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Abstract. Briggs conjectured that if a polynomial a0 + a1x + · · · + anx
n with real

coefficients has only negative zeros, then
a2k(a

2
k − ak−1ak+1) > a2k−1(a

2
k+1 − akak+2)

for any 1 ≤ k ≤ n − 1. The Boros-Moll sequence {di(m)}mi=0 arises in the study of
evaluation of certain quartic integral, and a lot of interesting inequalities for this sequence
have been obtained. In this paper we show that the Boros-Moll sequence {di(m)}mi=0, its
normalization {di(m)/i!}mi=0, and its transpose {di(m)}m≥i satisfy the Briggs inequality.
For the first two sequences, we prove the Briggs inequality by using a lower bound for
(di−1(m)di+1(m))/d2i (m) due to Chen and Gu and an upper bound due to Zhao. For
the transposed sequence, we derive the Briggs inequality by establishing its strict ratio-
log-convexity. As a consequence, we also obtain the strict log-convexity of the sequence
{ n
√

di(i+ n)}n≥1 for i ≥ 1.

1. Introduction

In the study of positive irreducibility of binding polynomials, Briggs [12] proposed two
inequality conjectures concerning elementary symmetric functions over a set of positive
numbers. Suppose that X = {x1, x2, . . . , xn} is a set of n variables. Recall that the k-th
elementary symmetric function is defined by

ek(X) =
∑

1≤j1<j2<···<jk≤n

xj1xj2 · · · xjk , 1 ≤ k ≤ n.

By convention, we set e0 = 1 and ek = 0 if k < 0 or k > n. Briggs [12] conjectured that
if X is a set of n positive numbers, then for 1 ≤ k ≤ n − 1 the following two inequalities
hold:

ek−1e
2
k+2 + e2kek+3 + e3k+1 > ek+1 (ek−1ek+3 + 2ekek+2) ,(1.1)
e2k(e

2
k − ek−1ek+1) > e2k−1(e

2
k+1 − ekek+2).(1.2)

It is worth noting that the expression

(x+ x1)(x+ x2) · · · (x+ xn) =
n∑

k=0

en−kx
k
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allows us to formulate Briggs’ conjecture in the following manner: If a polynomial f(x) =∑n
k=0 akx

k with positive coefficients has only real zeros, then for 1 ≤ k ≤ n− 1 we have
ak−1a

2
k+2 + a2kak+3 + a3k+1 > ak+1 (ak−1ak+3 + 2akak+2) ,(1.3)
a2k(a

2
k − ak−1ak+1) > a2k−1(a

2
k+1 − akak+2).(1.4)

We would like to point out that the inequality (1.3) is closely related to the notion of
2-log-concavity. Recall that a sequence {ak}k≥0 with real numbers is said to be log-concave
if

a2k − ak−1ak+1 ≥ 0(1.5)
for any k ≥ 1. The sequence {ak}k≥0 is called log-convex if a2k − ak−1ak+1 ≤ 0 for k ≥ 1.
A polynomial is said to be log-concave (resp. log-convex) if its coefficient sequence is log-
concave (resp. log-convex). For more information on log-concave and log-convex sequences,
see Brändén [10], Brenti [11] and Stanley [34]. For a sequence {an}n≥0, define an operator
L by L({an}n≥0) = {bn}n≥0, where bn = a2n− an−1an+1 for n ≥ 0, with the convention that
a−1 = 0. A sequence {an}n≥0 is said to be k-log-concave (resp. strictly k-log-concave) if
the sequence Lj ({an}n≥0) is nonnegative (resp. positive) for each 1 ≤ j ≤ k, and {an}n≥0

is said to be ∞-log-concave if Lk ({an}n≥0) is nonnegative for any k ≥ 1. The (strict)
k-log-convexity is defined in a similar manner. The notion of infinite log-concavity was
introduced by Boros and Moll [8]. We see that (1.3) can be reformulated as∣∣∣∣∣∣

ak+1 ak+2 ak+3

ak ak+1 ak+2

ak−1 ak ak+1

∣∣∣∣∣∣ > 0.(1.6)

