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Abstract: A k-hypertournament H on n vertices is a pair (V,A) for 2 ≤ k ≤ n,
where V (H) is a set of vertices, and A(H) is a set of all possible k-tuples of ver-
tices, such that for any k-subset S of V , A(H) contains exactly one of the k! pos-
sible permutations of S. In this paper, we investigate the relationship between a
hyperdigraph and its corresponding normal digraph. Particularly, drawing on a re-
sult from Gutin and Yeo, we establish an intrinsic relationship between a strong
k-hypertournament and a strong tournament, which enables us to provide an alter-
native (more straightforward and concise) proof for some previously known results
and get some new results.
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1 Introduction
A hyperdigraph H is a pair (V (H), A(H)), where V (H) is a set of vertices, and

A(H) is a set of ordered tuples of vertices in V (H), called hyperarcs of H, such that no
hyperarc contains any vertex twice. A k-hyperdigraph H on n vertices is a hyperdigraph
on n vertices such that each hyperarc of H is a k-tuple of vertices, for 2 ≤ k ≤ n. For
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a hyperarc a = (x1x2 . . . xk), we say xi precedes xj if i < j, and write as xiaxj. A 2-
hyperdigraph is merely a digraph. A path P of length k in H is an alternating sequence
P = x1a1x2a2 . . . xkakxk+1 of distinct vertices xi and distinct hyperarcs aj such that
xiaixi+1 for every 1 ≤ i ≤ k. We call P a cycle of length k if xk+1 = x1. A path (cycle)
is Hamiltonian if it contains all vertices of H. A k-hyperdigraph H is strong if there is
a path from u to v for each ordered pair (u, v), where u, v are distinct vertices in H. A
vertex (a hyperarc) of H is pancyclic, if it is contained in an l-cycle for all l ∈ {3, . . . , n}.
A k-hyperdigraph H is vertex (hyperarc)-pancyclic if all of its vertices (hyperarcs) are
pancyclic.

Tournaments are the widely studied class in digraphs. We call H a k-hypertournament
if H is a k-hyperdigraph and each k-subset of V (H) has exactly one permutation that
belongs to A(H). A tournament is a 2-hypertournament.

Given a digraph D, a hyperdigraph H is a Berge-D if there exists a bijection ϕ :

A(D) → A(H) such that for each arc e ∈ A(D) we have V (e) ⊂ V (ϕ(e)) and vi precedes
vj in ϕ(e). Clearly, a path or a cycle in the hyperdigraph H is a Berge directed path or
Berge directed cycle.

Let H be a k-hypertournament with n vertices where 3 ≤ k ≤ n − 2 and T a
tournament with V (T ) = V (H). For a hyperarc a of A(H) and an arc e = (vi, vj) of
A(T ), we call e is generated by a if vi, vj ∈ V (a) and vi precedes vj. Moreover, we say a
tournament T is generated by a k-hypertournament H if V (T ) = V (H) and each arc of
T can be generated by a hyperarc of H such that any two arcs of T can be generated by
different hyperarcs of H. We denote by TH the set of all tournaments generated by H.

In [7], Gutin and Yeo proved Theorem 1.1, an extension of Redei’s theorem and
Camion’s theorem to hypertournaments, which are the most basic results on tournaments.
They showed every tournament contains a Hamiltonian path, and every strong tournament
has a Hamiltonian cycle. Moreover, they proposed the following interesting question: Is
a strong k-hypertournament pancyclic or vertex-pancyclic?

Theorem 1.1. [7] For k ≥ 3, every k-hypertournament on n ≥ k + 1 vertices has a
Hamiltonian path, and every strong k-hypertournament on n ≥ k + 2 vertices contains a
Hamiltonian cycle.

Petrovic and Thomassen [13] proved that a k-hypertournament H on n vertices is
vertex-pancyclic if and only if H is strong for sufficiently large n, which is an extension
of Moon’s theorem [12].

Yang [16] improved their result as follows.

