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Abstract. Two-color partitions are partitions whose parts can be two colors, such as red
and green. Let Ld denote the set of two-color partitions into numerically distinct parts
with the added condition that red parts are at least d larger than the next largest part
and green parts are at least d+1 larger than the next largest part, and with no green part
1g or (d − 1)g. Recently, Andrews established three partition theorems related to Ld for
d = 1, 2, 3. Subsequently, Fu found the refinements of these three theorems by providing
the bijective proofs. In this paper, in view of linked partition ideals, we give the analytic
proofs of three refinements of the theorems given by Andrews. Meanwhile, we find an
analogue of Euler pentagonal number theorem related to Ld for d > 3. Furthermore, the
combinatorial proofs of the main theorems are presented.

1. Introduction

A partition λ of n is a weakly decreasing positive integer sequence λ1, λ2, . . . , λ`, such
that λ1 + λ2 + · · · + λ` = n. Usually, for a partition λ = (λ1, λ2, . . . , λ`), each λi is called
the part of λ, the number of parts ` is called the length of λ, denoted by ](λ), and |λ| = n
is referred to as the weight of λ.

Two-color partitions are partitions whose parts can be two colors, such as red and green.
For example, there are ten two-color partitions of 3, namely 3r, 3g, 2r + 1r, 2r + 1g, 2g +
1r, 2g +1g, 1r +1r +1r, 1r +1r +1g, 1r +1g +1g, 1g +1g +1g. Given a two-color partition,
we say that two parts are distinct if they are of different colors or different numerical values
or both. We say two parts are numerically distinct if they have different numerical values.
For instance, 1r and 1g are distinct, but not numerically distinct.

Define Ld to be the set of two-color partitions into numerically distinct parts with the
condition that red parts are at least d larger than the next largest part and green parts
are at least d+ 1 larger than the next largest part, and with no green part 1g or (d− 1)g.
Let Ld(n) denote the number of partitions of n in Ld. Recently, Andrews [7] found the
following three theorems.

Theorem 1.1. [7, Theorem 1.3] L1(n) equals the number of partitions of n in which no
part is divisible by 4.
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Theorem 1.2. [7, Theorem 1.4] L2(n) equals the number of basis partitions of n.

Theorem 1.3. [7, Theorem 1.5] L3(n) equals the number of partitions of n into distinct
parts.

Basis partitions mentioned here were first introduced by Gupta [20] in 1978 when con-
sidering rank vectors. For a partition λ = (λ1, λ2, · · · , λ`), its Ferrers graph is an array
of ` rows of dots, where the ith row has λi dots and rows are left justified. Counting the
dots in successive columns, we obtain the conjugate partition of λ denoted by λ′. The
Durfee square of λ is the largest square that could fit in its Ferrers graph. Then each
partition λ can be written as a triple (d, π, σ), where d is the side length of the Dur-
fee square, π = (λd+1, λd+2, · · · ) is the subpartition below the Durfee square of λ, and
σ = (λ1−d, λ2−d, · · · , λd−d). In 1998, Nolan et al. [22] gave the generating function and
an alternative description of basis partitions from the viewpoint of Ferrers graphs.

Definition 1.4. [22, Theorem 3] A partition λ = (d, π, σ) is said to be a basis partition if
π and σ′ do not have parts in common.

In 2023, Fu [17] derived the refinements of the above three theorems due to Andrews by
exhibiting bijections.

Definition 1.5. [17] Let Ld(n, k, `) denote the number of two-color partitions of n in Ld
with k red parts and ` green parts.

Theorem 1.6. [17, Theorem 1.7] For non-negative integers n, k, l, let A(n, k, `) be the
number of two-color partitions of n, such that for a certain non-negative integer j, each
partition is consisted of k + j distinct red parts and ` distinct even green parts, wherein
exactly k red parts are larger than `. Then L1(n, k, `) = A(n, k, `).

Theorem 1.7. [17, Theorem 1.9] Let B(n, k, `) be the number of basis partitions (k +
`, π, σ) of n, such that π has exactly ` distinct parts. Then L2(n, k, `) = B(n, k, `).

Theorem 1.8. [17, Theorem 1.11] Let D(n, k, `) be the number of partitions of n into k+2`
distinct parts such that the Durfee square is of side k + `. Then L3(n, k, `) = D(n, k, `).

In this paper, with the aid of linked partition ideals, we provide a uniform method to
give the analytic proofs of the following theorems.

Theorem 1.9. Let L1(n,m) denote the number of two-color partitions of n in L1 with m
green parts. Let A(n,m) be the number of two-color partitions of n with distinct red parts
and m distinct even green parts. Then L1(n,m) = A(n,m).

Theorem 1.10. Let B̃(n, k, `) be the number of partitions (k+ `, π, σ) of n, such that π is

a distinct partition with ` parts. Then L2(n, k, `) = B̃(n, k, `).

Theorem 1.11. Let L3(n,m) denote the number of partitions of n in L3, such that the
sum of the number of red parts and twice the number of green parts is m. Let D(n,m) be
the number of distinct partitions of n with m parts. Then L3(n,m) = D(n,m).
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Theorem 1.12. For d > 3, let L
e

d(n) (resp. L
o

d(n)) denote the number of partitions of n
in Ld with parts > d except for 1r and (d − 1)r, such that the sum of the number of parts
and the number of green parts is even (resp. odd). Then for any non-negative integer j,

L
e

d(n)− Lo

d(n) =

{
(−1)j, if n = j(dj ± (d− 2))/2,
0, otherwise.

