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Abstract

Let Fy, = Ky V P;_1 be the fan graph on k vertices. A graph is said to be Fi-free
if it does not contain a copy of Fj as a subgraph. Yu, Li and Peng [Discrete Math.
348 (2025) 114391] conjectured that for k > 2 and m sufficiently large, if G is an
Fypyq-free or Foyyo-free graph, then A\(G) < E=1tviam—k+1 V42m_’“2+1
and only if G = K, v (2 — #51) K. Recently, Li, Zhao and Zou [arXiv:2409.15918]
showed that the conjecture above holds for k£ > 3. The only left case is for k = 2,

and the equality holds if

which corresponds to F5 or Fg. Since the case of Fy was solved by Zhang and Wang
in [Discrete Math. 347 (2024) 114171] and Yu, Li and Peng in [Discrete Math. 348
(2025) 114391]. So, one needs only to deal with the case of Fs. In this paper, we
solve the only left case by determining the maximum spectral radius of Fg-free graphs

with size m > 88, and the corresponding extremal graph is characterized.
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1 Introduction

Throughout this paper, we consider only simple and finite undirected graphs. Let G
be a simple graph with vertex set V(G) and edge set E(G). We use |G| and e(G) to
denote the order and the size of G, respectively. Let A(G) be the adjacency matrix of
a graph G. Since A(G) is real symmetric, its eigenvalues are real. Hence they can be
ordered as A\ (G) > --- > Xg|(G) where A\;(G) is called the spectral radius of G and
also denoted by A(G). The neighborhood of a vertex u € V(G) is denoted by Ng(u). Let
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Nglu] = Ng(u)U{u}. The degree of a vertex u in G is denoted by dg(u). All the subscripts
defined here will be omitted if it is clear from the context. As usual, A(G) stands for the
maximum degree of G. For two subsets X, Y C V(G), we use e(X,Y") to denote the number
of all edges of G with one end vertex in X and the other in Y. Particularly, e(X, X) is
simplified by e(X). Denote G[X]| the subgraph of G induced by X.

Let K,,,C,, P, and K;,_; be the complete graph, cycle, path and star on n vertices,
respectively. Let K ,_1 + e be the graph obtained from K;,_; by adding one edge within
its independent set. An (a, b)-double star, denoted by D, , is the graph obtained by taking
an edge and joining one of its end vertices with a vertices and the other end vertex with b
vertices which are different from the a vertices. The join of two disjoint graphs G' and H,
denoted by G'V H, is obtained from G'U H by adding all possible edges between G and H.

For graph notation and concept undefined here, readers are referred to [1].

A graph is said to be F-free if it does not contain a subgraph isomorphic to F'. For a
graph F' and an integer m, let G(m, F') be the set of F-free graphs of size m without isolated
vertices. An interesting spectral Turan type problem asks what is the maximum spectral
radius of an F-free graph with given size m, which is also known as Brualdi-Hoffman-Turan
type problem [2]. These extremal spectral graph problems have attracted wide attention
recently, see [5, 7, 8, 9, 10, 11, 12, 13, 14, 17, 18, 21, 22].

Let Fy, = K1V P;_1 be the fan graph on k vertices. Note that Fj3 is a triangle and F} is
a book on 4 vertices. Nosal [16] showed that A(G) < y/m for any F3-free graph G with size
m. In 2021, Nikiforov [15] showed that if G is a graph with m edges and A(G) > y/m, then
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G is a complete bipartite graph with possibly some isolated vertices. From this, we obtain

the maximum number of triangles with a common edge in G is greater than m, unless
that the complete bipartite graphs attain the maximum spectral radius when the graphs
are Fy-free. For k = 5, Zhang and Wang [23] and Yu et al. [20] respectively considered the
extremal problem on spectral radius for Fs-free graphs with odd size m. Later, Chen and
Yuan [3] addressed Brualdi-Hoffman-Turdn type problem on Fs-free graphs for both odd
m and even m. In [20], Yu et al. proposed the following conjecture on spectral radius for

Fy-free graphs with given size m.

Conjecture 1.1 Let k > 2 be fixed and m be sufficiently large. If G is an Fopyq-free or
Fopio-free graph with m edges, then

<l€—1—|—\/4m—k2+1’

AMG) < 5

and equality holds if and only if G = K, V (% — %) K.

Recently, Li et al. [6] gave a unified approach to resolve Conjecture 1.1 for k > 3. In order



to resolve Conjecture 1.1 completely, one only need to consider Fg-free graphs. Motivated

by it, we will show that Conjecture 1.1 holds for Fg-free graphs.

Theorem 1.2 Let G be an Fg-free graph with m > 88 edges. Then \(G) < —1+\/§mi_3 and
equality holds if and only if G = Ky V mT_lKl.

2 Preliminaries

In this section, we present some preliminary results, which play an important role in

the subsequent sections.

Lemma 2.1 [12, 16] If G is a Ks-free graph with size m, then \(G) < v/m and equality
holds if and only if G is a complete bipartite graph.

For a connected graph G, by Perron-Frobenius theorem [4], we know that there exists

a positive unit eigenvector corresponding to A(G), which is called the Perron vector of G.

Lemma 2.2 [19] Let u and v be two vertices of the connected graph G. Suppose vy, va, .. ., Vs
(1 <s<dg(v)) are some vertices of Ng(v) \ Ng(u) and x is the Perron vector of G with
Ty corresponding to the vertex w € V(G). Let G' = G —{vvy;|1 < i < s}+{uv|1 <i < s}
If x, > x,, then \(G') > A\(G).

A cut vertex of a graph is a vertex whose deletion increases the number of components.
A graph is called 2-connected, if it is a connected graph without cut vertices. Let x be the
Perron vector of G with coordinate x,, corresponding to the vertex v € V(G) and u* be a

vertex satisfying x,» = max{xz,|u € V(G)}, which is said to be an extremal vertex.

Lemma 2.3 [21] Let G be a graph in G(m, F) with the mazimum spectral radius. If F is
a 2-connected graph and u* is an extremal vertex of G, then G is connected and d(u) > 2

for any w € V(G) \ N[u*].
The following result is mentioned in [6] which is easy to get.

Lemma 2.4 [6] Let G be a graph in G(m, Fy,). Then for all u € V(G), the graph G[N(u)]
18 Pj_1-free.



