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Abstract

A theta graph 6, , is the graph obtained by connecting two distinct vertices with
three internally disjoint paths of length 7, p,q, where ¢ > p>r > 1and p > 2. A
graph is 0, ,-free if it does not contain 0, , , as a subgraph. The maximum spectral
radius of 61, 4-free graphs with given size has been determined for any ¢ > p > 2.
Zhai, Lin and Shu [Spectral extrema of graphs with fixed size: cycles and complete
bipartite graphs, European J. Combin. 95 (2021) 103322] characterized the extremal
graph with the maximum spectral radius of 05 5 o-free graphs having m edges. In this
paper, we determine the maximum spectral radius of 05 2 3-free graphs with size m

and characterize the extremal graph.
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1 Introduction

Let G be an undirected simple graph with vertex set V(G) and edge set E(G), where
n:= |G| = |[V(G)| and m := ¢(G) = |E(G)| are the order and the size of G, respectively.
The adjacency matrix of a connected graph G is defined as A(G) = (au)nxn Where a,, = 1
if uv € E(G) and a,, = 0 otherwise. The spectral radius A\(G) of G is the largest eigenvalue
of A(G). Given two vertex-disjoint graphs G and H, denote GUH = (V(G)UV (H), E(G)U
E(H)). Let GV H be the graph obtained from G U H by joining each vertex of G to each
vertex of H. As usual, let P,, C,, K;,_1 and K, be the path, the cycle, the star and

1



the complete graph on n vertices, respectively. Let K;,_; 4+ e be the graph obtained from
K, ,—1 by adding one edge within its independent set and K,, —e be a graph obtained from
K, by deleting any one edge.

Given a graph F', a graph G is said to be F-free if it does not contain F' as a subgraph.
Let G(m, F') denote the set of F-free graphs with m edges and without isolated vertices.
The Brualdi-Hoffman-Turén type problem [3] is to determine the maximum spectral radius
of F-free graphs with given size. This problem has attracted wide attention recently, see
6, 7, 10, 11, 12, 16, 17].

A theta graph, say 0,,,, is the graph obtained by connecting two distinct vertices
with three internally disjoint paths of length r,p,q, where ¢ > p > r > 1 and p > 2.
About 0, , ,free graphs, the Brualdi-Hoffman-Turan type problem has been determined
completely for » = 1. First, Sun et al. [14] confirmed the graphs having the largest
spectral radius among all 0, » s-free and 6, 5 4-free graphs with odd size, respectively. Fang
and You [4] characterized the extremal graph with maximum spectral radius of 6 5 3-free
graphs with even size. Liu and Wang [8] characterized the extremal graph with maximum
spectral radius of 6 o 4-free graphs with even size. Later, Lu et al. [9] characterized the
extremal graph with the largest spectral radius of 6, o 5-free graphs. For ¢ > 5, Li et al. [7]
determined the largest spectral radius of 6, 5 ,-free graphs. Recently, Gao and Li [5] gave
the largest spectral radius of ) 3 s-free graphs. For ¢ > p >3 and p+¢ > 7, Li et al. [6]
obtained the largest spectral radius of ¢, , ,-free graphs. In the same paper, they proposed
a problem about 6, ,-free graphs where ¢ > p > r > 2.

Problem 1.1 [6]/ How can we characterize the graphs among G(m, 0,.,, ,) having the largest
spectral radius for g >p>r > 27

For r = p = q =2, we have 0525 = Ks3. Zhai et al. [17| determined the extremal graph
for K, ,-free graphs with r > 3.

Theorem 1.2 [17] If G € G(m, K1) with r > 2 and m > 1672, then \(G) < /m, and
equality holds if and only if G is a star.

In this paper, we give an upper bound of the spectral radius of 03, 3-free graphs and

characterize the unique graph with the maximum spectral radius among G(m, 6223).

Theorem 1.3 Let G € G(m,0a23) with m > 57. Then \(G) < 273 and equality
holds if and only if G = Ky V mT’IKl.

