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Abstract

Let G = {Gi : i ∈ [s]} be a collection of not necessarily distinct graphs on the same

vertex set V . A graph H is called rainbow in G if any two edges of H belong to different

graphs of G. In 2020, Joos and Kim proved a rainbow version of Dirac’s theorem. In

this paper, we prove a rainbow directed version of Dirac’s theorem asymptotically: For

each 0 < ε < 1, there exists an integer N such that when n ≥ N the following holds.

Let D = {Di : i ∈ [n]} be a collection of n-vertex digraphs on the same vertex set V . If

both the out-degree and the in-degree of v are at least
(
1
2 + ε

)
n for each vertex v ∈ V

and each integer i ∈ [n], then D contains a rainbow Hamiltonian cycle. Furthermore,

we provide a sufficient condition for the existence of arbitrary rainbow tournaments in a

collection of n-vertex digraphs, where a tournament is an oriented graph of a complete

graph.
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1 Introduction

Hamiltonicity of graphs is a historic subject in graph theory which has been researched

extensively. A well-known result by Dirac [12] asserts that n-vertex graphs satisfying δ(G) ≥
n/2 are Hamiltonian, where δ(G) denotes the minimum degree of G. In 2020, Joos and Kim

[16] introduced the concept of transversal in a collection of graphs on the same vertex set.
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For a collection G = {Gi : i ∈ [t]} of not necessarily distinct graphs with common vertex set

V , a simple graph H is a partial transversal of G if V (H) ⊆ V , |E(H)| ≤ t and there exists an

injection θ : E(H)→ [t] such that e ∈ E(Gθ(e)) for every e ∈ E(H), where [t] = {1, 2, . . . , t}.
In particular, H is a transversal of G if H is a partial transversal of G with |E(H)| = t. Since

all edges of H come from different graphs of G, we also call H a rainbow subgraph of G. Joos

and Kim [16] proved a result which can be seen as a generalization of Dirac’s theorem.

Theorem 1.1. [16] Suppose that G = {Gi : i ∈ [n]} is a collection of not necessarily distinct

n-vertex graphs with the same vertex set and δ(Gi) ≥ n
2

for i ∈ [n]. Then there exists a

rainbow Hamiltonian cycle.

Since then, many scholars focused on generalizing results in extremal graph theory to the

setting of graph transversals, including cycles [2, 6, 7, 11, 14, 18, 19, 21], matchings [1, 3, 13],

trees [8, 18] and factors [10, 20]. Recently, some results in digraph theory are investigated in a

collection of digraphs. In 2023, Chakraborti, Kim, Lee and Seo [9] considered the existence of

rainbow Hamiltonian paths in a collection of tournaments, where a tournament is an oriented

graph of a complete graph.

Theorem 1.2. [9] Let T = {Ti : i ∈ [n − 1]} be a collection of tournaments with the same

vertex set V (T ) = n. If n is sufficiently large, then T contains a rainbow Hamiltonian path.

In fact, there are many different sufficient conditions to guarantee Hamiltonicity of di-

graphs, please refer to a survey [17]. In 1960, Ghouila-Houri [15] proved that if the degree

(the sum of in-degree and out-degree) of every vertex in a strong n-vertex digraph D is at

least n, then D is Hamiltonian. It is natural that we can deduce a corollary with respect to

the minimum semi-degree δ0(D), where δ0(D) denotes the minimum value of both in-degrees

and out-degrees of all vertices in D.

Theorem 1.3. [15] Let D be a digraph of order n ≥ 2. If δ0(D) ≥ n
2
, then D is Hamiltonian.

Inspired by the above results, we consider the rainbow Hamiltonicity of a collection of

n-vertex digraphs. The main results are as follows.

Theorem 1.4. Let 0 < ε < 1. Then there exists an integer N such that when n ≥ N the

following holds. Given a collection D = {Di : i ∈ [n]} of n-vertex digraphs on the same vertex

set V such that δ0(Di) ≥ (1
2

+ ε)n for all i ∈ [n], then D contains a rainbow Hamiltonian

cycle.

