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Abstract

Given two k-uniform hypergraphs F andG, we say thatG has an F -covering

if for every vertex in G there is a copy of F cover it. For 1 ≤ i ≤ k−1, the min-

imum i-degree δi(G) of G is the minimum integer such that every i vertices are

contained in at least δi(G) edges. Let ci(n, F ) be the largest minimum i-degree

among all n-vertex k-uniform hypergraphs that have no F -covering. In this

paper, we mainly consider the F -covering problem in 3-uniform hypergraphs.

When F is a generalized triangle T , we give the exact value of c2(n, T ) and

asymptotically determine c1(n, T ). Moreover, when F is a linear k-path Pk or

a star Sk, we provide bounds of ci(n, Pk) and ci(n, Sk) for k ≥ 3, where i = 1, 2.
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1 Introduction

Let k be an integer with k ≥ 2. We say a k-uniform hypergraph, or a k-graph,

is a pair G = (V (G), E(G)), where V (G) is a set of vertices and E(G) is a collection

of k-subsets of V . When k = 2, the k-graph is the simple graph. We simply denote

2-graph by graph. Let G = (V (G), E(G)) be a k-graph. For any S ⊂ V (G), let the
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neighborhood NG(S) of S be {T ⊂ V (G) \S : T ∪S ∈ E(G)} and the degree dG of S

be |NG(S)|. For 1 ≤ i ≤ k−1, we denote the minimum i-degree of G by δi(G), which

is the minimum of dG(S) over all S ∈
(
V (G)

i

)
. We call δ1(G) the minimum degree of

G and δk−1(G) the minimum codegree of G. When |S| = k−1, we also call the vertex

in NG(S) the co-neighbor of S. For a vertex x in V , we define the link graph Gx to

be a (k − 1)-graph with the vertex set V (G) \ {x} and the edge set NG({x}).
Given a k-graph F , we say a k-graph G has an F -covering if for any vertex of

G, we can find a copy of F containing it. For 1 ≤ i ≤ k − 1, define

ci(n, F ) = max{δi(G) : G is a k-graph on n vertices with no F -covering}.

and call c1(n, F ) the F -covering degree-threshold and ck−1(n, F ) the F -covering

codegree-threshold.

For graphs F , the F -covering problem was solved asymptotically in [7] and

showed that c1(n, F ) = (χ(F )−2
χ(F )−1

+ o(1))n where χ(F ) is the chromatic number of F .

Falgas-Ravry and Zhao [1] initiated the study of the F -covering problem in 3-graphs.

For n ≥ k, let Kk
n denote the complete k-graph on n vertices and Kk−

n denote the

k-graph by removing one edge from Kk
n. In [1], Falgas-Ravry and Zhao determined

the exact value of c2(n,K
3
4) for n > 98 and gave bounds of c2(n, F ) when F is K3−

4 ,

K3
5 or the tight cycle C3

5 on 5 vertices. Yu, Hou, Ma and Liu [3] gave the exact value

of c2(n,K
3−
4 ), c2(n,K

3−
5 ) and showed that c2(n,K

3−
4 ) = ⌊n

3
⌋, c2(n,K3−

5 ) = ⌊2n−2
3

⌋.
Soon after that, Falgas-Ravry, Markström, and Zhao [2] gave near optimal bounds of

c1(n,K
3
4) and asymptotically determined c1(n,K

3−
4 ). Recently, Tang, Ma and Hou [4]

determined the exact value of c2(n,C
3
6) and an asymptotic optimal value of c1(n,C

3
6).

There are some other related results in literature, for example in [5],[6].

In this paper, we also focus on 3-graphs. Let the generalized triangle T be a 3-

graph with the vertex set {v1, v2, v3, v4, v5} and the edge set {{v1v2v3}, {v1v2v4}, {v3
v4v5}}. We determine the exact value of c2(n, T ) and give the bounds of c1(n, T ).

What’s more, let G be a graph and fix a vertex u in V (G). If u is covered by a

generalized triangle, then there are three possible positions for u to have, see Figure

1. We denote these three ways by T 1, T 2 and T 3. We give the upper bounds of δ1(G)

guaranteeing that every vertex in V (G) is contained in T 1, T 2 and T 3. The main

results on generalized triangle are as follows.

Theorem 1. For n ≥ 5, we have:

c2(n, T ) =


1,when n ∈ [5, 10]

2,when n ≥ 11 and n− 1 ≡ 0 (mod 3)

1,when n ≥ 11 and n− 1 ≡ 1, 2 (mod 3)

.
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u

(a) u is contained in T 1

u

(b) u is contained in T 2

u

(c) u is contained in T 3

Figure 1: Different positions of u in a generalized triangle

Theorem 2. For n ≥ 5, we have:

(i) n2

9
≤ c1(n, T ) ≤ n2

6
+ 5

6
n− 3.

(ii) If G is an n-vertex 3-graph satisfying that δ1(G) > n2

6
+ 5

6
n − 3, then for any

vertex u in G, there is a generalized triangle T 1 or T 2 covering u.

(iii) If G is an n-vertex 3-graph satisfying that δ1(G) > n2

4
+ 1

4
n − 2, then for any

vertex u in G, there are generalized triangles T 1 and T 2 covering u.

(iv) If G is an n-vertex 3-graph satisfying that δ1(G) >
√
5−1
4

n2+O(n), then for any

vertex u in G, there are generalized triangles T 1, T 2 and T 3 covering u.

Now we pay attention to some trees covering problems. For k ≥ 2, let Sk

be the 3-graph k-star with the vertex set {v0, v1, v2..., v2k−1, v2k} and the edge set

{{v0, v1, v2}, {v0, v3, v4}, ..., {v0, v2k−1, v2k}}. Let v0 be the center of Sk. For k ≥ 2,

let the 3-graph Pk be the the linear k-path with the vertex set {v1, v2..., v2k, v2k+1} and
the edge set {{v1, v2, v3} {v3, v4, v5}, ..., {v2k−1, v2k, v2k+1}}. In this paper, we consider

the F -covering problem when F is the k-star Sk or the linear k-path Pk.

When k = 2, the 2-star S2 is the linear 2-path P2. Figure 2 is an example of

the linear 2-path P2. We determine the exact values of c2(n, P2) and c1(n, P2). The

results on the linear 2-path covering or the 2-star covering are as follows.

v2 v1 v0 v3 v4

Figure 2: Linear 2-path P2

Theorem 3. For n ≥ 5, we have c2(n, P2) = 0.

Theorem 4. For n ≥ 8, we have c1(n, P2) = 3.
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In addition, we determine the codegree threshold for the property of a 3-graph

G that for any vertex u ∈ V (G) we can find a linear 2-path P2 with the center u.

Theorem 5. If G is an n-vertex 3-graph satisfying that n ≥ 5 and δ2(G) ≥ 2, then

for any vertex u ∈ V (G), we can find 4 vertices p, q, s, t where {u, p, q} and {u, s, t}
form a linear 2-path P2 covering u.

Through exploring the structure of graphs without some specific matchings, we

obtain the following result on the 3-star S3-covering.

v2 v1 v0 v3 v4

v5

v6

Figure 3: The 3-star S3

Theorem 6. If H is an n-vertex 3-graph satisfying n ≥ 7 and δ2(H) ≥ 2, then for

any vertex u ∈ V (H), there is a 3-star S3 covering u.

By Theorem 6, we can directly get the following corollary.

Corollary 1. For n ≥ 7, c2(n, S3) ≤ 1.

As well, we determine the codegree threshold for the property of a 3-graph G

that for any vertex u ∈ V (G) we can find a 3-star S3 with the center u.

Theorem 7. If H is an n-vertex 3-graph with n ≥ 7 and δ2(H) ≥ 3, then for any

vertex u ∈ V (H) we can find a S3 with the center u.

Using the similar technique in the proof of Theorem 6 we also give bounds of

c2(n, Sk) and c1(n, Sk) for k ≥ 3.

Proposition 1. Let k be an integer with k ≥ 3. Let H be an n-vertex 3-graph with

n ≥ 2k + 1. We have:

(i) c2(n, Sk) ≤ max{4k2−6k+2
n−1

, k − 2− k2−nk
n−1

}.

(ii) c1(n, Sk) ≤ max{
(
2k−1
2

)
,
(
n−1
2

)
−
(
n−k
2

)
}.

Figure 4 is an example of the linear 3-path P3. We determine the exact value of

c2(n, P3) and asymptotically determine c1(n, P3) as follows.
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v0 v1 v2 v3 v4 v5 v6

Figure 4: Linear 3-path P3

Theorem 8. For n ≥ 8, we have c2(n, P3) = 1.

Theorem 9. For n ≥ 8, we have n− 2 ≤ c1(n, P3) ≤ n+ 4.

Moreover, we determine the codegree threshold for the property of a 3-graph

G that for any vertex u ∈ V (G) we can find a linear 3-path with the vertex set

{u, v1, v2, v3, v4, v5, v6} and the edge set {{v1v2u}, {uv3v4}, {v4v5v6}} covering u.

Theorem 10. If H is an n-vertex 3-graph with n ≥ 8 and δ2(H) ≥ 3, then for any

vertex u ∈ V (H) we can find a P3 with the vertex set {u, v1, v2, v3, v4, v5, v6} and the

edge set {{uv1v2}, {uv3v4}, {v4v5v6}} covering u.

We also give the bounds of c2(n, Pk) and c1(n, Pk) for k ≥ 4 as follows.