Note that C5 is a subgraph of 85 5 5. It is easy to have G(m, C5) C G(m, 025 3). Therefore,
when m is large, by Theorem 1.3, we can imply the following result which was obtained
by Zhai et al. [17].



Theorem 1.4 [17] If G € G(m, Cs) withm > 8. Then A\(G) < H2m=3 ng& and equality holds
if and only if G = K V 22 K.

2 Preliminaries

At the beginning of this section, we give some notations and terminology. Readers
are referred to [1] and [2]. For any vertex v € V(G), we denote by N(v) or Ng(v) the
neighborhood set of v in G and N[v] = N(v) U {v}. Let d(v) or dg(v) be the degree of a
vertex v in G. For any two subsets X, Y C V(G), we denote Nx(Y) = U,ey N(v) N X. Let
e(X,Y) denote the number of all edges of G with one end vertex in X and the other in Y.
Particularly, let e(X) := e(X, X). Denote by G[X] the subgraph of G induced by X.

For a matrix (or vector) A, A > 0(> 0) means that all its entries are positive (nonneg-

ative). Here, we state the famous Perron-Frobenius theorem.

Lemma 2.1 (Perron-Frobenius Theorem) [2/ Let A > 0 be an irreducible symmet-
ric matriz. Then the largest eigenvalue N(A) of A is a real number, and the entries of

eigenvector corresponding to N(A) are all positive.

Note that A(G) is irreducible and nonnegative for a connected graph G. By Lemma
2.1, there exists a unique positive unit eigenvector x corresponding to A(G), which is called
Perron vector of GG. Let x be the Perron vector of G with coordinate x, corresponding to the

vertex v € V(G). A vertex u* is said to be an extremal vertex if x,» = max{z,|u € V(G)}.

A cut vertex of a graph is a vertex whose deletion increases the number of components.

A graph is called 2-connected, if it is a connected graph without cut vertices.

Lemma 2.2 [17] Let G be a graph in G(m, F') with the mazimum spectral radius. If F is

a 2-connected graph and u* is an extremal vertex of G, then G is connected and d(u) > 2
for any w e V(G) \ N[u*].

The following result is about the largest spectral radius of triangle-free graphs which

will be used in the subsequent section.

Lemma 2.3 [10, 13] Let G be a graph with m edges. If G is triangle-free, then \(G) <
vm. Equality holds if and only if G is a complete bipartite graph.

3 Proof of Theorem 1.3

Let G* be the extremal graph with the maximum spectral radius among all graphs

in G(m, 6223). For convenience, denote A = A\(G*). By Lemma 2.2, we know that G* is
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connected. In the view of Lemma 2.1, there is the Perron vector x in G*. Let u* be the

extremal vertex of G*. Note that Ky V mT_lKl is 099 3-free, we have

—1 1 4dm —
AZ)\(K2\/m2 K1>:+—m3,

2

Denote U = Ng«(u*) and W = V(G*)\ Ng+[u*]. Let Uy be the set of all isolated vertices in
the induced subgraph G*[U] and U, = U \ Uy be the set of all vertices with degree at least
one in G*[U]. Let Wy = Nw (V(H)) for any subgraph H of G*[U]. Since A\(G*)x = A(G*)x,

we have
ALy = qu = Z T, + Z T

uelU uelUy u€lUp

Furthermore, we also have \?(G*)x = A%(G*)x. It follows that

Ny = |Ulzys + Z dy(uw)z, + Z dy(w)x

uelUy weW

Therefore,

(N = Ny = (Ul + Y (du(u) = Doy + D dy(w)z, — Y @

uEU+ weWw u€elyp

Recall that )\ > Hvim=3 “;"H)’. It is easy to get that A2 — X\ > m — 1. Then

Ulzwe + > (dy(u) = Daw+ Y dy(w)a, — 3 20 > (m— 1
ueUy weW uely
Since m = |U| + e(Us) +e(U, W) + e(W), we have
xu
> (dy(u) > e(Uy) +e(U W) +e(W)+ Y

ueUy u€lUy

Let H be the set of all non-trivial components in G*[U]. Note that G* is 659 3-free. This
implies that G*[U] contains no double star S; 5, which is a tree with a central edge uv, 1

leaf connected to u and 2 leaves connected to v. It follows that every element H in H is
Ky, where r > 1, K13 +e, Ky —e, Ky, P, where k > 4 or C; where [ > 3.

