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Abstract

Let G be a graph with order n(G) > 5, local metric dimension dim;(G), and
clique number w(G). In this paper, we investigate the local metric dimension
of Ks-free graphs and prove that dim;(G) < [2n(G)] when w(G) = 4. As a
consequence of this finding, along with previous publications, we establish that
if G is a Ks-free graph, then dimy(G) < [2n(G)] when w(G) = 2, dimy(G) <
[31(G)] when w(G) = 3, and dimy(G) < |3n(G)] when w(G) = 4. Notably,
these bounds are sharp for planar graphs. These results for graphs with a
clique number less than or equal to 4 provide a positive answer to the conjec-

ture stating that if n(G) > w(G) + 1 > 4, then dimy(G) < (ggggj) n(G).
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1 Introduction

Let G be a simple connected graph with vertex set V(G) and edge set E(G). We
denote the order of G as n(G) and its clique number as w(G). Let u, v, and w be
arbitrary elements of V(G). The notation Ng(u) represents the open neighborhood
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of u, which is the set of vertices in V (G) that are adjacent to u. The degree of vertex
u, denoted as dg(u), refers to the number of vertices in Ng(u). The notation dg(u,v)
denotes the distance between vertices u and v, defined as the length of the shortest
path in G connecting u and v. We say that the vertices u and v are distinguished
by w, or equivalently, that w distinguishes u and v, if dg(u,w) # dg(v,w). For a
positive integer k, the notation [k] represents the set {1,2,...,k}, and we define
[0] = 0. For a positive integer n, the notations K,, and P, represent the complete
graph and the path on n vertices, respectively. Let V'’ be a subset of V(G). The
notation G[V’] denotes the induced subgraph of G with vertex set V', where two
vertices are adjacent if and only if they are also adjacent in G. Let G’ be a distinct
graph from G. We denote the union of G and G’ as G U GG, which consists of the
vertex set V(G) U V(G') and the edge set E(G) U E(G’). Now, consider H as an
arbitrary subgraph of G. The subgraph G — H is defined as the graph obtained by
removing the vertices of H and the edges that have at least one endpoint in H from
G. If H' is another subgraph of G, then Eqg(H, H') denotes the collection of edges
in G that connect one vertex in H to another vertex in H’.

In this research, we focus on examining the local metric dimension of finite,
simple, and connected graphs with a clique number of 4. First, let’s define some key
concepts. A resolving set for a graph G is a subset W of V(G) such that for any two
distinct vertices u and v in V(G) — W, there exists at least one vertex in W that
can distinguish between u and v. Similarly, a local resolving set of GG is a subset W
of V(@) such that for any adjacent vertices u and v in V(G) — W, there is a vertex
in W that can distinguish u from v. The cardinalities of the smallest resolving sets
and the smallest local resolving sets for GG are referred to as the metric dimension
dim(G) and the local metric dimension dim;(G) of the graph G, respectively. It is
important to note that dim;(G) < dim(G).

The concept of the metric dimension of graphs has an extensive history, originally
defined by Harary and Melter [11], as well as Slater [20]. Determining the metric
dimension is known to be NP-complete for general graphs [13], and this complexity
also extends to specific cases, such as planar graphs with a maximum degree of 6 [4].
Research in this field is prolific, partly due to the metric dimension’s wide range of
real-world applications, which include robot navigation, image processing, privacy
in social networks, and tracking intruders in networks. A 2023 overview [21] of the
essential results and applications of metric dimension includes over 200 references.

Research on the metric dimension has led to the exploration of various related
concepts. A survey [16] that focuses on these variations cites over 200 papers.
One particularly interesting variant is the local metric dimension, introduced in
2010 by Okamoto et al. [18]. Similar to the standard metric dimension, the local
metric dimension presents computational challenges [5,6] and has been the subject



of several studies [1-3,7,8,14, 15,17, 19], including research on the fractional local
metric dimension [12].