3 Proof of Theorem 1.2

Let G* be a graph in G(m, Fg) with the maximum spectral radius. By Lemma 2.3, we
have G* is connected. Let A = A(G*) and x be the Perron vector of G* with coordinate
x, corresponding to the vertex v € V(G*). Assume that u* is an extremal vertex of G*.
Set U = Ng«(u*) and W = V(G*) \ Ng«[u*]. Let Uy be the isolated vertices of the induced
subgraph G*[U], and U, = U \ Uy be the vertices of U with degree at least one in G*[U].
Let Wy = Nw(V(H)) for any subset H of G*[U] and Wy = {w € W|dw (w) = 0}.

Note that A (Kz \Y, mT_lKl) = IJ”/W and Ky V =5 m-1 |, is Fy-free, we have

1 | 4+ aAm =
)\(G*)ZA<K2vm2 KQ:%M.

Hence A2 — A > m — 1. Furthermore, since m > 88, we can get A = \(G*) > 2. Since

5
AMG*)x = A(G™)x, we have
ALy = Z Ty + Z Ty

uelU4 uelUo

Furthermore, x is also an eigenvector of A?(G*) corresponding to A?(G*). Tt follows that

A2z, = U@y + Z dy(uw)z, + Z dy(w)x

uelUy weW

Therefore,

(N = N = [Ulzys + Y (dy(u) = Dy + > dy(w)az, — Y .

uelUy weW uclp

Since N2 = A>m —1=|U|+e(U,) +e(U W) +e(W) — 1, we have

Z(dU —1xu+ZdU ((U+)+6(UW +e(W —i—Z——l)

u

uelUy weW uelUy
That is,
> (dy(w) > e(Uy) 4 e(U, W) + e(W Z——1 (1)
u€elUy weW u€lp Lur

Lemma 3.1 e(U) > 4.

Proof. Since \(G*) > Hvim=3 V;m_g > v/m + 3 when m > 88, we have

m+3 <\ =|U|+ Z dU(u)x

ueUy




<|UI+ ) dy(u) + > dy(w)

ueUy weWw

= |U| + 2¢(U) + e(U,W).

Note that m = |U| 4+ e(U) + e(U, W) + e(W). It follows that e(U) > e(W) + 3 > 3. Hence
e(U) > 4. O
By Lemma 3.1, there exists at least one non-trivial component in G*[U]. Let H be the

set of all non-trivial components in G*[U]. For each non-trivial component H of H, we
denote y(H) 1= cy(m)(du(u) — 1) — e(H). Clearly, by (1) we have

(W) <Y yH) + Y dU(w)% —eUW) =Y

HeH weW uelUy Lur
Ly,
< _
<> H) =) pat (2)
HeH ueUg

with equality if and only if A2 — A =m — 1 and x,, = 2+ for any w € W with dy(w) > 1.
Since G* is Fg-free, by Lemma 2.4, we know that G*[U] does not contain a path with

5 vertices. Similarly to the proof of Lemma 4.5 in [9], we have the following result.

Lemma 3.2 Let G* be an Fg-free graph with w € V(G*) and H be a component of
G*[N(u)]. Then H is one of the following cases:

(i) a star Ky, forr >0, where K is an isolated vertex;
(i1) a double star D,y for a,b>1;
(111) K, + e where r > 2 and Ky 5+ e is a triangle;

(iv) Cy, Ky — e or Ky.

Next we provide some upper bounds on 7(H) where H is a non-trivial component of

G*[U].
Lemma 3.3 Let H be a non-trivial component of G*[U], then

(—1, if H= Ky, or D, where r,a,b> 1,
0, if H= Ky, +e wherer > 2 or Cy,

1, if H= Ky — e,
(2, if H = K.




Proof. Since = <1 and dy(u) > 1 for any u € V(H), we have

YH) = Y (du(w) = 1) —e(H) < Y (dulu) = 1) — e(H) = e(H) — |H].

Toyy*
ueV (H) ueV(H)
If H = Ky, or D,p, then e(H) — |H| = —1. When H = K;, + e or Cy, we have
e(H)—|H| =0. For H= K, —e, we get e(H) — |H| = 1. If H = K,, it follows that
e(H) — |H| = 2. Hence the lemma holds. O

In fact, we can give a tighter upper bound about ~(H).
Lemma 3.4 For every non-trivial component H in G*[U], we have y(H) < 0.

Proof. Suppose to the contrary that there exists at least one component H € H satisfying
v(H) > 0. Let H = {H € H: (H) > 0}. By Lemma 3.3, we know that H is K, or K, —e

for any component H € H. We have the following claims.
Claim 3.5 ZueV(H) Ty > Sxye for any H € H.

Proof. Suppose that ZueV(HO) Ty < g:cu for some Hy € H. Then

Ty
Y(Ho) = Y (duy(u) — 1)—— — e(Ho)
u€V (Hp) “
Ty
< (A(Ho)—1) ) == —e(Hy)
weV(Hy) T
<2 Z 5
UEV(HO
<0,
which contradicts Hy € H. Therefore, ZueV(H) Ty > g:vu* for any H € H. O

Claim 3.6 The number |H| of members in H satisfying |H| < IN+ &

Proof. Suppose \7:2] > 2\ + . For every H € H, we have

A Z Ty = Z Ty + Z T, + Z xw

ueV (H) uweV (H) vENg (u) weENwy (u

=4z, + Z Z Ty + Z Z T

u€V (H) vENg (u) u€V (H) weNw (u)

<dwe+ Y dyg(u)z, + e(H, W),
ueV (H)



=Adxy +y(H)xy + e(H)xy + Z Ty + e(H, W )xy
ueV (H)

Note that H is K4 or K4 — e, by Lemma 3.3, we have v(H) < 2. Furthermore, e(H) < 6.

Therefore,

(A=1) Z Ty <Ay + Y(H)xys + e(H)zy + e(H, W),
ueV (H)

<Az + 2wy + 6z + e(H, W)xy
= 12z, + e(H, W)x,-.