Lemma 3.1 Let H be a component of G*[U| which contains a cycle of length at least four.
If Wi # 0, then dy(w) < 2 for any w € Wg.

Proof. Assume that dy(wg) > 3 for some wy € Wy. Let C) be the cycle of H where [ > 4.
We have V(C;) = V(H). Since wy € Wy, without loss of generality, suppose wg € Ny (u1)
where u; € V(C)). Note that dy(wg) > 3. Suppose ug, uz € Ny(wp). Since [ > 4, there

is at least a vertex w; € {u,us,us} such that u; has a neighbor uy € V() different from
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{ur,us, uz}. Hence G*[{u*, uy, ug, us, ug, wo }| contains a 6 5 3, which is a contradiction. We

complete the proof. O

Let Wy = {w € W|dw(w) = 0}. By Lemma 3.1, if w € Wy U Ny (C;) where [ > 4, then
d(w) < 2.

Lemma 3.2 G*[U] contains no any cycle of length at least four.

Proof. Suppose that G*[U] contains C; where [ > 4. Let H' be the family of components
of G*[U] each of which contains cycle of length at least four as a subgraph, then H \ H' is
the family of other components of G*[U] each of which is K, where r > 1, Ky 35+ e, Py
where k > 4, C5. Therefore, for each H € H \ H', we have e(H) < |H|. It is clear that

> (du(u) = Dz, < (2e(H) — |H )z < e(H)z,e
ueV(H)

For any H € H', H is K, — e, K4 or C; where [ > 4. In the following, we consider the two

cases.
Case 1. Wy = 0.

If H=C) =ujus---uu; where [ > 4, we have

.
ALy, = Ty + Tyy + Ty,

)\xug — xul + Iu3 + Ly*,

(AT, = Ty + Ty + Ty

Then Ay, + Ty, + -+ + xy,) = 2(2y, + Ty, + - -+ + xy,) + Lz, Therefore,

D (ulu Z% =

ueV (H)

Since m > 57, we have A > 8. Hence

D (dnlw) = 1) < (e(H) ~ 1),

ueV(H)

If H= Kyor Ky—e, suppose V(H) = {uy, us, ug, us}. For any vertex u; € {uy, uz, us, us},
we have dy(u;) < 3. Therefore, Az,, < zy+ + 3z, = 4x,«. It follows that x,, < %xu* for
any i € {1,2,3,4}. Hence, according to A > 8, we have

> (du(u) - Qquz < xu* <Az < (e(H) — 1)z

ueV (H)



for H = Ky, and

4
32
> (du(u) = Day <2 z, < ST < Ay = (e(H) = Dy

ueV (H) i=1
for H 2 Ky —e. 80 3 ey (du(u) — 1)~ < (e(H) — 1) when Wy = 0.
Case 2. Wy # 0.
If H=C) =ujus---uu; where l > 4, then

()\ o
Tuy = Ty + Ty + Tur + D e N (ur) T

ALy, = Ty + Ty + Ty + Zwer(w) Tops

ATy, = Ty, + Ty + Ty + ZweNW( Tp,s

up)
we have

l
MEuy + Ty + o+ T0) = 10 + 2T + T+ 20) + > Y T

=1 wENW(Ui)

That is,

l 1
xu1+$u2+'”+x“l:)\_Z.Tu*+)\—2 Z Z L
weV (H) weNyy (u)

Thus, by A > 8, we obtain

z Ty, + Ty, + -+
d . U — ul u2 ug
> () 1)
ueV (H)

