The degree and codegree threshold for generalized triangle and some trees covering Ran Gu¹, Shuaichao Wang² ¹School of Mathematics, Hohai University, Nanjing, Jiangsu Province 210098, P.R. China ²Center for Combinatorics and LPMC Nankai University, Tianjin 300071, China Emails: rangu@hhu.edu.cn;wsc17746316863@163.com #### Abstract Given two k-uniform hypergraphs F and G, we say that G has an F-covering if for every vertex in G there is a copy of F cover it. For $1 \le i \le k-1$, the minimum i-degree $\delta_i(G)$ of G is the minimum integer such that every i vertices are contained in at least $\delta_i(G)$ edges. Let $c_i(n, F)$ be the largest minimum i-degree among all n-vertex k-uniform hypergraphs that have no F-covering. In this paper, we mainly consider the F-covering problem in 3-uniform hypergraphs. When F is a generalized triangle T, we give the exact value of $c_2(n, T)$ and asymptotically determine $c_1(n, T)$. Moreover, when F is a linear k-path P_k or a star S_k , we provide bounds of $c_i(n, P_k)$ and $c_i(n, S_k)$ for $k \ge 3$, where i = 1, 2. **Keywords:** 3-graphs; Covering; Extremal; AMS Subject Classification (2020): 68R10, 05C35, 05C22 ## 1 Introduction Let k be an integer with $k \geq 2$. We say a k-uniform hypergraph, or a k-graph, is a pair G = (V(G), E(G)), where V(G) is a set of vertices and E(G) is a collection of k-subsets of V. When k = 2, the k-graph is the simple graph. We simply denote 2-graph by graph. Let G = (V(G), E(G)) be a k-graph. For any $S \subset V(G)$, let the neighborhood $N_G(S)$ of S be $\{T \subset V(G) \setminus S : T \cup S \in E(G)\}$ and the degree d_G of S be $|N_G(S)|$. For $1 \leq i \leq k-1$, we denote the minimum i-degree of G by $\delta_i(G)$, which is the minimum of $d_G(S)$ over all $S \in \binom{V(G)}{i}$. We call $\delta_1(G)$ the minimum degree of G and $\delta_{k-1}(G)$ the minimum codegree of G. When |S| = k-1, we also call the vertex in $N_G(S)$ the co-neighbor of S. For a vertex x in V, we define the link graph G_x to be a (k-1)-graph with the vertex set $V(G) \setminus \{x\}$ and the edge set $N_G(\{x\})$. Given a k-graph F, we say a k-graph G has an F-covering if for any vertex of G, we can find a copy of F containing it. For $1 \le i \le k-1$, define $c_i(n, F) = \max\{\delta_i(G) : G \text{ is a } k\text{-graph on } n \text{ vertices with no } F\text{-covering}\}.$ and call $c_1(n, F)$ the F-covering degree-threshold and $c_{k-1}(n, F)$ the F-covering codegree-threshold. For graphs F, the F-covering problem was solved asymptotically in [7] and showed that $c_1(n, F) = (\frac{\chi(F)-2}{\chi(F)-1} + o(1))n$ where $\chi(F)$ is the chromatic number of F. Falgas-Ravry and Zhao [1] initiated the study of the F-covering problem in 3-graphs. For $n \geq k$, let K_n^k denote the complete k-graph on n vertices and K_n^{k-} denote the k-graph by removing one edge from K_n^k . In [1], Falgas-Ravry and Zhao determined the exact value of $c_2(n, K_4^3)$ for n > 98 and gave bounds of $c_2(n, F)$ when F is K_4^{3-} , K_5^3 or the tight cycle C_5^3 on 5 vertices. Yu, Hou, Ma and Liu [3] gave the exact value of $c_2(n, K_4^{3-})$, $c_2(n, K_5^{3-})$ and showed that $c_2(n, K_4^{3-}) = \lfloor \frac{n}{3} \rfloor$, $c_2(n, K_5^{3-}) = \lfloor \frac{2n-2}{3} \rfloor$. Soon after that, Falgas-Ravry, Markström, and Zhao [2] gave near optimal bounds of $c_1(n, K_4^3)$ and asymptotically determined $c_1(n, K_4^{3-})$. Recently, Tang, Ma and Hou [4] determined the exact value of $c_2(n, C_6^3)$ and an asymptotic optimal value of $c_1(n, C_6^3)$. There are some other related results in literature, for example in [5], [6]. In this paper, we also focus on 3-graphs. Let the generalized triangle T be a 3-graph with the vertex set $\{v_1, v_2, v_3, v_4, v_5\}$ and the edge set $\{\{v_1v_2v_3\}, \{v_1v_2v_4\}, \{v_3v_4v_5\}\}$. We determine the exact value of $c_2(n, T)$ and give the bounds of $c_1(n, T)$. What's more, let G be a graph and fix a vertex u in V(G). If u is covered by a generalized triangle, then there are three possible positions for u to have, see Figure 1. We denote these three ways by T^1 , T^2 and T^3 . We give the upper bounds of $\delta_1(G)$ guaranteeing that every vertex in V(G) is contained in T^1 , T^2 and T^3 . The main results on generalized triangle are as follows. **Theorem 1.** For $n \geq 5$, we have: $$c_2(n,T) = \begin{cases} 1, when \ n \in [5, 10] \\ 2, when \ n \ge 11 \ and \ n - 1 \equiv 0 \pmod{3} \\ 1, when \ n \ge 11 \ and \ n - 1 \equiv 1, 2 \pmod{3} \end{cases}$$ (a) u is contained in T^1 (b) u is contained in T^2 (c) u is contained in T^3 Figure 1: Different positions of u in a generalized triangle **Theorem 2.** For $n \geq 5$, we have: (i) $$\frac{n^2}{9} \le c_1(n,T) \le \frac{n^2}{6} + \frac{5}{6}n - 3$$. - (ii) If G is an n-vertex 3-graph satisfying that $\delta_1(G) > \frac{n^2}{6} + \frac{5}{6}n 3$, then for any vertex u in G, there is a generalized triangle T^1 or T^2 covering u. - (iii) If G is an n-vertex 3-graph satisfying that $\delta_1(G) > \frac{n^2}{4} + \frac{1}{4}n 2$, then for any vertex u in G, there are generalized triangles T^1 and T^2 covering u. - (iv) If G is an n-vertex 3-graph satisfying that $\delta_1(G) > \frac{\sqrt{5}-1}{4}n^2 + O(n)$, then for any vertex u in G, there are generalized triangles T^1 , T^2 and T^3 covering u. Now we pay attention to some trees covering problems. For $k \geq 2$, let S_k be the 3-graph k-star with the vertex set $\{v_0, v_1, v_2..., v_{2k-1}, v_{2k}\}$ and the edge set $\{\{v_0, v_1, v_2\}, \{v_0, v_3, v_4\}, ..., \{v_0, v_{2k-1}, v_{2k}\}\}$. Let v_0 be the center of S_k . For $k \geq 2$, let the 3-graph P_k be the the linear k-path with the vertex set $\{v_1, v_2..., v_{2k}, v_{2k+1}\}$ and the edge set $\{\{v_1, v_2, v_3\}, \{v_3, v_4, v_5\}, ..., \{v_{2k-1}, v_{2k}, v_{2k+1}\}\}$. In this paper, we consider the F-covering problem when F is the k-star S_k or the linear k-path P_k . When k = 2, the 2-star S_2 is the linear 2-path P_2 . Figure 2 is an example of the linear 2-path P_2 . We determine the exact values of $c_2(n, P_2)$ and $c_1(n, P_2)$. The results on the linear 2-path covering or the 2-star covering are as follows. Figure 2: Linear 2-path P_2 **Theorem 3.** For $n \geq 5$, we have $c_2(n, P_2) = 0$. **Theorem 4.** For $n \geq 8$, we have $c_1(n, P_2) = 3$. In addition, we determine the codegree threshold for the property of a 3-graph G that for any vertex $u \in V(G)$ we can find a linear 2-path P_2 with the center u. **Theorem 5.** If G is an n-vertex 3-graph satisfying that $n \geq 5$ and $\delta_2(G) \geq 2$, then for any vertex $u \in V(G)$, we can find 4 vertices p, q, s, t where $\{u, p, q\}$ and $\{u, s, t\}$ form a linear 2-path P_2 covering u. Through exploring the structure of graphs without some specific matchings, we obtain the following result on the 3-star S_3 -covering. Figure 3: The 3-star S_3 **Theorem 6.** If H is an n-vertex 3-graph satisfying $n \geq 7$ and $\delta_2(H) \geq 2$, then for any vertex $u \in V(H)$, there is a 3-star S_3 covering u. By Theorem 6, we can directly get the following corollary. Corollary 1. For $n \ge 7$, $c_2(n, S_3) \le 1$. As well, we determine the codegree threshold for the property of a 3-graph G that for any vertex $u \in V(G)$ we can find a 3-star S_3 with the center u. **Theorem 7.** If H is an n-vertex 3-graph with $n \geq 7$ and $\delta_2(H) \geq 3$, then for any vertex $u \in V(H)$ we can find a S_3 with the center u. Using the similar technique in the proof of Theorem 6 we also give bounds of $c_2(n, S_k)$ and $c_1(n, S_k)$ for $k \geq 3$. **Proposition 1.** Let k be an integer with $k \geq 3$. Let H be an n-vertex 3-graph with $n \geq 2k + 1$. We have: (i) $$c_2(n, S_k) \le \max\{\frac{4k^2 - 6k + 2}{n - 1}, k - 2 - \frac{k^2 - nk}{n - 1}\}.$$ (ii) $$c_1(n, S_k) \le \max\{\binom{2k-1}{2}, \binom{n-1}{2} - \binom{n-k}{2}\}.$$ Figure 4 is an example of the linear 3-path P_3 . We determine the exact value of $c_2(n, P_3)$ and asymptotically determine $c_1(n, P_3)$ as follows. Figure 4: Linear 3-path P_3 **Theorem 8.** For $n \geq 8$, we have $c_2(n, P_3) = 1$. **Theorem 9.** For $n \ge 8$, we have $n - 2 \le c_1(n, P_3) \le n + 4$. Moreover, we determine the codegree threshold for the property of a 3-graph G that for any vertex $u \in V(G)$ we can find a linear 3-path with the vertex set $\{u, v_1, v_2, v_3, v_4, v_5, v_6\}$ and the edge set $\{\{v_1v_2u\}, \{uv_3v_4\}, \{v_4v_5v_6\}\}$ covering u. **Theorem 10.** If H is an n-vertex 3-graph with $n \geq 8$ and $\delta_2(H) \geq 3$, then for any vertex $u \in V(H)$ we can find a P_3 with the vertex set $\{u, v_1, v_2, v_3, v_4, v_5, v_6\}$ and the edge set $\{\{uv_1v_2\}, \{uv_3v_4\}, \{v_4v_5v_6\}\}$ covering u. We also give the bounds of $c_2(n, P_k)$ and $c_1(n, P_k)$ for $k \ge 4$ as follows. **Proposition 2.** Let k be an integer with $k \geq 4$. We have: - (i) For $n \ge 2k+1$, $k-3 \le c_2(n, P_k) \le 2k-2$. - (ii) For $n \ge 4k$, $\max\{n-2, \binom{2k-1}{2}\} \le c_1(n, P_k) \le \binom{n-1}{2} \binom{n-2k+1}{2}$. The rest of the paper is arranged as follows. In Section 2, we give some extremal constructions and proofs of theorems for generalized triangle covering. And in Sections 3 we give some extremal constructions and proofs of theorems for some trees covering. # 2 Results on generalized triangle covering #### 2.1 Construction We introduce some constructions involving our results. For two families of sets \mathcal{A} and \mathcal{B} , define $A \vee B = \{A \cup B : A \in \mathcal{A} \text{ and } B \in \mathcal{B}\}.$ Construction 1. Let V_1 be a vertex set. Fix $u \in V_1$, let $V' = V_1 \setminus \{u\}$, $E_1 = \{u\} \vee {V' \choose 2}$ which means E_1 is a 3-set family and every 3-set from E_1 contains u and two other vertices form V'. Let $G_1 = (V_1, E_1)$ be a 3-graph. The