The paper is organized as follows. In Section 2, some preliminaries are provided. In
Section 3, in view of linked partition ideals, we give the analytic proofs of Theorems 1.9-
1.12. Section 4 is devoted to the combinatorial proofs of the main theorems. Finally, we
conclude the paper in Section 5.

2. Preliminaries

In this section, we present some preliminaries.
Let a and q be complex numbers with |q| < 1. Then for any positive integer n, the

q-shifted factorials are defined as [18]

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1− aqk), (a; q)∞ :=
∞∏
k=0

(1− aqk).

Lemma 2.1. [18, Equation (1.3.2)] For |z| < 1,∑
n>0

(a; q)nz
n

(q; q)n
=

(az; q)∞
(z; q)∞

. (2.1)

Setting a = 0 in (2.1) yields that∑
n>0

zn

(q; q)n
=

1

(z; q)∞
. (2.2)

Moreover, replacing z by −z/a in (2.1) and then letting a→∞, we derive that∑
n>0

znq(
n
2)

(q; q)n
= (−z; q)∞. (2.3)

The Gaussian polynomial [6] is defined by[
n
m

]
q

:=

{ (q;q)n
(q;q)m(q;q)n−m

, if 0 6 m 6 n,

0, otherwise.

Lemma 2.2. [6, Equation (3.3.6)] We have

(z; q)n =
n∑
j=0

(−1)jzjq(
j
2)
[
n
j

]
q

. (2.4)
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Lemma 2.3. [6, Theorem 9.2] We have

∞∑
n=0

(−1)nxnqn(3n+1)/2(xq; q)n(1− xq2n+1)

(q; q)n
= (xq; q)∞. (2.5)

In [3], Andrews derived the following q-series from a well-poised basic hypergeometric
series. Then in [6], these q-series were used to study Rogers–Ramanujan identities. For
further applications, see [2, 4, 10, 21]. Here we use the definitions which are stated in [6].

Definition 2.4. [6, Section 7.2] For |x| < |q|−1,

Hk,i(a;x; q) :=
∞∑
n=0

xknqkn
2+n−inan(1− xiq2ni)(axqn+1; q)∞(a−1; q)n

(q; q)n(xqn; q)∞
, (2.6)

Jk,i(a;x; q) := Hk,i(a;xq; q)− xqaHk,i−1(a;xq; q). (2.7)

From (2.6), it is obvious that

Hk,0(a;x; q) = 0. (2.8)

Lemma 2.5. [6, Section 7.2] We have

Hk,−i(a;x; q) = −x−iHk,i(a;x; q), (2.9)

Hk,i(a;x; q)−Hk,i−1(a;x; q) = xi−1Jk,k−i+1(a;x; q). (2.10)

Lemma 2.6. For |x| < |q|−1,

H 1
2
, 1
2
(0;x; q) =

1

(−x1/2; q)∞
. (2.11)

Proof. First, setting k = i = 1/2 and a = 0 in (2.10) yields that

x−
1
2J 1

2
,1(0;x; q) = H 1

2
, 1
2
(0;x; q)−H 1

2
,− 1

2
(0;x; q) = (1 + x−

1
2 )H 1

2
, 1
2
(0;x; q),

where the last step follows by (2.9). It is plain that

(1 + x
1
2 )H 1

2
, 1
2
(0;x; q) = J 1

2
,1(0;x; q)

= H 1
2
,1(0;xq; q) (by (2.7) with (k, i, a)→ (1/2, 1, 0))

= J 1
2
, 1
2
(0;xq; q) (by (2.8) and (2.10) with (k, i, a)→ (1/2, 1, 0))

= H 1
2
, 1
2
(0;xq2; q) (by (2.7) with (k, i, a)→ (1/2, 1/2, 0)).

Hence, iterating the above identity, we complete the proof. �

Lemma 2.7. For |x| < |q|−1,∑
n1,n2>0

xn1+2n2q2(
n1
2 )+n1n2+2n1+2n2 (1 + xqn1+1)

(q; q)n1(q; q)n2

=
1

(xq; q)∞
. (2.12)
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Proof. By using (2.2) and setting n1 → n on the left-hand side of (2.12), we obtain that

∑
n1,n2>0

xn1+2n2q2(
n1
2 )+n1n2+2n1+2n2 (1 + xqn1+1)

(q; q)n1(q; q)n2

=
∑
n>0

xnqn
2+n(1 + xqn+1)

(q; q)n(x2qn+2; q)∞
. (2.13)

Then setting a = 0, i = k = 1/2 and x→ x2q2 in (2.6) yields that∑
n>0

(−1)nxnqn
2+n(1− xqn+1)

(q; q)n(x2qn+2; q)∞
= H 1

2
, 1
2
(0;x2q2; q)

=
1

(−xq; q)∞
, (2.14)

where we derive the last step by setting x → x2q2 in (2.11). Therefore, combining (2.13)
and (2.14), we complete the proof. �

The definition of linked partition ideals was first introduced by Andrews in [5]. It has
been silent for many years, and only recently come into spotlight [8, 9, 12–16, 19]. Much
lately, Andrews and Chern [8] generalized the definition for overpartitions. In this paper,
we define the linked partition ideals of two-color partitions. Let µ be a two-color partition.
Then φm(µ) denotes the two-color partition given by adding m to each part of µ with color
preserved. For two two-color partitions µ and ν, the operation µ ⊕ ν yields a two-color
partition including all the parts in µ and ν.

Definition 2.8. Assume that

(1) Π = {π1, π2, . . . , πK} is a finite set of two-color partitions, where π1 = ∅;
(2) for each πa ∈ Π, there exists a corresponding linking set L(πa) ⊆ Π, with especially,
L(π1) = L(∅) = Π and π1 = ∅ ∈ L(πk) for any 1 6 k 6 K;

(3) and there is a positive integer T , referred to as the modulus, which is greater than or
equal to the largest part among all two-color partitions in Π.