Theorem 1.5. Suppose D = {Di : i ∈ [
(
s
2

)
]} is a collection of n-vertex digraphs with the

same vertex set V . If δ0(Di) ≥ (1− 1
s−1)n for i ∈ [

(
s
2

)
− 1] and δ0(D(s2)

) > (1− 1
s−1)n, then

D contains a rainbow copy of arbitrary tournaments Ts.
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Remark 1.1. A directed graph D is called a biorientation of a graph G if D is obtained from

G by replacing each edge {x, y} of G by either xy or yx or the pair xy and yx (loops are not

allowed). For a graph G, the complete biorientation of G (denoted by
−→
G) is a biorientation

D of G such that xy ∈ A(D) implies yx ∈ A(D). Let Tn,s−1 be a balanced complete (s− 1)-

partite graph and
−→
T n,s−1 be a complete biorientation of Tn,s−1. Note that if (s − 1)|n and

D = {D1, . . . , D(s2)
} consists of

(
s
2

)
copies of

−→
T n,s−1, then δ0(Di) = (1 − 1

s−1)n for each

i ∈ [
(
s
2

)
] and D does not contain a rainbow tournament

−→
T n,s−1. This implies that the bound

of Theorem 1.5 is sharp.

Before we proceed further, let us introduce some additional terminology and notation.

A directed graph (or just digraph) D consists of a vertex set V (D) and an arc set A(D) of

ordered pairs of distinct members of V (D). We use uv to denote the arc from u to v. Given

a digraph D = (V,A) and a vertex v ∈ V , set N+
D (v) = {u ∈ V : vu ∈ A} and N−D (v) = {u ∈

V : uv ∈ A} as out-neighbourhood and in-neighbourhood of v, respectively. We use d+D(v) and

d−D(v) to denote the out-degree and in-degree of v in D. Set δ+(D) = min{d+D(v) : v ∈ V }
and δ−(D) = min{d−D(v) : v ∈ V }. Clearly, δ0(D) = min{δ+(D), δ−(D)}. For two positive

integers a < b we use [a, b] to denote the set {a, a + 1, . . . , b − 1, b}. For terminology and

notation not defined here, we refer the reader to [4, 5].

2 Proofs of Theorems 1.4 and 1.5

We first prove Theorems 1.4 which started with several lemmas.

Lemma 2.1. Let D = {Di : i ∈ [n + 1]} be a collection of n-vertex digraphs on the same

vertex set V such that δ0(Di) ≥ n
2

for all i ∈ [n+1]. Then D contains a rainbow Hamiltonian

cycle.

Proof. Suppose that C = x1x2 · · ·xtx1 is a maximum-length rainbow cycle with xt+1 = x1

and xixi+1 ∈ Di for all i ∈ [t] in D. Let D′ = {D′i = Di − V (C) : i ∈ [t+ 1, n+ 1]} and P =

y1y2 · · · ys be a maximum-length rainbow path with yiyi+1 ∈ D′t+i for all i ∈ [s−1] in D′. We

claim that t ≥ n
2

+ 1. Clearly, if we choose a maximum directed rainbow path L = v1v2 . . . vz

(without loss of generality, assume that vivi+1 ∈ A(Di)), then NDn(vz) ⊆ V (P ); otherwise

we can obtain a longer directed rainbow path than L, a contradiction. Since d+Dn(v) ≥ n
2
, we

can choose the minimum integer j ∈ [z] with vj ∈ NDn(vz), then vzvjLvz is a directed cycle

of length at least n
2

+ 1.

It follows from V (C)∩ V (P ) = ∅ that t+ s ≤ n. Note that neither C nor P contains the

edges of Dn and Dn+1. We define the following two sets:

A = {i ∈ [t] : xi−1y1 ∈ A(Dn)},
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and

B = {i ∈ [t] : ysxi ∈ A(Dn+1)}.