Theorem 1.2. [16] Let H be a k-hypertournament on n vertices. When

2



(i) k = 3 and n ≥ 15,

(ii) k = 4 and n ≥ 11,

(iii) k ≥ 5 and n ≥ k + 4, or

(iv) k ≥ 8 and n ≥ k + 3,

H is vertex-pancyclic if and only if H is strong.

In 2013, Li, Li, Guo, and Surmacs [10] solved this problem completely.

Theorem 1.3. [10] When k ≥ 3 and n ≥ k + 2, an n-vertex k-hypertournament H is
vertex-pancyclic if and only if H is strong.

Besides Hamiltonian property and vertex-pancyclicity, there are some other proper-
ties of hypertournaments being studied in a large number of papers, see [1, 4, 8, 11, 14].

Petrovic, Thomassen [13], and Yang [16] constructed a certain strong semicomplete
digraph DH from a given strong k-hypertournament H to prove that H is vertex-pancyclic.
In other words, they gave another proof of Theorem 1.1 for some conditions of k, n.
With the help of Theorem 1.1 [7], we find a deeper relationship between a strong k-
hypertournament and a corresponding strong tournament, which can imply some known
results immediately.

Theorem 1.4. For n ≥ 11 and 3 ≤ k ≤ n − 2, there is a strong tournament T ∈ TH

where H is a strong k-hypertournament on n vertices. Moreover, when 3 ≤ k ≤ n − 3,
the result holds for n ≥ 7.

The outline of the rest of the paper is as follows. We give some definitions and
lemmas which will be used in the following proofs. In Section 3, we prove Theorem
1.4 and give a more straightforward proof for some previously known properties about
strong k-hypertournaments. We devote Section 4 to investigating the connection be-
tween k-hyperdigraphs and their corresponding digraphs, and extend some results to
k-hyperdigraphs.

2 Preliminary
The terminology not introduced in this paper can be found in [2]. For k ≥ 3 and

n ≥ k + 2, let H be a strong k-hypertournament on n vertices. Note that H contains a
Hamiltonian cycle C by Theorem 1.1, which implies that the hyperarcs of C can generate
a Hamiltonian cycle of a strong tournament T . If other arcs of T can be generated by the
remaining hyperarcs of H, then T ∈ TH . To achieve that, we need the following lemmas.
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Lemma 2.1. Let G be a bipartite graph with partite sets U and W , and p a positive
integer. If d(u) ≥ p for each u ∈ U and d(w) ≤ p for each w ∈ W , then G has a matching
covering U.

Proof. Let S be a subset of U and let E be the set of edges of G between S and N(S).
Since d(u) ≥ p for each u ∈ U and d(w) ≤ p for each w ∈ W , we have

p |N(S)| ≥ |E| ≥ p |S| .

Since p ≥ 1, it follows that |N(S)| ≥ |S|. By Hall’s theorem [9], there is a matching of G
covering U.

Lemma 2.2. Let H be a 3-hypertournament on n vertices and C a Hamiltonian cycle
of H. Then every pair of nonconsecutive vertices in C can be contained in at most four
hyperarcs of C. More precisely, when n = 8 there are at most two nonadjacent pairs, each
pair being contained in four hyperarcs of C. When n = 7, there are no two nonadjacent
pairs, each pair being contained in four hyperarcs of C, and at most two nonadjacent pairs,
each pair being contained in at least three hyperarcs of C. If there is one nonadjacent
pair contained in four hyperarcs of C and one in three hyperarcs, then the other pairs are
contained in at most one hyperarc.

Proof. Let C = v1a1v2 . . . an−1vnanv1 and i, j ∈ [n] where 1 < j − i < n− 1. Since k = 3

and i, j are not consecutive, the hyperarcs of C containing both vi and vj must contain
exactly one vertex of {vi−1, vi+1, vj−1, vj+1} (mod n). So the number of hyperarcs that
contain vi and vj is at most four. If the number is exactly four, we have 2 < j− i < n−2.