By Newton’s inequality, if f(x) =
∑n

k=0 akx
k has only real zeros, then the sequence {ak}k≥0

is log-concave. Due to the positivity and log-concavity of the coefficients ak, the inequality
(1.6) amounts to say that the sequence {ak}k≥0 is 2-log-concave. It is also natural to study
(1.3) and (1.4) for infinite sequences {ak}k≥0. Notably, the 2-log-concavity property was
verified for various sequences. For instance, Hou and Zhang [25] and Jia and Wang [26]
independently proved it for the partition function {p(i)}i≥221. Mukherjee [33] explored
the sequence of overpartition functions {p(i)}i≥42. Yang [39] investigated the sequences of
differences {p(i)− p(i− 1)}i≥71 and {p(i)− p(i− 1)}i≥8. Additionally, Yang [38] examined
the sequence of broken k-diamond partition function {∆k(i)}i≥12 for k = 1 or 2.

It is known that a real-rooted polynomial with nonnegative coefficients, more generally
a multiplier sequence, is 2-log-concave due to Aissen, Edrei, Schoenberg and Whitney [1].
See also Craven and Csordas [20, Theorem 2.13] for the case of multiplier sequence. Hence,
the conjectured inequality (1.3) for a real-rooted polynomial with positive coefficients is
already established by allowing equality. In fact, the strict inequality can also be proved
by using Newton’s inequality and Brändén’s theorem [9] (see also [13, Theorem 1.2]).

However, the conjectured inequality (1.4) for a real-rooted polynomial with positive
coefficients is still open. From now on we will call (1.4) the Briggs inequality. Recently,
Liu and Zhang [29] proved the Briggs inequality for both the partition function sequence
{p(i)}i≥114 and the overpartition function sequence {p(i)}i≥18. The objective of this paper
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is to prove the Briggs inequality for the Boros-Moll sequence, the normalized Boros-Moll
sequence and the transposed Boros-Moll sequence, which we shall recall below.

The Boros-Moll sequences arise in the study of the following quartic integral∫ ∞

0

1

(t4 + 2xt2 + 1)m+1
dt

for x > −1 and m ∈ N. Boros and Moll [4, 7] proved that this integral is equal to
π

2m+3/2(x+1)m+1/2Pm(x), where

Pm(x) = 2−2m

m∑
k=0

2k
(
2m− 2k

m− k

)(
m+ k

k

)
(x+ 1)k.(1.7)

The coefficients of xi in Pm(x), denoted by di(m), are called the Boros-Moll num-
bers. The polynomials Pm(x) are called the Boros-Moll polynomials, and the sequences
{di(m)}mi=0 are called the Boros-Moll sequences. Clearly, one sees from (1.7) that

di(m) = 2−2m

m∑
k=i

2k
(
2m− 2k

m− k

)(
m+ k

k

)(
k

i

)
(1.8)

for 0 ≤ i ≤ m. See [3, 5, 6, 7, 8, 14, 17, 23, 24, 31] for more information on these sequences.
Boros and Moll [5] showed that the sequence {di(m)}mi=0 is unimodal with the maximum

term located in the middle for m ≥ 2, see also [2, 6]. Moll [31] conjectured a stronger
property that the Boros-Moll sequences {di(m)}mi=0 are log-concave, which was proved by
Kauers and Paule [28] with a computer algebra method. Chen, Pang and Qu [16] also
gave a combinatorial proof for this conjecture by building a structure of partially 2-colored
permutations. Boros and Moll [8] also conjectured that the sequence {di(m)}mi=0 is ∞-log-
concave, and this conjecture is still open.

Motivated by Newton’s inequality and the infinite log-concavity conjecture on bino-
mial numbers proposed by Boros and Moll [8], Fisk [22], McNamara and Sagan [30]
and Stanley (see [9]) independently gave a general conjecture, which states that if a
polynomial

∑n
k=0 akx

k has only real and negative zeros, then so does the polynomial∑n
k=0(a

2
k − ak−1ak+1)z

k where a−1 = an+1 = 0. This conjecture was confirmed by Brändén
[9]. Brändén’s Theorem provides an approach to ∞-log-concavity of a sequence by relating
real-rooted polynomials to higher-order log-concavity.