A span one linked partition ideal I = I (〈Π,L〉, T ) is the collection of all two-color
partitions of the form

λ = φ0(λ0)⊕ φT (λ1)⊕ · · · ⊕ φNT (λN)⊕ φ(N+1)T (π1)⊕ φ(N+2)T (π1)⊕ · · ·
= φ0(λ0)⊕ φT (λ1)⊕ · · · ⊕ φNT (λN), (2.15)

where λi ∈ L(λi−1) for each i and λN is not the empty partition.

Notice that I includes the empty partition which corresponds to φ0(π1)⊕φT (π1)⊕ · · · .
It is obvious that each summand φiT (λi) in (2.15) consists of parts ranging in size from
iT+1 to iT+T , indicating that no part appears in two different summands simultaneously.

For any given positive integer d, we define the span one linked partition ideal

I d := I (〈Π,L〉, d),
5



where Π = {π1 = ∅, π2 = 1r, π3 = 1g, π4 = 2r, π5 = 2g, . . . , π2d = dr, π2d+1 = dg} and



L(π1) = {π1, π2, π3, π4, . . . , π2d, π2d+1},
L(π2) = L(π3) = {π1, π2, π4, π5, . . . , π2d, π2d+1},
L(π4) = L(π5) = {π1, π4, π6, π7, . . . , π2d, π2d+1},

· · ·
L(π2d−2) = L(π2d−1) = {π1, π2d−2, π2d, π2d+1},
L(π2d) = L(π2d+1) = {π1, π2d}.

Let Ld to be the set of two-color partitions into numerically distinct parts with the added
condition that red parts are at least d larger than the next largest part and green parts
are at least d + 1 larger than the next largest part. Now, we derive the following lemma
related to Ld.

Lemma 2.9. For any positive integer d, Ld is equinumerous with the span one linked
partition ideal I d.

Proof. It can be easily verified that all two-color partitions in I d satisfy the conditions for
Ld. On the other hand, for a given positive integer d, decompose each two-color partition
in Ld into blocks B0,B1, . . ., such that all parts between di + 1 and di + d belong to the
block Bi. It is evident that φ−di(Bi) exclusively belongs to Π. Furthermore, if φ−di(Bi) is
π1 (i.e., Bi is empty), then φ−d(i+1)(Bi+1) can be any element from Π. If φ−di(Bi) is π2 or π3
(i.e., Bi is either (di+ 1)r or (di+ 1)g), then Bi+1 cannot be (di+d+ 1)g due to the second
condition of Ld. Consequently, φ−d(i+1)(Bi+1) cannot be π3. Since similar arguments can
be applied to other possibilities of φ−di(Bi), the details are omitted. Therefore, we complete
the proof. �

Next, we define the generating functions for partitions in I d according to the first
decomposed block:

Gi(x) = Gi(x, y, z, q) :=
∑
λ∈Id

λ0=πi

x](λ)y]r(λ)z]g(λ)q|λ|,

where ]g(λ) (resp. ]r(λ)) denotes the number of green (resp. red) parts in λ. It is plain
that

Gi(x) = x](πi)y]r(πi)z]g(πi)q|πi|
∑

j:πj∈L(πi)

Gj(xq
d).
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Hence, 

G1(x)
G2(x)
G3(x)

...
G2d(x)
G2d+1(x)

 = W · A ·



G1(xq
d)

G2(xq
d)

G3(xq
d)

...
G2d(xq

d)
G2d+1(xq

d)

 , (2.16)

where

W = diag(1, xyq, xzq, xyq2, xzq2, . . . , xyqd, xzqd) (2.17)

and

A =



1 1 1 1 1 1 1 · · · 1 1
1 1 0 1 1 1 1 · · · 1 1
1 1 0 1 1 1 1 · · · 1 1
1 0 0 1 0 1 1 · · · 1 1
1 0 0 1 0 1 1 · · · 1 1
...

...
...

...
...

...
...

. . .
...

...
1 0 0 0 0 0 0 · · · 1 0
1 0 0 0 0 0 0 · · · 1 0


. (2.18)

Chern [12] introduced a crucial recurrence relation for a family of q-multi-summations,
and later he gave a refinement of the relation in [14]. Let R and J be positive integers.
Then fix a symmetric matrix α = (αi,j) ∈ MatR×R(N), a vector A = (Ar) ∈ NR

>0 and J
vectors γj = (γj,r) ∈ NR

>0 for j = 1, 2, . . . , J. Let x1, x2, . . . , xJ and q be indeterminates

such that the following q-multi-summation H(β) = H(β1, . . . , βR) for β ∈ ZR converges:

H(β) :=
∑

n1,...,nR>0

x
∑R
r=1 γ1,rnr

1 · · · x
∑R
r=1 γJ,rnr

J q
∑R
r=1 αr,r(

nr
2 )+

∑
16i<j6R αi,jninj+

∑R
r=1 βrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR
. (2.19)

The recurrence relation for H(β) is as follows.

Lemma 2.10. [14, Lemma 2.1] For 1 6 r 6 R,

H(β1, . . . , βr, . . . , βR) =H(β1, . . . , βr + Ar, . . . , βR)

+ x
γ1,r
1 · · ·xγJ,rJ qβrH(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R).