When n = 8, assume the nonadjacent pair (vi, vj) is contained in four hyperarcs of C.
By the above discussions, the four hyperarcs are {vi−1, vi, vj}, {vi, vi+1, vj}, {vi, vj−1, vj},
{vi, vj, vj+1} (mod n). If there is another pair contained in four hyperarcs, it must be
(vi+2, vj+2) (mod n) by 2 < j− i < n−2. For these two pairs, note that the corresponding
hyperarc sets are disjoint. Since when n = 8, C contains eight hyperarcs, there are at
most two nonadjacent pairs contained in four hyperarcs of C, and when n = 7, there are
no two nonadjacent pairs contained in four hyperarcs of C.

When n = 7, C contains seven hyperarcs. For any two nonadjacent pairs contained in
at least three hyperarcs of C, if their corresponding hyperarc sets are disjoint, then there
are at most two nonadjacent pairs contained in at least three hyperarcs of C. If not, then
there is at most one hyperarc containing them, and two pairs have exactly one common
vertex. Assume the pairs are (vi, vj) and (vi, vℓ), and there is a hyperarc {vi, vj, vℓ} in C

containing them. Since vi is not adjacent to vj, vl and {vi, vj, vℓ} ∈ E(C), without loss of
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generality, assume ℓ = j−1 (module n). Some hyperarcs in C are {vi, vℓ, vj}, {vi, vj, vj+1},
{vi−1, vi, vj}, {vi, vℓ, vi+1}, {vi, vℓ−1, vℓ}, where ℓ = j − 1. Suppose that there is another
nonadjacent pair contained in at least three hyperarcs of C, so the pair is contained in
some hyperarc which contains (vi, vj) or (vi, vℓ). Since (vi, vj) and (vi, vℓ) occur three
times, the pair can not contain vi. Then the pair must have one vertex of {vj, vℓ}, and
the other vertex is adjacent to vi. Without loss of generality, assume the pair is (vi−1, vj).
All possible hyperarcs in C which can contain (vi−1, vj) are {vi−2, vi−1, vj}, {vi−1, vi, vj},
{vi−1, vj−1, vj}, {vi−1, vj, vj+1}. Since {vi, vj−1, vj}, {vi, vj, vj+1} ∈ E(C), there are no
three hyperarcs in C containing (vi−1, vj), a contradiction. Hence there are at most two
nonadjacent pairs contained in at least three hyperarcs of C.

By symmetry, we can assume the nonadjacent pair (v1, v5) contained in four hyperarcs
of C. If there is a nonadjacent pair contained in three hyperarcs of C, then the pair has
a vertex that is not adjacent to v1, v5, which is v3. The pair is (v3, v6) or (v3, v7). By
symmetry, assume it is (v3, v7), then the hyperarcs are {v7, v1, v5}, {v1, v2, v5}, {v1, v4, v5},
{v1, v5, v6}, {v3, v6, v7}, {v2, v3, v7}, {v3, v4, v7}, and observe that other pairs occur at most
once. Otherwise, all pairs occur at most twice except (v1, v5).

Lemma 2.3. Let H be a 4-hypertournament on 7 vertices and C a Hamiltonian cycle
of H. Then any two different nonadjacent pairs can be contained in at most four same
hyperarcs of C.

Proof. Let (vi, vj) and (vk, vℓ) be two nonadjacent pairs. If vi, vj, vk, vℓ are four dis-
tinct vertices, then there is at most one hyperarc containing all of them. Otherwise
|{vi, vj, vk, vℓ}| = 3, then there are at most four hyperarcs containing {vi, vj, vk, vℓ} as
n = 7.

We give the following lemma based on Lemma 8 in Yang [16].

Lemma 2.4. If

(i) k = 3 and n ≥ 9,

(ii) k = 4 and n ≥ 8,

(iii) k ≥ 5 and n ≥ k + 3,

then (
k

2

)
≤

(
n− 2

k − 2

)
− 4 for k = 3

and (
k

2

)
≤

(
n− 2

k − 2

)
− n for k ≥ 4 (1)
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Proof. Since
(
k
2

)
=

(
3
2

)
= 3 ≤

(
n−2
k−2

)
− 4 = n− 6 when k = 3 and n ≥ 9, we only need to

check the case k ≥ 4. If n = k + 3, rewrite the inequality (1) as

k2 + k + 6 ≤ 2

(
k + 1

k − 2

)
=

1

3
(k3 − k).