By Claim 3.5, we obtain

e(H, W)z > (A—=1) Z Ty — 122,
ueV (H)
5(A—1
> %mu* — 12$u*
5A — 29
= Loy* -
2

It follows that e(H, W) > 222 Since

m2]U|+Ze(H)+ZeHW

HcH HcH
. /BA—29\ ~
>4|7-[!+5|’H|+< - )l?—[l
5A— 11\ ~
( . )\w
(A1t (2, T
= 2 57710
9 77

— 2—— _
A 20)\ 20

Since A > %2, we have m > A* — 2X — IT > A\ — X 4+ 1, which contradicts A > 1H2m=2,
Therefore, |’H| <EX+ 5 O

Claim 3.7 If Wy # 0, then z, < 2)‘ 3%* for any w € Wj.

Proof. Suppose to the contrary that there exists wy € W, such that z,, > 2’;—;3% For
every H € H, if wy ¢ Ng-(u) for every u € V(H), then Azy, < Ay — > uev () Tu-

It follows that Z evm) Tu < Alyr — ALy < ALyr — Lxu = %xu Hence y(H) <
2> evan 2= —e(H) <315 <0, contradicting H € H. Next, we consider that there

exists H’ G Hsatlsf ing wg € Ng«(u) for some u € V(H'). Let V(H') = {uy, us, us, us} and
ymng
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urugusuguy is a cycle in H'. Without loss of generality, assume wg € Ny (uq). If H = Ky,
then Ny(wo) NV (H') = {uy}. Otherwise, G*[u*, uy, us, us, ug, wy| contains a copy of Fg.
Therefore, A\x,,, < Az, — Zj:z x,,. It follows that Z?:Q Ty < Ayr — Ay, < %xu Thus
YH) <23 evi 2 —e(H') < 24230 ;: —6 < 2+3—6 < 0, contradicting H' € H.
When H' = K, — e, if dgr(u1) = 2, then ug, ug ¢ Ng-(wp). Otherwise, G* contains a copy
of Fs. S0 Ay < Axys — (Tyy + Ty ). That s, zy, + 2y, < AZyx — Ay, < %mu Hence
YH) =142 224 28 4 9.2 5 <2+42.3 -5 =0, a contradiction. If dy(u;) = 3,
then us, u;, uy ¢ Nug* (woq)t By )\x:;o < Ayr — (Tyy + Ty + Ty, ), We ObtaIN Ty, + Tyy + Ty <
ALys — My < 32y Hence y(H') =2 7% + 22 2. 78 4 74 — 5 <345 -5<0, a

contradiction. Therefore, x,, < 2’\ 3

o T for any w € Wo O
Now, we come back to prove Lemma 3.4. Choose a component H € H. Let V(H) =

{uy,us, us, us}. We proceed by distinguishing the following two cases.
Case 1. e(W) = 0.

If Wi = 0, then dg-(u) < 4 for every u € V(H). Therefore, Ax, = 37y To <
4x,+. That is, x, g ixu By dy(u) < 3 for every u € V(H) and e(H) > 5, we have
VH) <23 cvmy s —5<2-4 1 —5=32—5. Note that A > 2, then y(H) < 0, which
contradicts H € 7—[. Now we consider Wy 7é 0. If H= Ky, we have |Ng(w)NV(H)| =1 for
any w € Wy. Otherwise, G* contains a copy of Fg, a contradiction. Let x,, = max{x,|u €
V(H)}. It follows that Ny (w)NV (H) = {u;}. Otherwise, suppose Ng(wo) NV (H) = {ua}
for some wg € Wy. We get G' = G* — woug + wouy is Fg-free. According to x,, > x,
and Lemma 2.2, we get A(G') > A(G*), which contradicts the maximality of G*. Thus
Nw(u) = 0 for any uw € V(H) \ {u1}. That is, dg«(u) = 4 for every u € V(H) \ {u}.
So we obtain Az, < 4a,~ for every u € V(H) \ {u1}. Therefore, by A > 2, we have
Y(H) <2+6-3—6<0,a contradiction. If H = K, — e, suppose dg(u1) = dy(us) = 3
and x,, > Ty, If Ny (up) U Ny (ug) = 0, then dg(uy) = dG*(u2) = 4. It follows that
ATy, < 4ay fori=1,2. Theny(H) <237, o +ZUEV(H \urus} 7r —D < 4-442-5 <0,
a contradiction. If Ny (uq)UNy (ug) # 0, since G* is Fg-free, we have |Ng( )ﬂ{ul, ugt| =1
and |Ng(w)N(V(H)\{u1,u2})| = 0 for every w € Ny (u1)UNw (ug). Recall that x,, > x,,.
It follows that Ng(w) N {uy,us} = {u;}. Otherwise, there is a vertex wy € Ny (uz2). We
have G' = G* — wouy + wouy is Fg-free. According to Lemma 2.2, we get A(G') > A(G*),
which contradicts the maximality of G*. Thus Ny (uz) = . That is, dG’*(UQ) = 4. So
AZy, < 4xy+. Therefore, by A > 2, we get y(H) < 257 e D eV (H)\ fun u2} Tr—5<
2+2- % + 2 —5 < 0, a contradiction.

Case 2. 1 <e(W) < 3.

If Wy = 0, similarly to Case 1. Now we consider Wy # (. If H = K,, we have
|INg(w)NV (H)| = 1 for any w € Wy. Otherwise, G* contains a copy of Fg, a contradiction.




Let z,, = max{z,|u € V(H)}. It follows that Ngy(w)NV (H) = {u,} for any w € WyNW.
Otherwise, suppose Ny (wo) NV (H) = {u;} for some wy € Wy NWy and i € {2,3,4}. We
can get that G = G* — wou; + wouy is Fy-free. According to x,, > x,, and Lemma 2.2,
we get A(G') > A(G*), which contradicts the maximality of G*. By e(W) < 3, we have

W \ Wo| < 6. Tt follows that 37, > )Ty < 61, By

wENWH (uz

ATuy = Tyy + Tug + Ty + Tyr + Z’wENWH(UQ) L s

ALyy = Tyy + Luy + Tuy + Tur + ZwENwH(ug) L,

ALy = Tuy + Tuy + Ty + Tur + Duenyy, (ug) Tws
we obtain

4
(A= 2)(Tuy + Ty + Tyy) < 6y + Z Z Ty < 122

Therefore, by A > %, we have 3,y (du(u) — 1) 2= =237 24 <242 {2, <6 =
e(H).
If H= Ky—e, let dy(ug) = dg(ug) = 3. Then Ny (u1) N Ny (ug) N Ny (ug) = 0.