Proposition 2. Let k be an integer with k ≥ 4. We have:

(i) For n ≥ 2k + 1, k − 3 ≤ c2(n, Pk) ≤ 2k − 2.

(ii) For n ≥ 4k, max{n− 2,
(
2k−1
2

)
} ≤ c1(n, Pk) ≤

(
n−1
2

)
−
(
n−2k+1

2

)
.

The rest of the paper is arranged as follows. In Section 2, we give some extremal

constructions and proofs of theorems for generalized triangle covering. And in Sec-

tions 3 we give some extremal constructions and proofs of theorems for some trees

covering.

2 Results on generalized triangle covering

2.1 Construction

We introduce some constructions involving our results. For two families of sets

A and B, define A ∨B = {A ∪B : A ∈ A and B ∈ B}.

Construction 1. Let V1 be a vertex set. Fix u ∈ V1, let V
′ = V1\{u}, E1 = {u}∨

(
V ′

2

)
which means E1 is a 3-set family and every 3-set from E1 contains u and two other

vertices form V ′. Let G1 = (V1, E1) be a 3-graph.
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The following observation can be checked directly.

Observation 1. G1 is a 3-graph with δ2(G1) = 1 and there is no generalized triangle

T covering u.

Construction 2. Let k be an integer with k ≥ 4. Let G2 = (V2, E2) be a 3-graph

with V2={u} ∪
∑k

i=1Ci where Ci is a 3-vertex set for i ∈ [1, k]. E2 consists of two

types of edges. For the first type, edges induced in the vertex set {u} ∪ Ci form a

K3
4 for any i ∈ [1, k]. For the second type, let Ca, Cb and Cc be any three elements

in {Ci : i ∈ [1, k]}. Without loss of generality, we assume Ca is {v1, v2, v3}, Cb is

{v4, v5, v6} and Cc is {v7, v8, v9}. The edges induced in Ca, Cb and Cc are:
{v1, v4, v7}, {v2, v4, v8}, {v3, v4, v9};

{v1, v5, v8}, {v2, v5, v9}, {v3, v5, v7};

{v1, v6, v9}, {v2, v6, v7}, {v3, v6, v8};



Ca Cb Cc

v1

v2

v3

v4

v5

v6

v7

v8

v9

Figure 5: Edges induced in Ca, Cb and Cc.

In Construction 2, the subgraph induced in every three elements of {Ci} is

isomorphic to the 3-graph in Figure 5. And we get the following observation for the

Construction 2.

Observation 2. G2 is a 3-graph with δ2(G2) = 2 and there is no generalized triangle

T covering u.

Proof. We first check that G2 has no generalized triangle T covering u. If u is

covered as the first case in Figure 1, then there is an edge e0 = {u, v1, v2} such that
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v1, v2 ∈ Ci for i ∈ [1, k]. By the definition of G2, we can not find two vertices v3, v4

from V2 \ {u, v1, v2} making {v1, v3, v4}, {v2, v3, v4} being edges in E2, a contradiction

with the fact that there is a T 1 covering u. If u is covered as the second case in Figure

1, then there are two edges e1 = {u, v5, v6} and e2 = {u, v7, v8} such that v5, v6 ∈ Ci

and v3, v4 ∈ Cj for i ̸= j and i, j ∈ [1, k]. However, there is no edge induced in any

two C ′
is in G2 , which means we can not find an edge together with e1 and e2 to form

a T 2 covering u, a contradiction. If u is covered as the third case in Figure 1, then

there are two edges e3 = {u, v9, v10} and e4 = {u, v9, v11} such that v9, v10, v11 ∈ Ci

for some i ∈ [1, k]. Actually, there is no vertex v12 making {v10, v11, v12} being an

edge in G2, a contradiction with the fact that there is a T 3 covering u.

Next we prove that δ2(G2) = 2. Let s,t be any two vertices in V (G2). We have:

• If the two vertices s, t belong to different C ′
is, then dG({s, t}) ≥ 2.

• If the two vertices s, t belong to any Ci, then dG({s, t}) = 2.

• If the vertex s is u and the vertex t belongs to any Ci, then dG({s, t}) = 2.

In conclusion, we have δ2(G2) = 2 and there is no generalized triangle T covering

u.

Construction 3. Let G3 = (V3, E3) be an n-vertex 3-graph with V3={u}∪A1∪A2∪B
and E3 =

(
{u} ∨

(
A1

1

)
∨
(
A2

1

))
∪
((

A1

1

)
∨
(
A2

1

)
∨
(
B
1

))
∪
(
B
3

)
, where |A1| = |A2| = ⌈n

3
⌉.

A1 A2

B

u

Figure 6: Construction 3

Observation 3. G3 is a 3-graph with δ1(G3) ≥ n2

9
and there is no generalized triangle

T covering u.
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Proof. We check that G3 has no generalized triangle T covering u. If u is covered as

the first case in Figure 1, then there is an edge e0 = {u, v1, v2} such that v1, v2 are in

different Ai for i = 1, 2. By the definition of G3, we can not find two vertices v3, v4

from V3 \ {u, v1, v2} such that {v1, v3, v4}, {v2, v3, v4} are edges in E3, a contradiction

with the fact that there is a T 1 covering u. If u is covered as the second case in

Figure 1, then there are two edges e1 = {u, v5, v6} and e2 = {u, v7, v8} such that both

v5, v6 and v7, v8 are in different Ai for i = 1, 2. However, there is no edge induced

in A1 and A2 in G3, which means we can not find an edge together with e1 and e2

to form a T 2 covering u, a contradiction. If u is covered as the third case in Figure

1, then there are two edges e3 = {u, v9, v10} and e4 = {u, v9, v11} such that v10, v11

are in one of Ai and v9 in another one for i = 1, 2. Actually, there is no vertex v12

making {v10, v11, v12} being an edge in G3, a contradiction with the fact that there is

a T 3 covering u.

Next we prove that δ1(G3) ≥ n2

9
. Let v be a vertex from V (G3).

If v = u, then

dG3({v}) = ⌈n
3
⌉ · ⌈n

3
⌉ ≥ n2

9
.

If v ∈ A1 ∪ A2, then

dG3({v}) = ⌈n
3
⌉+ ⌈n

3
⌉ · (n− 1− 2⌈n

3
⌉) ≥ n2

9
.

If v ∈ B, then

dG3({v}) = ⌈n
3
⌉ · ⌈n

3
⌉+

(
n− 1− 2⌈n

3
⌉

2

)
> ⌈n

3
⌉ · ⌈n

3
⌉ ≥ n2

9
.

Therefore, we have δ1(G3) ≥ n2

9
.

2.2 The proof of Theorem 1

We divide the proof of Theorem 1 into two parts according to the value of n.

2.2.1 When n ∈ [5, 10]

When n ∈ [5, 10], the lower bound of c2(n, T ) can be directly gotten from Obser-

vation 1. Therefore, we only need to prove c2(n, T ) ≤ 1 when n ∈ [5, 10]. We assume

to the contrary that there is a 3-graph G with δ2(G) ≥ 2 and a vertex u ∈ V (G) that

is not covered by T .
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Let y ∈ V (G) be a vertex different from u. As dG({u, y}) ≥ 2, NG({u, y}) has
at least two vertices. Considering any two vertices p, q from NG({u, y}), we have

NG({p, q}) ⊆ {u, y}. Otherwise, if there is a vertex t ∈ NG({p, q}) different from u

and y, then {{p, q, t}, {u, y, p}, {u, y, q}} is a T covering u, a contradiction. On the

other hand, as δ2(G) ≥ 2, we have NG({p, q}) = {u, y}. A direct corollary is that

G[{u, y, p, q}] = K3
4 . Moreover, any two vertices from {u, y, p, q} have codegree 2 in

G. Otherwise, we can find a T covering u, a contradiction.

Now consider the link graphs of vertices y, p, q, we denote them by Gy, Gp and

Gq, respectively. Let Ga be the 3-graph obtained by deleting the vertices u, p, q

(and related edges) from Gy, Gb be the 3-graph obtained by deleting the vertices

u, y, q (and related edges) from Gp, and Gc be the 3-graph obtained by deleting the

vertices u, y, p (and related edges) from Gq. As δ2(G) ≥ 2 and any two vertices in

{u, y, p, q} have no co-neighbor out of {u, y, p, q}, we have δ1(Ga) ≥ 2, δ1(Gb) ≥ 2 and

δ1(Gc) ≥ 2. Actually, Ga, Gb and Gc are simple graphs defined on the same vertex

set. As n ∈ [5, 10], we have:

e(Ga) + e(Gb) + e(Gc) ≥
2(n− 4)

2
3 = 3(n− 4) >

(
n− 4

2

)
.

The inequality above implies that there must be at least one edge contained in at least

two graphs of Ga, Gb and Gc. Without loss of generality, let {s, t} be the common

edge in Ga and Gb. As a result, we can find a T = {{s, t, y}, {s, t, p}, {u, y, p}}
covering u, a contradiction.

2.2.2 When n ≥ 11

We first consider the case for n ≥ 11 and n− 1 ≡ 0 (mod 3). By Observation 2,

we have c2(n, T ) ≥ 2 for n ≥ 11 and n− 1 ≡ 0 (mod 3). Therefore, we only need to

prove c2(n, T ) ≤ 2 for n ≥ 11 and n − 1 ≡ 0 (mod 3). We suppose to the contrary

that there is an n-vertex 3-graph G with δ2(G) ≥ 3 for n ≥ 11 and n−1 ≡ 0 (mod 3)

and a vertex u ∈ V (G) that is not covered by T .