Then k3 − 3k2 − 4k − 18 ≥ 0 holds for k ≥ 5. For k = 4, (1) holds with n = 8. Since
increasing n by 1 increases the right-hand side

(
n−2
k−2

)
−n by

(
n−1
k−2

)
−
(
n−2
k−2

)
− 1 =

(
n−2
k−3

)
− 1

which is non-negative for k ≥ 4, n ≥ k + 1, and the left-hand side
(
k
2

)
is independent

of n, by applying an induction on n, the inequality (1) holds for k ≥ 5, n ≥ k + 3 and
k = 4, n ≥ 8.

Lemma 2.5. Let H be a k-hypertournament on n vertices where k = n− 2. Assume that
S is a subset of A(H) such that the union of unordered pairs (of vertices) in the vertex
set of each hyperarc in S forms a proper subset of the set of unordered pairs in V (H).
Then |S| ≤ 3n− 6.

Proof. We may assume that |S| ≥ 1. Set a0 ∈ S and vn−1, vn /∈ V (a0). Then each of the
other hyperarcs a in S must belong to one of the following kinds of hyperarcs:

1. V (a) = (V (a0) ∪ {vn−1}) \ {vt}, t ∈ [n− 2];

2. V (a) = (V (a0) ∪ {vn}) \ {vt}, t ∈ [n− 2];

3. V (a) = (V (a0)∪{vn−1, vn})\{vt1 , vt2} = V (D)\{vt1 , vt2}, t1, t2 ∈ [n−2] and t1 ̸= t2.

If there is at least one hyperarc in S which is of the form 3, without loss of gen-
erality, we assume V (a1) = V (D) \ {vn−2, vn−3} and a1 ∈ S. Then the set of un-
ordered pairs in V (a0) and in V (a1) will contain all unordered pairs in V (H), except
{vn−2, vn−1}, {vn−3, vn−1}, {vn−2, vn}, {vn−3, vn}. In this case, the set of hyperarcs which
are both in S and of the form 3 must be the subset of one of the following hyperarc sets:

(i) {a1};

(ii) {a1} ∪ {a ∈ A(D) | V (a) = V (D) \ {vn−2, vt3}, t3 ∈ [n− 4]};

(iii) {a1} ∪ {a ∈ A(D) | V (a) = V (D) \ {vn−3, vt3}, t3 ∈ [n− 4]}.

For otherwise, there is a hyperarc a2 ∈ S such that V (a2) = V (D) \ {vt3 , vt4}, where
t3, t4 ∈ [n − 4] and t3 ̸= t4. Then the set of unordered pairs in V (a0), in V (a1), and
in V (a2), will be the set of all unordered pairs in V (H), which is a contradiction. By
accounting the number of hyperarcs in the three kinds of hyperarcs, we know |S| ≤
1 + n− 2 + n− 2 + n− 3 = 3n− 6.
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Remark Let H be a k-hypertournament on n vertices where k = n − 2. By Lemma
2.5, for every subset S of A(D) satisfying |S| > 3n− 6, the union of unordered pairs (of
vertices) in the vertex set of each hyperarc in S forms the set of unordered pairs in V (H).
This is the main tool to prove the case when n ≥ 11 and k = n − 2 in Theorem 1.4.
However, it does not assist in handling the condition n ≤ 10 and k = n−2. Furthermore,
when k = 3 and n = 5, 6, since

(
n−2
k−2

)
− 4 ≤ 0, there exists a strong 3-hypertournament H

such that there is no strong tournament T ∈ TH .