Hence Zi€{17274} ZWENWH(W) Lw = ZwEWOO(Uie{l,zA}NW(ui)) Tw + Zwe(uie{l,ZA}NW(ui))\WO L

_ (2A—3)e(H, W)
By Claim 3.7, we have EwGWoﬁ(Uie{l,u}Nw(ui)) x,, < R0

w e (Ui€{1’2’4}NW(ui)) \ Wy, we have Zwe(ui€{1,2,4}NW(ui))\WO T < ZWGWH\WO dW(w)xw <
2e(W)xyr < 6x4+. Since

Ty Since dy (w) > 1 for

ATy, = Tyy + Ty + Tyr + EwGNWH (up) T
Alyy = Tuy + Tug + Tuy + Tux + ZweNWH(uz) T

ATy, = Tuy + Tuy + Tug + Tux + ZwerH(u4) T,

we have

A($u1 + Ly + :Bu4) = 2(231“ + Ly + $U4) + 2$“3 + 31:“* + Z Z Lw-
i€{1,2,4} weNw, (uq)

That is,
5Ty + Yo w) T
Ty + Ty + Ty < E{Ii’ﬁ 5 =)
< Lxu (2)\ — 3)e(H, Wo)xu*.
A2 I —2)
Thus

Ty Ty + 2Ty + Tyy + 27y,

S (da(u) — 1) =

Lqy* Ty




Tyy + Tug + Tuy i Tyy + Ty + Ty

Ty Loy

11 (2\ = 3)e(H, W)
< .
e A R IS}

Since \ > £ , we have 3 +55 < 5. Hence

Ty (2A = 3)e(H, Wy)
ueg(:H)(dH(U) - 1)33“* <o 2A(A —2)
(2)\ — 3)e(H, W)

=02

Therefore, >, cy g (dr(u) — 1)“’"—“ < e(H)+ % for any H € 7—[ For any H €

H\ H, since v(H) < 0, we have > uevim(du(u) — 1) < e(H). By A > 2, we obtain

> (du(u)

uelUy
_QZZdH—L—+Z de—m—+Z%
HerueV (H HGH\H ueV(H) weWy weW\Wy
. (2X — 3)e(H, W) 2)‘ 3
) HXG;L ( (H) + 2M(A —2) ) " HEXH:\H wg‘/;/o ol " we%\:wo ol
<ol <2A 3) <UQ)WO> L@ 3;(;(@ Wo) 4 e, w\ )
+<2A 5 22A3)4Uﬁm)+aUJV\Ww
<e(Us dUW@+dUW\Wﬁ
<e(U ) e(U,W) +e(W) — 1,

a contradiction.
Case 3. e(IW) > 4.
If H= Ky, then Ny (u1) N Ny (u2) N Ny (ug) N Ny (ug) = 0. Otherwise, G* contains a

copy Of F6 Therefore Z’L 1 Z’LUENW )xw = ZWEWQHWH Lw + ZwEWH\WO Ly - By Clalm
3.7, we have Yy, Tw < wgcu Since dy (w) > 1 for w € Wy \ Wy, we have

ZwEVVH\VVO Lw S Z’UJGVVH\VV() dW( )xw S QG(W)Z‘U* Since

)
ATy, = Tuy + Tug + Tuy + Tur + ZweNWH(ul) T,

Alyy = Tuy + Tug + Tuy + Tux + ZwerH(uz) T
AIU@ = Ty, + Ly + am + Lyyx + ZwGNwH(us) L,

\)\xu4 = Ty + Ly + L + Ty + ZMENWH (ua) Loy
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we have

4
()‘ - 3)(xu1 + Tyy + Ty + xu4) =4z, + Z Z Ly -

=1 ’wENWH (us)

That is,
A + 30 ) T
:L‘u1 + xug + l‘u;; + IU4 - )1\ — 3ENWH( i)
4 (2X\ — 3)e(H, W) 2e(WV)
< * * * .
V5 W) B e e
Thus
2 f
S (i) — 1) 5 = 20 T ¥y ¥ )
Ly* Toy*
u€V (H)
Tuy + Tuy + Tug + Ty i Tyy + Ty + Ty + Ty
= aju* Iu*
4 (2X\ = 3)e(H,Wy)  2e(W)
<4
D S T s sy N—3
N = CUA NS CERIONNE = Ul
A—3 A-3 2A(\ — 3) A—3

By (2), Lemma 3.3 and Claim 3.6, we have e(W) < 2|H| +1 < 2\ + 22, This implies that

s, 225,
ﬁ + 2A_,\4—:(5W) 2?;_*&2;2. Since \ > %, we have % + 2A_/\4—:5)1/‘/) < 2. Hence
2, (2X\ — 3)e(H,Wy) | H—ge(W)
d —1 <6
> (duw) Vo <67 2A(\ — 3) A—3
ueV (H)
2\ — 3)e(H,W,) He(W
:e(H)+( Je(H, W)  5i=1e(W)

2A(A —3) A—3
If H= K, — e, similarly to Case 2, we have

OLy» + Zie{l,ZA} ZweNWH (u;) Tw

Tuy + Ty + Tuy < 2
5 (2X\ = 3)e(H, W) 2e(WV)
< R * * * o
A o W S
Thus
Ty Ty + 2T, + Ty + 22y,
> (du(u) —1)=" = - :
Ty Ty
ueV(H)

_ Ty £ Tuy + Ty T F Ty F T

Loyy* Loy*
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5, (A= 3)e(H. W) | 2e(W)

D T R SV ) N2
B 5 e(W) (2A = 3)e(H,Wy)  e(W)
_(3+>\—2+/\—2> AN —2) N2

By (2), Lemma 3.3 and Claim 3 6 we have e( ) <2H|+1< 2\ + 2. This implies that

= + GA(KVQ) < 54(’\;327). Since A > 2, we have 25 + e(W) < 2. Hence
Ty (2A = 3)e(H,Wy)  e(W)
d -1 )
2 (dn(u) o T T mmy . Tae
ueV(H)
(2\ = 3)e(H,Wy)  e(W)
pu— H .
“H)+ 30— N2
By A > 2, we get 55 < 15 - =3 Therefore, > vevim(du(u) — 1) < e(H) +
CA-3)e(HWo) | H=ye(W)

mo-3) T 255 for any H € H. FOI‘ any H € H\ 7—[, since y(H) < 0, we have
ZueV(H)(dH( u) — 1) < e(H). By A > 22, we obtain