In [14], Chern illustrated the relation with a binary tree, in which the coordinate βr is
displayed in boldface. See Figure 1.
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H(β1, . . . ,βr, . . . , βR)

H(β1, . . . , βr + Ar, . . . , βR) H(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R)

x
γ1,r
1 · · ·xγJ,rJ qβr1

Figure 1. Node H(β1, . . . , βr, . . . , βR) and its children

3. Proofs of the main results

Based on the definition of H(β) in (2.19), we set R = 2 and J = 3. Then choose

α =

(
d d
d d+ 1

)
, A = (1, 1),

x1 = x,
x2 = y,
x3 = z,

γ1 = (1, 1),
γ2 = (1, 0),
γ3 = (0, 1).

Thus, we have

H(β1, β2) =
∑

n1,n2>0

xn1+n2yn1zn2qd(
n1
2 )+(d+1)(n22 )+dn1n2+β1n1+β2n2

(q; q)n1(q; q)n2

. (3.1)

Let IS denote the subset of partitions in I such that parts from S are forbidden. For
example, if S = {1, 2g}, then 1r, 1g and 2g are not the parts of the partitions in I{1,2g}.
Define

F1(x) :=
∑
λ∈I d

x](λ)y]r(λ)z]g(λ)q|λ| =
∑

i∈{1,2,3,4,...,2d,2d+1}

Gi(x),

F2(x) = F3(x) :=
∑

λ∈I d
{1g}

x](λ)y]r(λ)z]g(λ)q|λ| =
∑

i∈{1,2,4,5,...,2d,2d+1}

Gi(x), (3.2)

F4(x) = F5(x) :=
∑

λ∈I d
{1,2g}

x](λ)y]r(λ)z]g(λ)q|λ| =
∑

i∈{1,4,6,7,...,2d,2d+1}

Gi(x), (3.3)

F6(x) = F7(x) :=
∑

λ∈I d
{1,2,3g}

x](λ)y]r(λ)z]g(λ)q|λ| =
∑

i∈{1,6,8,9,...,2d,2d+1}

Gi(x),

· · ·

F2d−2(x) = F2d−1(x) :=
∑

λ∈I d
{1,2,...,(d−2),(d−1)g}

x](λ)y]r(λ)z]g(λ)q|λ| =
∑

i∈{1,2d−2,2d,2d+1}

Gi(x),

(3.4)

F2d(x) = F2d+1(x) :=
∑

λ∈I d
{1,2,...,(d−1),dg}

x](λ)y]r(λ)z]g(λ)q|λ| =
∑

i∈{1,2d}

Gi(x).
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It is obvious that


F1(x)
F2(x)

...
F2d+1(x)

 = A ·


G1(x)
G2(x)

...
G2d+1(x)

 = A ·W · A ·


G1(xq

d)
G2(xq

d)
...

G2d+1(xq
d)

 ,

where the last equality follows from (2.16). Thus, we have


F1(x)
F2(x)

...
F2d+1(x)

 = A ·W ·


F1(xq

d)
F2(xq

d)
...

F2d+1(xq
d)

 . (3.5)

Meanwhile, note that Gi(0) = 1 if i = 1 and Gi(0) = 0 otherwise. So,

F1(0) = F2(0) = · · · = F2d+1(0) = 1.

Then starting from H(1, 1), we repeatedly apply Lemma 2.10. The process is illustrated
by the binary tree shown in Figure 2, where the bolded number in each step acts as βr in
Lemma 2.10. As a result, we derive the following relation.



H(1, 1)
H(1, 2)
H(1, 2)
H(2, 3)
H(2, 3)

...
H(i, i+ 1)
H(i, i+ 1)

...
H(d, d+ 1)
H(d, d+ 1)



= A ·W ·



H(d+ 1, d+ 1)
H(d+ 1, d+ 2)
H(d+ 1, d+ 2)
H(d+ 2, d+ 3)
H(d+ 2, d+ 3)

...
H(d+ i, d+ i+ 1)
H(d+ i, d+ i+ 1)

...
H(2d, 2d+ 1)
H(2d, 2d+ 1)



, (3.6)

in which W and A are the same as (2.17) and (2.18), respectively. Therefore, the vector on
the left-hand side of (3.5) and that on the left-hand side of (3.6) satisfy the same recurrence
relation. Furthermore, taking x = 0 in the H-vector on the left-hand side of (3.6) gives
(1, 1, 1, . . . , 1, 1)T . So, these two vectors also have the same initial condition. Thus, we
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H(1,1)

H(1, 2)

H(2,2)

H(2, 3)

· · ·

H(i, i)

H(i, i+ 1)

· · ·

H(d+ 1, d+ 1)

H(d+ 1, d+ 2)

H(d+ 1, d+ 2)

H(d+ 2, d+ 3)

H(d+ 2, d+ 3)

· · ·

H(d+ i, d+ i+ 1)

H(d+ i, d+ i+ 1)

H(2d, 2d+ 1)

1

1

1

1

1

1

1

1

xzq

xyq

xzq2

xyq2

xzqi

xyqi

xyqd

Figure 2. The binary tree for arbitrary d

derive that 

F1(x)
F2(x)
F3(x)
F4(x)
F5(x)

...
F2d−2(x)
F2d−1(x)
F2d(x)
F2d+1(x)


=



H(1, 1)
H(1, 2)
H(1, 2)
H(2, 3)
H(2, 3)

...
H(d− 1, d)
H(d− 1, d)
H(d, d+ 1)
H(d, d+ 1)


. (3.7)

Next, in view of (3.7), we give the proofs of Theorem 1.9-1.12.
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Proof of Theorem 1.9. Based on the definition of L1(n,m), we have∑
m,n>0

L1(n,m)zmqn =
∑

λ∈I 1
{1g}

z]g(λ)q|λ|. (3.8)

Next, combining (3.1), (3.2) and (3.7) yields that∑
λ∈I 1

{1g}

x](λ)y]r(λ)z]g(λ)q|λ| = F2(x) = H(1, 2) =
∑

n1,n2>0

xn1+n2yn1zn2q(
n1
2 )+2(n22 )+n1n2+n1+2n2

(q; q)n1(q; q)n2

.