3 Strong k-hypertournament
With the lemmas proved in the previous section, we are ready to prove Theorem

1.4. Moreover, it gives a more straightforward proof of the vertex-pancyclicity and arc-
pancyclicity for strong hypertournaments.
Proof of Theorem 1.4. We divide the proof into two parts. Firstly, let H be a strong
k-hypertournament on n vertices where 3 ≤ k ≤ n − 3 and n ≥ 7, and let Kn be a
complete graph with the same vertex set as H. By Theorem 1.1, we can assume that
C = v1b1v2 . . . bn−1vnbnv1 is a Hamiltonian cycle in H. Consider a bipartite graph G with
partite sets A = E(Kn) \ {v1v2, v2v3, . . . , vnv1} and B = A(H) \ {b1, . . . , bn}. For every
a ∈ A and b ∈ B, G has an edge ab if a ⊂ b̄, where b̄ denotes the set of vertices of b. We
aim to prove that G has a matching covering A. If such a matching exists, then Kn has
an orientation T ∈ TH such that T is strong.

Notice that the degree of any vertex in B is at most
(
k
2

)
. When k = 3, by Lemma

2.2, the degree of any vertex in A is at least
(
n−2
k−2

)
− 4; when k ≥ 4, the degree of a vertex

in A is at least
(
n−2
k−2

)
−n. By Lemma 2.1 and Lemma 2.4, we have that G has a matching

covering A except for three cases when k = 3, n = 7 or n = 8, and k = 4, n = 7. Suppose
G has no matching covering A for the three remaining cases. By Hall’s theorem, there is
a subset S ⊆ A such that |NG(S)| ≤ |S| − 1. Let E be the set of edges between S and
NG(S).
Case 1: k = 3 and n = 7. According to Lemma 2.2, we consider the following three
subcases. Recall that in this case, the degree of any vertex in B is at most

(
k
2

)
= 3. So,

we have that 3|S| − 3 ≥ 3|NG(S)| ≥ |E|.
Subcase 1: There is a vertex in A with degree

(
n−2
k−2

)
− 4, a vertex in A with degree(

n−2
k−2

)
− 3 and the other vertices in A with degree at least

(
n−2
k−2

)
− 1 in G.

We have

|E| ≥
((

n− 2

k − 2

)
− 4

)
+

((
n− 2

k − 2

)
− 3

)
+

((
n− 2

k − 2

)
− 1

)
(|S| − 2) = 4 |S| − 5.
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When |S| ≥ 3, we have |E| ≥ 3|S|−2, a contradiction. When |S| = 1 or 2, considering
the degree of vertices in A, we have |N(S)| ≥ |S|, a contradiction.
Subcase 2: There is a vertex in A with degree

(
n−2
k−2

)
−4 and the other vertices in A with

degree at least
(
n−2
k−2

)
− 2 in G.

We have

|E| ≥
((

n− 2

k − 2

)
− 4

)
+

((
n− 2

k − 2

)
− 2

)
(|S| − 1) = 3 |S| − 2.

It contradicts to the fact that 3|S| − 3 ≥ |E|.
Subcase 3: There are at most two vertices in A with degree

(
n−2
k−2

)
− 3 and the other

vertices in A with degree at least
(
n−2
k−2

)
− 2 in G.

We have

|E| ≥ 2 ·
((

n− 2

k − 2

)
− 3

)
+

((
n− 2

k − 2

)
− 2

)
(|S| − 2) = 3 |S| − 2.

Similarly, it is a contradiction.
Case 2: k = 3 and n = 8. By Lemma 2.2, there are at most two vertices in A with degree(
n−2
k−2

)
− 4 and the other vertices in A with degree at least

(
n−2
k−2

)
− 3 in G. Therefore,

|E| ≥ 2 ·
((

n− 2

k − 2

)
− 4

)
+

((
n− 2

k − 2

)
− 3

)
(|S| − 2) = 3 |S| − 2.

On the other hand, we have

|E| ≤
(
k

2

)
|NG(S)| = 3 |NG(S)| ≤ 3 |S| − 3.