D (dy(u + 2 dul

uelUy
—ZZdH —1—+Z > (dulu _1—+ZdU
HeH ueV(H) HeH\H ueV (H) weWo weW\Wo
2\ = 3)e(H,Wy) . Hqe(W) 2)\ 3
H
<Z(e( ) + Do T oAz )t S oe(H)+ Y dy(w)
HeH HeH\H weWo
+ > dy(w)
wGW\WO
22X = 3)e(U, Wy)  B3e(W) (2. 7 (2X — 3)e(U, Wo)
2N+ —
<)+ =503 =3 \5" 10 2\ el WA W)

2\ — 3 2)\—3 1 20 =3 (2 7
+( I\ )e(U,W())—i-e(U?W\W())—F)\—_?)'2)\_4'(g/\‘FE)e(W)

3
< €<U+> + €<U, W()) + €(U, W \ Wo) + Z—le(W)
<eUi)+e(UW)+eW)—1,
which contradicts (1). This completes the proof of Lemma 3.4. O
By (2) and Lemma 3.4, we know that e(W) < 1.
Lemma 3.8 For any H € H, we have H 2 Kj.

Proof. Suppose to the contrary that there exists a component Hy € H satisfying Hy = Kjy.

Let V(Hy) = {u1, us, us, ug }. We distinguish the following two cases to lead a contradiction,
respectively.
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Case 1. Wy, = 0.

In this case, it is easy to get x,, = Ty, = Tuy = Tu,- BY ATy, = Toy, + Ty + Toy + Tur,s
&Ly *

A=3"

we obtain x,, = By (2) and Lemma 3.4, we have

eW)< > A(H)+7(Ho)+1

HeH\{Ho}
§0+2(xU1+xU2+xU3 + Tu,) 641
T
8
< —— —5.
—A=3

Since A > 22, we get e(W) < 0, a contradiction.
Case 2. Wy, # 0.

Since G* does not contain a subgraph isomorphic to Fg, we have |Ny(w) NV (Hy)| =1
for every w € Wy,. Suppose x,, > Xy, > Ty, > T,,. Then Ny(w)NV(Hy) = {u} for
every w € Wy, NWy. Otherwise, assume Ny (wo) NV (Hy) = {w;} for some wy € Wy, N W,
and i € {2,3,4}. We can verify that G' = G* — wou; + wouy is Fg-free. By Lemma
2.2, we have A\(G') > A(G*), which contradicts the maximality of G*. Combining with
e(W) < 1, we have |[Wg, \ Wo| < 2. Hence >;, ZwENWH(ui) Ty < 2z By Az, <

A (7)) Ty + Ty —i—EweNWH (up) Tw for @ € {2,3,4}, we obtain S ATy, < S0 d(ug) T +
3Ty + ZE:Q ZwerH (us) Tw < 14z,+. Hence

eW)< > y(H)+~(Ho) +1

HeH\{Ho}
T
14

<2({1+—) -5
<2(1+3)

28
<—-3<0.
A

a contradiction. This completes the proof. U

Lemma 3.9 For any H € H, we have H 22 K4 — e.

Proof. Suppose to the contrary that H; is a component in ‘H such that H; = K, —e. Let
V(Hy) = {uq,ug, us, ug} with dy, (uz) = dg,(us) = 3. We discuss the following two cases
to lead a contradiction, respectively.

Case 1. Ny (u2) U Ny (ug) = 0.
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In this case, it is easy to get x,, = x,,. By A\vy, = x4y, + Ty, + Tu, + Ty, We obtain

Ty < ?i\xj’{ By (2) and Lemma 3.4, we have

(Wys S A(H)+y(H) +1

HeH\{H:}
§0+$u1+2$u2+$U3+2$U4_5+1
Lo
3
<244 — —4
<2+ 11
< 12 2
—A-1 ’

Note that A > %2, we have e(W) < 0, a contradiction.
Case 2. Nw(UQ) U Nw(U4) 7é @

If v(H;) < —1, then by (2) and Lemma 3.4, we know that e(WW) < 0, a contradiction.
So —1 < 7(H;) < 0. Since G* does not contain a copy of Fg, we have | Ny (w)N{ug, us}| =1
and |Ny(w) N {uy,us}| = 0 for any w € Ny (uz) U Nw(uyg). Suppose x,, > x,,. Then
Ny(w)NV(Hy) = {ug} for any w € (Ny (uz) U Ny (ug)) MWy, Otherwise, assume Ny (wp) N
V(Hy) = {u4} for some wy € (Nw(u2) U Nw(uyg)) N Wy. It is easy to find that G' =
G* — wouy + wouy is Fy-free. By Lemma 2.2, we have A\(G') > A(G*), contradicting the
maximality of G*. Hence Ny (uy) C Wy, \Wy. Note that e(W) < 1, we have | Ny (uq)| < 2.
By AZuy, = Tuy + Tuy + Tuy + Tur + 2y, () Tw < 6Zur, We have z,, < Sur

We first show that if Wy # (), then z,, < %xu* for any w € W,. Suppose that there
exists a vertex wy € Wy such that x,,, > %wu If wy € Ny (uz), then uy, us, uy ¢ Ny(wp).
Therefore, Az, < ATy — Ty — Tyg — Loy That 1S, Ty, + Tuy + Tuy < ATy — ATy < Tyr-
Hence y(H;) = x””“ff“ﬁzx"‘* —5<1+4+3—5=—1, a contradiction. If wy ¢ Ny (usg),
then by Ny (uy) C WHT \ Wy, we have ug,us ¢ Ny(wp). So Ay, < ATyr — Tyy — Ty
Thus @y, + Ty, < T4 It follows that v(H;) = x””“if“ﬁ%““ —5<2+4+2-5=-1,a

contradiction. Therefore, z,, < %xu for any w € W.