Okamoto et al. [18] established several significant relationships between the local
metric dimension and the clique number:

o dimy(G) = n(G) — 1if and only if G = K,q);
n(G) — 2 if and only if w(G) = n(G) — 1;

L dlml( )
e dim;(G) =1 if and only if G is bipartite;
)

e dimy(G) > max{ [og, w(G)],n(G) — 2™¢€ )—W(G)}_

Additionally, Abrishami et al. [1] demonstrated that dim;(G) < 2n(G) when w(G) =
2 and n(G) > 3. Furthermore, one of the authors, along with others, proved in

[8] that dim;(G) < (%) n(G), with equality occurring only if G = K,q).
This result was first conjectured in [1]. The authors also presented the following

conjecture.
Conjecture 1.1. [8, Conjecture 2] If G is a graph with n(G) > w(G)+1 > 4, then

dimy(G) < (%) n(@Q).

It has been demonstrated in [8] that if Conjecture 1.1 is true, then the bound
is asymptotically the best possible. Recently, the authors in [9] confirmed this
conjecture for all graphs with a clique number w(G) in the set {n(G) — 1,n(G) —
2,n(G) — 3}. They also characterized all graphs with order n and a local metric
dimension of n — 3. Additionally, they established that:

e n(G) — 4 <dimy(G) < n(G) — 3 when w(G) = n(G) — 2;
e n(G) — 8 < diny(G) < n(G) — 3 when w(G) =n(G) — 3.

Furthermore, the authors in [10] confirmed this conjecture when w(G) = 3.

In this paper, we present the following theorem, which positively addresses Con-
jecture 1.1 for graphs with a clique number of 4. It is important to note that
Conjecture 1.1 remains unresolved for graphs G where 5 < w(G) < n(G) — 4.

Theorem 1.2. If G is a graph of order n(G) > 5 with clique number w(G) = 4,
then dimy(G) < [3n(G)].

For any positive number ¢, let G = tK3 + K;. This means that G is constructed
from ¢ disjoint complete graphs K3 by adding a new vertex and connecting it to all
vertices of the tK3 components. It is easy to observe that w(G) = 4 and dim(G) =
|2n(G)|. Therefore, there are infinitely many planar graphs G such that w(G) = 4
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and dimy(G) = [2n(G)].



2 Proof of Theorem 1.2

We begin the proof by outlining a crucial approach. First, let H; (where i € [6])
represent the graphs depicted in Fig. 1. Let G be a graph with n(G) > 5 > w(G). In
the following sections, we will sequentially identify maximum sets of vertex disjoint
induced subgraphs within GG and its induced subgraphs that are isomorphic to one of
the H; graphs. Although this selection is not necessarily unique, we will choose one
specific selection and fix it for the purpose of this proof, ensuring that the following
notation is well-defined.

N

H1 H2 H3 H4 H5 HG

Figure 1: The graphs Hy, Hs, ..., Hg.

e Let Hi(G) be a maximum set of vertex disjoint induced subgraphs of G iso-
morphic to H;.

e Set G1 =G. Fori=2,3,...,6, let H;(G) be a maximum set of vertex disjoint
induced subgraphs of G; = G,_; — ZHE%__I(G) H isomorphic to H;.

o Note that Ge — _ ey H i a set of isolated vertices, let H7(G) be the set
of these induced subgraphs isomorphic to Kj.

e For: e [6], let ‘/Z = UHE’Hl(G’)V(H>

It is clear that the sets V; for ¢ € [7] form a partition of the vertex set of
G. Importantly, for ¢ ranging from 1 to 7, the sets H;(G) may be empty. In the
remainder of this text, we will consider the following conditions on the elements of

Hi(G).
e Forie [6], H;(G) = {H],... >H|i7%i(G)|}'

o Fori € [[Hi(G)[, VIHY) = (Bl B}, diy(B)) = digy (hL) = iy (L) = 4
dyy (W) = dyy () = 3.



e Fori € [|[Ho(G)]], V(H, )2 { o hiY dH2( ):dHf(hzzg):47dH§(h?3):
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dez(h?)—Z’) and dpz(h

o Fori e [[Hs(G)|], V(H}) = {h},..., B}, dys(h}) = 4, dys(h},) = dys(hi) =
ds(h},) = 3, and dys(h) = 1.

o For i € [[Hi(G)l], V(H}) = {hi,....hi}, for i € [[Hs(G)|], V(H}) =
{n?.....h}}, and forzGH’Hg( )], VI(H, ) {nY  h}.

Let G;, where i € [6], be the subgraphs of G defined above. By applying our
assumptions that w(G) < 4 and the maximality of H;(G) for i € [6], we can observe
the following results.

(I) Ifi € [|H(Q)]], € {4,5}, and v € V(G — H}), then G[{h} hi, hi v} %

11’ 127 137 z )
K.