Letting x = y = 1 in the above identity, we have∑
λ∈I 1

{1g}

z]g(λ)q|λ| =
∑

n1,n2>0

zn2q(
n1
2 )+2(n22 )+n1n2+n1+2n2

(q; q)n1(q; q)n2

=
∑
n2>0

zn2q2(
n2
2 )+2n2

(q; q)n2

× (−qn2+1; q)∞

= (−q; q)∞
∑
n2>0

zn2q2(
n2
2 )+2n2

(q2; q2)n2

= (−q; q)∞(−zq2; q2)∞
=
∑
m,n>0

A(n,m)zmqn,

where the second and penultimate steps follow by (2.3). Finally, combining (3.8) and the
above identity, we complete the proof. �

Proof of Theorem 1.10. According to Definition 1.5, we have∑
n,k,`>0

L2(n, k, `)x
k+`z`qn =

∑
λ∈I 2

{1g}

x](λ)z]g(λ)q|λ|. (3.9)

Next, in view of (3.1), (3.2) and (3.7), we obtain that∑
λ∈I 2

{1g}

x](λ)y]r(λ)z]g(λ)q|λ| = F2(x) = H(1, 2) =
∑

n1,n2>0

xn1+n2yn1zn2q2(
n1
2 )+3(n22 )+2n1n2+n1+2n2

(q; q)n1(q; q)n2

.

Letting y = 1, N1 = n1 + n2 and N2 = n2, we get∑
λ∈I 2

{1g}

x](λ)z]g(λ)q|λ| =
∑

N1,N2>0

xN1zN2qN
2
1+(N2

2 )+N2

(q; q)N1−N2(q; q)N2

=
∑
N1>0

xN1qN
2
1

(q; q)N1

∑
N2>0

zN2q(
N2
2 )+N2

[
N1

N2

]
q

11



=
∑
N1>0

xN1qN
2
1 (−zq; q)N1

(q; q)N1

=
∑

n,k,`>0

B̃(n, k, `)xk+`z`qn,

where the penultimate step follows by (2.4). Therefore, combining (3.9) and the above
identity, we complete the proof. �

Recall the following functional operator B defined on C(q)[[x]]:

B

(∑
n>0

cnx
n

)
:=
∑
n>0

cnq
(n2)xn,

where the coefficients cn are in C(q). This operator can be considered as a specialization
of the q-Borel operators, and for more applications, one can see [8, 13].

Next, we provide two proofs of Theorem 1.11.

First proof of Theorem 1.11. From the definition of L3(n,m), it follows that∑
n,m>0

L3(n,m)xmqn =
∑

λ∈I 3
{1g,2g}

x](λ)+]g(λ)q|λ|.

Next, based on whether 1r appears or not, we divide the set I 3
{1g ,2g} into two disjoint

subsets, A3 and B3, where A3 is I 3
{1,2g}, and B3 denotes the set of the partitions in I 3

with 1r as the smallest part. Notice that by the definition of I 3, for any partition in B3,
removing the part 1r and subtracting 3 from each remaining part results in a partition that
belongs precisely to I 3

{1g}. Then we have∑
λ∈I 3

{1g,2g}

x](λ)y]r(λ)z]g(λ)q|λ|

=
∑

λ∈I 3
{1,2g}

x](λ)y]r(λ)z]g(λ)q|λ| + xyq
∑

λ∈I 3
{1g}

x](λ)y]r(λ)z]g(λ)q|λ|+3](λ)

= F4(x) + xyqF2(xq
3) (by (3.2) and (3.3))

= H(2, 3) + xyqH(4, 5) (by (3.5)-(3.7))

=
∑

n1,n2>0

xn1+n2yn1zn2q3(
n1
2 )+4(n22 )+3n1n2+2n1+3n2

(q; q)n1(q; q)n2

× (1 + xyq2n1+2n2+1), (3.10)

where the final step follows from (3.1). Setting y = 1 and z = x in (3.10), we have∑
λ∈I 3

{1g,2g}

x](λ)+]g(λ)q|λ| =
∑

n1,n2>0

xn1+2n2q3(
n1
2 )+4(n22 )+3n1n2+2n1+3n2

(q; q)n1(q; q)n2

×
(
1 + xq2n1+2n2+1

)
= B (L.H.S (2.12))

12



= B (R.H.S (2.12))

= B

(∑
m>0

(xq)m

(q; q)m

)

=
∑
m>0

(xq)mq(
m
2 )

(q; q)m

= (−xq; q)∞
=
∑
n,m>0

D(n,m)xmqn,

where the fourth step follows by (2.2), and we obtain the penultimate step by using (2.3).
Finally, by assembling the pieces, we complete the proof. �

Second proof of Theorem 1.11. Letting y = 1, z = x, N1 = n1 + n2 and N2 = n2 in
(3.10), we have∑

λ∈I 3
{1g,2g}

x](λ)+]g(λ)q|λ| =
∑

N1,N2>0

xN1+N2q3(
N1
2 )+(N2

2 )+2N1+N2(1 + xq2N1+1)

(q; q)N1−N2(q; q)N2

=
∑
N1>0

xN1q3(
N1
2 )+2N1(1 + xq2N1+1)