If A ∩ B 6= ∅, choose an integer i ∈ A ∩ B, then xiCxi−1y1Pysxi is a rainbow cycle of

length s + t in D. This contradicts the hypothesis that C is a maximum rainbow cycle in

D. Therefore, A ∩ B = ∅. The maximality of P implies that N−Dn(y1) ⊆ V (P ) ∪ V (C), and

hence d−Dn(y1) = d−Dn[V (P )](y1) + |A|. Since d−Dn(y1) ≥ n
2

and d−Dn[V (P )](y1) ≤ s− 1, we have

|A| ≥ n

2
− s+ 1.

A similar argument yields

|B| ≥ n

2
− s+ 1.

Recall that t+ s ≤ n. It follows from t ≥ n
2

+ 1 that A and B are nonempty. Then

|A|+ |B| ≥ n− 2s+ 2 ≥ t− s+ 2. (1)

Since A and B are disjoint, we have that

|A ∪B| ≥ t− s+ 2. (2)

Assume that Q = x`1x`1+1 · · ·x`2 is a subpath of C such that i /∈ A ∪ B for each i ∈ [`1, `2].

Then

|V (Q)| ≤ |V (C)| − |A ∪B| ≤ s− 2.

Since A and B are nonempty sets, there are two positive integers i and k ∈ [s− 1] such that

i ∈ A, i+ k ∈ B and

i+ j /∈ A ∪B for all 1 ≤ j < k, (3)

where addition is taken modulo t. Recall that s+t ≤ n and t ≥ n
2
+1, we have s ≤ n

2
−1 ≤ t−2.

Since k ≤ s − 1, it follows that xi+k 6= xi−1. Thus xi+kCxi−1y1Pysxi+k is a rainbow cycle

of length t+ s− k, which contradicts the hypothesis that C is a maximum rainbow cycle in

D.

Note that if n + 1 digraphs are allowed in D, then the degree condition δ0(Di) ≥ n
2

for

each i ∈ [n+ 1] is sufficient for the existence of rainbow Hamiltonian cycles in a collection of

digraphs. Theorems 1.4 indicates that if only n digraphs are allowed in D, then we can elevate

the semi-degree condition by o(n) to ensure the existence of rainbow Hamiltonian cycles in

a collection of digraphs. The following corollary is necessary for the proof of Theorems 1.4.

Corollary 2.1. Let D = {Di : i ∈ [n]} be a collection of n-vertex digraphs on the same

vertex set V such that δ0(Di) ≥ n
2

for all i ∈ [n]. Then D contains a rainbow Hamiltonian

path.
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To prove the rainbow Hamiltonicity of a collection of n-vertex digraph, we introduce some

definitions.

Definition 1. Let D = {Di : i ∈ [n]} be a collection of n-vertex digraphs on the same

vertex set V . For any two vertices x1, x2 ∈ V and four integers s, i, j, k ∈ [n], a rainbow path

P = z1z2z3z4 is an absorbing path for (x1, x2) if the following conditions hold:

(1) z1z2 ∈ A(Di), z2z3 ∈ A(Dj) and z3z4 ∈ A(Dk);

(2) V (P ) ∩ {x1, x2} = ∅;
(3) z2x1 ∈ A(Ds) and x2z3 ∈ A(Dj).

In addition, we use Ls,i,j,k(x1, x2) to denote the set of absorbing paths P for (x1, x2) with

respect to an ordered quadruple (s, i, j, k). Specifically, Ls,i,j,k(x1, x2) = ∅ if s ∈ {i, j, k}.

Lemma 2.2. For any 0 < ε < 1, there exists an integer N such that the following holds for

any integers n ≥ N . Given a collection D = {Di : i ∈ [n]} of n-vertex digraphs on the same

vertex set V such that δ0(Di) ≥ (1
2

+ ε)n for all i ∈ [n], then |Ls,i,j,k(x1, x2)| > εn4

8
for any

two vertices x1, x2 ∈ V and four integers s, i, j, k ∈ [n].