If H= K4—e, then let V(H) = {uy, us, us, us}. Without loss of generality, we suppose
that dH(UQ) = dH<U4) = 3. Then

(\p —
Tuy = Tuy + Tuy + Tyx + Zwer(ul) Lw,
ALy, = Ty + Ty + Ty + Tyr + ZweNW(uz) T,

ATyy = Tuy + Tuy + Tur + Zwer(ua) L,

(ATuy = Tyy + Ty + Ty + Ty + ZMGNW(M) T,



we have

M@y + Tuy + Tug + Tuy) = 40 + 2(Tuy + Tuy + Tug + Tuy) + Tuy + Tuy + Z Z
i=1 weNwy (u;)
4

< 6 + 20+ Ty T F T T D T

i=1 weNw (u;)

That is,

6 1
xu1+xu2+xu3+xu4§)\_Q‘ru*+>\_2 Z Z Lw-
w€V (H) we Ny (u)

Note that A > 8. It follows that

S () — 1) = B2 T £ 5
ueV (H) Lu Tu

L z

ueV (H) weNw (u

<e(H)—1—l—— > Z

uEV(H) wENw (u

If H= K, with V(H) = {u1,us, us,us}, we have dg(u;) = 3 for any ¢ € {1,2,3,4}.

Therefore,

p
)\xul < 3Ty + Ty + ZwGNW(Ul)
ATy, < 3Tyr + Tyx + ZwENW(W) Tw
)\$u3 < 3Ty + Tyr + ZU)GNW(U3) Tw

( ATy, < 3Tyr + Tyx + ZU)GNW(U4) Tw

:Uwa

we have

4
My + Ty + Tuy + T4y) < 162, + Z Z

i=1 weNw (u;)

Thus,

32 9 "
ST 2o

weV (H) we Ny (u)



Since A > 8, we obtain

3 (dulw) — 1) < e(H —1+— 3 Z

Lyy*
uEV(H) wENw (u

It is easy to get % > ﬁ for A > 8. Then Zuev (dH( ) — 1)2e
%ZUEV(H) ZwENW(u) fu for each H € H'. ThU—S7

T gy *

< e(H)—-1+

Do (o) =1t = 30 |3 () - DN IDIRCEOES

uely HeH\H' \ueV(H) HeH' \weV(H) Lur
-y e<H>+z<e<H>—1>+z; >y
HEH\H' HeH! HeH' "~ weV(H) weNw (u) =
2 T
/ w
<e(U;) - ’HH_X Z dy (w)—.

Loy
weEUg ey Wh

Let W1 = Ugew Wy N Wy. By Lemma 3.1, we have dy(w) < 2 for any w € Wy where
H € H' and d(w) < 2 for any w € W;. Therefore, for w € Wy, we get Az, < 2x,+. That
is, T, < %xu for any w € Wy. This implies that

3 (du(u) - 1);”‘; + ) dy(w)

Toy*

uclUy
<e(U)—|H’|+z-2 > +22x“’

" A Ty T

welUy ey Wa weW weW\W1
4 x 4
=e(U,) |H|+AZW+A > +2Z o
weW wGUHGH/WH\W1 weWy weW\W1

e(Uy) — [H'| + (4 +2) A@(U,W1)+§ Z dy (w) Tu +e(U, W\ W)

wEUHE’H’WH\Wl Lu
8+ 4\

e(U) — M| + Sy e(U, W) + i (W) + e(U, W\ W),

8;1’\ < 1 and % < 1. Then

> (du(w)

ueUy weW

— <e(Uy) =1+ e(UWh) +e(W)+e(U W\ W)

=e(Us) —1+e(UW)+e(W),

which contradicts with (1). This completes the proof. U

By Lemma 3.2, we obtain that every non-trivial component of G*[U] is K, where
r>1, Ki3+e, P, where k > 4 or Cs.



Lemma 3.3 e(IW) =0.