(q; q)N1

∑
N2>0

xN2q(
N2
2 )+N2

[
N1

N2

]
q

=
∑
N1>0

xN1q3(
N1
2 )+2N1(1 + xq2N1+1)(−xq; q)N1

(q; q)N1

= (−xq; q)∞,

where the penultimate step follows by (2.4) with z = −xq, and we derive the last step by
utilizing (2.5) with x→ −x. Thus, we prove the theorem. �

Proof of Theorem 1.12. From the definitions of L
e

d(n) and L
o

d(n), it follows that∑
n>0

(
L
e

d(n)− Lo

d(n)
)
qn =

∑
λ∈I d

{1g,2,3,...,(d−2),(d−1)g}

(−1)](λ)+]g(λ)q|λ|. (3.11)

Depending on whether 1r appears or not, the set I d
{1g ,2,3,...,(d−2),(d−1)g} can be divided into

two disjoint subsets, Ad and Bd, where Ad is I d
{1,2,3,...,(d−2),(d−1)g}, and Bd is the set of the

partitions in I d with 1r as the smallest part. Then according to the definition of I d,
for any partition in Bd, removing the part 1r and subtracting d from each remaining part
results in a partition in I d

{1g}. So, we obtain that∑
λ∈I d

{1g,2,3,...,(d−2),(d−1)g}

x](λ)y]r(λ)z]g(λ)q|λ|

13



=
∑

λ∈I d
{1,2,3,...,(d−2),(d−1)g}

x](λ)y]r(λ)z]g(λ)q|λ| + xyq
∑

λ∈I d
{1g}

x](λ)y]r(λ)z]g(λ)q|λ|+d](λ)

= F2d−2(x) + xyqF2(xq
d) (by (3.2) and (3.4))

= H(d− 1, d) + xyqH(d+ 1, d+ 2) (by (3.5)-(3.7))

=
∑

n1,n2>0

xn1+n2yn1zn2qd(
n1
2 )+(d+1)(n22 )+dn1n2+(d−1)n1+dn2

(q; q)n1(q; q)n2

× (1 + xyq2n1+2n2+1),

where we derive the last step by (3.1). Then setting x = z = −1, y = 1, N1 = n1 +n2 and
N2 = n2 in the above identity, we have∑

λ∈I d
{1g,2,3,...,(d−2),(d−1)g}

(−1)](λ)+]g(λ)q|λ|

=
∑

N1,N2>0

(−1)N1+N2qd(
N1
2 )+(N2

2 )+(d−1)N1+N2(1− q2N1+1)

(q; q)N1−N2(q; q)N2

=
∑
N1>0

(−1)N1qd(
N1
2 )+(d−1)N1(1− q2N1+1)

(q; q)N1

∑
N2>0

(−1)N2q(
N2
2 )+N2

[
N1

N2

]
q

=
∑
N1>0

(−1)N1qd(
N1
2 )+(d−1)N1(1− q2N1+1)

=
∞∑

j=−∞

(−1)jqj(dj−d+2)/2. (3.12)

where the third step follows by (2.4) with z = q. Thus, combining (3.11) and (3.12), we
have ∑

n>0

(
L
e

d(n)− Lo

d(n)
)
qn = 1 +

∞∑
j=1

(−1)jqj(dj−d+2)/2 +
∞∑
j=1

(−1)jqj(dj+d−2)/2,

which implies the theorem. �

4. Bijective proofs of the main results

In this section, we provide the combinatorial proofs of Theorems 1.9-1.12.

Proof of Theorem 1.9. In the survey [23, Section 4.4.1], a nice bijection between Gn,m
and En,m given by Alladi and Gordon [1] was presented, where Gn,m is the set of all MacMa-
hon diagrams with n squares, and m marked squares, such that all rows have distinct length,
and every row with a marked square has a gap (say that the ith row in a diagram [λ] has
a gap if λi − λi+1 > 2), and En,m is the set of pairs of distinct partitions (σ, τ), such that
|σ|+|τ | = n, ](σ) = m, and the parts in σ are even. It is obvious that L1(n,m) = |Gn,m| and
A(n,m) = |En,m|. So, this bijection implies the combinatorial proof of Theorem 1.9. �
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Proof of Theorem 1.10. Let B̃(n, k, `) denote the set of partitions of n such that the
side length of Durfee square is k+ `, and the subpartition below Durfee square is a distinct
partition with ` parts. Let L2(n, k, `) denote the set of partitions of n in L2 with k red

parts and ` green parts. Now, we construct a bijection between B̃(n, k, `) and L2(n, k, `).

First, we define a map θ from B̃(n, k, `) to L2(n, k, `). For a partition λ ∈ B̃(n, k, `),
let k + ` = d. Rewrite λ as (d, π, σ), in which d denotes the side length of the Durfee
square D, π is the subpartition below D, and σ is the subpartition on the right of D. Note
that if π = (π1, π2, · · · , π`), then d > π1 > π2 > · · · > π`. In the following, we insert π
into σ. First, insert π1 to the (d + 1 − π1)th row in σ. If σd+1−π1 + π1 6 σd−π1 , we finish
the insertion of π1. Otherwise, we exchange the positions of σd+1−π1 + π1 and σd−π1 . If
σd+1−π1 + π1 6 σd−π1−1, we finish the insertion. Otherwise, we exchange the two parts.
Repeat the operation until we find a right place for σd+1−π1 + π1. Then we change the last
dot in σd+1−π1 + π1 to a hollow dot. The same action is performed to π2, π3, . . . , π` in turn.
After finish the insertion of π, we get a partition µ̃. For any part which has a hollow dot
in the Ferrers graph, we color it green, and the rest parts are colored red. Notice that each
green part in µ̃ is larger than the part below.