Proof. Fix two vertices x1, x2 ∈ V and four integers s, i, j, k ∈ [n]. First, choose a vertex

z2 ∈ V − {x1, x2} such that z2x1 ∈ A(Ds) and a vertex z1 ∈ V − {x1, x2, z2} such that

z1z2 ∈ A(Di). It is clear that there are at least (n
2

+ εn − 1)(n
2

+ εn − 2) choices for z1 and

z2. Choose a vertex z3 ∈ V − {x1, x2, z1, z2} such that z2z3, x2z3 ∈ A(Dj). Then there are at

least

2
(n

2
+ εn− 3

)
− (n− 4) = 2εn− 2

choices for z3. By a similar argument, there are at least n
2

+ εn − 5 choices for z4 ∈ V −
{x1, x2, z1, z2, z3} such that z3z4 ∈ A(Dk). Hence, there are at least(n

2
+ εn− 1

)(n
2

+ εn− 2
)

(2εn− 2)
(n

2
+ εn− 5

)
>
εn4

8

choices of absorbing paths for (x1, x2) with respect to (s, i, j, k) for n large enough.

Lemma 2.3. For n, µ, ε with 1
n
� µ� ε < 1 suppose that D = {Di : i ∈ [n]} is a collection

of n-vertex digraphs on the same vertex set V such that δ0(Di) ≥ (1
2

+ ε)n for all i ∈ [n].

Then there is a family F ′ of pairwise vertex-disjoint rainbow directed 4-paths such that the

following statements hold.

1. |F ′| ≤ µn.

2. Any two elements of F ′ contain no common color.

3. For any two vertices x1, x2 ∈ V and an integer s ∈ [n], there are three distinct integers

i, j, k ∈ [n] such that Ls,i,j,k(x1, x2) ∩ F ′ 6= ∅.
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Proof. Without loss of generality, we assume that ` is an integer and 3` = µn. Let Pi be the

set of all 4-paths z1z2z3z4 such that z1z2 ∈ A(D3i−2), z2z3 ∈ A(D3i−1) and z3z4 ∈ A(D3i) for

all i ∈ [`]. Now we construct a random set F of size ` as follows: For all i ∈ [`], let us take

an element from Pi and put it into F uniformly and independently.

For s ∈ [n] and a pair of vertices (x1, x2) of V , let

Ls(x1, x2) =
⋃̀
i=1

(Ls,3i−2,3i−1,3i(x1, x2) ∩ F)

and Xi be an indicator random variable as follows:

Xi =

{
1, Ls,3i−2,3i−1,3i(x1, x2) ∩ F 6= ∅;
0, otherwise,

and let X = |Ls(x1, x2)| =
∑`

i=1Xi. It is clear that all Xis are independent. The definition

of Ls,3i−2,3i−1,3i(x1, x2) implies that Ls,3i−2,3i−1,3i(x1, x2) ⊆ Pi. If s /∈ {3i− 2, 3i− 1, 3i}, then

from Lemma 2.2,

P (Xi = 1) =
|Ls,3i−2,3i−1,3i(x1, x2)|

|Pi|
≥

εn4

8

n4
≥ ε

8
;

if s ∈ {3i− 2, 3i− 1, 3i}, then P (Xi = 1) = 0. Hence,

E(X) =
∑̀
i=1

E(Xi) ≥
ε(`− 1)

8
=
εµn

25
.

Since X obeys the binomial distribution, Using Chernoff’s bound, we have

P

(
X ≤ E(X)

2

)
≤ P

(
|X − E(X)| ≥ E(X)

2

)
≤ 2e−

E(X)
12 .

Hence, we have

P
(
X ≤ εµn

50

)
≤ P

(
|X − E(X)| ≥ εµn

50

)
≤ 2e−

εµn
300 .

Let us come back to considering the set F . Note that F is a set of rainbow 4-paths and

two elements of F may intersect. Since any two elements of F are chosen from different sets

of {Pi : i ∈ [`]} independently, let Si,j be an indicator random variable as follows:

Si,j =

{
1, the path chosen from Pi intersects with the path chosen from Pj;
0, otherwise.