Although, as shown by Boros and Moll [5], the polynomials Pm(x) are not real-rooted
in general, Brändén introduced two polynomials

Qm(x) =
m∑
i=0

di(m)

i!
xi, Rm(x) =

m∑
i=0

di(m)

(i+ 2)!
xi, m ≥ 1,

derived from Pm(x) and conjectured their real-rootedness [9, Conjectures 8.5 & 8.6].
Brändén’s conjectures were proved by Chen, Dou and Yang [13]. As noted by Brändén
[9], based on two theorems of Craven and Csordas [21] on iterated Turán inequalities, the
real-rootedness of Qm(x) and Rm(x) imply, respectively, the 2-log-concavity and the 3-log-
concavity of Pm(x). In another direction, Chen and Xia [19] showed an analytic proof of the
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2-log-concavity of the Boros-Moll sequences by founding an intermediate function f(m, i),
so that the quartic inequalities for the 2-log-concavity is reduced to quadratic inequalities.

Since di(m) has two parameters, it is natural to consider properties for the sequences
{di(m)}m≥i, which was called transposed Boros-Moll sequences in [41] where the extended
ultra log-concavity and the asymptotic ratio-log-convexity for {di(m)}m≥i was proved, and
the asymptotic log-convexity for { n

√
di(i+ n)}n≥i2 was also obtained. Note that recently,

Jiang and Wang [27] proved the 2-log-concavity, the higher order Turán inequality and the
Laguerre inequality of lower order for the sequences {di(m)}m≥i.

As mentioned above, both the Boros-Moll sequence {di(m)}mi=0 and its transpose
{di(m)}m≥i are 2-log-concave, i.e., both of them satisfy (1.3). This motivated us to study
whether they also satisfy the Briggs inequality (1.4). On the other hand, since Briggs’
conjecture on (1.4) is still open for real polynomials with only negative zeros, it is also de-
sirable to know whether Qm(x) and Rm(x) satisfy the Briggs inequality. For this purpose,
we define the normalized Boros-Moll sequence {d̃i,k(m)}mi=1 as {di(m)/(i+ k)!}mi=1 for any
k ≥ 0. Our main results are stated as follows.
Theorem 1.1. For each m ≥ 2, the Boros-Moll sequence {di(m)}mi=1 satisfies the Briggs
inequality. That is, for any m ≥ 2 and 1 ≤ i ≤ m− 1,

d2i (m)(d2i (m)− di−1(m)di+1(m)) > d2i−1(m)(d2i+1(m)− di(m)di+2(m)).(1.9)

Theorem 1.2. For any k ≥ 0 and m ≥ 2, the normalized Boros-Moll sequence {d̃i,k(m)}mi=1

satisfies the Briggs inequality. That is, for any m ≥ 2, k ≥ 0 and 1 ≤ i ≤ m− 1,
d̃2i,k(m)

(
d̃2i,k(m)− d̃i−1,k(m)d̃i+1,k(m)

)
> d̃2i−1,k(m)

(
d̃2i+1,k(m)− d̃i,k(m)d̃i+2,k(m)

)
.(1.10)

Theorem 1.3. For each i ≥ 1, the transposed Boros-Moll sequence {di(m)}m≥i satisfies
the Briggs inequality. That is, for any i ≥ 1 and m ≥ i+ 1,

d2i (m)(d2i (m)− di(m− 1)di(m+ 1)) > d2i (m− 1)(d2i (m+ 1)− di(m)di(m+ 2)).(1.11)
However, for i = 0, the inverse relation of (1.11) holds.

In the remainder of this paper, we first complete the proofs of Theorems 1.1 and 1.2, in
Section 2, by employing a lower bound for (di−1(m)di+1(m))/d2i (m) given by Chen and Gu
[14] and an upper bound given by Zhao [40]. In Section 3 we establish the strict ratio-log-
convexity of the transposed Boros-Moll sequence {di(m)}m≥i, which is the key ingredient of
the proof of Theorem 1.3. The complete proof of Theorem 1.3 will be presented in Section
4. At last, in Section 5, we derive the strict log-convexity of the sequence { n

√
di(i+ n)}n≥1

for each i ≥ 1 from the strict ratio-log-convexity of {di(m)}m≥i.

2. Proofs of Theorems 1.1 and 1.2

This section is devoted to proving the Briggs inequality for the Boros-Moll sequence
{di(m)}mi=1 and the normalized Boros-Moll sequence {d̃i,k(m)}mi=1.