Let y be any other vertex different from u in G. As δ2(G) ≥ 3, we have

dG({u, y}) ≥ 3. Therefore, we can find two edges containing {u, y}. Let the two

edges be {u, y, p} and {u, y, q}. Considering dG({p, q}) ≥ 3, we can find a vertex o

different from u and y, such that {o, p, q} forms an edge in G. Therefore, we find

a generalized triangle T with the edge set {{u, y, p}, {u, y, q}, {o, p, q}} covering u, a

contradiction.

Next, we consider the case for n ≥ 11 and n−1 ≡ 1, 2 (mod 3). By Observation

1, we have c2(n, T ) ≥ 1 for n ≥ 11 and n − 1 ≡ 1, 2 (mod 3). Therefore, we only
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need to prove c2(n, T ) ≤ 1 for n ≥ 11 and n − 1 ≡ 1, 2 (mod 3). We suppose to

the contrary that there is an n-vertex 3-graph G with δ2(G) ≥ 2 for n ≥ 11 and

n− 1 ≡ 1, 2 (mod 3) and a vertex u ∈ V (G) that is not covered by T .

Let v1 ∈ V (G) be a vertex in V (G) different from u. As δ2(G) ≥ 2, we have

dG({u, v1}) ≥ 2 and NG({u, v1}) has at least two vertices. Considering any two ver-

tices v2, v3 in NG({u, v1}), we have NG({v2, v3}) ⊆ {u, v1}. Otherwise, if there is a

vertex h ∈ NG({v2, v3}) different from u and v1, then there is a generalized triangle

T with the edge set {{v2, v3, h}, {u, v1, v2}, {u, v1, v3}} covering u, a contradiction.

On the other hand, as δ2(G) ≥ 2, we have NG({v2, v3}) = {u, v1}. Actually, we find

G[{u, v1, v2, v3}] is a complete 3-graph on 4 vertices. Besides, any two vertices in

{u, v1, v2, v3} have codegree 2, which means any two vertices in {u, v1, v2, v3} have no

co-neighbor out of {u, v1, v2, v3}. Otherwise, we can find a T covering u, a contradic-

tion.

Let v4 be a vertex in V (G) different from v1, v2, v3 and u. As δ2(G) ≥ 2, we

have dG({u, v4}) ≥ 2 and NG({u, v4}) has at least two vertices. Let v5 and v6 be any

two vertices in NG({u, v4}). The same as the above analysis, we have NG({v5, v6}) =
{u, v4} and G[{u, v4, v5, v6}] is a complete 3-graph on 4 vertices. Continue to consider

other vertices in this way. There must exist a lot of 3-vertex sets: T1 = {v1, v2, v3},
T2 = {v4, v5, v6},...,Tl = {v3l−2, v3l−1, v3l}, such that edges induced in the vertex set

Ti ∪ {u} form a complete 3-graph on 4 vertices for i ∈ [1, l]. Apart from these 3l + 1

vertices, there are one or two vertices left since n− 1 ≡ 1, 2 (mod 3).

• If there is exactly one vertex left, let it be a. As δ2(G) ≥ 2, we have dG({u, a}) ≥
2 and NG({u, a}) has at least two vertices. For the vertex in NG({u, a}), it must

be a vertex in a Ti for i ∈ [1, l]. Without loss of generality, let v3i in Ti be a

vertex from NG({u, a}), which means {v3i, u, a} is an edge in G. Then we find

a generalized triangle T with the edge set {{v3i, u, a}, {v3i−2, v3i−1, v3i}, {v3i−2,

v3i−1, u}} covering u, a contradiction.

• If there are two vertices left, let them be b and c. As δ2(G) ≥ 2, we have

dG({u, b}) ≥ 2 and NG({u, b}) has at least two vertices. For the vertex in

NG({u, b}) \ {c}, it must be a vertex in a Ti for i ∈ [1, l]. Then through the

same analysis as the case before for one vertex left, we can find a T covering u,

a contradiction.

Therefore, we have c2(n, T ) = 1 for n ≥ 11 and n− 1 ≡ 1, 2 (mod 3).
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2.3 The proof of Theorem 2

2.3.1 The proof of (i)

We can directly get the lower bound of c1(n, T ) from Observation 3. Therefore,

it is sufficient to show that every 3-graph G on n vertices with δ1(G) > n2

6
+ 5

6
n− 3

has a T -covering. Suppose to the contrary that there is an n-vertex 3-graph G with

δ1(G) > n2

6
+ 5

6
n− 3 and a vertex u ∈ V (G) that is not covered by T .

Consider an edge e = {u, x, y} containing u in G. Let Gx, Gy and Gu be the link

graphs of x, y and u, respectively. Let G
′
x be the 3-graph obtained by deleting the

vertices u, y (and related edges) from Gx, G
′
y be the 3-graph obtained by deleting the

vertices u, x (and related edges) from Gy and G
′
u be the 3-graph obtained by deleting

the vertices x, y (and related edges) from Gu. Then G
′
x, G

′
y and G

′
u are simple graphs

defined on the same n− 3 vertices. As

δ1(G) >
n2

6
+

5

6
n− 3,

we have

e(G
′

x) + e(G
′

y) + e(G
′

u) > 3 · (n
2

6
+

5

6
n− 3− 2(n− 3)− 1) >

(
n− 3

2

)
,

which means that there must be a common edge in at least two of G
′
x, G

′
y and G

′
u.

Without loss of generality, let {s, t} be the common edge in both G
′
x and G

′
y. As a

result, we can find a T = {{s, t, x}, {s, t, y}, {u, x, y}} covering u, a contradiction.

2.3.2 The proof of (ii)

Let G be a 3-graph with δ1(G) > n2

6
+ 5

6
n − 3. We will prove for any vertex u,

there is a generalized triangle T 1 or T 2 covering u.

For any vertex u ∈ V (G), as dG({u}) > 1, there is an edge {u, x, y} containing

u. Let Gx, Gy and Gu be the link graphs of x, y and u, respectively. Let G
′
x be the

3-graph obtained by deleting the vertices u, y (and related edges) from Gx, G
′
y be the

3-graph obtained by deleting the vertices u, x (and related edges) from Gy, and G
′
u

be the 3-graph obtained by deleting the vertices x, y (and related edges) from Gu.

Then G
′
x, G

′
y and G

′
u are simple graphs defined on the same n− 3 vertices. As

δ1(G) >
n2

6
+

5

6
n− 3,

we have

e(G
′

x) + e(G
′

y) + e(G
′

u) > 3 · (n
2

6
+

5

6
n− 3− 2(n− 3)− 1) >

(
n− 3

2

)
,

11



which means that there must be a common edge in at least two of G
′
x, G

′
y and G

′
u. If

there is an edge {s, t} in both G
′
x and G

′
y, we can find a T 1 = {{s, t, x}, {s, t, y}, {u, x,

y}} covering u. If there is an edge {p, q} in both G
′
x and G

′
u, we can find a T 2 =

{{p, q, x}, {p, q, u}, {x, y, u}} covering u. If there is an edge {g, h} in both G
′
y and

G
′
u, we can find a T 2 = {{g, h, y}, {g, h, u}, {u, x, y}} covering u.

In conclusion, if G is a 3-graph satisfying that δ1(G) > n2

6
+ 5

6
n− 3, then for any

vertex u ∈ V (G), we can find a generalized triangle T 1 or T 2 covering u.

2.3.3 The proof of (iii)

Let G be a 3-graph with δ1(G) > n2

4
+ 1

4
n − 2. We will prove for any vertex

u ∈ V (G), there are generalized triangles T 1 and T 2 covering u.

Since dG({u}) > 1, there is an edge {u, x, y} containing u. Let Gx, Gy and Gu

be the link graphs of x, y and u, respectively. Let G
′
x be the 3-graph obtained by

deleting the vertices u, y (and related edges) from Gx, G
′
y be the 3-graph obtained

by deleting the vertices u, x (and related edges) from Gy, and G
′
u be the 3-graph

obtained by deleting the vertices x, y (and related edges) from Gu. Then G
′
x, G

′
y and

G
′
u are simple graphs defined on the same n− 3 vertices. As

δ1(G) >
n2

4
+

1

4
n− 2,

we have

e(G
′

x) + e(G
′

y) > 2 · (n
2

4
+

1

4
n− 2− 2(n− 3)− 1) >

(
n− 3

2

)
;

e(G
′

x) + e(G
′

u) > 2 · (n
2

4
+

1

4
n− 2− 2(n− 3)− 1) >

(
n− 3

2

)
;

which means that there must be a common edge in both G
′
x and G

′
y and a com-

mon edge in both G
′
x and G

′
u. Without loss of generality, let {s, t} be the com-

mon edge in G
′
x and G

′
y and {p, q} be the common edge in G

′
x and G

′
u. As a

result, we can find a T 1 = {{s, t, x}, {s, t, y}, {u, x, y}} covering u and a T 2 =

{{p, q, x}, {p, q, u}, {x, y, u}} covering u.

In conclusion, if G is a 3-graph satisfying that δ1(G) > n2

4
+ 1

4
n− 2, then for any

vertex u ∈ V (G), there are generalized triangles T 1 and T 2 covering u.