Since G* is Fg-free, we have Ny (ui) N Ny (ug) = 0. Then 37, ZweNWH (ug) T =

‘ A-1
ZwEWoﬁ(Uie{l,z}NW(ui)) Tw + Zwe(uie{l,Q}NW(ui))\WO Ty Since T, < X Lur for any w €

(A=1)e(H1,Wo)
WO? we haVe Zwewom(uie{l,Q}NW(ui)) < A

Ty =
(Uieq1,21 Nw (1)) \Wo, we have ZWE(U¢E{1,2}NW(’M1‘))\WO Ty < ZwEWHl\Wo dw (w)zy < 2e(W)z .
By

Zys. Since dy(w) > 1 for w €

ALy, = Tyy + Luy + Ty + ZwENWH (ug) T
1

)\l’ug = Ty, + Lyg + Ly + TLoy* + ZweNWHl (u2) Loy s
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we obtain A(Tu, 4 Tuy) = Tuy + Tuy + Ty + 280, + 200 + 0 That is,

wENwy (ui) Loy

2
Tug + 2Ty, + 2Ty + Y i Z’LUGNWHI (ui) Tw

Ty T Ty = N1
< Turt 2. 8% 4 og,. + QAT 4 9e(W)a,,
- A—1
(B Rz + ORI 4 2e(W)ays
)\ -1 '

Furthermore, by Lemma 3.4, we know that v(H) = >, cy g (du(u) — 1) —e(H) <0
for any H € H. That is, 3,y (du(u) — 1)~ < e(H) for any H € H \ {H1}. Thus

> (dy(u) — 1) W+ZdU )

Loy*
ueUy weW
D> Z (d(u
HeH\{H1}ueV(H ueV(H1 weWy weW\Wy
3+ 12 4 Olelinito) ng o) 4 2e(W) 6 (\— De(U, W)
< Y e(H)+ - +2+2- 5+ X +e(U, W\ W)
HeH\{H1}
3+ 12 6 e(H;,Wy) (A—1e(U W) 2e(W)
— H 2+2-— ’ ’ :
> e )+A_1+ 2 St ;) + g+ eU WA W)
HeH\{H1}

12
Note that A > 2 it canﬁndthat%+2+2-§:%+2<4:6(H1)—1. Hence

> (du(u)

uclUy

< Y e(H)+ e(Hl) —1+e(U,Wy) +e(W) +e(U W\ W)
HeH\{H}

=e(Uy) —1+eUW)+eW),

which contradicts (1). This completes the proof. d
Lemma 3.10 ¢(W) = 0.

Proof. Suppose that e(W) # 0. Recall that e(W) < 1. Then e(WW) = 1. Combining
Lemma 3.4 and Inequality (2), we obtain 0 > >y v(H) = 3,cp, 37 Since x, > 0 for
any u € V(G*), we get Uy = () and y(H) = 0 for any H € H. Moreover, Ty = Ty for
w € W and dy(w) > 1. Let E(W) = {wyws}. By Lemma 2.3, we know that dy(w;) > 1
and dy(wy) > 1. So Xy, = Ty, = Ty~ Note that H is not empty. Choose a component
H € H. By Lemmas 3.2, 3.3, 3.8 and 3.9, we have H = K, +eor Cy. If H= K,, +e¢
with » > 2, then H contains a copy of triangle C5. Let V(C3) = {uy, ug, us}. It follows
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that w; is adjacent to at least two vertices of Cj for i € {1,2}. Otherwise, assume that
w; is adjacent to at most one vertex, without loss of generality, suppose u;. Then Az, <
Tapy + Alyr — Tyy — Tyy. Since y(H) = 0, we know that x,, = z, for i € {1,2,3}. So
Ay, < (A — 1)ay«, which contradicts z,, = z,+. Therefore, w; is adjacent to at least two
vertices of C5 for i € {1,2}. One can find that G* contains a subgraph isomorphic to Fg,
a contradiction. If H = (4, similarly, w; is adjacent to at least three vertices of C, for
i € {1,2}. One can verify that G* contains a copy of Fs, a contradiction. Hence e(WW') = 0.
O

Lemma 3.11 For any H € ‘H, we have H 22 Cj.

Proof. Suppose that G*[U] contains a component Hy € H satisfying Hy = Cy. If v(Hs) <
—1, combining Lemma 3.4 and (2), we have e(W) < 0, a contradiction. So —1 < v(Hs) < 0.

We proceed by distinguishing the following two cases.
Case 1. |Wg,| < 1.

For any u € V(Ha), we have dg-(u) < 4. Then Az, = 3,y To < 4xy-. That is,
2, < 2o Therefore, y(Hy) = Douevim) 3 —4 < £ — 4 < —1, a contradiction.

A Loy *

Case 2. |Wg,| > 2.

Let Hy = uquguzuguy. We first show the following two claims.
Claim 3.12 There is at most one vertex w in Wy, such that dg,(w) > 3.

Proof. Suppose to the contrary that there are two vertices w; and wsy in Wy, satis-
fying dg,(wy) > 3 and dg,(we) > 3. Then |Ng,(wi) N Ny, (we)| > 2. If |Np,(wy) N
Np,(wq)] > 3, without loss of generality, assume {uy,us,u3} C Npy,(wy) N Np,(ws),
then {us} V {wjuju*usws} is an Fg, a contradiction. If |Ng,(wi) N Np,(we)| = 2, let
Ny, (wi) N Ny, (we) = {u;,u;} with ¢ # j € {1,2,3,4}. If w; and u; are adjacent, with-
out loss of generality, assume {u;,u;} = {ui,us}. Since dp,(w;) > 3, we get that ug
or uy is a neighbor of w;. Suppose that us is a neighbor of wy. Because dg,(ws) > 3
and |Ng,(w1) N Ny, (w2)| = 2, we know that us is a neighbor of w,y. We can observe
that {u1} V {wiusu*ugws} is an Fy, a contradiction. If w; and u; are not adjacent, with-
out loss of generality, assume {u;,u;} = {uy,us}. Since dpy,(w;) > 3 for i € {1,2} and
| N, (w1) N N, (wq)| = 2, suppose that uy is a neighbor of w; and uy4 is a neighbor of ws.