Let us first prove Theorem 1.1. In order to do so, we need proper bounds for
(di−1(m)di+1(m))/d2i (m). Chen and Gu [14] established the following inequality in studying
the reverse ultra log-concavity of the Boros-Moll polynomials.
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Theorem 2.1. ([14, Theorem 1.1]) For m ≥ 2 and 1 ≤ i ≤ m− 1, there holds
di(m)2

di−1(m)di+1(m)
<

(m− i+ 1)(i+ 1)

(m− i)i
.(2.1)

The following result was obtained by Zhao [40], which was used to give a new proof of
the higher order Turán inequality for the Boros-Moll sequence.
Theorem 2.2. ([40, Theorem 3.1]) For each m ≥ 2 and 1 ≤ i ≤ m− 1, we have

d2i (m)

di−1(m)di+1(m)
>

(m− i+ 1)(i+ 1)(m+ i2)

(m− i)i(m+ i2 + 1)
.(2.2)

We are now in a stage to show a proof of Theorem 1.1.
Proof of Theorem 1.1. By (1.8), it is clear that di(m) > 0 for m ≥ 1 and 1 ≤ i ≤ m. So,
for any m ≥ 2 and 1 ≤ i ≤ m− 1, the inequality (1.9) can be rewritten as(

ui+1(m)− 1
)
ui(m)− 1 +

1

ui(m)
> 0,(2.3)

where

ui(m) =
di−1(m)di+1(m)

d2i (m)
.(2.4)

We aim to prove (2.3) for m ≥ 2 and 1 ≤ i ≤ m− 1. As will be seen, the bounds given
by Theorems 2.1 and 2.2 are crucial to the proof.

For any 1 ≤ i ≤ m− 1 and m ≥ 2, it is routine to verify that
(m− i+ 1)(i+ 1)(m+ i2) > (m− i)i(m+ i2 + 1)

and hence by (2.2) we have
0 < ui(m) < 1.(2.5)

It should be noted that (2.5) is also implied by a result due to Chen and Xia [18, Theorem
1.1].

By Theorems 2.1 and 2.2, we have for m ≥ 2 and 1 ≤ i ≤ m− 1,
fi(m) < ui(m) < gi(m),(2.6)

where

fi(m) =
(m− i)i

(m− i+ 1)(i+ 1)
, gi(m) =

(m− i)i(m+ i2 + 1)

(m− i+ 1)(i+ 1)(m+ i2)
.(2.7)

It follows from (2.5) and (2.6) that for m ≥ 2 and 1 ≤ i ≤ m− 2,

(ui+1(m)− 1)ui(m)− 1 +
1

ui(m)
> (fi+1(m)− 1)gi(m)− 1 +

1

gi(m)
.(2.8)

Denote by Ei(m) the right-hand side of (2.8). Observe that

Ei(m) =
A

i(i+ 1)(i+ 2)(m− i)(m− i+ 1)(m+ i2)(m+ i2 + 1)
,(2.9)
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where
A = i5(2m2 − i2 + 10m− 4i) + 5i3m2(m− i) + i3m(13m− 3i) + 3im3(m− i)

+ 4i5 + 4i4 + 4i3m+ 4i2m2 + 2im3 + 2m4 + i3 + 5i2m+m2(4m− i) + 2m2.

For m ≥ 2 and 1 ≤ i ≤ m − 2, it is clear that A > 0, and hence Ei(m) > 0. Then we
obtain (2.3) by (2.8) for m ≥ 2 and 1 ≤ i ≤ m− 2.

It remains to prove (2.3) for m ≥ 2 and i = m− 1. In this case, note that

ui+1(m) = um(m) =
dm−1(m)dm+1(m)

d2m(m)
= fi+1(m) = fm(m) = 0.

Clearly, the inequality in (2.8) still holds for m ≥ 2 and i = m−1. It is easily checked that
Ei(m) > 0 for m ≥ 2 and i = m − 1. Again, we arrive at (2.3) by (2.8). This completes
the proof. □

We proceed to prove Theorem 1.2.
Proof of Theorem 1.2. Fix k ≥ 0 throughout this proof. Similar to the proof of Theorem
1.1, for any m ≥ 2 and 1 ≤ i ≤ m− 1, we reformulate the inequality (1.10) as(

ui+1,k(m)− 1
)
ui,k(m)− 1 +

1

ui,k(m)
> 0,(2.10)

where

ui,k(m) =
i+ k

i+ k + 1
ui(m).(2.11)