following observation can be checked directly. **Observation 1.** G_1 is a 3-graph with $\delta_2(G_1) = 1$ and there is no generalized triangle T covering u. Construction 2. Let k be an integer with $k \geq 4$. Let $G_2 = (V_2, E_2)$ be a 3-graph with $V_2 = \{u\} \cup \sum_{i=1}^k C_i$ where C_i is a 3-vertex set for $i \in [1, k]$. E_2 consists of two types of edges. For the first type, edges induced in the vertex set $\{u\} \cup C_i$ form a K_4^3 for any $i \in [1, k]$. For the second type, let C_a , C_b and C_c be any three elements in $\{C_i : i \in [1, k]\}$. Without loss of generality, we assume C_a is $\{v_1, v_2, v_3\}$, C_b is $\{v_4, v_5, v_6\}$ and C_c is $\{v_7, v_8, v_9\}$. The edges induced in C_a , C_b and C_c are: $$\left\{ \begin{cases} \{v_1, v_4, v_7\}, \{v_2, v_4, v_8\}, \{v_3, v_4, v_9\}; \\ \{v_1, v_5, v_8\}, \{v_2, v_5, v_9\}, \{v_3, v_5, v_7\}; \\ \{v_1, v_6, v_9\}, \{v_2, v_6, v_7\}, \{v_3, v_6, v_8\}; \end{cases} \right\}$$ Figure 5: Edges induced in C_a , C_b and C_c . In Construction 2, the subgraph induced in every three elements of $\{C_i\}$ is isomorphic to the 3-graph in Figure 5. And we get the following observation for the Construction 2. **Observation 2.** G_2 is a 3-graph with $\delta_2(G_2) = 2$ and there is no generalized triangle T covering u. *Proof.* We first check that G_2 has no generalized triangle T covering u. If u is covered as the first case in Figure 1, then there is an edge $e_0 = \{u, v_1, v_2\}$ such that $v_1, v_2 \in C_i$ for $i \in [1, k]$. By the definition of G_2 , we can not find two vertices v_3, v_4 from $V_2 \setminus \{u, v_1, v_2\}$ making $\{v_1, v_3, v_4\}$, $\{v_2, v_3, v_4\}$ being edges in E_2 , a contradiction with the fact that there is a T^1 covering u. If u is covered as the second case in Figure 1, then there are two edges $e_1 = \{u, v_5, v_6\}$ and $e_2 = \{u, v_7, v_8\}$ such that $v_5, v_6 \in C_i$ and $v_3, v_4 \in C_j$ for $i \neq j$ and $i, j \in [1, k]$. However, there is no edge induced in any two $C_i's$ in G_2 , which means we can not find an edge together with e_1 and e_2 to form a T^2 covering u, a contradiction. If u is covered as the third case in Figure 1, then there are two edges $e_3 = \{u, v_9, v_{10}\}$ and $e_4 = \{u, v_9, v_{11}\}$ such that $v_9, v_{10}, v_{11} \in C_i$ for some $i \in [1, k]$. Actually, there is no vertex v_{12} making $\{v_{10}, v_{11}, v_{12}\}$ being an edge in G_2 , a contradiction with the fact that there is a T^3 covering u. Next we prove that $\delta_2(G_2) = 2$. Let s,t be any two vertices in $V(G_2)$. We have: - If the two vertices s, t belong to different $C'_i s$, then $d_G(\{s, t\}) \geq 2$. - If the two vertices s, t belong to any C_i , then $d_G(\{s, t\}) = 2$. - If the vertex s is u and the vertex t belongs to any C_i , then $d_G(\{s,t\}) = 2$. In conclusion, we have $\delta_2(G_2) = 2$ and there is no generalized triangle T covering u. Construction 3. Let $G_3 = (V_3, E_3)$ be an n-vertex 3-graph with $V_3 = \{u\} \cup A_1 \cup A_2 \cup B$ and $E_3 = (\{u\} \vee {A_1 \choose 1} \vee {A_2 \choose 1}) \cup ({A_1 \choose 1} \vee {A_2 \choose 1}) \cup {B \choose 1} \cup {B \choose 3}$, where $|A_1| = |A_2| = \lceil \frac{n}{3} \rceil$. Figure 6: Construction 3 **Observation 3.** G_3 is a 3-graph with $\delta_1(G_3) \geq \frac{n^2}{9}$ and there is no generalized triangle T covering u. Proof. We check that G_3 has no generalized triangle T covering u. If u is covered as the first case in Figure 1, then there is an edge $e_0 = \{u, v_1, v_2\}$ such that v_1, v_2 are in different A_i for i = 1, 2. By the definition of G_3 , we can not find two vertices v_3, v_4 from $V_3 \setminus \{u, v_1, v_2\}$ such that $\{v_1, v_3, v_4\}, \{v_2, v_3, v_4\}$ are edges in E_3 , a contradiction with the fact that there is a T^1 covering u. If u is covered as the second case in Figure 1, then there are two edges $e_1 = \{u, v_5, v_6\}$ and $e_2 = \{u, v_7, v_8\}$ such that both v_5, v_6 and v_7, v_8 are in different A_i for i = 1, 2. However, there is no edge induced in A_1 and A_2 in G_3 , which means we can not find an edge together with e_1 and e_2 to form a T^2 covering u, a contradiction. If u is covered as the third case in Figure 1, then there are two edges $e_3 = \{u, v_9, v_{10}\}$ and $e_4 = \{u, v_9, v_{11}\}$ such that v_{10}, v_{11} are in one of A_i and v_9 in another one for i = 1, 2. Actually, there is no vertex v_{12} making $\{v_{10}, v_{11}, v_{12}\}$ being an edge in G_3 , a contradiction with the fact that there is a T^3 covering u. Next we prove that $\delta_1(G_3) \geq \frac{n^2}{9}$. Let v be a vertex from $V(G_3)$. If v = u, then $$d_{G_3}(\{v\}) = \lceil \frac{n}{3} \rceil \cdot \lceil \frac{n}{3} \rceil \ge \frac{n^2}{9}.$$ If $v \in A_1 \cup A_2$, then $$d_{G_3}(\lbrace v \rbrace) = \lceil \frac{n}{3} \rceil + \lceil \frac{n}{3} \rceil \cdot (n - 1 - 2\lceil \frac{n}{3} \rceil) \ge \frac{n^2}{9}.$$ If $v \in B$, then $$d_{G_3}(\{v\}) = \lceil \frac{n}{3} \rceil \cdot \lceil \frac{n}{3} \rceil + \binom{n-1-2\lceil \frac{n}{3} \rceil}{2} > \lceil \frac{n}{3} \rceil \cdot \lceil \frac{n}{3} \rceil \ge \frac{n^2}{9}.$$ Therefore, we have $\delta_1(G_3) \geq \frac{n^2}{9}$. ## 2.2 The proof of Theorem 1 We divide the proof of Theorem 1 into two parts according to the value of n. ## **2.2.1** When $n \in [5, 10]$ When $n \in [5, 10]$, the lower bound of $c_2(n, T)$ can be directly gotten from Observation 1. Therefore, we only need to prove $c_2(n, T) \le 1$ when $n \in [5, 10]$. We assume to the contrary that there is a 3-graph G with $\delta_2(G) \ge 2$ and a vertex $u \in V(G)$ that is not covered by T. Let $y \in V(G)$ be a vertex different from u. As $d_G(\{u,y\}) \geq 2$, $N_G(\{u,y\})$ has at least two vertices. Considering any two vertices p, q from $N_G(\{u,y\})$, we have $N_G(\{p,q\}) \subseteq \{u,y\}$. Otherwise, if there is a vertex $t \in N_G(\{p,q\})$ different from u and y, then $\{\{p,q,t\},\{u,y,p\},\{u,y,q\}\}$ is a T covering u, a contradiction. On the other hand, as $\delta_2(G) \geq 2$, we have $N_G(\{p,q\}) = \{u,y\}$. A direct corollary is that $G[\{u,y,p,q\}] = K_4^3$. Moreover, any two vertices from $\{u,y,p,q\}$ have codegree 2 in G. Otherwise, we can find a T covering u, a contradiction. Now consider the link graphs of vertices y, p, q, we denote them by G_y, G_p and G_q , respectively. Let G_a be the 3-graph obtained by deleting the vertices u, p, q (and related edges) from G_y , G_b be the 3-graph obtained by deleting the vertices u, y, q (and related edges) from G_p , and G_c be the 3-graph obtained by deleting the vertices u, y, p (and related edges) from G_q . As $\delta_2(G) \geq 2$ and any two vertices in $\{u, y, p, q\}$ have no co-neighbor out of $\{u, y, p, q\}$, we have $\delta_1(G_a) \geq 2$, $\delta_1(G_b) \geq 2$ and $\delta_1(G_c) \geq 2$. Actually, G_a, G_b and G_c are simple graphs defined on the same vertex set. As $n \in [5, 10]$, we have: $$e(G_a) + e(G_b) + e(G_c) \ge \frac{2(n-4)}{2}3 = 3(n-4) > \binom{n-4}{2}.