Hence, 3 |S| − 2 ≤ |E| ≤ 3 |S| − 3, a contradiction.
Case 3: k = 4 and n = 7. Since every four-tuple of {v1, . . . , v7} will contain a pair of
consecutive vertices, the degree of any vertex in B is at most

(
k
2

)
−1 in G. And by Lemma

2.3, either there are a vertex in A with degree
(
n−2
k−2

)
− 7 and the other vertices in A with

degree at least
(
n−2
k−2

)
− 4 in G, or there are at most one vertex in A with degree

(
n−2
k−2

)
− 6

and the other vertices in A with degree at least
(
n−2
k−2

)
− 5. Therefore,

|E| ≥
((

n− 2

k − 2

)
− 7

)
+

((
n− 2

k − 2

)
− 4

)
(|S| − 1) = 6 |S| − 3.

or
|E| ≥

((
n− 2

k − 2

)
− 6

)
+

((
n− 2

k − 2

)
− 5

)
(|S| − 1) = 5 |S| − 1.

On the other hand,

|E| ≤
((

k

2

)
− 1

)
|NG(S)| = 5 |NG(S)| ≤ 5 |S| − 5.
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Hence, min{5 |S| − 1, 6 |S| − 3} ≤ |E| ≤ 5 |S| − 5, a contradiction.
Secondly, let H be a strong k-hypertournament on n vertices where k = n − 2 and

n ≥ 11. Similarly, let Kn be a complete graph with the same vertex set as H. By
Theorem 1.1, we can assume that C = v1b1v2 . . . bn−1vnbnv1 is a Hamiltonian cycle in H.
Consider a bipartite graph G with partite sets A = E(Kn) \ {v1v2, v2v3, . . . , vnv1} and
B = A(H) \ {b1, . . . , bn}. For every a ∈ A and b ∈ B, G has an edge ab if a ⊂ b̄, where b̄

denotes the set of vertices of b. It is sufficient to prove that G has a matching covering
B. Since |B| =

(
n

n−2

)
− n =

(
n
2

)
− n = |A|, the matching is a perfect matching of G, and

then Kn has an orientation T ∈ TH such that T is strong.
For every hyperarc a ∈ A(H), we may assume V (D) \ V (a) = {vi, vj} and i < j.

Since we removed at least three edges which incident with vi or vj in E(Kn), and none
of them are contained in V (a), then the degree of a in G is at least

(
k
2

)
− (n− 3). So the

degree of any vertex in B is at least
(
k
2

)
− (n− 3). For every S ⊆ B, if |S| ≤

(
k
2

)
− n+ 3,

then |N(S)| ≥ |S|. If |S| ≥
(
k
2

)
− n+ 3 + 1 =

(
n−2
2

)
− n+ 4, when n ≥ 11, we have(

n− 2

2

)
− n+ 4− (3n− 6) ≥ 2.

By Lemma 2.5, we know |N(S)| = |A| = |B| ≥ |S|. Moreover, according to the Hall’s
Theorem, we know G has a perfect matching.

In the following, we use Theorem 1.4 to give some immediate results which have been
proved before by different and independent methods [8, 10, 13, 16].

Theorem 3.1. [8] Let T be a strong tournament and C a Hamiltonian cycle in T . Then
C contains at least three pancyclic arcs.

Theorem 3.2. If H is a strong k-hypertournament on n vertices for n ≥ 11 and 3 ≤ k ≤
n− 2, H has following properties:

(i) H is vertex-pancyclic.

(ii) If C is a Hamiltonian cycle in H, then C contains at least three pancyclic hyperarcs.

Proof. By Theorem 1.4, there exists a strong tournament T ∈ TH . We obtain that T is
vertex-pancyclic and any Hamiltonian cycle C in T contains at least three pancyclic arcs
by the Moon theorem and Theorem 3.1. The corresponding vertices and hyperarcs in H

have the same property, then H is vertex-pancyclic and the corresponding Hamiltonian
cycle in H contains at least three pancyclic hyperarcs.
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4 Concluding remarks
Let us show another relationship between hypertournament H and its corresponding

tournament in TH , and generalize some results on tournaments to hypertournaments.

Lemma 4.1. If H is a k-hypertournament on n vertices with 3 ≤ k ≤ n − 2, there is a
tournament T ∈ TH .