2.3.4 The proof of (iv)

Let G be a 3-graph with δ1(G) >
√
5−1
4

n2 +O(n).

12



We first prove that for any vertex u in V (G), there is a generalized triangle

T 3 covering u. Suppose to the contrary that there is an n-vertex 3-graph G with

δ1(G) >
√
5−1
4

n2 +O(n) and a vertex u ∈ V (G) that is not covered by a T 3.

Let Gu be the link graph of u. For any vertex x ∈ V (Gu), let N = NGu({x}) be
the neighbor set of x in Gu. Considering any vertex x ∈ V (Gu) with dGu({x}) ≥ 2,

let y, z be any two vertices in N . As there is no T 3 covering u, for any vertex

f ∈ V (Gu)−{x, y, z}, we have {y, z, f} is not an edge in G. We call these triples like

{y, z, f} as the non-edges. Considering the fact that every vertex x ∈ V (Gu) with

dGu({x}) ≥ 2 is contained in no T 3, we collect the triples of these non-edges for every

vertex x ∈ V (Gu). And we denote the multiset of the non-edges by M . Actually,

every non-edge in M can be repeated at most 3 ·∆Gu times, where ∆Gu denotes the

maximum degree of Gu. As a result, there are at least m non-edges in G, in which

m ≥ |M |
3·∆Gu

. Counting the size of M , we have

|M | =
∑

x∈V (Gu),dGu ({x})≥2

(n− 4)

(
dGu({x})

2

)
=

n− 4

2
·

∑
x∈V (Gu),dGu ({x})≥2

(d2Gu
({x})− dGu({x}))

=
n− 4

2
·

∑
x∈V (Gu),dGu ({x})≥2

((dGu({x})−
1

2
)2 − 1

4
)

≥ n− 4

2
·

∑
x∈V (Gu),dGu ({x})≥2

(dGu({x})−
1

2
)2 − n · (n− 4)

8
.

By handshaking theorem, we have:∑
v∈V (Gu),dGu ({x})≥2

dGu({x}) ≥ 2 · e(Gu)− n

≥ 2 · δ1(G)− n.

And by Hölder inequality, we have:

∑
x∈V (Gu),dGu ({x})≥2

(dGu({x})−
1

2
)2 ≥

(
∑

x∈V (Gu),dGu ({x})≥2

(dGu({x})− 1
2
))2∑

x∈V (Gu),dGu ({x})≥2

1

≥
(2 · δ1(G)− n− 1

2
· n)2

n

=
4 · δ1(G)2 − 6 · n · δ1(G) + 9

4
· n2

n
.

13



Hence,

m ≥

n−4
2

·
∑

x∈V (Gu),dGu ({x})≥2

(dGu({x})− 1
2
)2 − n·(n−4)

8

3n

≥ n− 4

2 · 3n
·
4 · δ1(G)2 − 6 · n · δ1(G) + 9

4
· n2

n
− n · (n− 4)

8 · 3n

≥ 2(n− 4)

3n2
δ21 −

n− 4

n
δ1 −

n− 4

3
. (1)

On the other hand, as e(Gu) = d1({u}) ≥ δ1(G), there are at most m non-edges

in G, in which

m ≤
(
n

3

)
− δ1(G) · n

3
. (2)

As δ1(G) >
√
5−1
4

n2+O(n), we have a contradiction between (1) and (2), which means

that every vertex in G can be covered by a T 3 if δ1(G) >
√
5−1
4

n2 +O(n). As

√
5− 1

4
n2 +O(n) >

n2

4
+

1

4
n− 2,

combining with the proof of (iii) we have for any vertex in G, we can find generalized

triangles T 1 and T 2 covering it if δ1(G) >
√
5−1
4

n2 +O(n).

In conclusion, if G is a 3-graph satisfying that δ1(G) >
√
5−1
4

n2 +O(n), then for

any vertex u ∈ G, there are generalized triangles T 1, T 2 and T 3 covering u.

3 Results on some trees covering

3.1 Star covering

3.1.1 Construction

Construction 4. Let V4 be an n-vertex set with n ≥ 8 and E4 be a 3-element set. Let

A be a 4-vertex subset of V4 and B be the remain vertex set V \A. Let E4 =
(
A
3

)
∪
(
B
3

)
.

Let G4 = (V4, E4) be a 3-graph. Actually, we have G4 = K3
4 ∪K3

n−4.

Observation 4. G4 is a 3-graph with δ1(G4) = 3 and there is no P2 in G4 covering

vertices in A.

Proof. As |A| = 4, there is no P2 in the induced graph G[A]. And A and B are

disconnected, so there is no P2 covering the vertices in A.

Now we prove that δ1(G4) = 3. Let v be a vertex in V (G4).

14



A B

Figure 7: Construction 4

If v ∈ A, then

dG4({v}) =
(
4− 1

2

)
= 3.

If v ∈ B, as n ≥ 8 we have

dG4({v}) =
(
n− 5

2

)
≥ 3.

Therefore, we have δ1(G4) = 3.

Construction 5. Let V5 be a vertex set. Fix two vertices u, v0 ∈ V5, let V ′
5 =

V5 \ {u, v0} and E5 = {u, v0} ∨
(
V ′
5
1

)
∪ {v0} ∨

(
V ′
5
2

)
. Let G5 = (V5, E5) be a 3-graph.

Observation 5. G5 is a 3-graph with δ2(G5) = 1. For the vertex u, we can not find

4 vertices p, q, s, t such that {u, p, q} and {u, s, t} form a linear 2-path P2 covering u.

Proof. Considering any two vertices v1, v2 ∈ V (G5), we have:

• If v1 = u and v2 = v0, we have dG5({u, v0}) ≥ 1.

• If v1 = u and v2 ∈ V ′
5 , we have dG5({u, v2}) = 1.

• If v1 = v0 and v2 ∈ V ′
5 , we have dG5({u, v0}) ≥ 1.

• If v1, v2 ∈ V ′
5 , we have dG5({u, v0}) = 1.

Hence, we have δ2(G5) = 1.

Let Gu be the link graph of u. As Gu is a star, we can not find 4 vertices p, q, s, t

where {u, p, q} and {u, s, t} form a linear 2-path P2 covering u.
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Construction 6. Let V6 be a vertex set. Fix three vertices u, a, b in V6, let V
′
6 be

V6\{u, a, b}. Let E6 = {u, a, b}∪{u, a}∨
(
V ′
6
1

)
∪{u, b}∨

(
V ′
6
1

)
∪
(
V6\{u}

3

)
. Let G6 = (V6, E6)

be a 3-graph.

Observation 6. G6 is a 3-graph with δ2(G6) = 2 and there is no S3 with the center

u covering u.

Proof. Considering any two vertices v1, v2 ∈ V6, we have:

• If v1 = u and v2 = a, we have dG6({u, a}) ≥ 2.

• If v1 = u and v2 = b, we have dG6({u, b}) ≥ 2.

• If v1 = u and v2 ∈ V ′
6 , we have dG6({u, v2}) = 2.

• If v1 ∈ V6 \ {u} and v2 ∈ V6 \ {u}, we have dG6({v1, v2}) ≥ 2.

Hence, we have δ2(G6) = 2. Now we only need to prove there is no S3 with the

center u.

Let Gu be the link graph of u. Then we find Gu is the book graph which has no

3-matching. Hence there is no S3 with the center u.

3.1.2 The proof of Theorem 3

As c2(n, P2) ≥ 0, we only need to prove c2(n, P2) could not be larger than 0.

Suppose to the contrary that there is a 3-graph G with δ2(G) ≥ 1 and a vertex

u ∈ V (G) that is not covered by P2.

Let v1 be a vertex different from u in G. As d({u, v1}) ≥ 1, there is a ver-

tex v2 making {u, v1, v2} being an edge in G. Consider another vertex v3 in G, as

d({u, v3}) ≥ 1 and there is no P2 containing u, we have NG({u, v3}) ⊆ {v1, v2}.
If d({u, v3}) > 1, we have NG({u, v3}) = {v1, v2}. Let v4 be a vertex in V (G) \

{u, v1, v2, v3}. As d({v1, v4}) ≥ 1 and there is no P2 containing u, we haveNG({v1, v4})
⊆ {u, v2, v3}. If u ∈ NG({v1, v4}), then we find a P2 with the edge set {{u, v2, v3}, {u,
v1, v4}} containing u, a contradiction. If v2 ∈ NG({v1, v4}), then we find a P2 with the

edge set {{u, v2, v3}, {v1, v2, v4}} containing u, a contradiction. If v3 ∈ NG({v1, v4}),
then we find a P2 with the edge set {{u, v2, v3}, {v1, v3, v4}} containing u, a contradic-

tion. As NG({v1, v4}) ̸= ∅, we have a contradiction with NG({v1, v4}) ⊆ {u, v2, v3}.
If d({u, v3}) = 1, without loss of generality, let NG({u, v3}) = {v1}. Let v5 be a

vertex in V (G)\{u, v1, v2, v3}. As d({v3, v5}) ≥ 1 and there is no P2 containing u, we

have NG({v3, v5}) ⊆ {u, v1, v2}. If u ∈ NG({v3, v5}), then we find a P2 with the edge
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set {{u, v3, v5}, {u, v1, v2}} containing u, a contradiction. If v1 ∈ NG({v3, v5}), then
we find a P2 with the edge set {{u, v1, v2}, {v1, v3, v5}} containing u, a contradiction.