$$ The inequality above implies that there must be at least one edge contained in at least two graphs of G_a , G_b and G_c . Without loss of generality, let $\{s,t\}$ be the common edge in G_a and G_b . As a result, we can find a $T = \{\{s,t,y\},\{s,t,p\},\{u,y,p\}\}\}$ covering u, a contradiction. #### **2.2.2** When $n \ge 11$ We first consider the case for $n \ge 11$ and $n-1 \equiv 0 \pmod{3}$. By Observation 2, we have $c_2(n,T) \ge 2$ for $n \ge 11$ and $n-1 \equiv 0 \pmod{3}$. Therefore, we only need to prove $c_2(n,T) \le 2$ for $n \ge 11$ and $n-1 \equiv 0 \pmod{3}$. We suppose to the contrary that there is an n-vertex 3-graph G with $\delta_2(G) \ge 3$ for $n \ge 11$ and $n-1 \equiv 0 \pmod{3}$ and a vertex $u \in V(G)$ that is not covered by T. Let y be any other vertex different from u in G. As $\delta_2(G) \geq 3$, we have $d_G(\{u,y\}) \geq 3$. Therefore, we can find two edges containing $\{u,y\}$. Let the two edges be $\{u,y,p\}$ and $\{u,y,q\}$. Considering $d_G(\{p,q\}) \geq 3$, we can find a vertex o different from u and y, such that $\{o,p,q\}$ forms an edge in G. Therefore, we find a generalized triangle T with the edge set $\{\{u,y,p\},\{u,y,q\},\{o,p,q\}\}\}$ covering u, a contradiction. Next, we consider the case for $n \ge 11$ and $n-1 \equiv 1, 2 \pmod{3}$. By Observation 1, we have $c_2(n,T) \ge 1$ for $n \ge 11$ and $n-1 \equiv 1, 2 \pmod{3}$. Therefore, we only need to prove $c_2(n,T) \leq 1$ for $n \geq 11$ and $n-1 \equiv 1,2 \pmod{3}$. We suppose to the contrary that there is an n-vertex 3-graph G with $\delta_2(G) \geq 2$ for $n \geq 11$ and $n-1 \equiv 1,2 \pmod{3}$ and a vertex $u \in V(G)$ that is not covered by T. Let $v_1 \in V(G)$ be a vertex in V(G) different from u. As $\delta_2(G) \geq 2$, we have $d_G(\{u,v_1\}) \geq 2$ and $N_G(\{u,v_1\})$ has at least two vertices. Considering any two vertices v_2 , v_3 in $N_G(\{u,v_1\})$, we have $N_G(\{v_2,v_3\}) \subseteq \{u,v_1\}$. Otherwise, if there is a vertex $h \in N_G(\{v_2,v_3\})$ different from u and v_1 , then there is a generalized triangle T with the edge set $\{\{v_2,v_3,h\},\{u,v_1,v_2\},\{u,v_1,v_3\}\}$ covering u, a contradiction. On the other hand, as $\delta_2(G) \geq 2$, we have $N_G(\{v_2,v_3\}) = \{u,v_1\}$. Actually, we find $G[\{u,v_1,v_2,v_3\}]$ is a complete 3-graph on 4 vertices. Besides, any two vertices in $\{u,v_1,v_2,v_3\}$ have codegree 2, which means any two vertices in $\{u,v_1,v_2,v_3\}$ have no co-neighbor out of $\{u,v_1,v_2,v_3\}$. Otherwise, we can find a T covering u, a contradiction. Let v_4 be a vertex in V(G) different from v_1, v_2, v_3 and u. As $\delta_2(G) \geq 2$, we have $d_G(\{u, v_4\}) \geq 2$ and $N_G(\{u, v_4\})$ has at least two vertices. Let v_5 and v_6 be any two vertices in $N_G(\{u,
v_4\})$. The same as the above analysis, we have $N_G(\{v_5, v_6\}) = \{u, v_4\}$ and $G[\{u, v_4, v_5, v_6\}]$ is a complete 3-graph on 4 vertices. Continue to consider other vertices in this way. There must exist a lot of 3-vertex sets: $T_1 = \{v_1, v_2, v_3\}$, $T_2 = \{v_4, v_5, v_6\}, ..., T_l = \{v_{3l-2}, v_{3l-1}, v_{3l}\}$, such that edges induced in the vertex set $T_i \cup \{u\}$ form a complete 3-graph on 4 vertices for $i \in [1, l]$. Apart from these 3l + 1 vertices, there are one or two vertices left since $n - 1 \equiv 1, 2 \pmod{3}$. - If there is exactly one vertex left, let it be a. As $\delta_2(G) \geq 2$, we have $d_G(\{u, a\}) \geq 2$ and $N_G(\{u, a\})$ has at least two vertices. For the vertex in $N_G(\{u, a\})$, it must be a vertex in a T_i for $i \in [1, l]$. Without loss of generality, let v_{3i} in T_i be a vertex from $N_G(\{u, a\})$, which means $\{v_{3i}, u, a\}$ is an edge in G. Then we find a generalized triangle T with the edge set $\{\{v_{3i}, u, a\}, \{v_{3i-2}, v_{3i-1}, v_{3i}\}, \{v_{3i-2}, v_{3i-1}, u\}\}$ covering u, a contradiction. - If there are two vertices left, let them be b and c. As $\delta_2(G) \geq 2$, we have $d_G(\{u,b\}) \geq 2$ and $N_G(\{u,b\})$ has at least two vertices. For the vertex in $N_G(\{u,b\}) \setminus \{c\}$, it must be a vertex in a T_i for $i \in [1,l]$. Then through the same analysis as the case before for one vertex left, we can find a T covering u, a contradiction. Therefore, we have $c_2(n,T) = 1$ for $n \ge 11$ and $n-1 \equiv 1,2 \pmod{3}$. #### 2.3 The proof of Theorem 2 #### 2.3.1 The proof of (i) We can directly get the lower bound of $c_1(n,T)$ from Observation 3. Therefore, it is sufficient to show that every 3-graph G on n vertices with $\delta_1(G) > \frac{n^2}{6} + \frac{5}{6}n - 3$ has a T-covering. Suppose to the contrary that there is an n-vertex 3-graph G with $\delta_1(G) > \frac{n^2}{6} + \frac{5}{6}n - 3$ and a vertex $u \in V(G)$ that is not covered by T. Consider an edge $e = \{u, x, y\}$ containing u in G. Let G_x , G_y and G_u be the link graphs of x, y and u, respectively. Let G_x' be the 3-graph obtained by deleting the vertices u, y (and related edges) from G_x , G_y' be the 3-graph obtained by deleting the vertices u, x (and related edges) from G_y and G_u' be the 3-graph obtained by deleting the vertices x, y (and related edges) from G_u . Then G_x' , G_y' and G_u' are simple graphs defined on the same n-3 vertices. As $$\delta_1(G) > \frac{n^2}{6} + \frac{5}{6}n - 3,$$ we have $$e(G'_x) + e(G'_y) + e(G'_u) > 3 \cdot (\frac{n^2}{6} + \frac{5}{6}n - 3 - 2(n - 3) - 1) > \binom{n - 3}{2},$$ which means that there must be a common edge in at least two of G'_x , G'_y and G'_u . Without loss of generality, let $\{s,t\}$ be the common edge in both G'_x and G'_y . As a result, we can find a $T = \{\{s,t,x\},\{s,t,y\},\{u,x,y\}\}$ covering u, a contradiction. #### 2.3.2 The proof of (ii) Let G be a 3-graph with $\delta_1(G) > \frac{n^2}{6} + \frac{5}{6}n - 3$. We will prove for any vertex u, there is a generalized triangle T^1 or T^2 covering u. For any vertex $u \in V(G)$, as $d_G(\{u\}) > 1$, there is an edge $\{u, x, y\}$ containing u. Let G_x , G_y and G_u be the link graphs of x, y and u, respectively. Let G_x' be the 3-graph obtained by deleting the vertices u, y (and related edges) from G_x , G_y' be the 3-graph obtained by deleting the vertices u, x (and related edges) from G_y , and G_u' be the 3-graph obtained by deleting the vertices x, y (and related edges) from G_u . Then G_x' , G_y' and G_u' are simple graphs defined on the same n-3 vertices. As $$\delta_1(G) > \frac{n^2}{6} + \frac{5}{6}n - 3,$$ we have $$e(G_x^{'}) + e(G_y^{'}) + e(G_u^{'}) > 3 \cdot (\frac{n^2}{6} + \frac{5}{6}n - 3 - 2(n - 3) - 1) > \binom{n - 3}{2},$$ which means that there must be a common edge in at least two of G'_x , G'_y and G'_u . If there is an edge $\{s,t\}$ in both G'_x and G'_y , we can find a $T^1 = \{\{s,t,x\},\{s,t,y\},\{u,x,y\}\}$ covering u. If there is an edge $\{p,q\}$ in both G'_x and G'_u , we can find a $T^2 = \{\{p,q,x\},\{p,q,u\},\{x,y,u\}\}$ covering u. If there is an edge $\{g,h\}$ in both G'_y and G'_u , we can find a $T^2 = \{\{g,h,y\},\{g,h,u\},\{u,x,y\}\}$ covering u. In conclusion, if G is a 3-graph satisfying that $\delta_1(G) > \frac{n^2}{6} + \frac{5}{6}n - 3$, then for any vertex $u \in V(G)$, we can find a generalized triangle T^1 or T^2 covering u. #### 2.3.3 The proof of (iii) Let G be a 3-graph with $\delta_1(G) > \frac{n^2}{4} + \frac{1}{4}n - 2$. We will prove for any vertex $u \in V(G)$, there are generalized triangles T^1 and T^2 covering u. Since $d_G(\{u\}) > 1$, there is an edge $\{u, x, y\}$ containing u. Let G_x , G_y and G_u be the link graphs of x, y and u, respectively. Let G_x' be the 3-graph obtained by deleting the vertices u, y (and related edges) from G_x , G_y' be the 3-graph obtained by deleting the vertices u, x (and related edges) from G_y , and G_u' be the 3-graph obtained by deleting the vertices x, y (and related edges) from G_u . Then G_x' , G_y' and G_u' are simple graphs defined on the same n-3 vertices. As $$\delta_1(G) > \frac{n^2}{4} + \frac{1}{4}n - 2,$$ we have $$e(G_{x}^{'}) + e(G_{y}^{'}) > 2 \cdot (\frac{n^{2}}{4} + \frac{1}{4}n - 2 - 2(n-3) - 1) > \binom{n-3}{2};$$ $$e(G'_x) + e(G'_u) > 2 \cdot (\frac{n^2}{4} + \frac{1}{4}n - 2 - 2(n-3) - 1) > \binom{n-3}{2};$$ which means that there must be a common edge in both G'_x and G'_y and a common edge in both G'_x and G'_u . Without loss of generality, let $\{s,t\}$ be the common edge in G'_x and G'_y and $\{p,q\}$ be the common edge in G'_x and G'_u . As a result, we can find a $T^1 = \{\{s,t,x\},\{s,t,y\},\{u,x,y\}\}$ covering u and a $T^2 = \{\{p,q,x\},\{p,q,u\},\{x,y,u\}\}$ covering u. In conclusion, if G is a 3-graph satisfying that $\delta_1(G) > \frac{n^2}{4} + \frac{1}{4}n - 2$, then for any vertex $u \in V(G)$, there are generalized triangles T^1 and T^2 covering u. #### 2.3.4 The proof of (iv) Let G be a 3-graph with $\delta_1(G) > \frac{\sqrt{5}-1}{4}n^2 + O(n)$. We first prove that for any vertex u in V(G), there is a generalized triangle T^3 covering