Proof. Consider a bipartite graph G with partite sets A = E(Kn) and B = A(H). For
every a ∈ A and b ∈ B，G has an edge e = ab if a ⊂ b̄, where b̄ denotes the set of vertices
of b. The degree of b is

(
k
2

)
, and the degree of a is

(
n−2
k−2

)
. Since

(
n−2
k−2

)
≥

(
k
2

)
, then by

Lemma 2.1, G has a matching saturating A. Hence, there is a tournament T ∈ TH .

Theorem 4.1. [3] There is some constant C such that every (k+Cℓ)-vertex tournament
contains a copy of any k-edge oriented tree with ℓ leaves.

Theorem 4.2. For any t-edge oriented tree T with ℓ leaves, there is some constant C

such that every k-hypertournament H on t+Cℓ vertices with 3 ≤ k ≤ t+Cℓ− 2 contains
a copy of Berge-T .

Proof. For any t-edge oriented tree T with ℓ leaves, by Theorem 4.1, there is some constant
C such that every (t+Cℓ)-vertex tournament contains a copy of T . By Lemma 4.1, there
is a tournament TH ∈ TH such that |V (TH)| = t + Cℓ. Hence TH contains a copy of T ,
and then, H contains a copy of Berge-T by the generated relationship.

The ℓ-th power of the directed path Pt = x1x2 . . . xtxt+1 of length t is the digraph P ℓ
t

on the same vertex set containing the arc xixj if and only if i < j ≤ i+ ℓ.

Theorem 4.3. [5] For n ≥ 2, every n-vertex tournament contains the ℓ-th power of a
directed path of length n/24ℓ+6ℓ.

Theorem 4.4. For n ≥ 2, every n-vertex k-hypertournament H with 3 ≤ k ≤ n − 2

contains a copy of Berge-P ℓ
t where t = n/24ℓ+6ℓ.

Proof. Since H is an n-vertex k-hypertournament, there is a tournament TH ∈ TH such
that |V (T )| = n by Lemma 4.1. By the Theorem 4.3, there is an ℓ-th power of a directed
path of length n/24ℓ+6ℓ. Moreover, H contains a copy of Berge-P ℓ

t where t = n/24ℓ+6ℓ.

This perspective on hyperdigraphs allows us to address certain problems effectively.
As an illustration, we will establish an extension of the Gallai-Milgram theorem to hyper-
digraphs.

10



The path covering number of a hyperdigraph H denoted by pc(H), is the minimum
positive integer m such that there are m disjoint paths covering the vertex set of H. An
independent set I of H is a set of vertices such that the induced sub-hyperdigraph of I
has no hyperarcs. The independence number of H, α(H), is the maximum integer m such
that H has an independent set of size m.

Theorem 4.5 (Gallai-Milgram Theorem). [6] For every digraph D, the path covering
number is at most its independence number, that is pc(D) ≤ α(D).

Theorem 4.6. For every hyperdigraph H, pc(H) ≤ α(H).

Proof. Construct a digraph D with V (D) = V (H). Let each hyperarc of H generate an
arc of D, and delete the parallel arcs. We call such a digraph D generated by H. For any
path P in D, there is a path P ′ in H such that every arc of P is generated by hyperarcs
of P ′. Hence, we have pc(H) ≤ pc(D). By Theorem 4.5, we know pc(D) ≤ α(D). On
the other hand, if I is an independent set of D, then it is also an independent set of H.
Otherwise, there is a hyperarc e in H[I]. By the definition of D, there must be an arc e′

in D[I] generated by e which contradicts that I is an independent set of D. Thus,

pc(H) ≤ pc(D) ≤ α(D) ≤ α(H).

As we can see above, it is not hard to extend a property of digraphs to hyperdigraphs,
it is natural to ask what else we can do. Based on the main result of this paper we could
always find a degenerated strong tournament from a strong k-hypertournament, we could
extend many properties of strong tournaments to k-hypertournaments besides what we
give in Section 3. For example, it is well-known that there are at least three 2-kings in a
strong tournament, and so is a strong k-hypertournament.
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