Proof. If W = (), then e(W) = 0, as desired. So we consider W # () in the following.
Suppose to the contrary that e(W) > 1. Since every non-trivial component of G*[U] is a

tree or a unicyclic graph, we have e(U,) < |Uy|. By inequality (1), we get

e(W) < 3 (do(u) (Us) = eU, W)= > 2 +1

uelUy weWw uelyp Ly
<2e(Uy) = |Us| +e(UW) —e(Us) —e(U,W) + 1
<1.

So e(W) =1 and z,, = x, for any w € W satisfying dy(w) > 1. Let E(W) = {wjwy}. By
Lemma 2.2, we know that d(w;) > 2 and d(wy) > 2. This implies that dy(w;) > 1
and dy(we) > 1. It follows that z,, = x,, = x,+. Since G* is O 3-free, we have
dy(wy) + dy(we) < 4. Otherwise, there is a vertex w; € {wy,wy} such that dy(w;) >
3. Without loss of generality, suppose w; = wy. Let uy,us,u3 € Ny(wy). Note that
dy(wy) > 1. Let uy € Ny(wsy). Then there are at least two vertices of {uy, ug,us3} which
are different from wuy4. Assume that u; and uy are different from wy. We can find that

G*[{u*, uy, ug, ug, wy, we }] contains a Oy 23, a contradiction. Therefore,

2ATyr = ATy, + ATy,
= Ty, + Z Ty + Ty + Z
UGNU wl) UGNU ’LUQ)
S o + 4xu* + Loy

It yields that A < 3, a contradiction. This completes the proof. U
T, = 0 for any u € V(H).

From now on, if Wy = (), we denote ZweNW(u)

Lemma 3.4 For any H € H, we have H 22 K, 3+ e.

Proof. Suppose that there is a component H € H such that H = K;3 + e. Let
V(H) = {uy,us, us,us} with dg(ur) = 3 and dy(uys) = 1. We first prove that dy(w) < 2
for any vertex w € Wy if Wy # 0. Otherwise, there is a vertex wy, € Wy such that
dy(wg) > 3. Since wy € Wy, we can see that wy € Ny (u;) for some i € {1,2,3,4}.
Note that dy(wg) > 3. Suppose v1,v2 € Ny(wp) \ {u;}. If i = 1, then at least one
vertex u; € {uq,us,us} is different from vy and v,. Therefore, w*viwy, u*vowy, u ujuwy
are three internally disjoint paths of length 2,2,3 between u* and wq, a contradiction. So

wo ¢ Ny (u1). Then u*viwg, u*vewy, u*uju;wy are three internally disjoint paths of length



2,2,3 between u* and wy, a contradiction. Thus, dy(w) < 2 for any vertex w € Wy. By

Lemmas 2.2 and 3.3, we have d(w) = 2 for any vertex w € Wy. Therefore, \z,, < 2z,
That is, 2, < 2

< 3@y~ for any vertex w € Wy. According to Ax = A(G*)x, we obtain

ATy, = Tuy + Tug + Tuy + Tur + D e Ny (uy) Toos

)\xuz - :C’UJ + xug + Lyy* + ZWGNW ) w

A$u3 = Tyy + Loyg + Ty + ZwENW 3) Loy
Thus,

3
(A= 2)(Tyy + Ty + Tuy) = 3Ty + Ty + Z Z

1=1 we Ny (u;)
By A > 8, we have

3
xu1+xu2+IU3§A )\ 22

i=1 weNyw (u;)

<(elH) =253 Y

i=1 we Ny (u;)

Recall that z,, < %xu for any vertex w € Wy. We conclude that

Ty, 2Ty, + Ty, + T
> (du(w) —1)== = 2

Lq* €T, *
weV(H) u u

1 2

2

Hence,

> (du(u)

ueU4

IR > D2 S ol

uEU+\V(H) ueV (H) weWy weW\Wg
2

< €(U+ \ V(H)) + G(H) -1+ me(f[, WH) + XG(U, WH) + G(U, w \ WH)

<eU,)—1+ %e(a W) +e(U W\ Wy)
<e(Uy)—1+eUW).