u. Suppose to the contrary that there is an n-vertex 3-graph G with $\delta_1(G) > \frac{\sqrt{5}-1}{4}n^2 + O(n)$ and a vertex $u \in V(G)$ that is not covered by a T^3 . Let G_u be the link graph of u. For any vertex $x \in V(G_u)$, let $N = N_{G_u}(\{x\})$ be the neighbor set of x in G_u . Considering any vertex $x \in V(G_u)$ with $d_{G_u}(\{x\}) \geq 2$, let y, z be any two vertices in N. As there is no T^3 covering u, for any vertex $f \in V(G_u) - \{x, y, z\}$, we have $\{y, z, f\}$ is not an edge in G. We call these triples like $\{y, z, f\}$ as the non-edges. Considering the fact that every vertex $x \in V(G_u)$ with $d_{G_u}(\{x\}) \geq 2$ is contained in no T^3 , we collect the triples of these non-edges for every vertex $x \in V(G_u)$. And we denote the multiset of the non-edges by M. Actually, every non-edge in M can be repeated at most $3 \cdot \Delta_{G_u}$ times, where Δ_{G_u} denotes the maximum degree of G_u . As a result, there are at least m non-edges in G, in which $m \geq \frac{|M|}{3 \cdot \Delta_{G_u}}$. Counting the size of M, we have $$|M| = \sum_{x \in V(G_u), d_{G_u}(\{x\}) \ge 2} (n-4) \binom{d_{G_u}(\{x\})}{2}$$ $$= \frac{n-4}{2} \cdot \sum_{x \in V(G_u), d_{G_u}(\{x\}) \ge 2} (d_{G_u}^2(\{x\}) - d_{G_u}(\{x\}))$$ $$= \frac{n-4}{2} \cdot \sum_{x \in V(G_u), d_{G_u}(\{x\}) \ge 2} ((d_{G_u}(\{x\}) - \frac{1}{2})^2 - \frac{1}{4})$$ $$\ge \frac{n-4}{2} \cdot \sum_{x \in V(G_u), d_{G_u}(\{x\}) \ge 2} (d_{G_u}(\{x\}) - \frac{1}{2})^2 - \frac{n \cdot (n-4)}{8}.$$ By handshaking theorem, we have: $$\sum_{v \in V(G_u), d_{G_u}(\{x\}) \ge 2} d_{G_u}(\{x\}) \ge 2 \cdot e(G_u) - n$$ $$\ge 2 \cdot \delta_1(G) - n.$$ And by Hölder inequality, we have: $$\sum_{x \in V(G_u), d_{G_u}(\{x\}) \ge 2} (d_{G_u}(\{x\}) - \frac{1}{2})^2 \ge \frac{\left(\sum_{x \in V(G_u), d_{G_u}(\{x\}) \ge 2} (d_{G_u}(\{x\}) - \frac{1}{2})\right)^2}{\sum_{x \in V(G_u), d_{G_u}(\{x\}) \ge 2} 1}$$ $$\ge \frac{(2 \cdot \delta_1(G) - n - \frac{1}{2} \cdot n)^2}{n}$$ $$= \frac{4 \cdot \delta_1(G)^2 - 6 \cdot n \cdot \delta_1(G) + \frac{9}{4} \cdot n^2}{n}.$$ Hence, $$m \ge \frac{\frac{n-4}{2} \cdot \sum_{x \in V(G_u), d_{G_u}(\{x\}) \ge 2} (d_{G_u}(\{x\}) - \frac{1}{2})^2 - \frac{n \cdot (n-4)}{8}}{3n}$$ $$\ge \frac{n-4}{2 \cdot 3n} \cdot \frac{4 \cdot \delta_1(G)^2 - 6 \cdot n \cdot \delta_1(G) + \frac{9}{4} \cdot n^2}{n} - \frac{n \cdot (n-4)}{8 \cdot 3n}$$ $$\ge \frac{2(n-4)}{3n^2} \delta_1^2 - \frac{n-4}{n} \delta_1 - \frac{n-4}{3}. \tag{1}$$ On the other hand, as $e(G_u) = d_1(\{u\}) \ge \delta_1(G)$, there are at most m non-edges in G, in which $$m \le \binom{n}{3} - \frac{\delta_1(G) \cdot n}{3}.$$ (2) As $\delta_1(G) > \frac{\sqrt{5}-1}{4}n^2 + O(n)$, we have a contradiction between (1) and (2), which means that every vertex in G can be covered by a T^3 if $\delta_1(G) > \frac{\sqrt{5}-1}{4}n^2 + O(n)$. As $$\frac{\sqrt{5}-1}{4}n^2 + O(n) > \frac{n^2}{4} + \frac{1}{4}n - 2,$$ combining with the proof of (iii) we have for any vertex in G, we can find generalized triangles T^1 and T^2 covering it if $\delta_1(G) > \frac{\sqrt{5}-1}{4}n^2 + O(n)$. In conclusion, if G is a 3-graph satisfying that $\delta_1(G) > \frac{\sqrt{5}-1}{4}n^2 + O(n)$, then for any vertex $u \in G$, there are generalized triangles T^1 , T^2 and T^3 covering u. # 3 Results on some trees covering ## 3.1 Star covering #### 3.1.1 Construction **Construction 4.** Let V_4 be an n-vertex set with $n \ge 8$ and E_4 be a 3-element set. Let A be a 4-vertex subset of V_4 and B be the remain vertex set $V \setminus A$. Let $E_4 = \binom{A}{3} \cup \binom{B}{3}$. Let $G_4 = (V_4, E_4)$ be a
3-graph. Actually, we have $G_4 = K_4^3 \cup K_{n-4}^3$. **Observation 4.** G_4 is a 3-graph with $\delta_1(G_4) = 3$ and there is no P_2 in G_4 covering vertices in A. *Proof.* As |A| = 4, there is no P_2 in the induced graph G[A]. And A and B are disconnected, so there is no P_2 covering the vertices in A. Now we prove that $\delta_1(G_4) = 3$. Let v be a vertex in $V(G_4)$. Figure 7: Construction 4 If $v \in A$, then $$d_{G_4}(\{v\}) = \binom{4-1}{2} = 3.$$ If $v \in B$, as $n \ge 8$ we have $$d_{G_4}(\{v\}) = \binom{n-5}{2} \ge 3.$$ Therefore, we have $\delta_1(G_4) = 3$. Construction 5. Let V_5 be a vertex set. Fix two vertices $u, v_0 \in V_5$, let $V_5' = V_5 \setminus \{u, v_0\}$ and $E_5 = \{u, v_0\} \vee {V_5' \choose 1} \cup \{v_0\} \vee {V_5' \choose 2}$. Let $G_5 = (V_5, E_5)$ be a 3-graph. **Observation 5.** G_5 is a 3-graph with $\delta_2(G_5) = 1$. For the vertex u, we can not find 4 vertices p, q, s, t such that $\{u, p, q\}$ and $\{u, s, t\}$ form a linear 2-path P_2 covering u. *Proof.* Considering any two vertices $v_1, v_2 \in V(G_5)$, we have: - If $v_1 = u$ and $v_2 = v_0$, we have $d_{G_5}(\{u, v_0\}) \ge 1$. - If $v_1 = u$ and $v_2 \in V_5'$, we have $d_{G_5}(\{u, v_2\}) = 1$. - If $v_1 = v_0$ and $v_2 \in V_5'$, we have $d_{G_5}(\{u, v_0\}) \ge 1$. - If $v_1, v_2 \in V_5'$, we have $d_{G_5}(\{u, v_0\}) = 1$. Hence, we have $\delta_2(G_5) = 1$. Let G_u be the link graph of u. As G_u is a star, we can not find 4 vertices p, q, s, t where $\{u, p, q\}$ and $\{u, s, t\}$ form a linear 2-path P_2 covering u. Construction 6. Let V_6 be a vertex set. Fix three vertices u, a, b in V_6 , let V'_6 be $V_6 \setminus \{u, a, b\}$. Let $E_6 = \{u, a, b\} \cup \{u, a\} \vee \binom{V'_6}{1} \cup \{u, b\} \vee \binom{V'_6}{1} \cup \binom{V_6 \setminus \{u\}}{3}$. Let $G_6 = (V_6, E_6)$ be a 3-graph. **Observation 6.** G_6 is a 3-graph with $\delta_2(G_6) = 2$ and there is no S_3 with the center u covering u. *Proof.* Considering any two vertices $v_1, v_2 \in V_6$, we have: - If $v_1 = u$ and $v_2 = a$, we have $d_{G_6}(\{u, a\}) \ge 2$. - If $v_1 = u$ and $v_2 = b$, we have $d_{G_6}(\{u, b\}) \ge 2$. - If $v_1 = u$ and $v_2 \in V'_6$, we have $d_{G_6}(\{u, v_2\}) = 2$. - If $v_1 \in V_6 \setminus \{u\}$ and $v_2 \in V_6 \setminus \{u\}$, we have $d_{G_6}(\{v_1, v_2\}) \geq 2$. Hence, we have $\delta_2(G_6) = 2$. Now we only need to prove there is no S_3 with the center u. Let G_u be the link graph of u. Then we find G_u is the book graph which has no 3-matching. Hence there is no S_3 with the center u. #### 3.1.2 The proof of Theorem 3 As $c_2(n, P_2) \geq 0$, we only need to prove $c_2(n, P_2)$ could not be larger than 0. Suppose to the contrary that there is a 3-graph G with $\delta_2(G) \geq 1$ and a vertex $u \in V(G)$ that is not covered by P_2 . Let v_1 be a vertex different from u in G. As $d(\{u, v_1\}) \geq 1$, there is a vertex v_2 making $\{u, v_1, v_2\}$ being an edge in G. Consider another vertex v_3 in G, as $d(\{u, v_3\}) \geq 1$ and there is no P_2 containing u, we have $N_G(\{u, v_3\}) \subseteq \{v_1, v_2\}$. If $d(\{u, v_3\}) > 1$, we have $N_G(\{u, v_3\}) = \{v_1, v_2\}$. Let v_4 be a vertex in $V(G) \setminus \{u, v_1, v_2, v_3\}$. As $d(\{v_1, v_4\}) \geq 1$ and there is no P_2 containing u, we have $N_G(\{v_1, v_4\}) \subseteq \{u, v_2, v_3\}$. If $u \in N_G(\{v_1, v_4\})$, then we find a P_2 with the edge set $\{\{u, v_2, v_3\}, \{u, v_1, v_4\}\}$ containing u, a contradiction. If $v_2 \in N_G(\{v_1, v_4\})$, then we find a P_2 with the edge set $\{\{u, v_2, v_3\}, \{v_1, v_2, v_4\}\}$ containing u, a contradiction. If $v_3 \in N_G(\{v_1, v_4\})$, then we find a P_2 with the edge set $\{\{u, v_2, v_3\}, \{v_1, v_3, v_4\}\}$ containing u, a contradiction. As $N_G(\{v_1, v_4\}) \neq \emptyset$, we have a contradiction with $N_G(\{v_1, v_4\}) \subseteq \{u, v_2, v_3\}$. If $d(\{u, v_3\}) = 1$, without loss of generality, let $N_G(\{u, v_3\}) = \{v_1\}$. Let v_5 be a vertex in $V(G) \setminus \{u, v_1, v_2, v_3\}$. As $d(\{v_3, v_5\}) \ge 1$ and there is no P_2 containing u, we have $N_G(\{v_3, v_5\}) \subseteq \{u, v_1, v_2\}$. If $u \in N_G(\{v_3, v_5\})$, then we find a P_2 with the edge set $\{\{u, v_3, v_5\}, \{u, v_1, v_2\}\}$ containing u, a contradiction. If $v_1 \in N_G(\{v_3, v_5\})$, then we find a P_2 with the edge set $\{\{u, v_1, v_2\}, \{v_1, v_3, v_5\}\}$ containing u, a contradiction. If $v_2 \in N_G(\{v_3, v_5\})$, then we find a P_2 with the edge set $\{\{u, v_1, v_3\}, \{v_2, v_3, v_5\}\}$ containing u, a contradiction. As $N_G(\{v_3, v_5\}) \neq \emptyset$, we have a contradiction with $N_G(\{v_3, v_5\}) \subseteq \{u, v_1, v_2\}$. In conclusion, we have $c_2(n, P_2) = 0$. #### 3.1.3 The proof of Theorem 4 The lower bound of $c_2(n, P_2)$ can be directly get from Observation 4. Therefore, we only need to prove $c_2(n, T) \leq 3$ when $n \geq 8$. Suppose to the contrary that there is a 3-graph G with $\delta_1(G) \geq 4$ and a vertex $u \in V(G)$ that is not covered by P_2 . Let G_u be the link graph of u. As there is no P_2 covering u, there is no subgraph G' with the vertex set $\{a,b,c,d\}$ and the edge set $\{\{a,b\},\{c,d\}\}$ in G_u . Otherwise, we can find a P_2 with the edge set $\{\{a,b,u\},\{c,d,u\}\}$ covering u. Cause $\delta_1(G) \geq 4$, we have there are at least 4 edges in G_u . Therefore, there must be a star S with the vertex set $\{v_1,v_2,v_3\}$ and the edge set $\{\{v_1,v_2\},\{v_2,v_3\}\}$ in G_u . We claim that $N_G(\{v_1\}) \subseteq \{uv_2,uv_3,v_2v_3\}$. Otherwise, if there are two vertices x,y in $V(G) \setminus \{v_1,v_2,v_3\}$ making $\{xy\} \in N_G(\{v_1\})$, then we find a P_2 with the edge set $\{\{u,v_1,v_2\},\{v_1,x,y\}\}$ covering u, a contradiction. If there is a vertex s in $V(G) \setminus \{v_1,v_2,v_3\}$ making $\{su\} \in N_G(\{v_1\})$, then we find a P_2 with the edge set $\{\{u,v_1,s\},\{u,v_2,v_3\}\}$ covering u, a contradiction. If there is a vertex t in $V(G) \setminus \{v_1,v_2,v_3\}$ making $\{tv_2\} \in N_G(\{v_1\})$, then we find a P_2 with the edge set $\{\{t,v_1,v_2\},\{u,v_2,v_3\}\}$ covering u, a contradiction. If there is a vertex q in $V(G) \setminus \{v_1,v_2,v_3\}$ making $\{qv_3\} \in N_G(\{v_1\})$, then we find a P_2 with the edge set $\{\{q,v_1,v_3\},\{u,v_1,v_2\}\}$ covering u, a contradiction. Therefore, we have $N_G(\{v_1\}) \subseteq \{uv_2,uv_3,v_2v_3\}$. However, that contradicts $\delta_1(G) \geq 4$. In conclusion, we have $c_1(n, P_2) = 3$ when $n \ge 8$. #### 3.1.4 The proof of Theorem 5 Suppose to the contrary that there is a 3-graph G with $\delta_2(G) \geq 2$ and a vertex u, such that there is no 4 vertices p, q, s, t making $\{u, p, q\}$ and $\{u, s, t\}$ forming a linear 2-path P_2 covering u. Let G_u be the link graph of u. As $\delta_2(G) \geq 2$, we have $\delta(G_u) \geq 2$. Since there is no 4 vertices p, q, s, t such that $\{u, p, q\}$ and $\{u, s, t\}$ form a linear 2-path P_2 covering u, G_u has no 2-matching. We claim that G_u has only one component. Otherwise, as $\delta(G_u) \geq 2$, there is a 2-matching in G_u . As $|V(G_u)| = n - 1$ and $n \ge 5$, we have G_u must be a star. However, the leaves in G_u only have degree 1, a contradiction with $\delta(G_u) \ge 2$. Hence, if G is an n-vertex 3-graph satisfying that $n \geq 5$ and $\delta_2(G) \geq 2$, then for any vertex $u \in V(G)$, we can find 4 vertices p, q, s, t such that $\{u, p, q\}$ and $\{u, s, t\}$ form a linear 2-path P_2 covering u. Furthermore, by Observation 5, we have the inequality in Theorem 5 is sharp. #### 3.1.5 The proof of Theorem 6 For a positive integer t, the book graph B_t is the graph obtained by the amalgamation of t triangles along the same edge. Let B_t^- be the graph obtained by deleting the common edge from the book graph B_t . Before we prove Theorem 6, we explore the structure of graphs without some specific matchings and obtain the following result. **Theorem 11.** Let G be an n-vertex simple graph with $n \geq 7$. If G has no 3-matching and $\delta(G) \geq 2$, then G be the book graph B_{n-2} or the graph B_{n-2}^- . Proof of Theorem 11. Consider the components of G. If G has more than 2 components, as $\delta(G) \geq 2$, every component has no isolated vertices. Hence we can choose one edge in each component and then we can find at least three vertex-disjoint edges, a contradiction with G has no 3-matching. If G has 2 components, let them be G_1, G_2 . As $\delta(G) \geq 2$, every component has no isolated vertices. We can choose one edge in G_1 . As there is no 3-matching in G, there is no 2-matching in G_2 . Hence G_2 must be a 3-cycle or a star. If G_2 is a star, then the leaves of G_2 only have degree 1, a contradiction with $\delta(G) \geq 2$. If G_2 be a 3-cycle, as $n \geq 7$, G_1 has at least 4 vertices. And G_1 must be a star because G_1 also can not have 2-matching. Hence the leaves of G_1 only have degree 1, a contradiction with $\delta(G) \geq 2$. Now we only need to consider the case that G is a connected graph. We claim that G must have a cycle. Otherwise, let P be the longest path in G with endpoints u, v. As $\delta(G) \geq 2$, u must have at least two neighbors. Since P is the longest path, the neighbors of u must in V(P), which makes a cycle in G, a contradiction. Now let C be the longest cycle in G. Consider the length of C. • If the length of C is more than 5, then there exists a 3-matching in G, a contradiction with G has no 3-matching. - If the longest cycle C is a 5-cycle, let the vertex set V(C) be $\{v_1, v_2, v_3, v_4, v_5\}$ and the edge set E(C) be $\{\{v_1v_2\}, \{v_2v_3\}, \{v_3v_4\}, \{v_4v_5\}, \{v_5v_1\}\}$. As G is a connected n-vertex graph and $n \geq 7$, there is at least one vertex in V(C) sending at least one edge to $V(G) \setminus
V(C)$. Without loss of generality, let v_1 send one edge to $v_6 \in V(G) \setminus V(C)$. Then we find a 3-matching $\{\{v_1v_6\}, \{v_2v_3\}, \{v_4v_5\}\}$, a contradiction. - If the longest cycle C is a 3-cycle, let the vertex set V(C) be $\{v_1, v_2, v_3\}$ and the edge set E(C) be $\{\{v_1v_2\}, \{v_2v_3\}, \{v_3v_1\}\}\$. As G is connected, there must be some vertices in $\{v_1, v_2, v_3\}$ sending edges into $V(G) \setminus \{v_1, v_2, v_3\}$. Without loss of generality, let v_1 adjacent to $v_4 \in V(G) \setminus \{v_1, v_2, v_3\}$. As $\delta(G) \geq 2$, we have v_4 has at least 2 neighbors. If v_4 is adjacent to v_2 or v_3 , then there is a 4-cycle in G, a contradiction with the longest cycle is a 3-cycle. Hence v_4 has a neighbor in $V(G) \setminus \{v_1, v_2, v_3, v_4\}$, let it be v_5 . Since $d(v_5) \geq 2$, v_5 has at least one neighbor other than v_4 . If v_5 has a neighbor in $\{v_2, v_3\}$, then there is a 4-cycle in G, a contradiction with the longest cycle is 3-cycle. If v_5 has a neighbor in $V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, let it be v_6 , then there is a 3-matching $\{\{v_2v_3\}, \{v_1v_4\}, \{v_5v_6\}\}\$ in G, a contradiction with G has no 3-matching. If v_1 is a neighbor of v_5 , then there must be some vertices in $\{v_1, v_2, v_3, v_4\}$ sending edges into $V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$ since G is connected. If v_1 is adjacent to $v_7 \in V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, then there is a 3-matching $\{v_1v_7, v_2v_3, v_4v_5\}$, a contradiction. If there is a vertex in $\{v_2, v_3, v_4\}$ adjacent to $v_8 \in V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, let v_2 be adjacent to v_8 , then there is a 3-matching $\{\{v_2v_8\}, \{v_1v_3\}, \{v_4v_5\}\},$ a contradiction. Hence, the longest cycle C must be a 4-cycle. Let the vertex set V(C) be $\{v_1, v_2, v_3, v_4\}$ and the edge set E(C) be $\{\{v_1v_2\}, \{v_2v_3\}, \{v_3v_4\}, \{v_4v_1\}\}$. As G is connected, there must be some vertices in $\{v_1, v_2, v_3, v_4\}$ sending edges into $V(G) \setminus \{v_1, v_2, v_3, v_4\}$. Without loss of generality, let v_5 be such a vertex that is adjacent to v_1 . Since $\delta(G) \geq 2$, v_5 has at at least one neighbor other than v_1 . If v_5 has a neighbor in $\{v_2, v_4\}$, then there is a 5 cycle, a contradiction with the longest cycle is a 4-cycle. If v_5 has a neighbor in $V(G) \setminus \{v_1, v_2, v_3, v_4\}$, let v_5 be adjacent to $v_6 \in V(G) \setminus \{v_1, v_2, v_3, v_4\}$. Then there is a 3-matching $\{\{v_1v_2\}, \{v_3v_4\}, \{v_5v_6\}\}$ in G, a contradiction. Hence $N_G(\{v_5\}) \subseteq \{v_1, v_3\}$. As $d(\{v_5\}) \geq 2$, we have $N_G(\{v_5\}) = \{v_1, v_3\}$. As G is connected, there must be some vertices in $\{v_1, v_2, v_3, v_4, v_5\}$ sending edges into $V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$. If there are some vertices in $\{v_2, v_4, v_5\}$ sending edges into $V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, without loss of generality, let the vertex v_2 be adjacent to $v_6 \in V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$. Then we find a 3-matching $\{\{v_1v_4\}, \{v_3v_5\}, \{v_2v_6\}\}\}$ in G, a contradiction. Hence v_1 or v_3 must send edges into $V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$. Let M be the vertex set satisfying that every vertex in M is adjacent to v_1 or v_3 . We claim that for every vertex $a \in M$ we have $N_G(\{a\}) \subseteq \{v_1, v_3\}$. Otherwise, if a is adjacent to v_1 and there is a vertex $b \in V(G) \setminus \{v_1, v_2, v_3, v_4, v_5, a\}$ such that $\{ab\}$ is an edge in G, then we will find a 3-matching $\{\{ab\}, \{v_1v_2\}, \{v_3v_4\}\}$ in G, a contradiction. As $\delta(G) \geq 2$, we have $N_G(\{a\}) = \{v_1, v_3\}$. Actually, we