We can find that {u;} V{wjusu*usws} is an Fg, a contradiction. The proof is complete. [

Claim 3.13 For any w € W satisfying dp,(w) < 2, we have x,, < %xu
Proof. Suppose that there exists a wg € W such that dp,(wy) < 2 and x,, > %xu

Since dp,(wg) < 2, there are at least two vertices, denoted by w; and u; with i # j €
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{1,2,3,4}, in V(H,) that are not neighbors of wy. Then Az, < Az — x,, — x,,. That is,
Tu; + Tuy < ATys — ATy, < Tys. Therefore, y(Ha) =3 cyyy 2= —4 <2+ 1 —4=-1,
which contradicts —1 < y(Hz) < 0. The proof is complete. O

Now we come back to show Lemma 3.11. By

¢

Ayy = Tyy + Tuy + Ty + z:weNWH2 (u1) Tws
)\xug = Tyy T Tyg + Ty + ZTUENWHQ (u2) Lo

)\xu3 = Ty, + Ly + Ty + ZweNWH2 (u3) Loy,

\)‘xm = Tyy + Tug + Ty + ZweNWH2 (ua) Lw,

we have (A —1)(y, + Ty + Ty + Tyy) < 8Ty + Z?:l >

4
8y, +Zi:1 ZwENWH (uy) Tw

Ty That is, (xy, + Ty, +

weNwy, (us)

Tyy+Ty,) <

Az +(e(Ha, W) =3)- 22 2y and Y- oy du(w) 22 < 4+ (e(Ha, W) —3)- 22 +e(U\ Ho, W).
Recall that (H) < 0. It follows that 3~y () (dr(u)—1) 7= < e(H) for any H € H\{H>}.
By A > 49 , we obtain

3 (du(u) - 1)5; n Z (1) 2

Xq*
ueUy w

- Y Ym0 Y Y aw)

HeH\{Hs} ueV (H) u€eV (Hz) Tur ew
81:“* + Ziil Z’wENWH (uq) Lw

< ) elH)+ PEr Y dow)

HeH\{H>} wew Lur
8 4+ (e(Hy, W) —3) - 24 A—1
< ¥ o(H) + o + (e 2>\—)1 )3 A+ (e(Ho W) = 3) - == +e(U\ Hy,
HeH\{H2}
- 4 — Sy - o
e(Us) tyeg Tttt Y AT 3 S +e(U \ Hy,
12
= e(Uy) + y—7 +e(H2, W) = 3+ e(U\ Hz, W)
<e(Uy)+e(UW)+eW) -1,
which contradicts (1). This completes the proof. d

Lemma 3.14 For any H € H, we have H 22 K, , + e where r > 2.

Proof. Suppose to the contrary that G*[U] contains a component Hs = K, + e for
some r > 2. Then Hjs contains a copy of triangle C3. Let V(C5) = {uy,us,us} with

dp,(u1) = dg,(uz) = 2. We proceed by considering the following two possible cases.

17
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Case 1. |Wg,| < 1.

Axul S -'L‘U,Q + l’u3 + Ly * + Ly*,

Ayy < Ty + Ty + Ty + Ty,

we get 7, < 22 and x,, < *%=. Therefore, y(H3) = T2+ 22 4 (r—1)2% — (r41) < $ -2,
Note that A > 2. It is easy to get v(Hz) < —1 and e(W) < 0, a contradiction.
Case 2. |Wg,| > 2.

We first show that de,(w) < 2 for any w € W. Otherwise, there exists a vertex
wy € W such that de, (wo) = 3. If » > 3, then G* contains a copy of Fg, a contradiction.
So r = 2. That is, H3 = C5. If there exists another vertex w, satisfying de,(wy) > 2,
without loss of generality, assume uy, ug € Ngg(w1). Then {u} V {wousu*ugw, } is an Fg,
a contradiction. Thus de,(w) < 1 for any w € W \ {wp}. Suppose x,, > Tu, > Ty,.
We have Ng,(w) = {u1} or 0 for any w € W \ {wp}. Otherwise, assume N¢,(w) = {u;}
where i € {2,3} for some wy € W\ {wp}, then G’ = G* — wu; + wuy is Fyg-free. By
Lemma 2.2, we know that A(G") > A\(G*), which contradicts the maximality of G*. Hence
Nw(ug) = Nw(us) = {wo}. It follows that Az, = @y, + Tuy + Ty + Ty, < 42, and
ALyy = Ty + Tyy + Ty + Ty, < 4x,». Equivalently, z,, < %wu* and xz,, < %xu*. By
A > 22, we obtain y(H;) = y8 Iw_3< 14 8 —3 < —1and e(W) <0, a contradiction.

=1 Lo *

Therefore, de, (w) < 2 for any w € W.

If there exists another non-trivial component H’, then H' = Ky, 4+ e or Ky, or Dy
where ' > 2 and p,a,b > 1. If H' = K, or D,;, by Lemma 3.3, we know (H') <
—1. Since de,(w) < 2 for any w € W and Lemma 3.10, we have Ng«(w) C Ne«(u*).
Furthermore, Az, = ZueNG*(w) Ty < ZueNG*(u*)% = Az,~. That is, x,, < x,+ for any
w € W. Therefore, -, oy dy(w)* < e(U,W). By the first inequality of (2), we have
eW) < XpenuVH) = Xpery 2 +1 < =1 =3y, 7= +1 <0, a contradiction. Next
we consider H' = K ,» + e with " > 2. Let Cf be a trlangle in Ky, + e with V(Cf%) =
{v1,v9,v3} and dpr(v1) = dgr(v2) = 2. Similarly, dg; (w) < 2 for any w € W. Now we have
Ty < %xu for any w € W. Otherwise, there is a vertex wy € W such that z,,, > ,\)\1%
Since de,(wo) < 2 and deg(wo) < 2, It follows that there are u; € V(C3) and v; € V(Cy)
which are not neighbors of wy for some 4, € {1,2,3}. Because e(W) = 0, we obtain

Ay < ATyr — Ty, —

7

Ty;. Equivalently, ., + z,; < AZy» — ATy, < Ty+. Thus

T
AWH) +AH) = 3 (i) - 1)1; Doy T o)
ueV (Hs) ur ur ur
Typ. T,
+ Z dH’ — 1 — : + —L — B(H/)
ueV (H') x“* Tur - Lur
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Ly, Ly, Ly, Ty,
S A e R TR T
u* Loy Loy Loy Loy
Ty, Ty
+ {L'vl + :L‘UQ + (7”/ o 1) m’l}g _ 7 + __7 _ (T, + 1)
Lyy* Lqy* Toyy* Loy* Loyy*
Ty
e () 2 (1)
Ly* Ly*

<r—(r+0)+r—-0C"+1)+1=-1

By (2) and Lemma 3.4, we find that e(W) < 3, v(H) — Zuerm +1<—-14+0+1=0,

a contradlctlon Therefore, x,, < )‘—a:u for any w € W. Furthermore, >y du(w )xw <
A=le(U, W). Since