This is a contradiction. We complete the proof
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Lemma 3.5 For any H € H, we have H 2 Cj.

Proof. Suppose to the contrary that there is a component H € H such that H = Cj.
Let V(H) = {uy,ug,uz}t. If Wy # 0, we have dy(w) < 3 for any w € Wy. Otherwise,
there is a vertex wy € Wy satisfying dy(wy) > 4. Without loss of generality, assume
wo € Ny (u1). Note that |V (H)| = 3. Suppose that v € Ny (wy) is different from uy, us, us.
Since dy(wp) > 4, there is another vertex v € Ny(wp) \ {u1,v}. Then at least one of s
and wujz is different from v'. Suppose that usy is different from o’. It is easy to find that
w*vwg, uFv wy, uFusuiwy are three internally disjoint paths of length 2,2.3, a contradiction.

By Lemma 3.3, we obtain Az, < 3z, for any vertex w € Wy. Since
ATy, = Ty + Tyy + Ty + ZweNW(ul) T,
)‘mw = Tyy + Tyy + Tyr + Zwer(uz) Lw;
ALy = Tuy + Tuy + Tyx + ZwGNW(u;:,) Lw;
we get
3
(A= 2)(@uy + Tuy + Tug) = 3000 + > D
i=1 weNw (u;)

Recall that A > 8. It follows that

3
3xu*
xu1+xu2+xU3: )\ QZ

=1 weNw (u;)

< (e(H) = D+ =5

=1 we Ny (u;)

Since x,, < %a:u* for any vertex w € Wy, we obtain

Ly Ty + Ty + Ty
> (du(u) = 1) = :

Ty Ty
ueV (H)
<e(H)-1+ ! 5 e(H,Wy)
‘ A—2 A 4
3
=e(H)— 1+ ————=e(H,Wg).
Hence,
xw
Z(dU< )—1) xu*+ZdU o
uelUy weW
T T
= Y (d(u )-1)@ + Y (dulu —1>W 2 dvlw) e Y du(w)
ueUL\V (H) u€V (H) weWg weW\Wgy



< (U, \ V(H)) + e(H) — 1+ e(H, Wig) + (U, Wig) + (U, W\ W)

31— 3
AN —2)
<e(Uy) = 1+ e(U,W).

A —2)

< 6(U+) -1+ €(U, WH) + €(U, %4 \ WH)

This is a contradiction. We complete the proof. Il
Lemma 3.6 For any H € H, we have H 2 P, where k > 4.

Proof. Let P, = ujug---u, where k > 4. If Wy # (), we show that dy(w) < 2 for any
w € Wy. Suppose that there exists a vertex wy € Wy satisfying dy(wg) > 3. Assume
v1, Vg, v3 € Ny(wp). Since k > 4, there is a vertex u; € V(Py) such that u;—1 € Ny(wp) or
uit1 € Ny(wp) and w; ¢ {v1,v9,v3}. Without loss of generality, suppose w;—1 € Ny(wyp).
Then at least two vertices of vy, vq,v3 are different from wu,;_ ;. Suppose the two vertices
are vy, ve. It follows that u*viwg, u*vowy, u*u;u; 1wy are three internally disjoint paths of
length 2,2,3, a contradiction. Therefore, dy(w) < 2 for any w € Wy. By Lemma 3.3, we
have d(w) < 2 for any w € Wy. This implies that \x,, < 2z,+ for any w € Wy. By

(
ALyy = Tyy + Tyy + Ty + ZwENW(UQ) Lw,

ALy = Tyy + Ty + Ty + ZweNW(ug) T

\)\xuk—l = Luy_g + Ly, T+ Ty ZweNW(uk,l) Lw,

we have

A('xuz T Tyy + 0+ xukﬂ)

k—1
= (k= 2Ty + Tuy + Tuy + 2y + -+ Tugy) F Tuy +Tu + >, D T
=2 weNw (u;)

k—1
<2k =2)Tyr + Tyy + Tyy + -+ Ty, +Z Z Loy

=2 weNw (u;)