have $M = V(G) \setminus \{v_1, v_2, v_3, v_4, v_5\}$. Otherwise there is a contradiction with the fact that G is connected. Now consider the adjacency of v_2 and v_4 . If $\{v_2v_4\}$ is an edge in G, then we will find a 5-cycle with the edge set $\{\{v_2v_1\}, \{v_1v_5\}, \{v_5v_3\}, \{v_3v_4\}, \{v_4v_2\}\}\}$ in G, a contradiction with the fact that the longest cycle is a 4-cycle in G. Hence v_2 and v_4 are not adjacent. Considering the adjacency of v_1 and v_3 , if $\{v_1v_3\}$ is an edge in G, then G is the book graph B_{n-2} . If $\{v_1v_3\}$ is not an edge in G, then G is the graph B_{n-2}^- . In conclusion, if G has no 3-matching and $\delta(G) \geq 2$, then G is the book graph B_{n-2} or the graph B_{n-2}^- . Now we prove Theorem 6. Proof of Theorem 6. Suppose to the contrary that there is an n-vertex 3-graph H with $\delta_2(H) \geq 2$ and a vertex u that is not covered by a S_3 . Let G_u be the link graph of u. As $\delta_2(H) \geq 2$ and there is no S_3 covering u, then $\delta(G_u) \geq 2$ and there is no 3-matching in G_u . By Theorem 11, we have G_u is the book graph B_{n-3} or the graph B_{n-3}^- . Let A be the set of vertices with degree 2 in $V(B_{n-3}^-)$. And let b_1 and b_2 be the remained two vertices in $V(B_{n-3}^-) \setminus A$. As $\delta_2(H) \geq 2$, we have $d_H(\{b_1,b_2\}) \geq 2$ and $\{b_1,b_2\}$ has at least two co-neighbors. Even if $\{b_1b_2u\}$ is an edge in H, there still must be at least one co-neighbor of $\{b_1b_2\}$ in A. Without loss of generality, let $a_0 \in A$ and $\{b_1b_2a_0\}$ be an edge in H. Consider the vertex set $A \setminus \{a_0\}$. Let a_1, a_2 and a_3 be three different vertices in $A \setminus \{a_0\}$. If $\{a_1a_2\}$ has a co-neighbor b_1 or b_2 , then we will find a S_3 with the edge set $\{\{b_1b_2a_0\}, \{b_1a_1a_2\}, \{b_1ua_3\}\}$ or $\{\{b_1b_2a_0\}, \{b_2a_1a_2\}, \{b_2ua_3\}\}$ covering u, a contradiction. Hence $N_H(\{a_1,a_2\}) \subseteq A$. Consider the induced graph $H[A \setminus \{a_0\}]$, as $\delta_2(H) \geq 2$ we have $\delta_2(H[A \setminus \{a_0\}]) \geq 1$. By Theorem 3, $H[A \setminus \{a_0\}]$ has a P_2 covering. Then there must be a P_2 in $H[A \setminus \{a_0\}]$. Without loss of generality, let P_2 with the vertex set $\{a_1,a_2,a_3,a_3,a_5\}$ and the edge set $\{\{a_1a_2a_3\}, \{a_1a_4a_5\}\}$ be a linear 2-path in $H[A \setminus \{a_0\}]$. As a result, we find a S_3 with the edge set $\{\{a_1a_2a_3\}, \{a_1a_4a_5\}, \{a_1b_1u\}\}$ covering u, a contradiction. In conclusion, if H is an n-vertex 3-graph satisfying that $n \geq 7$ and $\delta_2(H) \geq 2$, then for any vertex $u \in V(H)$ there is a 3-star S_3 covering u. #### 3.1.6 The proof of Theorem 7 Before we prove Theorem 7, we first prove a useful theorem as follows. **Theorem 12.** Let G be a simple graph and δ be the minimum degree of G with $\delta \geq 2$. Then G contains a cycle of length at least $\delta + 1$. *Proof.* Let P be the longest path in G with endpoints x and y. Then $N_G(x) \subseteq V(P)$. As $d(x) \geq \delta$, there is a cycle of length $\delta + 1$. Proof of Theorem 7. Suppose to the contrary that there is an n-vertex 3-graph H with $\delta_2(H) \geq 3$ and a vertex $u \in V(H)$ such that there is no S_3 with center u covering it. Let H_u be the link graph of u. Then we have $\delta(H_u) \geq 3$ and there is no 3-matching in H_u . We claim that H_u must be a connected graph. Otherwise, if H_u has more than two components, then as $\delta(H_u) \geq 3$ we have there is no isolated vertices. Then selecting one edge in every component generates a 3-matching in H_u , a contradiction. If G_u has two components, then we claim there must be at least one component containing a 2-matching. Otherwise, as $\delta(H_u) \geq 3$ we have the two components can not be 3-cycles. As the two components have no 2-matching, the two components must be two stars, a contradiction with $\delta(H_u) \geq 3$. Hence selecting a 2-matching in such a component and an edge in another component will generate a 3-matching in H_u , a contradiction. Therefore, H_u must be a connected graph. Also, we have the following claim. Claim 1. The longest cycle in H_u is a 4-cycle. *Proof.* As $\delta(H_u) \geq 3$, there is a cycle with length at least 4 in H_u by Theorem 12. We only need to prove there is no cycle with length more than 4 in H_u . Firstly, there is no cycle with length more than 5. Otherwise, such cycle will generate a 3-matching in H_u , a contradiction. Secondly, there is no 5-cycle in H_u . Suppose to the contrary that there is a 5-cycle in H_u with the vertex set $\{v_1, v_2, v_3, v_4, v_5\}$ and the edge set $\{\{v_1v_2\}, \{v_2v_3\}, \{v_3v_4\}, \{v_4v_5\}, \{v_5v_1\}\}$. As H_u is connected, then there must be a vertex in $\{v_1, v_2, v_3, v_4, v_5\}$ send one edge to $V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$. Without loss of generality, let v_1 be adjacent to $v_6 \in V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$. As a result, there is a 3-matching with the edge set $\{\{v_1v_6\}, \{v_2v_3\}, \{v_4v_5\}\}$ in H_u , a contradiction. Let C_4 be a 4-cycle in H_u with the vertex set $\{v_1, v_2, v_3, v_4\}$ and the edge set $\{\{v_1v_2\}, \{v_2v_3\}, \{v_3v_4\}, \{v_4v_1\}\}\}$. As H_u is connected, then there must be a vertex in $\{v_1, v_2, v_3, v_4\}$ sending one edge to $V(H_u) \setminus \{v_1, v_2, v_3, v_4\}$. Without loss of generality, let v_1 be adjacent to $v_5 \in V(H_u) \setminus \{v_1, v_2, v_3, v_4\}$. We find v_5 can not have a neighbor in $V(H_u) \setminus \{v_1, v_2, v_3, v_4\}$. Otherwise, let v_6 be a neighbor in $V(H_u) \setminus \{v_1, v_2, v_3, v_4\}$. Then we will find a 3-matching with the edge set $\{\{v_1v_2\}, \{v_3v_4\}, \{v_5v_6\}\}$ in H_u , a contradiction. As $\delta(H_u) \geq 3$, we have $N_{H_u}(v_5) \subset \{v_1, v_2, v_3, v_4\}$. If $\delta(H_u)=4$, then we have $N_{H_u}(v_5)=\{v_1,v_2,v_3,v_4\}$. As H_u is connected, there must be a vertex in $\{v_1,v_2,v_3,v_4,v_5\}$ sending edges to $V(H_u)\setminus\{v_1,v_2,v_3,v_4,v_5\}$. Without loss of
generality, let v_1 be adjacent to $v_6\in V(H_u)\setminus\{v_1,v_2,v_3,v_4,v_5\}$. Then we find there is a 3-matching with the edge set $\{\{v_1v_6\},\{v_2v_3\},\{v_4v_5\}\}$ in H_u , a contradiction. If $\delta(H_u) = 3$, then we have v_5 has two neighbors in $\{v_2, v_3, v_4\}$. We first consider $N_{H_u}(v_5) = \{v_1, v_2, v_3\}$. As H_u is connected, there must be a vertex in $\{v_1, v_2, v_3, v_4\}$ sending edges to $V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$. If v_1 is adjacent to $v_6 \in V(H_u) \setminus$ $\{v_1, v_2, v_3, v_4, v_5\}$, then we will find a 3-matching with the edge set $\{\{v_1v_6\}, \{v_2v_5\}, \{v_3v_5\}, \{v_3v$ $\{v_4\}$ in H_u , a contradiction. If v_2 is adjacent to $v_7 \in V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, then we will find a 3-matching with the edge set $\{\{v_1v_5\},\{v_2v_7\},\{v_3v_4\}\}$ in H_u , a contradiction. If v_3 is adjacent to $v_8 \in V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, then we will find a 3-matching with the edge set $\{\{v_1v_4\},\{v_2v_5\},\{v_3v_8\}\}$ in H_u , a contradiction. If v_4 is adjacent to $v_9 \in V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, then we will find a 3-matching with the edge set $\{\{v_1v_5\}, \{v_2v_3\}, \{v_4v_9\}\}\}$ in H_u , a contradiction. Next we consider the case $N_{H_u}(v_5) = \{v_1, v_2, v_4\}$ and $N_{H_u}(v_5) = \{v_1, v_3, v_4\}$. By symmetry, we only need to consider $N_{H_u}(v_5) = \{v_1, v_2, v_4\}$. As H_u is connected, there must be a vertex in $\{v_1, v_2, v_3, v_4\}$ sending one edge to $V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$. If v_1 is adjacent to $v_6 \in V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, then we will find a 3-matching with the edge set $\{\{v_1v_6\}, \{v_2v_5\}, \{v_3v_4\}\}$ in H_u , a contradiction. If v_2 is adjacent to $v_7 \in V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, then we will find a 3-matching with the edge set $\{\{v_1v_5\},\{v_2v_7\},\{v_3v_4\}\}\$ in H_u , a contradiction. If v_3 is adjacent to $v_8\in V(H_u)\setminus$ $\{v_1, v_2, v_3, v_4, v_5\}$, then we will find a 3-matching with the edge set $\{\{v_1v_4\}, \{v_2v_5\}, \{v_3v_5\}, \{v_3v$ $\{v_8\}$ in H_u , a contradiction. If v_4 is adjacent to $v_9 \in V(H_u) \setminus \{v_1, v_2, v_3, v_4, v_5\}$, then we will find a 3-matching with the edge set $\{\{v_1v_5\}, \{v_2v_3\}, \{v_4v_9\}\}\}$ in H_u , a contradiction. In conclusion, if H is an n-vertex 3-graph with $n \geq 7$ and $\delta_2(H) \geq 3$, then for any vertex $u \in V(H)$ we can find a S_3 with the center u. Besides, by observation 6, we have the bound in Theorem 7 is sharp. #### 3.1.7 The proof of Proposition 1 First we introduce a result about k-matching in extremal graph theory due to Erdős and Gallai [8] as follows. **Theorem 13.