If v2 ∈ NG({v3, v5}), then we find a P2 with the edge set {{u, v1, v3}, {v2, v3, v5}}
containing u, a contradiction. As NG({v3, v5}) ̸= ∅, we have a contradiction with

NG({v3, v5}) ⊆ {u, v1, v2}.
In conclusion, we have c2(n, P2) = 0.

3.1.3 The proof of Theorem 4

The lower bound of c2(n, P2) can be directly get from Observation 4. Therefore,

we only need to prove c2(n, T ) ≤ 3 when n ≥ 8. Suppose to the contrary that there

is a 3-graph G with δ1(G) ≥ 4 and a vertex u ∈ V (G) that is not covered by P2. Let

Gu be the link graph of u.

As there is no P2 covering u, there is no subgraphG′ with the vertex set {a, b, c, d}
and the edge set {{a, b}, {c, d}} in Gu. Otherwise, we can find a P2 with the edge set

{{a, b, u}, {c, d, u}} covering u. Cause δ1(G) ≥ 4, we have there are at least 4 edges

in Gu. Therefore, there must be a star S with the vertex set {v1, v2, v3} and the edge

set {{v1, v2}, {v2, v3}} in Gu. We claim that NG({v1}) ⊆ {uv2, uv3, v2v3}. Otherwise,

if there are two vertices x, y in V (G) \ {v1, v2, v3} making {xy} ∈ NG({v1}), then
we find a P2 with the edge set {{u, v1, v2}, {v1, x, y}} covering u, a contradiction.

If there is a vertex s in V (G) \ {v1, v2, v3} making {su} ∈ NG({v1}), then we find

a P2 with the edge set {{u, v1, s}, {u, v2, v3}} covering u, a contradiction. If there

is a vertex t in V (G) \ {v1, v2, v3} making {tv2} ∈ NG({v1}), then we find a P2

with the edge set {{t, v1, v2}, {u, v2, v3}} covering u, a contradiction. If there is a

vertex q in V (G) \ {v1, v2, v3} making {qv3} ∈ NG({v1}), then we find a P2 with

the edge set {{q, v1, v3}, {u, v1, v2}} covering u, a contradiction. Therefore, we have

NG({v1}) ⊆ {uv2, uv3, v2v3}. However, that contradicts δ1(G) ≥ 4.

In conclusion, we have c1(n, P2) = 3 when n ≥ 8.

3.1.4 The proof of Theorem 5

Suppose to the contrary that there is a 3-graph G with δ2(G) ≥ 2 and a vertex

u, such that there is no 4 vertices p, q, s, t making {u, p, q} and {u, s, t} forming a

linear 2-path P2 covering u. Let Gu be the link graph of u.

As δ2(G) ≥ 2, we have δ(Gu) ≥ 2. Since there is no 4 vertices p, q, s, t such

that {u, p, q} and {u, s, t} form a linear 2-path P2 covering u, Gu has no 2-matching.

We claim that Gu has only one component. Otherwise, as δ(Gu) ≥ 2, there is a
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2-matching in Gu. As |V (Gu)| = n − 1 and n ≥ 5, we have Gu must be a star.

However, the leaves in Gu only have degree 1, a contradiction with δ(Gu) ≥ 2.

Hence, if G is an n-vertex 3-graph satisfying that n ≥ 5 and δ2(G) ≥ 2, then for

any vertex u ∈ V (G), we can find 4 vertices p, q, s, t such that {u, p, q} and {u, s, t}
form a linear 2-path P2 covering u.

Furthermore, by Observation 5, we have the inequality in Theorem 5 is sharp.

3.1.5 The proof of Theorem 6

For a positive integer t, the book graph Bt is the graph obtained by the amalga-

mation of t triangles along the same edge. Let B−
t be the graph obtained by deleting

the common edge from the book graph Bt. Before we prove Theorem 6, we explore

the structure of graphs without some specific matchings and obtain the following

result.

Theorem 11. Let G be an n-vertex simple graph with n ≥ 7. If G has no 3-matching

and δ(G) ≥ 2, then G be the book graph Bn−2 or the graph B−
n−2.

Proof of Theorem 11. Consider the components of G.

If G has more than 2 components, as δ(G) ≥ 2, every component has no isolated

vertices. Hence we can choose one edge in each component and then we can find at

least three vertex-disjoint edges, a contradiction with G has no 3-matching.

If G has 2 components, let them be G1, G2. As δ(G) ≥ 2, every component has

no isolated vertices. We can choose one edge in G1. As there is no 3-matching in G,

there is no 2-matching in G2. Hence G2 must be a 3-cycle or a star. If G2 is a star,

then the leaves of G2 only have degree 1, a contradiction with δ(G) ≥ 2. If G2 be a

3-cycle, as n ≥ 7, G1 has at least 4 vertices. And G1 must be a star because G1 also

can not have 2-matching. Hence the leaves of G1 only have degree 1, a contradiction

with δ(G) ≥ 2.

Now we only need to consider the case that G is a connected graph. We claim

that G must have a cycle. Otherwise, let P be the longest path in G with endpoints

u, v. As δ(G) ≥ 2, u must have at least two neighbors. Since P is the longest path,

the neighbors of u must in V (P ), which makes a cycle in G, a contradiction.

Now let C be the longest cycle in G. Consider the length of C.

• If the length of C is more than 5, then there exists a 3-matching in G, a

contradiction with G has no 3-matching.
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• If the longest cycle C is a 5-cycle, let the vertex set V (C) be {v1, v2, v3, v4, v5}
and the edge set E(C) be {{v1v2}, {v2v3}, {v3v4}, {v4v5}, {v5v1}}. As G is a

connected n-vertex graph and n ≥ 7, there is at least one vertex in V (C) sending

at least one edge to V (G) \ V (C). Without loss of generality, let v1 send one

edge to v6 ∈ V (G) \V (C). Then we find a 3-matching {{v1v6}, {v2v3}, {v4v5}},
a contradiction.

• If the longest cycle C is a 3-cycle, let the vertex set V (C) be {v1, v2, v3} and

the edge set E(C) be {{v1v2}, {v2v3}, {v3v1}}. As G is connected, there must

be some vertices in {v1, v2, v3} sending edges into V (G) \ {v1, v2, v3}. Without

loss of generality, let v1 adjacent to v4 ∈ V (G) \ {v1, v2, v3}. As δ(G) ≥ 2,

we have v4 has at least 2 neighbors. If v4 is adjacent to v2 or v3, then there

is a 4-cycle in G, a contradiction with the longest cycle is a 3-cycle. Hence

v4 has a neighbor in V (G) \ {v1, v2, v3, v4}, let it be v5. Since d(v5) ≥ 2,

v5 has at least one neighbor other than v4. If v5 has a neighbor in {v2, v3},
then there is a 4-cycle in G, a contradiction with the longest cycle is 3-cycle.

If v5 has a neighbor in V (G) \ {v1, v2, v3, v4, v5}, let it be v6, then there is

a 3-matching {{v2v3}, {v1v4}, {v5v6}} in G, a contradiction with G has no

3-matching. If v1 is a neighbor of v5, then there must be some vertices in

{v1, v2, v3, v4} sending edges into V (G) \ {v1, v2, v3, v4, v5} since G is connected.

If v1 is adjacent to v7 ∈ V (G) \ {v1, v2, v3, v4, v5}, then there is a 3-matching

{v1v7, v2v3, v4v5}, a contradiction. If there is a vertex in {v2, v3, v4} adjacent to

v8 ∈ V (G)\{v1, v2, v3, v4, v5}, let v2 be adjacent to v8, then there is a 3-matching

{{v2v8}, {v1v3}, {v4v5}}, a contradiction.

Hence, the longest cycle C must be a 4-cycle. Let the vertex set V (C) be

{v1, v2, v3, v4} and the edge set E(C) be {{v1v2}, {v2v3}, {v3v4}, {v4v1}}.
As G is connected, there must be some vertices in {v1, v2, v3, v4} sending edges

into V (G) \ {v1, v2, v3, v4}. Without loss of generality, let v5 be such a vertex that is

adjacent to v1. Since δ(G) ≥ 2, v5 has at at least one neighbor other than v1. If v5 has

a neighbor in {v2, v4}, then there is a 5 cycle, a contradiction with the longest cycle

is a 4-cycle. If v5 has a neighbor in V (G) \ {v1, v2, v3, v4}, let v5 be adjacent to v6 ∈
V (G)\{v1, v2, v3, v4}. Then there is a 3-matching {{v1v2}, {v3v4}, {v5v6}} in G, a con-

tradiction. Hence NG({v5}) ⊆ {v1, v3}. As d({v5}) ≥ 2, we have NG({v5}) = {v1, v3}.
As G is connected, there must be some vertices in {v1, v2, v3, v4, v5} sending edges into
V (G) \ {v1, v2, v3, v4, v5}. If there are some vertices in {v2, v4, v5} sending edges into

V (G) \ {v1, v2, v3, v4, v5}, without loss of generality, let the vertex v2 be adjacent to

v6 ∈ V (G) \ {v1, v2, v3, v4, v5}. Then we find a 3-matching {{v1v4}, {v3v5}, {v2v6}} in
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G, a contradiction. Hence v1 or v3 must send edges into V (G) \ {v1, v2, v3, v4, v5}.
Let M be the vertex set satisfying that every vertex in M is adjacent to v1 or

v3. We claim that for every vertex a ∈ M we have NG({a}) ⊆ {v1, v3}. Otherwise,

if a is adjacent to v1 and there is a vertex b ∈ V (G) \ {v1, v2, v3, v4, v5, a} such that

{ab} is an edge in G, then we will find a 3-matching {{ab}, {v1v2}, {v3v4}} in G,

a contradiction. As δ(G) ≥ 2, we have NG({a}) = {v1, v3}. Actually, we have

M = V (G) \ {v1, v2, v3, v4, v5}. Otherwise there is a contradiction with the fact that

G is connected.