We aim to prove (2.10) for m ≥ 2 and 1 ≤ i ≤ m− 1. By (2.5) and (2.11), we see that
0 < ui,k(m) < 1.(2.12)

Moreover, from the relations (2.6) and (2.11) we have that for m ≥ 2 and 1 ≤ i ≤ m− 1,
fi,k(m) < ui,k(m) < gi,k(m),(2.13)

where

fi,k(m) =
i+ k

i+ k + 1
fi(m), gi,k(m) =

i+ k

i+ k + 1
gi(m).(2.14)

Combining (2.12) and (2.13), we deduce that for m ≥ 2 and 1 ≤ i ≤ m− 2,(
ui+1,k(m)− 1

)
ui,k(m)− 1 +

1

ui,k(m)
>

(
fi+1,k(m)− 1

)
gi,k(m)− 1 +

1

gi,k(m)
.(2.15)

Let Ei,k(m) denote the right-hand side of (2.15). Observe that

Ei,k(m) =
B0 +B1 · k +B2 · k2 +A · k3

i(i+ 1)(i+ 2)(m− i)(m− i+ 1)(m+ i2)(m+ i2 + 1)(i+ k)(i+ k + 1)(i+ k + 2)
,

where A remains the same as (2.9), and B0, B1, B2 are defined as follows:
B0 = 9i8m2 + 19i6m3 − 14i6m2 + 42i5m3 + 40i5m2 + 10i4m4 + 29i4m3 + 69i4m2 + 32i3m4

+ 30i3m3 + 46i3m2 + 37i2m4 + 42i2m3 + 17i2m2 − 10i9m− 4i8m+ 27i7m+ 15i6m
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+ 7i5m+ 21i4m+ 28i3m+ 8i2m+ 2i10 − 5i9 − 22i8 − 12i7 + 12i6 + 17i5 + 4i4

+ 20im4 + 32im3 + 12im2 + 4m4 + 8m3 + 4m2

B1 = i7(17m2 − 14im+ 24m− 24i) + i4(51m3 − 38i3) + i5m2(37m− 11i) + 59i6m+ 20i3m4

+ 3i5m2 + 8i6 + 8i5m+ 110i4m2 + 16i3m3 + 34i5 + 25i4m+ 87i3m2 + 42i2m3 + 37im4

+ 16i4 + 50i3m+ 28i2m2 + 54im3 + 48i2m4 + 10m4 + 24i2m+ 17im2 + 20m3 + 10m2

B2 = i6(10m2 − 4im− 3i2 + 34m− 21i) + i5(21m− 8i) + i4m2(23m− 14i) + 30i4m2

+ 10i3m3 + 13i2m4 + 20i5 + i4m+ 62i3m2 + i2m3 + 20im4 + 15i4 + 27i3m+ 17i2m2

+ 24im3 + 8m4 + i3 + 21i2m+ 4im2 + 16m3 + 8m2.

For any m ≥ 2 and 1 ≤ i ≤ m − 2, it is clear that A, B1, B2 > 0. To show B0 > 0,
notice that

B0 = (m− i)C +D,

where
C = i8(9m+ 15− i) + i7(19m+ 65) + i6

(
19m2 + 38m+ 116

)
+ i5

(
52m2 + 101m+ 143

)
+ i4

(
10m3 + 61m2 + 136m+ 129

)
+ i3

(
32m3 + 67m2 + 108m+ 81

)
+ i2

(
37m3 + 62m2 + 53m+ 28

)
+ 4i

(
5m3 + 9m2 + 5m+ 1

)
+ 4m(m+ 1)2,

D = 4i2 + 28i3 + 85i4 + 146i5 + 155i6 + 104i7 + 43i8 + 10i9 + i10.

Hence, Ei,k(m) > 0. Then (2.10) follows from (2.15) for k ≥ 0, m ≥ 2 and 1 ≤ i ≤ m− 2.
It remains to verify (2.10) for k ≥ 0, m ≥ 2 and i = m− 1. In this case, note that

ui+1,k(m) = um,k(m) =
m+ k

m+ k + 1
um(m) = fi+1,k(m) = fm,k(m) =

m+ k

m+ k + 1
fm(m) = 0.