Define S as the number of pairs of rainbow paths in F that intersect in at least one vertex.

Then S =
∑

i,j∈[`] Si,j. For i, j ∈ [`], let T be the set of unordered pair (Pi, Pj) with Pi ∈ Pi,
Pj ∈ Pj and V (Pi) ∩ V (Pj) 6= ∅. There are at most n(n − 1)(n − 2)(n − 3) choices for
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Pi. Fixing Pi, there are at most 16(n − 1)(n − 2)(n − 3) choices for Pj, which implies that

|T | < 16n7. Note that

|Pi| ≥ n
(n

2
+ εn

)(n
2

+ εn− 1
)(n

2
+ εn− 2

)
>
n4

8
.

Similarly, we have |Pj| > n4

8
. Fix two integers i, j ∈ [`]. The probability choosing each

pair (Pi, Pj) with V (Pi) ∩ V (Pj) 6= ∅ is 1
|Pi||Pj | ≤

1

(n
4

8
)2

= 64
n8 when n is sufficiently large.

Consequently, we have

E(S) = E

∑
i,j∈[`]

Si,j

 ≤ (`
2

)
× 16n7 × 64

n8
≤ 57µ2n ≤ εµn

200
.

Using Markov’s Inequality, we can deduce

P
(
S ≥ εµn

100

)
≤ P (S ≥ 2E(S)) ≤ 1

2
.

Recall that P
(
X ≤ εµn

50

)
≤ 2e−

εµn
300 for any color s ∈ [n] and any two vertices v1, v2 ∈ V .

Since there are at most n× (n− 1)× n ≤ n3 choices of s, x1, x2, by the union bound we can

choose a sufficiently large n such that

2e−
εµn
300 × n3 <

1

2
.

Combining P (S ≥ εµn
100

) ≤ 1
2
, we conclude that there exists a choice of F when n is sufficiently

large such that the following statements hold.

• for any pair (x1, x2) and integer s ∈ [n], there are at least εµn
50

choices of i ∈ [`] such

that Ls,i−2,i−1,i(x1, x2) ∩ F 6= ∅;

• S ≤ εµn
100

.

Assume that F ′ is the set of remaining rainbow 4-paths in F obtained by deleting one rainbow

4-path in each intersecting pair. Then any two elements of F ′ are vertex-disjoint, and for

each integer s ∈ [n] and any pair (x1, x2) of vertices, we have

| ∪`i=1 (Ls,3i−2,3i−1,3i(x, y) ∩ F ′)| ≥ εµn

50
− εµn

100
=
εµn

100
.

Consequently, F ′ is as desired.

Proof of Theorem 1.4. Given a constant µ with 1
n
� µ� ε < 1, from Lemma 2.3, there

is a family F ′ of vertex-disjoint rainbow directed 4-paths such that the following statements

hold.
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1. |F ′| ≤ µn.

2. Any two elements of F ′ contain no common color.

3. For any two vertices x1, x2 ∈ V and an integer s ∈ [n], there are three distinct integers

i, j, k ∈ [n] such that Ls,i,j,k(x1, x2) ∩ F ′ 6= ∅.

Without loss of generality, suppose that |F ′| = a and F ′ = {Qi = viyiziwi : i ∈ [a]}
with viyi ∈ D3i−2, yizi ∈ D3i−1 and ziwi ∈ D3i. Set D1 = {Di : i ∈ [3a + 1, n]} and

V1 = V − ∪ai=1V (Qi). Clearly, a ≤ µn and | ∪ai=1 V (Qi)| ≤ 4µn. For Q1 and Q2, note that

|N+
D3a+1

(w1)|+ |N−D3a+2
(v2)| − n ≥ 2εn ≥ 10µn.