Now consider the adjacency of v2 and v4. If {v2v4} is an edge in G, then we

will find a 5-cycle with the edge set {{v2v1}, {v1v5}, {v5v3}, {v3v4}, {v4v2}} in G, a

contradiction with the fact that the longest cycle is a 4-cycle in G. Hence v2 and v4

are not adjacent. Considering the adjacency of v1 and v3, if {v1v3} is an edge in G,

then G is the book graph Bn−2. If {v1v3} is not an edge in G, then G is the graph

B−
n−2.

In conclusion, if G has no 3-matching and δ(G) ≥ 2, then G is the book graph

Bn−2 or the graph B−
n−2.

Now we prove Theorem 6.

Proof of Theorem 6. Suppose to the contrary that there is an n-vertex 3-graph H

with δ2(H) ≥ 2 and a vertex u that is not covered by a S3. Let Gu be the link graph

of u. As δ2(H) ≥ 2 and there is no S3 covering u, then δ(Gu) ≥ 2 and there is no

3-matching in Gu. By Theorem 11, we have Gu is the book graph Bn−3 or the graph

B−
n−3. Let A be the set of vertices with degree 2 in V (B−

n−3). And let b1 and b2 be

the remained two vertices in V (B−
n−3) \ A.

As δ2(H) ≥ 2, we have dH({b1, b2}) ≥ 2 and {b1, b2} has at least two co-neighbors.
Even if {b1b2u} is an edge in H, there still must be at least one co-neighbor of

{b1b2} in A. Without loss of generality, let a0 ∈ A and {b1b2a0} be an edge in

H. Consider the vertex set A \ {a0}. Let a1, a2 and a3 be three different vertices

in A \ {a0}. If {a1a2} has a co-neighbor b1 or b2, then we will find a S3 with the

edge set {{b1b2a0}, {b1a1a2}, {b1ua3}} or {{b1b2a0}, {b2a1a2}, {b2ua3}} covering u, a

contradiction. Hence NH({a1, a2}) ⊆ A. Consider the induced graph H[A \ {a0}],
as δ2(H) ≥ 2 we have δ2(H[A \ {a0}]) ≥ 1. By Theorem 3, H[A \ {a0}] has a

P2 covering. Then there must be a P2 in H[A \ {a0}]. Without loss of generality,

let P2 with the vertex set {a1, a2, a3, a3, a5} and the edge set {{a1a2a3}, {a1a4a5}}
be a linear 2-path in H[A \ {a0}]. As a result, we find a S3 with the edge set

{{a1a2a3}, {a1a4a5}, {a1b1u}} covering u, a contradiction.
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In conclusion, if H is an n-vertex 3-graph satisfying that n ≥ 7 and δ2(H) ≥ 2,

then for any vertex u ∈ V (H) there is a 3-star S3 covering u.

3.1.6 The proof of Theorem 7

Before we prove Theorem 7, we first prove a useful theorem as follows.

Theorem 12. Let G be a simple graph and δ be the minimum degree of G with δ ≥ 2.

Then G contains a cycle of length at least δ + 1.

Proof. Let P be the longest path in G with endpoints x and y. Then NG(x) ⊆ V (P ).

As d(x) ≥ δ, there is a cycle of length δ + 1.

Proof of Theorem 7. Suppose to the contrary that there is an n-vertex 3-graph H

with δ2(H) ≥ 3 and a vertex u ∈ V (H) such that there is no S3 with center u

covering it. Let Hu be the link graph of u. Then we have δ(Hu) ≥ 3 and there is no

3-matching in Hu.

We claim that Hu must be a connected graph. Otherwise, if Hu has more than

two components, then as δ(Hu) ≥ 3 we have there is no isolated vertices. Then

selecting one edge in every component generates a 3-matching in Hu, a contradiction.

If Gu has two components, then we claim there must be at least one component

containing a 2-matching. Otherwise, as δ(Hu) ≥ 3 we have the two components can

not be 3-cycles. As the two components have no 2-matching, the two components

must be two stars, a contradiction with δ(Hu) ≥ 3. Hence selecting a 2-matching in

such a component and an edge in another component will generate a 3-matching in

Hu, a contradiction. Therefore, Hu must be a connected graph.

Also, we have the following claim.

Claim 1. The longest cycle in Hu is a 4-cycle.

Proof. As δ(Hu) ≥ 3, there is a cycle with length at least 4 in Hu by Theorem 12.

We only need to prove there is no cycle with length more than 4 in Hu.

Firstly, there is no cycle with length more than 5. Otherwise, such cycle will gen-

erate a 3-matching in Hu, a contradiction. Secondly, there is no 5-cycle in Hu. Sup-

pose to the contrary that there is a 5-cycle in Hu with the vertex set {v1, v2, v3, v4, v5}
and the edge set {{v1v2}, {v2v3}, {v3v4}, {v4v5}, {v5v1}}. As Hu is connected, then

there must be a vertex in {v1, v2, v3, v4, v5} send one edge to V (Hu)\{v1, v2, v3, v4, v5}.
Without loss of generality, let v1 be adjacent to v6 ∈ V (Hu) \ {v1, v2, v3, v4, v5}. As

a result, there is a 3-matching with the edge set {{v1v6}, {v2v3}, {v4v5}} in Hu, a

contradiction.
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Therefore, the longest cycle in Hu is a 4-cycle.

Let C4 be a 4-cycle in Hu with the vertex set {v1, v2, v3, v4} and the edge set

{{v1v2}, {v2v3}, {v3v4}, {v4v1}}. As Hu is connected, then there must be a vertex in

{v1, v2, v3, v4} sending one edge to V (Hu) \ {v1, v2, v3, v4}. Without loss of generality,

let v1 be adjacent to v5 ∈ V (Hu) \ {v1, v2, v3, v4}. We find v5 can not have a neighbor

in V (Hu) \ {v1, v2, v3, v4}. Otherwise, let v6 be a neighbor in V (Hu) \ {v1, v2, v3, v4}.
Then we will find a 3-matching with the edge set {{v1v2}, {v3v4}, {v5v6}} in Hu, a

contradiction. As δ(Hu) ≥ 3, we have NHu(v5) ⊂ {v1, v2, v3, v4}.
If δ(Hu) = 4, then we have NHu(v5) = {v1, v2, v3, v4}. As Hu is connected, there

must be a vertex in {v1, v2, v3, v4, v5} sending edges to V (Hu) \ {v1, v2, v3, v4, v5}.
Without loss of generality, let v1 be adjacent to v6 ∈ V (Hu)\{v1, v2, v3, v4, v5}. Then
we find there is a 3-matching with the edge set {{v1v6}, {v2v3}, {v4v5}} in Hu, a

contradiction.

If δ(Hu) = 3, then we have v5 has two neighbors in {v2, v3, v4}. We first consider

NHu(v5) = {v1, v2, v3}. As Hu is connected, there must be a vertex in {v1, v2, v3, v4}
sending edges to V (Hu) \ {v1, v2, v3, v4, v5}. If v1 is adjacent to v6 ∈ V (Hu) \
{v1, v2, v3, v4, v5}, then we will find a 3-matching with the edge set {{v1v6}, {v2v5}, {v3
v4}} in Hu, a contradiction. If v2 is adjacent to v7 ∈ V (Hu) \ {v1, v2, v3, v4, v5}, then
we will find a 3-matching with the edge set {{v1v5}, {v2v7}, {v3v4}} in Hu, a con-

tradiction. If v3 is adjacent to v8 ∈ V (Hu) \ {v1, v2, v3, v4, v5}, then we will find

a 3-matching with the edge set {{v1v4}, {v2v5}, {v3v8}} in Hu, a contradiction. If

v4 is adjacent to v9 ∈ V (Hu) \ {v1, v2, v3, v4, v5}, then we will find a 3-matching

with the edge set {{v1v5}, {v2v3}, {v4v9}} in Hu, a contradiction. Next we con-

sider the case NHu(v5) = {v1, v2, v4} and NHu(v5) = {v1, v3, v4}. By symmetry, we

only need to consider NHu(v5) = {v1, v2, v4}. As Hu is connected, there must be

a vertex in {v1, v2, v3, v4} sending one edge to V (Hu) \ {v1, v2, v3, v4, v5}. If v1 is

adjacent to v6 ∈ V (Hu) \ {v1, v2, v3, v4, v5}, then we will find a 3-matching with

the edge set {{v1v6}, {v2v5}, {v3v4}} in Hu, a contradiction. If v2 is adjacent to

v7 ∈ V (Hu) \ {v1, v2, v3, v4, v5}, then we will find a 3-matching with the edge set

{{v1v5}, {v2v7}, {v3v4}} in Hu, a contradiction. If v3 is adjacent to v8 ∈ V (Hu) \
{v1, v2, v3, v4, v5}, then we will find a 3-matching with the edge set {{v1v4}, {v2v5}, {v3
v8}} in Hu, a contradiction. If v4 is adjacent to v9 ∈ V (Hu) \ {v1, v2, v3, v4, v5}, then
we will find a 3-matching with the edge set {{v1v5}, {v2v3}, {v4v9}} in Hu, a contra-

diction.