Clearly, the inequality (2.15) still holds for k ≥ 0, m ≥ 2 and i = m − 1. It is easy to
verify that Em−1,k(m) > 0 for k ≥ 0 and m ≥ 2. Again, we arrive at (2.10) by (2.15). This
completes the proof. □

3. Strict ratio-log-convexity of {di(m)}m≥i

The aim of this section is to prove the strict ratio-log-convexity of transposed Boros-Moll
sequences {di(m)}m≥i for i ≥ 1. As will be seen in Section 4, this property plays a key role
in our proof of Theorem 1.3.

Chen, Guo and Wang [15] initiated the study of ratio log-behavior of combinatorial
sequences. Recall that a real sequence {an}n≥0 is called ratio log-concave (resp. ratio log-
convex) if the sequence {an/an−1}n≥1 is log-concave (resp. log-convex). They also showed
that the ratio log-concavity (resp. ratio log-convexity) of a sequence {an}n≥N implies the
strict log-concavity (resp. strict log-convexity) of the sequence { n

√
an}n≥N under certain

initial condition [15]. By applying these criteria, they confirmed a conjecture of Sun [36]
on the log-concavity of the sequence { n

√
Dn}n≥1 for the Domb numbers Dn.

Partial progress has been made on the ratio log-behaviour of the sequence {di(m)}m≥i.
Zhao [41, Theorem 6.1] proved that the sequence {di(m)}m≥i is strictly ratio log-concave
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for i = 0, while it is strictly ratio log-convex for each 1 ≤ i ≤ 135. For i ≥ 136, Zhao
[41, Theorem 6.2] proved an asymptotic result for this property for m ≥ ⌊(

√
2/4)i3/2 −

15i/32⌋ + 2. With a sharper bound for di(m)/di(m − 1), we obtain the following exact
result for this property.

Theorem 3.1. The transposed Boros-Moll sequences {di(m)}m≥i are strictly ratio-log-
convex for any i ≥ 1. That is, for each i ≥ 1 and m ≥ i+ 2,(

di(m)

di(m− 1)

)2

<

(
di(m− 1)

di(m− 2)

)(
di(m+ 1)

di(m)

)
.(3.1)

We shall prove Theorem 3.1 by applying the following criterion for the ratio log-convexity
of a sequence obtained by Sun and Zhao [35], which was deduced along with the spirit of
Chen, Guo, and Wang [15, Sectioin 4].

Theorem 3.2. ([35, Theorem 4.2]) Let {Sn}n≥0 be a positive sequence satisfying the fol-
lowing recurrence relation,

Sn = a(n)Sn−1 + b(n)Sn−2, n ≥ 2,

with real a(n) and b(n). Suppose a(n) > 0 and b(n) < 0 for n ≥ N where N is a
nonnegative integer. If there exists a function g(n) such that for all n ≥ N + 2,

(i) a(n)
2

≤ g(n) ≤ Sn

Sn−1
;

(ii) 4g3(n)− 3a(n)g2(n)− a(n+ 1)b(n) ≥ 0;
(iii) g4(n)− a(n)g3(n)− a(n+ 1)b(n)g(n)− b(n)b(n+ 1) ≥ 0,

then {Sn}n≥N is ratio log-convex, that is, for n ≥ N + 2,
(Sn/Sn−1)

2 ≤ (Sn−1/Sn−2)(Sn+1/Sn).(3.2)

Remark 3.3. By the proof of Theorem 3.2, it is easy to see that the inequality in (3.2)
holds strictly if the inequality in condition (iii) is strict.

To apply Theorem 3.2, we shall employ the following recursion found by Kauers and
Paule [28] with a computer algebraic system, and independently obtained by Moll [32] via
the WZ-method [37].

Theorem 3.4. ([28, Eq. (8)]) For m ≥ 2 and 1 ≤ i ≤ m− 1, there holds

di(m) =
8m2 − 8m− 4i2 + 3

2m(m− i)
di(m− 1)− (4m− 5)(4m− 3)(m− 1 + i)

4m(m− 1)(m− i)
di(m− 2).(3.3)

The following lower bound for the ratio di(m+ 1)/di(m) derived by Zhao [40] is crucial
to our proof of Theorem 3.1.

