
v0
(k, l))). This means that the uniform distribution of pendent cycles

decreases the largest weighted adjacency eigenvalue. When p−2 ≥ q ≥ 2 and f(x, y)

is increasing in variable x, we have λ1(Af (Gv0(p − 1, q + 1))) > λ1(Af (Gv0(p, q))).

When q = 0, 1 and f(x, y) is increasing in variable x, we add some restrictions to

f(x, y) and have λ1(Af (Gv0(p − 1, 1))) > λ1(Af (Gv0(p, 0))), λ1(Af (Gv0(p − 1, 2))) >

λ1(Af (Gv0(p, 1))), respectively. This means that the uniform distribution of pendent

paths increases the largest weighted adjacency eigenvalue. As one can see, the graph

operation that decreases or increases its largest eigenvalue is so obvious. In the future,

these results will play an important role in the study of the largest eigenvalue of the

weighted adjacency matrix. In fact, we can try to prove that λ1(Af (Gv0(p−1, q+1)))

is greater than λ1(Af (Gv0(p, q))) when p − 2 ≥ q ≥ 0 and f(x, y) is increasing in

variable x.
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energies of graphs, Linear Algebra Appl. 554 (2018) 185–204.

[5] E. Estrada, The ABC matrix, J. Math. Chem. 55 (2017) 1021–1033.

[6] W. Gao, Trees with maximum vertex-degree-based topological indices, MATCH

Commun. Math. Comput. Chem. 88 (2022) 535–552.

[7] J. Gao, X. Li, N. Yang, The effect on the largest eigenvalue of degree-based

weighted adjacency matrix by perturbations, Bull. Malays. Math. Sci. Soc. 47

(2024) 30.

[8] J. Gao, N. Yang, Some bounds on the largest eigenvalue of degree-based weighted

adjacency matrix of a graph, Discrete Appl. Math. 356 (2024) 21–31.

21



[9] S. Guo, The spectral radius of unicyclic and bicyclic graphs with n vertices and

k pendant vertices, Linear Algebra Appl. 408 (2005) 78–85.

[10] J. Guo, The effect on the Laplacian spectral radius of a graph by adding or

grafting edges, Linear Algebra Appl. 413 (2006) 59–71.

[11] I. Gutman, Geometric approach to degree-based topological indices: Sombor

indices, MATCH Commun. Math. Comput. Chem. 86 (2021) 11–16.

[12] I. Gutman, Spectrum and energy of the Sombor matrix, Mil. Tech. Cour. 69

(2021) 551–561.

[13] R. Horn, C. Johnson, Matrix Analysis, Combridge University Press, New York,

2013.

[14] Z. Hu, L. Li, X. Li, D. Peng, Extremal graphs for topological index defined by a

degree-based edge-weight function, MATCH Commun. Math. Comput. Chem. 88

(2022) 505–520.

[15] Z. Hu, X. Li, D. Peng, Graphs with minimum vertex-degree function-index for

convex functions, MATCH Commun. Math. Comput. Chem. 88 (2022) 521–533.

[16] J. Huang, X. Geng, S. Li, Z, Zhou, On spectral extrema of graphs with given

order and dissociation number, Discrete Appl. Math. 342 (2024) 368–380.

[17] X. Li, Indices, polynomials and matrices - a unified viewpoint, Invited talk at the

8th Slovenia Conf. Graph Theory, Kranjska Gora, June 21–27, 2015.

[18] Q. Li, K. Feng, On the largest eigenvalue of graphs (in Chinese), Acta Math.

Appl. Sin. 2 (1979) 167–175.

[19] X. Li, Y. Li, J. Song, The asymptotic value of graph energy for random graphs

with degree-based weights, Discrete Appl. Math. 284 (2020) 481–488.

[20] X. Li, Y. Li, Z. Wang, The asymptotic value of energy for matrices with degree-

distance-based entries of random graphs, Linear Algebra Appl. 603 (2020) 390–

401.

[21] X. Li, Y. Li, Z. Wang, Asymptotic values of four Laplacian-type energies for

matrices with degree distance-based entries of random graphs, Linear Algebra

Appl. 612 (2021) 318–333.

[22] X. Li, D. Peng, Extremal problems for graphical function-indices and f -weighted

adjacency matrix, Discrete Math. Lett. 9 (2022) 57–66.

22



[23] X. Li, Z. Wang, Trees with extremal spectral radius of weighted adjacency ma-

trices among trees weighted by degree-based indices, Linear Algebra Appl. 620

(2021) 61–75.

[24] X. Li, N. Yang, Some interlacing results on weighted adjacency matrices of graphs

with degree-based edge-weights, Discrete Appl. Math. 333 (2023) 110–120.

[25] X. Li, N. Yang, Unified approach for spectral properties of weighted adjacency

matrices for graphs with degree-based edge-weights, Linear Algebra Appl. 696

(2024) 46–67.

[26] X. Li, N. Yang, Spectral properties and energy of weighted adjacency matrix

for graphs with a degree-based edge-weight function, Acta Math. Sin. (Ser.En),

40(12) (2024) 3027–3042.

[27] W. Lin, X. Guo, Ordering trees by their largest eigenvalues, Linear Algebra Appl.

418 (2006) 450–456.

[28] H. Lin, X. Huang, J. Xue, A note on the α-spectral radius of graphs, Linear

Algebra Appl. 557 (2018) 430–437.

[29] C. Liu, J. Li, Z. Xie, The minimum spectral radius of graphs with a given

domination number, Linear Algebra Appl. 673 (2023) 233–258.

[30] R. Liu, M. Zhai, J. Shu, The least eigenvalue of unicyclic graphs with n vertices

and k pendant vertices, Linear Algebra Appl. 461 (2009) 657–665.
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