Note that Az, < 2z, for any w € Wy. We obtain

2k — 2 12
'qu + l‘ug _I_ . _|_ xuk—l S ?un* —I— m . XG(H, WH)xu*
2k — 2) 2
= —— * T o< H *.
A1 A W

By A > 8, we have

Ty _xUQ +x’u3+.“+$uk71

Ty Loy
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S22, 2
= TA—1 T AA-1)

G(H, WH)

H)—1+——-¢(H )
Therefore,
xw

Z(dU( ) - 1)~ o =+ ZdU o
uelUy weW
= ¥ (dU()—DE-F > (dy(u %*+ > dy(w xu*

welU\V (H) ueV (H) weWpy weW\Wg

2 2

<e(U\V(H))+e(H)—1+ me(!—[, W) + X6<U7 Wy) +e(U, W\ Wy)
<e(Uy) T 16(U7 Wy) +e(U, W\ Wy)
< e(Uy) = 1+ e(U, W),
a contradiction. This completes the proof. U

According to Lemmas 3.2, 3.4, 3.5, 3.6, we get that every element H in H is K, where
r > 1. Then e(H) = |H| — 1. This implies that

D (do(u) = 1) < 37 (2e(H) ~ |H])

uelUy HeH
= > (e(H) - 1)
HeH
= e(Uy) = |H].

By (1) and ), .y du(w) = < e(U, W), we have

S (dulw) = D2 2 e(U)

ueUy v

uelUy Lu

Zu < 1. Next we finish the

Combining with the two inequalities, we have |[H| + > ... .

proof of Theorem 1.3.

Proof of Theorem 1.3. If || = 0, then G* is bipartite. By Lemma 2.3, we have A <
vVm < W@. This contradicts with A > H‘/@. So |H| = 1. Tt follows that Uy = ()
due to x,, > 0 for any u € V(G*) and x,, = x,+ for any u € U satisfying dyy(u) > 2. That is,
G*[U] = K;,. If r = 1, then G*[U] contains an edge upu;. We have Az, = x,, + x,, and
ATy = T+ Ty +D e N (ug) Lo L yields that 30 v o @y = (A+1) (2, —2u+) < 0. Since
Zwer(u ) Tw = 0, we obtaln ZweN o) Tw = 0. That is, N,(ug) = 0. By Lemmas 2.2
and 3.3, we have W = (). Then m = 3, a contradiction. So r > 2. Let U = {ug, uy,...,u,}

with the center ug. Because dy(ug) > 2, we have x,, = x,. Since

Ay = Tyy + Loy + -+ + T,
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and

Aouy = Ty + Tuy + -+ Tu, + Y T,
wENy (uo)
We gt D ey (ug) Tw = 0 Thus, Ny(ug) = 0. If 7 = 2, then we have N(w) = {u1, us}
for any w € W by Lemma 2.2. It follows that |[W| < 1. Otherwise there is a 60943,
contradiction. Therefore, m = e(G*) = 7, a contradiction. This implies that » > 3. If
W # 0, we have d(w) < 2 for any w € W. Otherwise, suppose that wuy, us, uz are three
neighbors of wg € W. Then u*uywg, u*uswy, u*uguswy are three internally disjoint paths
of length 2,2,3, a contradiction. Therefore, A\x,, < 2z,+ for any w € W. It follows that

Y (do(uw) -1+ Y dU(w)f—;

x *
uelUy “ weW

< (e(U) = 1)+ (U, 7)
<eUy)—1+eUW),

a contradiction. Hence, W = (). This implies that G* = K, V K;, with 2r + 1 = m. That
is, G* 2 Ky V mT’lKl. We complete the proof. O
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