Since d2 = (2d− 1) + (2d− 3) + · · ·+ 1, put the partition (2d− 1, 2d− 3, . . . , 3, 1) to the
left of µ̃ such that the first row of the two partitions should be aligned. Keeping the colors
in µ̃, we obtain a new partition µ. It is obvious that the difference between any two parts
in µ is at least two, and if µi is green, µi − µi+1 > 2. So, µ ∈ L2(n, k, `).

The inverse of θ is defined as follows. For a two-color partition µ in L2(n, k, `), we
represent µ as a 2-indented Ferrers graph and change the last dot to a hollow dot for any
green part. The 2-indented Ferrers graphs discussed here are Ferrers graphs where each
row is indented by 2 units relative to the row above, rather than being left-aligned. Note
that ](µ) = k + ` = d. Then let µ̃ denote the partition obtained from µ by dissecting the
staircase (2d− 1, 2d− 3, · · · , 3, 1), which can be rewritten as a Durfee square of side d.

Next, we construct a partition π from the parts with hollow dots in µ̃. Assume that the
lowest hollow dot of µ̃ is in the ith row. If µ̃i − (d + 1 − i) > µ̃i+1, then we find π`, i.e.
π` = d+ 1− i. If µ̃i − (d+ 1− i) < µ̃i+1, then put µ̃i in the (i+ 1)th row, µ̃i+1 in the ith
row and compare µ̃i − (d+ 1− (i+ 1)) with µ̃i+2. Next, if µ̃i − (d− i) > µ̃i+2, then we get
π` = d − i. Otherwise put µ̃i in the (i + 2)th row, µ̃i+2 in the (i + 1)th row and compare
µ̃i−(d+1−(i+2)) with µ̃i+3. Repeat the procedure above until we get π`. By applying the
same operation to other parts with hollow dot from bottom to top, we get π`−1, . . . , π2, π1
in turn. It is clear that every part in π is distinct and no more than d. Together with the

Durfee square, we finally get a partition in B̃(n, k, `).
�

Example 4.1. For µ = (12g, 8g, 5r, 2g) in L2(27, 1, 3), we give the graphical representa-
tion of the bijection step by step. See Figure 3. The corresponding partition is λ =

(4, (3, 2, 1), (2, 2, 1)) ∈ B̃(27, 1, 3). We can get µ from λ by the map θ.

In the following, we provide two bijective proofs of Theorem 1.11. The first one is based
on the above proof of Theorem 1.10.
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µ̃

→

π

π

→

π

→
→

Figure 3. The graphical representation of the map from L2(27, 1, 3) to B̃(27, 1, 3)

First proof of Theorem 1.11. Let L3(n, k, `) denote the set of partitions of n in L3 with
k red parts and ` green parts. Notice that L3(n, k, `) ⊂ L2(n, k, `). Let D(n, k, `) denote the
set of partitions of n into k+ 2` distinct parts and the side length of Durfee square is k+ `.

Thus, we have D(n, k, `) ⊂ B̃(n, k, `). In the proof of Theorem 1.10, when map L2(n, k, `)

to B̃(n, k, `), we take out a staircase (2d − 1, 2d − 3, . . . , 3, 1) and change it to a Durfee
square of side d. For a partition ν in L3(n, k, `), we find a staircase (3d−2, 3d−5, . . . , 4, 1),
and change it to (2d − 1, 2d − 2, · · · , d + 1, d). Then by taking out the staircase from ν,
we obtain a partition ν̃. Consider the parts with hollow dot in ν̃ from bottom to top. If
the part under consideration is in the ith row, to derive a distinct partition, we need to
consider the following two cases.

(1) If νd 6= 1, compare ν̃i − (d + 1 − i) with ν̃i+1, ν̃i − (d − i) with ν̃i+2, and so on. The
operation is the same as that described in the above proof.

(2) If νd = 1, compare ν̃i − (d− i) with ν̃i+1, ν̃i − (d− 1− i) with ν̃i+2, and so on.

Then based on the bijection in the proof of Theorem 1.10, we construct a new bijection
between L3(n, k, `) and D(n, k, `). �
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Example 4.2. For ν = (13g, 9r, 6g, 1r) in L3(29, 2, 2), we show the map in Figure 4. The
corresponding partition (9, 7, 6, 4, 2, 1) is just in D(29, 2, 2).

ν̃

→

π

π

→ →

Figure 4. The graphical representation of the map from L3(29, 2, 2) to D3(29, 2, 2)

Note that the above bijection is different from the one given by Fu [17]. For example,
In [17], the partitions (12r, 5g, 1r) and (9r, 6r, 3g) are mapped to (9, 4, 3, 2) and (6, 5, 4, 3),
respectively. Whereas, according to our bijection, these two partitions are mapped to
(10, 4, 3, 1) and (7, 6, 4, 1), respectively.

Next, inspired by the work of Bressoud [11], we provide the second bijective proof of
Theorem 1.11.

Second proof of Theorem 1.11. Let L3(n,m) denote the set of partitions of n in L3,
such that the sum of the number of red parts and twice the number of green parts is m.
Let D(n,m) be the set of distinct partitions of n with m parts.

We first give a map ξ from L3(n,m) to D(n,m). For a partition τ ∈ L3(n,m), list all
parts in a column in decreasing order for convenience. Next, we find the smallest green
part. If the part is 2k + 1 (resp. 2k + 2), rewrite it to (k + 1, k) (resp. (k + 2, k)). Then
if k 6 the part below, we add three to the part below, change the pair to (k, k − 2) (resp.
(k, k − 1)), and then switch the positions of these two rows. We show the operation as
follows.

k + 1 k
b

k6b−−→ b+ 3
k k − 2

or

k + 2 k
b

k6b−−→ b+ 3
k k − 1.