In conclusion, if H is an n-vertex 3-graph with n ≥ 7 and δ2(H) ≥ 3, then for
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any vertex u ∈ V (H) we can find a S3 with the center u.

Besides, by observation 6, we have the bound in Theorem 7 is sharp.

3.1.7 The proof of Proposition 1

First we introduce a result about k-matching in extremal graph theory due to

Erdős and Gallai [8] as follows.

Theorem 13. [8] Let G be an n-vertex graph. If G has no k-matching, then e(G) ≤
max{

(
2k−1
2

)
,
(
n
2

)
−

(
n−k+1

2

)
}.

Let k be an integer with k ≥ 3. Then we prove Proposition 1.

Proof of (i) in Proposition 1. LetH be an n-vertex 3-graph satisfying that n ≥ 2k+1

and δ2(H) > max{4k2−6k+2
n−1

, k − 2 − k2−nk
n−1

}. Let u be a vertex in V (H) and Gu be

the link graph of u. As δ2(H) > max{4k2−6k+2
n−1

, k − 2 − k2−nk
n−1

}, we have δ(Gu) >

max{4k2−6k+2
n−1

, k − 2− k2−nk
n−1

}. By handshaking theorem, we have:

e(Gu) =
1

2

∑
x∈V (Gu)

dGu({x})

≥ 1

2
(n− 1) · δ(Gu)

> max{
(
2k − 1

2

)
,

(
n

2

)
−

(
n− k + 1

2

)
}

Then by Theorem 13, we have there is a k-matching in Gu, which means there

is a k-star Sk with the center u in H.

Hence, if H is an n-vertex 3-graph satisfying that n ≥ 2k + 1 and δ2(H) >

max{4k2−6k+2
n−1

, k − 2 − k2−nk
n−1

}, then for any vertex u ∈ V (H) there is a 3-star S3

covering u, where the center of S3 is u. As a direct corollary, we have c2(n, Sk) ≤
max{4k2−6k+2

n−1
, k − 2− k2−nk

n−1
}, which ends our proof.

Proof of (ii) in Proposition 1 . Let H be an n-vertex 3-graph satisfying that n ≥
2k + 1 and δ1(H) > max{

(
2k−1
2

)
,
(
n−1
2

)
−

(
n−k
2

)
}. Let u be a vertex in V (H) and Gu

be the link graph of u. As δ1(H) > max{
(
2k−1
2

)
,
(
n−1
2

)
−

(
n−k
2

)
}, we have e(Hu) >

max{
(
2k−1
2

)
,
(
n−1
2

)
−

(
n−k
2

)
}. By Theorem 13, we have there is a k-matching in Hu,

which means there is a Sk covering u. As a direct corollary, we have c1(n, Sk) ≤
max{

(
2k−1
2

)
,
(
n−1
2

)
−

(
n−k
2

)
}, which ends our proof.
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3.2 Path covering

3.2.1 Construction

Construction 7. Let V7 be a vertex set. Fix u ∈ V7, let V
′ = V7 \ {u} and E7 =

{u} ∨
(
V ′

2

)
. Let G7 = (V7, E7) be a 3-graph.

Observation 7. G7 is a 3-graph with δ2(G7) = 1 and δ1(G7) = n − 2. There is no

P3 covering u.

Proof. Considering any two vertices v1, v2 ∈ V7, we have:

• If v1 = u and v2 ∈ V ′, then dG7({u, v2}) ≥ 1.

• If v1 ∈ V ′ and v2 ∈ V ′, then dG7({v1, v2}) = 1.

Considering any vertex v0 ∈ V7, we have:

• If v0 = u, then dG7({u}) =
(
n−1
2

)
.

• If v0 ∈ V ′ , then dG7({v0}) = n− 2.

Hence δ2(G7) = 1 and δ1(G7) = n− 2. Meanwhile, as all edges in G7 intersect in u,

it follows that there is no linear 3-path P3 covering u.

Construction 8. For k ≥ 4, let V8 be a vertex set with size more than 2k + 1. Let

A be a (k − 2)-subset of V8 and B be the remain vertex set. Let G8 be the complete

bipartite 3-graph with vertex set V8 and edge set E8 = (
(
A
2

)
∨
(
B
1

)
) ∪ (

(
A
1

)
∨
(
B
2

)
).

Observation 8. For k ≥ 4, we have δ2(G8) = k − 3 and G8 has no Pk covering.

Proof. Considering any two vertices v1, v2 ∈ V8, we have:

• If v1 ∈ A and v2 ∈ B, then dG8({v1, v2}) = n − 2. As n ≥ 2k + 1, we have

dG8({v1, v2}) ≥ 2k − 1.

• If v1 and v2 are vertices in A, then dG8({v1, v2}) = n − k + 2. As n ≥ 2k + 1,

we have dG8({v1, v2}) ≥ k + 3.

• If v1 and v2 are vertices in B, then dG8({v1, v2}) = k − 3.

24



Hence we have δ2(G8) = k − 3. Next we prove that G8 has no Pk-covering.

Let Pl the longest linear path in G8. If l = k, then let the vertex set of Pl be

{v0, v1, v2, ..., v2l−1, v2l} and the edge set of Pl be {{v0v1v2}, {v2v3v4}, ..., {v2l−2v2l−1v2l

}}. We denote the vertex set {v2, v4, ..., v2l−2} byA′ and the vertex set {v0, v1, ..., v2l−1,

v2l} by B′. Then Pl = (A′, B′) is a bipartite 3-graph. As l = k, we have |A| < |A′|
and |A| < |B′|. Therefore, Pl cannot be a subgraph of G8, a contradiction with the

hypothesis. Hence l < k and G8 has no Pk covering.

Construction 9. Let k be an integer with k ≥ 3. Let V9 be an n-vertex set with

n ≥ 4k and E9 be a 3-element set. Let A be a 2k-vertex subset of V9 and B be

the remain vertex set V \ A. Let E9 =
(
A
3

)
∪
(
B
3

)
. Let G9 = (V9, E9) be a 3-graph.

Actually, we have G9 = K3
2k ∪K3

n−2k.

Observation 9. G9 is a 3-graph with δ1(G9) =
(
2k−1
2

)
and G9 has no Pk-covering.

Proof. As |A| = 2k, there is no Pk in the induced graph G[A]. And A and B are

disconnected, so there is no Pk covering the vertices in A.

Now we prove that δ1(G9) =
(
2k−1
2

)
. Let v be a vertex in V (G9).

If v ∈ A, then

dG9({v}) =
(
2k − 1

2

)
.

If v ∈ B, as n ≥ 4k we have

dG9({v}) =
(
n− 2k

2

)
≥

(
2k − 1

2

)
.

Therefore, we have δ1(G9) =
(
2k−1
2

)
.

3.2.2 The proof of Theorem 8

The lower bound of c2(n, P3) is a direct corollary of Observation 7. Therefore,

it is sufficient to show that every 3-graph H on n vertices with δ2(H) ≥ 2 has a

P3-covering.

Suppose to the contrary that there is a 3-graph H on n vertices with δ2(H) ≥ 2

and a vertex u ∈ V (H) that is not contained in a copy of P3. As δ2(H) ≥ 2, by

Theorem 5 we have for every vertex v0 ∈ V (H) there is a P2 with the center v0 covering

it. Let P2 be such a linear 2-path in H with the vertex set {u, v1, v2, v3, v4} and the

edge set {{uv1v2}, {uv3v4}}. We denote V (H) \ {u, v1, v2, v3, v4} by A. Let v5 and v6
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be any two vertices in A. Then any vertex in {v1, v2, v3, v4} can not be the co-neighbor

of {v5, v6}. Otherwise, without loss of generality let v4 be a co-neighbor of {v5, v6}.
We find there is a linear 3-path P3 with the edge set {{v1v2u}, {uv3v4}, {v4v5v6}}
covering u, a contradiction. Hence we have NH({v5v6}) ⊆ A ∪ {u}. As δ2(H) ≥ 2,

there is at least one co-neighbor in A. Let v7 ∈ A be a co-neighbor of {v5v6}.
Consider the co-neighbors of {v4v5}. As v4 is not the co-neighbor of {v5, v6},

we have NH({v4v5}) ⊆ {v1, v2, v3, u}. If v1 or v2 is a co-neighbor of {v4v5}, then

we assume without loss of generality that v1 is a co-neighbor of {v4v5}. Then

we find a linear 3-path P3 with the edge set {{uv1v2}, {v1v4v5}, {v5v6v7}} cover-

ing u, a contradiction. If neither v1 nor v2 is a co-neighbor of {v4v5}, then we have

NH({v4v5}) ⊆ {v3, u}. By Theorem 5 we have {v1, v2, v4} must be an edge in H.

Otherwise, there is no P2 with the center u. Hence we find a linear 3-path P3 with

the edge set {{v1v2v4}, {v4uv5}, {v5v6v7}} covering u, a contradiction.

Therefore, we have c2(n, P3) = 1 for n ≥ 8.

3.2.3 The proof of Theorem 9

We first prove a lemma before we prove Theorem 9.