ALy, = Tyy + Ty + Ty + ZweNW(ul) T,

ATuy = Ty + Tug + Tur T D e Ny (un) Twos

we have

2
AT + 3201 D e Ny () T

Ty + Tyy <

A—1
< 41’u* + %6([‘.’3, W)ZL'U*
- A—1
. 4{L’u* X €(H3,W).l’u*
Ca-1 A
By A > % we have
Z%(4—+Z@
uelUy weW
- T T DI ()
HeH\{H3} ueV(H ueV ( Hg) weW
4 (Hg, W) -1
< .
< ) dM+A—r+ =)+ S e(UW)
HeH\{H3}
4
<e(Uy)— (r+1)+r+e(U W)+ (r—1)
4
—6(U+)+6<U W)+m—2

<e(Us)+e(UW)+eW)—1,
which contradicts (1). Thus there is exactly one non-trivial component Hj

3.1, we know that r > 3.

By (2), we have 0 = e(W) < ")/(Hg) = 2 uetp 35 + 1. By Lemma 3.4, we get 0 < 0 —
D ety 2 sw-+1. That is, D ety 2 +u < 1. Since Az, = :Ij'ul+£IZ’U2+CIZ'U3+21}€NH3(U3)\{U1 s} Tot

. By Lemma
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> uct, Tus We have

g Ty = ANTyx — Ty — Tyy — Ty — E Ty

VENp, (uz)\{u1,uz} uwely

> (A= 1D)Tyr — Tyy — Ty — Ty
Therefore,

Alyy = Ty + Ty + Ty + Z T, + Z

’UENHB(ug)\{’u,l,ug} wENw(ug)
> Ty + Ty + Ty + (A= 1)y — Ty — Ty, + Z
wE Ny (u3)
= \Ty» — Tyy + Z
w€Nyy (u3)

It follows that x,, > /\Lﬂxu* and ZweNW(u3) Ty < (A+1)xy, — Ay < 2. For any w € W,
if w € Ny (us), then dpy,(w) = 1. Otherwise, recall that » > 3, there is an Fy in G*. So

ATy < Ty + Zuer Ty < 2xys. If w ¢ Ny (ug), then Moy < ANTyr — xug < ALy — /\qu* =
/\’\—jlxu*. That is, x,, < %H . Note that A > 2 we have z,, < /\qu* for any w € W.
By

ATy = Tuy + Tug T Tur + D e Ny (ug) Toos

ATuy = Tuy + Tug + Tur + D e Ny (un) Tws
we have

2
MZyy + Tyy) < 62 + Z Z

=1 we Ny (u;)

A
< 6aye + e(H : -
< 62y + e(Hs, W) )\+1x
Equivalently, z,, + z,, < %xu* + e(l;I;HW) . By A > 2 we have
xu
> (du(u)
U€U+ weW
= Z (dH3<
u€V (Hs) wew
6 G(Hg,W)
< -4 —1 7 -1 Uuw
<yt - DH 5 qew)
6
:X—f—e(Hg,W) >\+1€(U\H3,W)+(T—1)
< §+€(U,W)+(r—1)
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<r+e(U, W)
= e(Uy) + e(U, W) — 1,

which contradicts (1). This completes the proof. d

Proof of Theorem 1.2. By Lemmas 3.2, 3.8, 3.9, 3.11, and 3.14, we have that each
non-trivial component of G*[U] is K, or D,; where r,a,b > 1. By (2) and Lemma 3.3,
we obtain that the non-trivial component number of G*[U] is at most 1. If the non-trivial
component number of G*[U] is 0, then G* is bipartite. By Lemma 2.1, A < {/m < H‘/;mif?’,
a contradiction. Hence the non-trivial component number of G*[U] is 1. Let H be the

unique non-trivial component of G*[U]. Then H = K, or D,;. Since v(H) < —1 and
0=e(W)<y(H) = v, 2= + 1, we have y(H) = —1 and U = (). By (2), we also have

Ty = Ty for any w € W and dy(w) > 1.

If H= Dy, let V(Dgyp) = {ur, uz, urn, -+, Urg, Uot, - - -, Usgp } With Ny (ur) = {ug, ugg, - - -
and Ng(us) = {u1, ug1,- -+ ,u}. According to the definition of v(H) and v(H) = —1, we
have @, = @y, = Tys. I Wy = 0, then Az, = 2y + Ty + D opy Tuyy + 2221 Ty, =
2Ly + Y i Ty, + 22:1 Ty, aNd ATy, = Ty + Tur + Dty Ty, = 2Ty + Dty Tuy,- Re-
call that z,, = x,~. It follows that 22:1 Ty,; = 0. which contradicts z,, > 0 for any
u e V(G*) and b > 1. If [Wy| =1, let Wy = {w}. By Lemma 2.3, we know dy(w) > 2.
Therefore, x,, = x,+. Furthermore, Az, = ZueN(w) T, and Ar, = ZueN(u*)xu. By
N(w) € N(u*), we obtain N(w) = N(u*). If a or b > 2, suppose a > 2. It is easy to
find {u1} V {urwugu*uis} is an Fg, a contradiction. Thus a = b = 1 and m = 11, which
contradicts m > 88. If |Wy| > 2, let wy, wy € Wy. By Lemma 2.3, we have dy(w;) > 2
and dy(wq) > 2. Therefore, z,, = 2y, = x,. Furthermore, N(w;) = N(wy) = N(u").
Observed that {u;} V {wijuu*ugws} is an Fy, a contradiction. Hence H 2 D, ;. That is,
H=K,,.

Let V(H) = {ug,u1,- - ,u,} with the central vertex ug. By the definition of v(H)
and v(H) = —1, we know x,, = Ty». Since Ay« = Tyy + Y 1y Tuy = Tyr + D 5y Ty, and
ALyy = Ty + D iy Tuyy + ZweNW(uo) Ty, We have Zwer(uo) z, = 0. Hence Ny (ug) = 0.
If W # (), then dy(w) > 2 for any w € W. So z,, = x,+. However, Az, = ZueN(w) Ty <
ZueN(u*) Ty — Tyy < AZy+. It is a contradiction. Therefore, W = ). Thus G* = K, V K,
with 2r + 1 = m. Equivalently, G* = Ky V mTflKl. This completes the proof. U
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