17



Notice that in the first case (k+ 1) + k− b > 3, and in the second case (k+ 2) + k− b > 3.
Continue to compare the smaller part of this new pair with the part below until the smaller
one is larger than the part below. This is for the case that the part below is a single
number.

When we meet two pairs which are in adjacent rows. For example,

a1 a2
b1 b2.

If a2 6 b1, we do the following adjustments.

a1 a2
b1 b2

a1−a2=1−−−−−→
a26b1

b1 + 3 a2
a2 − 2 b2

=
b1 + 3 a2
a1 − 3 b2

or

a1 a2
b1 b2

a1−a2=2−−−−−→
a26b1

b1 + 3 a2
a2 − 1 b2

=
b1 + 3 a2
a1 − 3 b2.

Otherwise, we stop moving the pair (a1, a2).
Repeat above operation for all green parts in increasing order. Once we complete the

process, collecting all the numbers, we get a distinct partition ω with (](τ) + ]g(τ)) parts.
So, ω ∈ D(n,m).

Conversely, for a partition ω in D(n,m), put all the parts of ω in a column. Then starting
from the largest part, let the first two adjacent parts with the difference less than three be
a pair and put them in a row.

Let (c+ 1, c) (resp. (c+ 2, c)) be a pair under consideration, and let d be the part above
it. If the sum of the pair is larger than d− 3, we subtract three from the part above, add
three to the smaller part of the pair, and switch their positions. The operation is stated as
follows.

d
c+ 1 c

2c+1>d−3−−−−−−→ c+ 3 c+ 1
d− 3

or

d
c+ 2 c

2c+2>d−3−−−−−−→ c+ 3 c+ 2
d− 3.

Notice that in the first case d−(c+1) > 3, and in the second case d−(c+2) > 3. Repeat the
operation until the sum of the pair is less than or equal to the part above reduced three,
or there is a green part above it, or there is nothing above it. Merge the pair together
and color it green. Then we move to find next two adjacent parts with the difference less
than three under this green part and repeat the same procedure. Once we complete the
process for all pairs, color the remaining parts red. Thus, we obtain a two-color partition
in L3(n,m). �
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Example 4.3. For τ = (16g, 12r, 8g, 4g) ∈ L3(40, 7), we have ξ(τ) = ω = (15, 9, 6, 4, 3, 2, 1) ∈
D3(40, 7).

τ =

16g
12r
8g
4g

7→

16g
12r
8g
3 1

7→

16g
12r
5 3
3 1

7→

16g
12r
6 3
2 1

7→

9 7
12r
6 3
2 1

7→

15r
7 6
6 3
2 1

7→

15
9 6
4 3
2 1

.

The inverse of ξ on ω is shown as follows.

ω =

15
9
6 4
3
2
1

7→

15
7 6
6
3
2
1

7→

9 7
12
6
3
2
1

7→

16g
12
6
3 2
1

7→

16g
12
5 3
3
1

7→

16g
12
8g
3 1

7→

16g
12r
8g
4g

.

Proof of Theorem 1.12. Let Ld(n) denote the set of partitions of n in Ld with parts > d
except for 1r and (d− 1)r. If n = 0, there is only empty partition. Thus, Theorem 1.12 is
true. For n > 0, we provide an involution ψ on Ld(n).

For a partition λ = (λ1, λ2, . . . , λj) ∈ Ld(n), let λri (resp. λgi ) denote the ith part of λ
with red (resp. green) color. Assume that λgs is the smallest green part. Then we find the
smallest red part denoted by λrt which satisfies λrt > d for t = j or λrt − λt+1 > d for t < j.
If λgs or λrt does not exist, then treat it as +∞. Next, we make the following changes.

(1) If λgs < λrt , then change λgs to a red part.
(2) If λgs > λrt , then change λrt to a green part.

It is clear that ψ2(λ) = λ and ](λ) + ]g(λ) = ](ψ(λ)) + ]g(ψ(λ))± 1.
When neither λgs nor λrt exists, it is easy to see that all the parts in λ are red, λj < d, and

the difference between any two parts is d. So, when n = j(dj − d+ 2)/2, there is only one
partition that cannot be mapped by ψ, which is ((dj−d+1)r, (dj−2d+1)r, . . . , (d+1)r, 1r);
and if n = j(dj + d− 2)/2, the partition is ((dj − 1)r, (dj − d− 1)r, . . . , (2d− 1)r, (d− 1)r).

Consequently, if n 6= j(dj±(d−2))/2, we have L
e

d(n) = L
o

d(n); and if n = j(dj±(d−2))/2,
then L

e

d(n) = L
o

d(n) + (−1)j. Therefore, we complete the proof. �

5. Concluding remarks

Notice that summing over k and change ` to m, we obtain Theorem 1.9 from Theorem
1.6. For a partition (k + `, π, σ) mentioned in Theorem 1.10, moving the parts in σ′,
which also appear in π, to π, we derive a basis partition described in Theorem 1.7. So,

B̃(n, k, `)=B(n, k, `). Finally, setting m = k + 2` in Theorem 1.8 yields Theorem 1.11.
Although Theorems 1.9-1.11 can be obtained from Theorems 1.6-1.8, respectively, we want
to show that linked partition ideals can be used to construct a uniform method to derive
some partition identities. Theorem 1.12 is an example. So, the readers who are interested
in this tool may find more partition identities by following this line.
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It should be claimed that the bijective proofs of Theorems 1.10 and 1.11 presented in
this paper are different from those given by Fu [17].
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