Lemma 1. If G is an n-vertex 3-graph satisfying that n ≥ 5 and δ1(G) ≥ n−1, then

for any vertex u ∈ V (G), we can find 4 vertices p, q, s, t where {u, p, q} and {u, s, t}
form a linear 2-path P2 covering u.

Proof of the Lemma 1. Let u be any vertex in V (G). Let Gu be the link graph of u.

As δ1(G) ≥ n− 1, we have:

e(Gx) ≥ n− 1 > max{
(
4− 1

2

)
,

(
n− 1

2

)
−
(
n− 2

2

)
}.

By Theorem 13, there is a 2 matching in Gu. We assume without loss of generality

that {p, q} and {s, t} form a 2-matching in Gu. Then we find a P2 with the edge set

{{u, p, q}, {u, s, t}} covering u, which ends our proof.

Now we begin to prove Theorem 9.

Proof of Theorem 9. The lower bound of c1(n, P3) is a direct corollary of Observation

7. Therefore, it is sufficient to show that every 3-graph H on n vertices with n ≥ 9

and δ1(H) ≥ n+ 5 has a P3-covering.
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Suppose to the contrary that there is a 3-graph H on n vertices with n ≥ 9 and

δ1(H) ≥ n + 5 and a vertex u ∈ V (H) that is not contained in a copy of P3. As

δ1(H) ≥ n− 1, by Lemma 1 we have there is a P2 with the center u covering it. Let

P2 be such a linear 2-path in H with the vertex set {u, v1, v2, v3, v4} and the edge set

{{uv1v2}, {uv3v4}}. We denote the vertex set V (H) \ {u, v1, v2, v3, v4} by A. Then

any two vertices in A has no co-neighbor in {v1, v2, v3, v4}. Otherwise, without loss

of generality we assume v1 is a co-neighbor of {v5v6} with v5, v6 ∈ A. Then there is

a P3 with the edge set {{v5v6v1}, {v1v2u}, {uv3v4}} covering u, a contradiction.

If there is a vertex v in {v1, v2, v3, v4} such that {uv} has a co-neighbor in A,

then we assume without loss of generality that v5 ∈ A is the co-neighbor of {uv1}.
Let Hv5 be the link graph of v5. As δ1(H) ≥ n+ 5, we have e(Hv5) ≥ n+ 5. In Hv5 ,

there are at most n− 6 edges between A and {u, v1, v2, v3, v4}. And {u, v1, v2, v3, v4}
can span at most

(
5
2

)
edges. Hence there is at least one edge induced in A. Let it be

{v6v7}. Then we find a P3 with the edge set {{uv1v5}, {uv3v4}, {v5v6v7}} covering u,

a contradiction.

If there is no vertex v in {v1, v2, v3, v4} such that {uv} has a co-neighbor in A,

then there must exist v8, v9 ∈ A such that {uv8v9} is an edge in H as δ1(H) ≥ n+5 >(
4
2

)
. Let Hv1 be the link graph of v1.

If there is a vertex a in A such that {a, v3} or {a, v4} is an edge in Hv1 , then

we assume without loss of generality that {a, v4} is an edge in Hv1 . Considering the

position of a in A, we have:

• If a is a different vertex form v8 and v9 in A, then we find a P3 with the edge

set {{av1v4}, {v4v3u}, {uv8v9}} covering u, a contradiction.

• If a is v8 or v9, then we can assume a is v8. Let Hv8 be the link graph of v8.

As δ1(H) ≥ n + 5, we have e(Hv8) ≥ n + 5. In Hv8 , there are at most n − 6

edges between A and {u, v1, v2, v3, v4}. And {u, v1, v2, v3, v4} can span at most(
5
2

)
edges. Hence, in Hv8 , there is at least one edge induced in A. Let it be

{v10v11}. Then we find a P3 with the edge set {{uv1v2}, {uv8v9}, {v8v10v11}}
covering u, a contradiction.

If there is no vertex a in A such that {a, v3} or {a, v4} is an edge in Hv1 , then

{v1v3v4} must be an edge in H as there must be at least one P2 with the center

v1. Then we find a P3 with the edge set {{v8v9u}, {uv2v1}, {v1v3v4}} covering u, a

contradiction.

In conclusion, we have n− 2 ≤ c2(n, P3) ≤ n+ 4 for n ≥ 9.
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3.2.4 The proof of Theorem 10

Let H be an n-vertex 3-graph with n ≥ 8 and δ2(H) ≥ 3. Let u be any vertex

in V (H). By Theorem 7, we have there is a S3 with the center u covering u. Let

V (S3) be {u, v1, v2, v3, v4, v5, v6} and E(S3) be {{uv1v2}, {uv3v4}, {uv5v6}}. Let v7

be a vertex in V (H) \ {u, v1, v2, v3, v4, v5, v6}. As δ2(H) ≥ 3, we have dH({v6v7}) ≥
3. Hence there is at least one co-neighbor of {v6v7} in V (H) \ {u, v5, v6, v7}. If

there is a co-neighbor of {v6v7} in V (H) \ {u, v1, v2, v3, v4, v5, v6, v7}, let v8 ∈ V (H) \
{u, v1, v2, v3, v4, v5, v6, v7} be a co-neighbor of {v6v7}. Then we find a P3 with the

edge set {{uv1v2}, {uv5v6}, {v6v7v8}} covering u. If there is a co-neighbor of {v6v7}
in {v1, v2, v3, v4}, without loss of generality let v1 be a co-neighbor of {v6v7}. Then

we find a P3 with the edge set {{uv3v4}, {uv5v6}, {v6v7v1}} covering u.

Hence, If H is an n-vertex 3-graph with n ≥ 8 and δ2(H) ≥ 3, then for any

vertex u ∈ V (H) we can find a P3 with the vertex set {u, v1, v2, v3, v4, v5, v6} and the

edge set {{uv1v2}, {uv3v4}, {v4v5v6}} covering u.

3.2.5 The proof of Proposition 2

We use the same method of Lemma 2.1 in [1] to prove (i) in Proposition 2.

Proof of (i) in Proposition 2. The lower bound of c2(n, Pk) is a direct corollary of

Observation 8. Therefore, it is sufficient to show that c2(n, Pk) ≤ 2k − 2. We prove

that if H is an n-vertex 3-graph with n ≥ 2k + 1 and δ2(H) ≥ 2k − 1, then for any

vertex we can find a linear k-path Pk covering it.

For k ≥ 4, we order the vertices of Pk as x0, x1, x2, ..., x2k−1, x2k such that the

edge set of Pk is {{x0x1x2}, {x3x4x5}, ..., {x2kx2k−1x2k}}. Let H be an n-vertex 3-

graph with n ≥ 2k + 1 and δ2(H) ≥ 2k − 1. Fix a vertex v0 in V (H). We can

find a copy of Pk by mapping x0 to v0, x1 to any other vertex v1 in V (H), and x2

to any v2 ∈ NH({v0v1}). Suppose that x0, ..., xi−1 has been embedded to v0, ..., vi−1.

Considering the embedding of xi for i ≤ 2k, if i is odd, then we embedded xi to

any vertex vi ∈ V (H) \ {v0, v1, ..., vi−1}. If i is even, as δ2(H) ≥ 2k − 1, {vi−2vi−1}
has at least 2k − 1 co-neighbors. Hence {vi−2vi−1} has at least one co-neighbor in

V (H)\{v0, v1, ..., vi−1}, let it be vi. Then we embed xi to vi. Continuing this process,

we obtain a copy of Pk when we embed the 2k + 1 vertices.

Hence, if H is an n-vertex 3-graph with n ≥ 2k + 1 and δ2(H) ≥ 2k − 1, then

for any vertex we can find a linear k-path Pk covering it. As a direct corollary, we

have c2(n, Pk) ≤ 2k − 2 for n ≥ 2k + 1 and k ≥ 4.
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Proof of (ii) in Proposition 2. The lower bound of c1(n, Pk) is a direct corollary of

Observation 7 and Observation 9. Therefore, it is sufficient to show that c1(n, Pk) ≤(
n−1
2

)
−

(
n−2k+1

2

)
. We prove that if H is an n-vertex 3-graph with n ≥ 4k and

δ1(H) ≥
(
n−1
2

)
−

(
n−2k+1

2

)
+ 1, then for any vertex we can find a linear k-path Pk

covering it.

For any vertex u, suppose we have found a linear i-path Pi with 1 ≤ i ≤ k−1 con-

taining u. Now we prove that we can extend this Pi to Pi+1. We assume that the ver-

tex set of Pi is {v1, ..., v2i+1} and the edge set of Pi is {{v1v2v3}, {v3v4v5}, ..., {v2i−1v2i

v2i+1}}. As δ1(H) ≥
(
n−1
2

)
−
(
n−2k+1

2

)
+1, we have dH({v2i+1}) ≥

(
n−1
2

)
−
(
n−2k+1

2

)
+1.

Hence there must be two vertices v2i+2 and v2i+3 in V (H) \ {v1, ..., v2i+1} such that

{v2i+1v2i+2v2i+3} is an edge in H. Then we find a linear (i+ 1)-path Pi+1 by adding

{v2i+1v2i+2v2i+3} to Pi. When i = k − 1, we can get a linear k-path Pk covering u.

Hence we have for n ≥ 4k and k ≥ 3, max{n− 2,
(
2k−1
2

)
} ≤ c1(n, Pk) ≤

(
n−1
2

)
−(

n−2k+1
2

)
.
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