(IT) If i € [|H2(Q)]], 7 € {2,3}, and v € V(Gy — H?), then G[{hfl,hi,h?, v}] ¥
K,.

(IT1) If i € [|[Hs(G)]], j € {1,2}, and v € V(G3 — H?), then G[{h3  h3 h3 v}] &

K4' iz MYigo MY
(IV) If i € [[Ha(G)]], j € [4], and v € V(G4 — H}), then hiv & E(G).

(V) Ifi € [Ha(G)]], 5 € [4], v € V(G — Gy), and hiv € E(G), then there exists
an element [ € ([4] — {j}) such that G[h} , h; ] Ps.

25 (IR

(VI) If i € [|[H5(G)|] and v € V(G5 — HY), then G[V(H?) U {v}] # K.
(VII) If i € [|[H6(G)|] and v € V(Gg — H?), then G|V (HP) U {v}] #* Ks.

In the following processes, we will construct a set S such that |S| < 2n(G),
ensuring that S remains a local resolving set for G. We start with S = (). To
move forward, we need to introduce an additional notation. Let X C H4(G) and
H € H;(G), where i € [3]. The notation 7; 4(H, X') represents the set of elements X
in X such that Eq(H, X) # 0.

15 process:
(1.1) Set S=10,i=1, and X = H4(G), and then go to (1.2).

(1.2) If ¢ > |H1(G)|, then return S and X, and end the process, otherwise go to
(1.3).



(1.3)

(1.5)

(1.6)

If |7 4(H}, X)| =0, then set
i=i41,
and proceed to (1.2), otherwise go to (1.4).

If |7 4(H}!, X)| = 1 and 7 4(H}, X) = { X1}, then choose two distinct elements
1,12 € [5] and two distinct elements 1, 73 € V/(X1) such that G[{h;, , =}, 23}]
Ps, and then set

I

S=SU (V(H}) = {h; }) U V(X)) = {a1,23}),

i=i+1,
X = X — 7—174(H2'17X)7

and proceed to (1.2), otherwise go to (1.5).

If |7 4(H! X)| =2 and 7 4(H}, X) = {X1, X5}, then for an element [ € [5],
for which G[(V (H}) — {h;}) UV (X1) UV (X3)] is connected, choose elements
ri,xd € V(X;) and 23,25 € V(X3) such that for 21,22 € ([5] — {l}), not
necessarily distinct, we have G[{h}_,x1,23}] = Py and G[{h;_, 1,23} = P,
and then set

S=SU(V(H]) = {h,}) U(V(X1) = {z1,25}) U (V(X2) — {2, 23}),

i=i+1,
X =X—-14(H},X),

and proceed to (1.2), otherwise go to (1.6).

If |1y 4(H}, X)| > 3 and 1y 4(H}, X) = {X1, ..., X1, 1,2}, then for [ from 1
to |11.4(H}, X)|, choose two distinct elements z!, 2 € V(X;) such that for an
element z € [5], G[{h} 2%, x4} = P;, and then set
§ =50 VH) UL V) ~ {ah,ab)).
i=i+1,
X =X—n4H X),

and proceed to (1.2).

274 process:



(2.1) Consider the sets S and X that are returned in the 1% process, and then set
i =1, and go to (2.2).

(2.2) If i > |H2(G)|, then return S and X, and end the process, otherwise go to
(2.3).

(2.3) If |mo4(H?, X)| = 0, then set

S=SU (V(H}) — {hi,,hl}),

and proceed to (2.2), otherwise go to (2.4).

(2.4) If | 4(HZ, X)| = 1 and 7 4(H?, X) = {X1}, then choose an element [; € [4]
such that G[(V (H ) {n; }) U V(Xy)] is connected. Additionally, select two

distinct elements x1, z3 € V(Xl) such that for an element Iy € ([5] — {l1}), it
holds that G[{h} ,z1,z3}] = Ps. Then set

S=8U (V(H) = {h; YUV (X1) = {z1,23}),
i=i+1,
X =X —ry(H?, X),

and proceed to (2.2), otherwise go to (2.5).