** [8] Let G be an n-vertex graph. If G has no k-matching, then $e(G) \le \max\{\binom{2k-1}{2}, \binom{n}{2} - \binom{n-k+1}{2}\}$. Let k be an integer with $k \geq 3$. Then we prove Proposition 1. Proof of (i) in Proposition 1. Let H be an n-vertex 3-graph satisfying that $n \geq 2k+1$ and $\delta_2(H) > \max\{\frac{4k^2-6k+2}{n-1}, k-2-\frac{k^2-nk}{n-1}\}$. Let u be a vertex in V(H) and G_u be the link graph of u. As $\delta_2(H) > \max\{\frac{4k^2-6k+2}{n-1}, k-2-\frac{k^2-nk}{n-1}\}$, we have $\delta(G_u) > \max\{\frac{4k^2-6k+2}{n-1}, k-2-\frac{k^2-nk}{n-1}\}$. By handshaking theorem, we have: $$e(G_u) = \frac{1}{2} \sum_{x \in V(G_u)} d_{G_u}(\{x\})$$ $$\geq \frac{1}{2} (n-1) \cdot \delta(G_u)$$ $$> \max\{\binom{2k-1}{2}, \binom{n}{2} - \binom{n-k+1}{2}\}$$ Then by Theorem 13, we have there is a k-matching in G_u , which means there is a k-star S_k with the center u in H. Hence, if H is an n-vertex 3-graph satisfying that $n \geq 2k+1$ and $\delta_2(H) > \max\{\frac{4k^2-6k+2}{n-1}, k-2-\frac{k^2-nk}{n-1}\}$, then for any vertex $u \in V(H)$ there is a 3-star S_3 covering u, where the center of S_3 is u. As a direct corollary, we have $c_2(n, S_k) \leq \max\{\frac{4k^2-6k+2}{n-1}, k-2-\frac{k^2-nk}{n-1}\}$, which ends our proof. Proof of (ii) in Proposition 1. Let H be an n-vertex 3-graph satisfying that $n \geq 2k+1$ and $\delta_1(H) > \max\{\binom{2k-1}{2}, \binom{n-1}{2} - \binom{n-k}{2}\}$. Let u be a vertex in V(H) and G_u be the link graph of u. As $\delta_1(H) > \max\{\binom{2k-1}{2}, \binom{n-1}{2} - \binom{n-k}{2}\}$, we have $e(H_u) > \max\{\binom{2k-1}{2}, \binom{n-1}{2} - \binom{n-k}{2}\}$. By Theorem 13, we have there is a k-matching in H_u , which means there is a S_k covering u. As a direct corollary, we have $c_1(n, S_k) \leq \max\{\binom{2k-1}{2}, \binom{n-1}{2} - \binom{n-k}{2}\}$, which ends our proof. ## 3.2 Path covering #### 3.2.1 Construction Construction 7. Let V_7 be a vertex set. Fix $u \in V_7$, let $V' = V_7 \setminus \{u\}$ and $E_7 = \{u\} \vee \binom{V'}{2}$. Let $G_7 = (V_7, E_7)$ be a 3-graph. **Observation 7.** G_7 is a 3-graph with $\delta_2(G_7) = 1$ and $\delta_1(G_7) = n - 2$. There is no P_3 covering u. *Proof.* Considering any two vertices $v_1, v_2 \in V_7$, we have: - If $v_1 = u$ and $v_2 \in V'$, then $d_{G_7}(\{u, v_2\}) \ge 1$. - If $v_1 \in V'$ and $v_2 \in V'$, then $d_{G_7}(\{v_1, v_2\}) = 1$. Considering any vertex $v_0 \in V_7$, we have: - If $v_0 = u$, then $d_{G_7}(\{u\}) = \binom{n-1}{2}$. - If $v_0 \in V'$, then $d_{G_7}(\{v_0\}) = n 2$. Hence $\delta_2(G_7) = 1$ and $\delta_1(G_7) = n - 2$. Meanwhile, as all edges in G_7 intersect in u, it follows that there is no linear 3-path P_3 covering u. **Construction 8.** For $k \geq 4$, let V_8 be a vertex set with size more than 2k + 1. Let A be a (k-2)-subset of V_8 and B be the remain vertex set. Let G_8 be the complete bipartite 3-graph with vertex set V_8 and edge set $E_8 = {A \choose 2} \vee {B \choose 1} \cup {A \choose 1} \vee {B \choose 2}$. **Observation 8.** For $k \geq 4$, we have $\delta_2(G_8) = k - 3$ and G_8 has no P_k covering. *Proof.* Considering any two vertices $v_1, v_2 \in V_8$, we have: - If $v_1 \in A$ and $v_2 \in B$, then $d_{G_8}(\{v_1, v_2\}) = n 2$. As $n \geq 2k + 1$, we have $d_{G_8}(\{v_1, v_2\}) \geq 2k 1$. - If v_1 and v_2 are vertices in A, then $d_{G_8}(\{v_1, v_2\}) = n k + 2$. As $n \ge 2k + 1$, we have $d_{G_8}(\{v_1, v_2\}) \ge k + 3$. - If v_1 and v_2 are vertices in B, then $d_{G_8}(\{v_1, v_2\}) = k 3$. Hence we have $\delta_2(G_8) = k - 3$. Next we prove that G_8 has no P_k -covering. Let P_l the longest linear path in G_8 . If l = k, then let the vertex set of P_l be $\{v_0, v_1, v_2, ..., v_{2l-1}, v_{2l}\}$ and the edge set of P_l be $\{\{v_0v_1v_2\}, \{v_2v_3v_4\}, ..., \{v_{2l-2}v_{2l-1}v_{2l}\}\}$. We denote the vertex set $\{v_2, v_4, ..., v_{2l-2}\}$ by A' and the vertex set $\{v_0, v_1, ..., v_{2l-1}, v_{2l}\}$ by B'. Then $P_l = (A', B')$ is a bipartite 3-graph. As l = k, we have |A| < |A'| and |A| < |B'|. Therefore, P_l cannot be a subgraph of G_8 , a contradiction with the hypothesis. Hence l < k and G_8 has no P_k covering. **Construction 9.** Let k be an integer with $k \geq 3$. Let V_9 be an n-vertex set with $n \geq 4k$ and E_9 be a 3-element set. Let A be a 2k-vertex subset of V_9 and B be the remain vertex set $V \setminus A$. Let $E_9 = \binom{A}{3} \cup \binom{B}{3}$. Let $G_9 = (V_9, E_9)$ be a 3-graph. Actually, we have $G_9 = K_{2k}^3 \cup K_{n-2k}^3$. **Observation 9.** G_9 is a 3-graph with $\delta_1(G_9) = {2k-1 \choose 2}$ and G_9 has no P_k -covering. *Proof.* As |A| = 2k, there is no P_k in the induced graph G[A]. And A and B are disconnected, so there is no P_k covering the vertices in A. Now we prove that $\delta_1(G_9) = {2k-1 \choose 2}$. Let v be a vertex in $V(G_9)$. If $v \in A$, then $$d_{G_9}(\{v\}) = {2k-1 \choose 2}.$$ If $v \in B$, as $n \ge 4k$ we have $$d_{G_9}(\{v\}) = \binom{n-2k}{2} \ge \binom{2k-1}{2}.$$ Therefore, we have $\delta_1(G_9) = {2k-1 \choose 2}$. #### 3.2.2 The proof of Theorem 8 The lower bound of $c_2(n, P_3)$ is a direct corollary of Observation 7. Therefore, it is sufficient to show that every 3-graph H on n vertices with $\delta_2(H) \geq 2$ has a P_3 -covering. Suppose to the contrary that there is a 3-graph H on n vertices with $\delta_2(H) \geq 2$ and a vertex $u \in V(H)$ that is not contained in a copy of P_3 . As $\delta_2(H) \geq 2$, by Theorem 5 we have for every vertex $v_0 \in V(H)$ there is a P_2 with the center v_0 covering it. Let P_2 be such a linear 2-path in H with the vertex set $\{u, v_1, v_2, v_3, v_4\}$ and the edge set $\{\{uv_1v_2\}, \{uv_3v_4\}\}$. We denote $V(H) \setminus \{u, v_1, v_2, v_3, v_4\}$ by A. Let v_5 and v_6 be any two vertices in A. Then any vertex in $\{v_1, v_2, v_3, v_4\}$ can not be the co-neighbor of $\{v_5, v_6\}$. Otherwise, without loss of generality let v_4 be a co-neighbor of $\{v_5, v_6\}$. We find there is a linear 3-path P_3 with the edge set $\{\{v_1v_2u\}, \{uv_3v_4\}, \{v_4v_5v_6\}\}$ covering u, a contradiction. Hence we have $N_H(\{v_5v_6\}) \subseteq A \cup \{u\}$. As $\delta_2(H) \ge 2$, there is at least one co-neighbor in A. Let $v_7 \in A$ be a co-neighbor of $\{v_5v_6\}$. Consider the co-neighbors of $\{v_4v_5\}$. As v_4 is not the co-neighbor of $\{v_5, v_6\}$, we have $N_H(\{v_4v_5\}) \subseteq \{v_1, v_2, v_3, u\}$. If v_1 or v_2 is a co-neighbor of $\{v_4v_5\}$, then we assume without loss of generality that v_1 is a co-neighbor of $\{v_4v_5\}$. Then we find a linear 3-path P_3 with the edge set $\{\{uv_1v_2\}, \{v_1v_4v_5\}, \{v_5v_6v_7\}\}$ covering u, a contradiction. If neither v_1 nor v_2 is a co-neighbor of $\{v_4v_5\}$, then we have $N_H(\{v_4v_5\}) \subseteq \{v_3, u\}$. By Theorem 5 we have $\{v_1, v_2, v_4\}$ must be an edge in H. Otherwise, there is no P_2 with the center u. Hence we find a linear 3-path P_3 with the edge set $\{\{v_1v_2v_4\}, \{v_4uv_5\}, \{v_5v_6v_7\}\}$
covering u, a contradiction. Therefore, we have $c_2(n, P_3) = 1$ for $n \geq 8$. ### 3.2.3 The proof of Theorem 9 We first prove a lemma before we prove Theorem 9. **Lemma 1.** If G is an n-vertex 3-graph satisfying that $n \geq 5$ and $\delta_1(G) \geq n-1$, then for any vertex $u \in V(G)$, we can find 4 vertices p, q, s, t where $\{u, p, q\}$ and $\{u, s, t\}$ form a linear 2-path P_2 covering u. Proof of the Lemma 1. Let u be any vertex in V(G). Let G_u be the link graph of u. As $\delta_1(G) \geq n-1$, we have: $$e(G_x) \ge n - 1 > \max\{\binom{4-1}{2}, \binom{n-1}{2} - \binom{n-2}{2}\}.