Then it is easily to find a vertex u1 ∈ V1 such that Q1u1Q2 = v1y1z1w1u1v2y2z2w2 is a

rainbow path with w1u1 ∈ A(D3a+1) and u1v2 ∈ A(D3a+2). Repeating this argument, we

can find a distinct vertices {ui : i ∈ [a]} ⊆ V1 such that QiuiQi+1 is a rainbow path with

wiui ∈ A(D3a+2i−1) and uivi+1 ∈ A(D3a+2i) for all i ∈ [a], where Qa+1 = Q1. It follows that

C = Q1u1Q2u2 · · ·QauaQ1 is a rainbow cycle and the set of colors appearing on C is [5a].

Set V2 = V − V (C) and D2 = {Di[V2] : i ∈ [5a + 1, n]}. Recall that a ≤ µn and

δ0(Di) ≥ (1
2

+ ε)n for all i ∈ [n], we have

δ0(Di[V2]) ≥
(

1

2
+ ε

)
n− 5a ≥

(
1

2
+ ε

)
n− 5µn ≥ n

2
>
|V2|
2
.

Using Corollary 2.1, there is a rainbow Hamiltonian path R in D2. Without loss of generality,

suppose that R begins with x1 and ends with x2, and does not use the arc of Dn[V2].

By the definition of F ′, we have Ln,i,j,k(x1, x2) ∩ F ′ 6= ∅, which implies that there exists

some Qi = viyiziwi ∈ F ′ such that yix1 ∈ A(Dn) and x2zi ∈ A(D3i−1). Then ziCyix1Rx2zi

is a rainbow Hamiltonian cycle in D. �

Now we ready to prove Theorem 1.5.

Proof of Theorem 1.5. For 2 ≤ j ≤ s, let Dj = {Di : i ∈ [
(
j
2

)
]}. The proof proceeds by

induction on s. It is obvious that D2 contains a rainbow T2. Since the minimum semi-degree

of each digraph in Ds−1 is larger than (1− 1
s−2)n, it follows that Ds−1 contains a rainbow copy

of an arbitrary tournament on s − 1 vertices. For an arbitrary tournament Ts of s vertices,

assume that V (Ts) = {v1, · · · , vs−1, vs} and Ts−1 = T − {vs}. Then Ds−1 contains a rainbow

tournament Ts−1. Without loss of generality, we assume that the in-neighborhood of vs in Ts

is {v1, v2, ..., v`} and the out-neighborhood of vs in Ts is {v`+1, v`+3, . . . , vs−1}, respectively.

We prove that Ds contains a rainbow tournament Ts. First we construct an auxiliary digraph

D with V (D) = V and A(D) as follows:

• viu ∈ A(D) if viu is an arc of D(s−1
2 )+i for all i ∈ [`];
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• uvi ∈ A(D) if uvi is an arc of D(s−1
2 )+i for all i ∈ [`+ 1, s− 1].

Now we verify that there is a vertex w ∈ V −V (Ts−1) with d+D(w) + d−D(w) ≥ s− 1. Note

that ∑
v∈V (D)−V (Ts−1)

[
d+D(v) + d−D(v)

]
> (s− 1)

[
(1− 1

s− 1
)n− (s− 2)

]
= (s− 1)(n− s+ 2)− n.

Hence, there is a vertex w ∈ V (D)− V (Ts−1) such that

d+D(w) + d−D(w) >

∑
v∈V (D)−V (Ts−1)

[d+D(v) + d−D(v)]

n− s+ 1
= s− 2.

This implies that d+D(w) + d−D(w) ≥ s − 1. Note that D(s−1
2 )+i contributes one to d−D(w)

for each i ∈ [`] and D(s−1
2 )+i contributes one to d+D(w) for each i ∈ [` + 1, s − 1]. Then

d+D(w) + d−D(w) ≤ s − 1, which implies d+D(w) + d−D(w) = s − 1. Consequently, we have

N−D (w) = {v1, v2 . . . , v`} and N+
D (w) = {v`+1, v`+2, . . . , vs−1}. Then Ds contains a rainbow

tournament Ts. �
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[2] R. Aharoni, M. DeVos, S. González Hermosillo de la Maza, A. Montejano, R. Šámal. A
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