(2.5) If |1 u(HZ, X)| = 2 and 14(HZ, X) = {X1, X2}, then for an element [; € [4],
for which G[(V(H7?) — {h} }) UV (X)) UV (Xy)] is connected, choose elements
z1, 5 € V(X;) and J;l,x% € V(Xy) such that for ly,l3 € ([5] — {l1}), not
necessarily distinct, we have G[{h%b,x%,x%}] = P; and G[{h%g,x%, 13} = P,
and then set

S=SU(V(H?) —{hi }) U (V(X1) — {a1,25}) U (V(Xs) — {21, 23}),
i=i+1,
X=X -1 (HX),

and proceed to (2.2), otherwise go to (2.6).

(2.6) If |0 4(HZ, X)| > 3 and 1 4(HZ, X) = {X1,. .. s X|rya(m2,2) }, then for [ from 1
to |4 (H?, X)|, choose two distinct elements z}, 2, € V(X;) such that for an



element z € [5], G[{h? , 2%, x}}| = P3, and then set

|72,4(HZ,X)|

S=SUV(H)UZ V(X)) = {21, 23}),
i=i+ 1,
X =X —nu(H?,X),
and proceed to (2.2).
3* process:
(3.1) Consider the sets S and X that are returned in the 2°¢ process, and then set
i =1, and go to (3.2).
(3.2) If i > |H3(G)]|, then return S, and end the process, otherwise go to (3.3).
(3.3) If |m34(H}, X)| = 0, then set
S=S8U (V(H}) = {hi, h,}),
i=i+1,
and proceed to (3.2), otherwise go to (3.4).

(3.4) If |m34(H2, X)| = 1 and 134(H?, X) = {X;}, then choose an element [; € [4]
such that Eq(G[V(H7) — {h} }], X1) # 0. Additionally, select two distinct
elements z1, 2} € V(X;) such that for an element I, € ([5] — {/;}), it holds
that G[{hi,x%,x%}] = P3. Then set

S=SU (V(H) - {hi }) U (V(X1) — {z1,23}),
P—it1,
X =X —734(H, X),
and proceed to (3.2), otherwise go to (3.5).
(3.5) If |m34(H?, X)| = 2 and 7'374(H5’,X) = {X1, X}, then for an element I; € [4],

for which Eq(G[V ( 3) {3, X )%@and Ea(GIV(H7) —{h; }], X2) # 0,

choose elements 1, z3 € V(Xl) and x?7, 73 € V(Xg) such that for 12, ls € ([5]—
{l1}), not necessarily distinct, we have G’[{h”2 71,73} = Pyand G[{h o2 xa}]
Ps, and then set

S=SU V) —{h; 1)U V(X)) — {1, 23}) U (V(X2) — {af,23}),
i=i+1,
X=X —74(H}X),
and proceed to (3.2), otherwise go to (3.6).
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(3.6) If [34(H?, X)| > 3 and 73 4(H, X) = {X1,..., X|r, s, x) }» then for [ from 1
to |134(H?, X)|, choose two distinct elements z!, 2, € V(X;) such that for an
element z € [5], G[{h? ,z},25}] = Ps, and then set

|73,4(H3,X)|

S =SU V(HU (V(X0) = {ah, 25}),
X=X — T3’4<HZ~3,X>,
and proceed to (3.2).

4™ process:

(4.1) Consider the set S that is obtained in the 3! process, and then set i = 1
before proceeding to step (4.2).

(4.2) If : > [H5(G)|, then return S, and end the process, otherwise go to (4.3).

(4.3) Set
S=Su{hi, h},
i=i+1,
and proceed to (4.2).
5% process:

(5.1) Consider the set S that is obtained in the 4" process, and then set i = 1
before proceeding to step (5.2).

(5.2) If i > |He(G)|, then set S = S U H7(G), return S, and end the process.
Otherwise, proceed to (5.3).

(5.3) Set
6
S =SuU{h;},
i=i41,
and proceed to (5.2).

Now, let S be the subset of V(G) obtained from the five processes described
above. For an integer I, define A = 2(41 4 5). It is evident that A > 3 when [ = 0,
A=6whenl=1, A >8 when ! =2, and A > 2] + 5 when [ > 3. Additionally, we
have that % 4> 2, % -3 =2, and % -2 > 1. Thus, by applying the methods used to
create S, we can observe that |S| < 2n(G). Moreover, by utilizing the cases (I) to

(VII) mentioned earlier, it follows that S serves as a local resolving set for G. Since
dim; (@) is an integer, we have proved Theorem 1.2.
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