$$ By Theorem 13, there is a 2 matching in G_u . We assume without loss of generality that $\{p,q\}$ and $\{s,t\}$ form a 2-matching in G_u . Then we find a P_2 with the edge set $\{\{u,p,q\},\{u,s,t\}\}$ covering u, which ends our proof. Now we begin to prove Theorem 9. Proof of Theorem 9. The lower bound of $c_1(n, P_3)$ is a direct corollary of Observation 7. Therefore, it is sufficient to show that every 3-graph H on n vertices with $n \geq 9$ and $\delta_1(H) \geq n + 5$ has a P_3 -covering. Suppose to the contrary that there is a 3-graph H on n vertices with $n \geq 9$ and $\delta_1(H) \geq n+5$ and a vertex $u \in V(H)$ that is not contained in a copy of P_3 . As $\delta_1(H) \geq n-1$, by Lemma 1 we have there is a P_2 with the center u covering it. Let P_2 be such a linear 2-path in H with the vertex set $\{u, v_1, v_2, v_3, v_4\}$ and the edge set $\{\{uv_1v_2\}, \{uv_3v_4\}\}$. We denote the vertex set $V(H) \setminus \{u, v_1, v_2, v_3, v_4\}$ by A. Then any two vertices in A has no co-neighbor in $\{v_1, v_2, v_3, v_4\}$. Otherwise, without loss of generality we assume v_1 is a co-neighbor of $\{v_5v_6\}$ with $v_5, v_6 \in A$. Then there is a P_3 with the edge set $\{\{v_5v_6v_1\}, \{v_1v_2u\}, \{uv_3v_4\}\}$ covering u, a contradiction. If there is a vertex v in $\{v_1, v_2, v_3, v_4\}$ such that $\{uv\}$ has a co-neighbor in A, then we assume without loss of generality that $v_5 \in A$ is the co-neighbor of $\{uv_1\}$. Let H_{v_5} be the link graph of v_5 . As $\delta_1(H) \geq n+5$, we have $e(H_{v_5}) \geq n+5$. In H_{v_5} , there are at most n-6 edges between A and $\{u, v_1, v_2, v_3, v_4\}$. And $\{u, v_1, v_2, v_3, v_4\}$ can span at most $\binom{5}{2}$ edges. Hence there is at least one edge induced in A. Let it be $\{v_6v_7\}$. Then we find a P_3 with the edge set $\{\{uv_1v_5\}, \{uv_3v_4\}, \{v_5v_6v_7\}\}$ covering u, a contradiction. If there is no vertex v in $\{v_1, v_2, v_3, v_4\}$ such that $\{uv\}$ has a co-neighbor in A, then there must exist $v_8, v_9 \in A$ such that $\{uv_8v_9\}$ is an edge in H as $\delta_1(H) \geq n+5 > \binom{4}{2}$. Let H_{v_1} be the link graph of v_1 . If there is a vertex a in A such that $\{a, v_3\}$ or $\{a, v_4\}$ is an edge in H_{v_1} , then we assume without loss of generality that $\{a, v_4\}$ is an edge in H_{v_1} . Considering the position of a in A, we have: - If a is a different vertex form v_8 and v_9 in A, then we find a P_3 with the edge set $\{\{av_1v_4\}, \{v_4v_3u\}, \{uv_8v_9\}\}$ covering u, a contradiction. - If a is v_8 or v_9 , then we can assume a is v_8 . Let H_{v_8} be the link graph of v_8 . As $\delta_1(H) \geq n+5$, we have $e(H_{v_8}) \geq n+5$. In H_{v_8} , there are at most n-6 edges between A and $\{u, v_1, v_2, v_3, v_4\}$. And $\{u, v_1, v_2, v_3, v_4\}$ can span at most $\binom{5}{2}$ edges. Hence, in H_{v_8} , there is at least one edge induced in A. Let it be $\{v_{10}v_{11}\}$. Then we find a P_3 with the edge set $\{\{uv_1v_2\}, \{uv_8v_9\}, \{v_8v_{10}v_{11}\}\}$ covering u, a contradiction. If there is no vertex a in A such that $\{a, v_3\}$ or $\{a, v_4\}$ is an edge in H_{v_1} , then $\{v_1v_3v_4\}$ must be an edge in H as there must be at least one P_2 with the center v_1 . Then we find a P_3 with the edge set $\{\{v_8v_9u\}, \{uv_2v_1\}, \{v_1v_3v_4\}\}$ covering u, a contradiction. In conclusion, we have $n-2 \le c_2(n, P_3) \le n+4$ for $n \ge 9$. #### 3.2.4 The proof of Theorem 10 Let H be an n-vertex 3-graph with $n \geq 8$ and $\delta_2(H) \geq 3$. Let u be any vertex in V(H). By Theorem 7, we have there is a S_3 with the center u covering u. Let $V(S_3)$ be $\{u, v_1, v_2, v_3, v_4, v_5, v_6\}$ and $E(S_3)$ be $\{uv_1v_2\}, \{uv_3v_4\}, \{uv_5v_6\}\}$. Let v_7 be a vertex in $V(H) \setminus \{u, v_1, v_2, v_3, v_4, v_5, v_6\}$. As $\delta_2(H) \geq 3$, we have $d_H(\{v_6v_7\}) \geq 3$. Hence there is at least one co-neighbor of $\{v_6v_7\}$ in $V(H) \setminus \{u, v_5, v_6, v_7\}$. If there is a co-neighbor of $\{v_6v_7\}$ in $V(H) \setminus \{u, v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$, let $v_8 \in V(H) \setminus \{u, v_1, v_2, v_3, v_4, v_5, v_6, v_7\}$ be a co-neighbor of $\{v_6v_7\}$. Then we find a P_3 with the edge set $\{\{uv_1v_2\}, \{uv_5v_6\}, \{v_6v_7v_8\}\}$ covering u. If there is a co-neighbor of $\{v_6v_7\}$ in $\{v_1, v_2, v_3, v_4\}$, without loss of generality let v_1 be a co-neighbor of $\{v_6v_7\}$. Then we find a P_3 with the edge set $\{\{uv_3v_4\}, \{uv_5v_6\}, \{v_6v_7v_1\}\}$ covering u. Hence, If H is an n-vertex 3-graph with $n \geq 8$ and $\delta_2(H) \geq 3$, then for any vertex $u \in V(H)$ we can find a P_3 with the vertex set $\{u, v_1, v_2, v_3, v_4, v_5, v_6\}$ and the edge set $\{\{uv_1v_2\}, \{uv_3v_4\}, \{v_4v_5v_6\}\}$ covering u. #### 3.2.5 The proof of Proposition 2 We use the same method of Lemma 2.1 in [1] to prove (i) in Proposition 2. Proof of (i) in Proposition 2. The lower bound of $c_2(n, P_k)$ is a direct corollary of Observation 8. Therefore, it is sufficient to show that $c_2(n, P_k) \leq 2k - 2$. We prove that if H is an n-vertex 3-graph with $n \geq 2k + 1$ and $\delta_2(H) \geq 2k - 1$, then for any vertex we can find a linear k-path P_k covering it. For $k \geq 4$, we order the vertices of P_k as $x_0, x_1, x_2, ..., x_{2k-1}, x_{2k}$ such that the edge set of P_k is $\{\{x_0x_1x_2\}, \{x_3x_4x_5\}, ..., \{x_{2k}x_{2k-1}x_{2k}\}\}$. Let H be an n-vertex 3-graph with $n \geq 2k+1$ and $\delta_2(H) \geq 2k-1$. Fix a vertex v_0 in V(H). We can find a copy of P_k by mapping x_0 to v_0, x_1 to any other vertex v_1 in V(H), and x_2 to any $v_2 \in N_H(\{v_0v_1\})$. Suppose that $x_0, ..., x_{i-1}$ has been embedded to $v_0, ..., v_{i-1}$. Considering the embedding of x_i for $i \leq 2k$, if i is odd, then we embedded x_i to any vertex $v_i \in V(H) \setminus \{v_0, v_1, ..., v_{i-1}\}$. If i is even, as $\delta_2(H) \geq 2k-1$, $\{v_{i-2}v_{i-1}\}$ has at least 2k-1 co-neighbors. Hence $\{v_{i-2}v_{i-1}\}$ has at least one co-neighbor in $V(H) \setminus \{v_0, v_1, ..., v_{i-1}\}$, let it be v_i . Then we embed x_i to v_i . Continuing this process, we obtain a copy of P_k when we embed the 2k+1 vertices. Hence, if H is an n-vertex 3-graph with $n \geq 2k + 1$ and $\delta_2(H) \geq 2k - 1$, then for any vertex we can find a linear k-path P_k covering it. As a direct corollary, we have $c_2(n, P_k) \leq 2k - 2$ for $n \geq 2k + 1$ and $k \geq 4$. Proof of (ii) in Proposition 2. The lower bound of $c_1(n, P_k)$ is a direct corollary of Observation 7 and Observation 9. Therefore, it is sufficient to show that $c_1(n, P_k) \leq \binom{n-1}{2} - \binom{n-2k+1}{2}$. We prove that if H is an n-vertex 3-graph with $n \geq 4k$ and $\delta_1(H) \geq \binom{n-1}{2} - \binom{n-2k+1}{2} + 1$, then for any vertex we can find a linear k-path P_k covering it. For any vertex u, suppose we have found a linear i-path P_i with $1 \le i \le k-1$ containing u. Now we prove that we can extend this P_i to P_{i+1} . We assume that the vertex set of P_i is $\{v_1, ..., v_{2i+1}\}$ and the edge set of P_i is $\{\{v_1v_2v_3\}, \{v_3v_4v_5\}, ..., \{v_{2i-1}v_{2i}v_{2i+1}\}\}$. As $\delta_1(H) \ge {n-1 \choose 2} - {n-2k+1 \choose 2} + 1$, we have $d_H(\{v_{2i+1}\}) \ge {n-1 \choose 2} - {n-2k+1 \choose 2} + 1$. Hence there must be two vertices v_{2i+2} and v_{2i+3} in $V(H) \setminus \{v_1, ..., v_{2i+1}\}$ such that $\{v_{2i+1}v_{2i+2}v_{2i+3}\}$ is an edge in H. Then we find a linear (i+1)-path P_{i+1} by adding $\{v_{2i+1}v_{2i+2}v_{2i+3}\}$ to P_i . When i=k-1, we can get a linear k-path P_k covering u. Hence we have for $n \ge 4k$ and $k \ge 3$, $\max\{n-2, \binom{2k-1}{2}\} \le c_1(n, P_k) \le \binom{n-1}{2} - \binom{n-2k+1}{2}$. # 4 Acknowledgments The authors appreciate Professor Yongtang Shi, for his tutoring and helpful discussion. Ran Gu was partially supported by National Natural Science Foundation of China (No. 11701143). Shuaichao Wang was partially supported by the National Natural Science Foundation of China (No. 12161141006), the Natural Science Foundation of Tianjin (No. 20JCJQJC00090) and the Fundamental Research Funds for the Central Universities, Nankai University. ## References - [1] V. Falgas-Ravry and Y. Zhao, Codegree thresholds for covering 3-uniform hypergraphs, SIAM Journal on Discrete Math., 30(4)(2016),1899-1917. - [2] V. Falgas-Ravry, K. Markström and Y. Zhao, Triangle-degrees in graphs and tetrahedron coverings in 3-graphs. Combinatorics, Probability and Computing, 30(2)(2021), 175-199. - [3] L. Yu, X. Hou, Y. Ma and B. Liu, Exact minimum codegree thresholds for K_4^- covering and K_5^- -covering, The Electronic Journal of Combinatorics, 27(3)(2020), P3.22. - [4] Y. Tang, Y. Ma and X. Hou, The degree and codegree threshold for linear tringle covering in 3-graphs, arxiv:2212.03718. - [5] A. Freschi and A. T. Dirac-type results for tilings and coverings in ordered graphs. Forum of Mathematics, Sigma, Vol.10, Issue. 2022. - [6] Z. Füredi and Y. Zhao, Shadows of 3-Uniform Hypergraphs under a Minimum Degree Condition. SIAM Journal on Discrete Mathematics, 36(4)(2022), 2453-3057. - [7] C. Zhang, Matching and tilings in hypergraphs, PhD thesis, Georgia State University, 2016. - [8] P.
Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Mathematica Hungarica, 10(3)(1959), 337-356.