Theorem 3.5. ([40, Theorem 2.1]) For any m ≥ 2 and 1 ≤ i ≤ m− 1,we have
di(m+ 1)

di(m)
> L(m, i),(3.4)
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where

L(m, i) =
4m2 + 7m− 2i2 + 3

2(m+ 1)(m− i+ 1)
+

i
√
4i4 + 8i2m+ 5i2 +m

2(m+ 1)(m− i+ 1)
√
m+ i2

.(3.5)

We are now ready to present a proof of Theorem 3.1.
Proof of Theorem 3.1. Fix i ≥ 1 throughout this proof. To apply Theorem 3.2, let Sn =
di(n) and set N = i. By Theorem 3.4, we have

di(n) = a(n)di(n− 1) + b(n)di(n− 2),

for n ≥ i+ 2, where

a(n) =
8n2 − 8n− 4i2 + 3

2n(n− i)
, b(n) = −(4n− 5)(4n− 3)(n− 1 + i)

4n(n− 1)(n− i)
.(3.6)

Clearly, a(n) > 0 and b(n) < 0 for n ≥ i+ 2.
For any n ≥ i + 2, we first prove the conditions (i) and (ii) in Theorem 3.2. For this

purpose, let

g(n) = L(n− 1, i) =
4n2 − 2i2 − n

2n(n− i)
+

i
√
4i4 + 8i2n− 3i2 + n− 1

2n(n− i)
√
i2 + n− 1

.(3.7)

By Theorem 3.5, we have

g(n) <
di(n)

di(n− 1)
,

for n ≥ i+ 2. On the other hand, we see that

g(n)− a(n)

2
=

(6n− 3)∆1 + 2i∆2

4n(n− i)∆1

> 0,(3.8)

for n ≥ i+ 2, where
∆1 =

√
i2 + n− 1, ∆2 =

√
4i4 + 8i2n− 3i2 + n− 1.(3.9)

So the inequalities in condition (i) of Theorem 3.2 are confirmed.
We proceed to check the condition (ii). Direct computation gives that

4g3(n)− 3a(n)g2(n)− a(n+ 1)b(n)(3.10)

=
∆1(F1(n− i− 1) + F̂1) + ∆2(F2(n− i− 1)i+ F̂2)

8(i2 + n− 1)
3
2n3(n− i)3(n+ 1− i)(n2 − 1)

,

where ∆1, ∆2 are given by (3.9), and
F1 = 240n7 + (240i2 + 256i− 364)n6 + (160i4 + 256i3 − 164i2 − 32i+ 32)n5

+ (280i4 + 352i3 + 676i2 − 392i+ 166)n4 + 32(2n2 − i2)i6n2

+ (64i6 + 448i5 + 1004i4 + 104i3 − 64i2 + 256i− 83)n3

+ (128i7 + 456i6 + 1168i5 + 798i4 + 984i3 − 203i2 − 18i+ 9)n2

+ (64i8 + 576i7 + 1568i6 + 2440i5 + 1596i4 + 442i3 + 103i2)n
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+ 64i9 + 672i8 + 2208i7 + 3996i6 + 3748i5 + 2251i4 + 560i3 + 79i2,

F̂1 = 64i10 + 704i9 + 2912i8 + 6152i7 + 7796i6 + 6074i5 + 2736i4 + 648i3 + 70i2,

F2 = 144n6 + 36n5 + 18(6i2 + 16i− 13)n4 + (288i3 + 202i2 + 72i− 18)n3

+ (144n2 − 40i2)i2n3 + (16i6 + 232i4 + 504i3 + 400i2 − 180i+ 90)n2

+ (32i6 + 208i5 + 800i4 + 764i3 + 230i2 + 36i− 18)n

+ 4i2(8i5 + 56i4 + 242i3 + 395i2 + 281i+ 44),

F̂2 = 4i3(8i6 + 68i5 + 294i4 + 643i3 + 670i2 + 315i+ 54).

Clearly, ∆1, ∆2, F̂1, F̂2 and the denominator of the right-hand side of (3.10) are positive
for n ≥ i + 2. It is easy to see that F1 > 0, F2 > 0 for n ≥ i + 2. It follows that (3.10) is
positive for n ≥ i+ 2, which leads to the condition (ii).

It remains to prove that the conditions (iii) in Theorem 3.2 holds for n ≥ i + 2. For
convenience, define a function

h(x) := x4 − a(n)x3 − a(n+ 1)b(n)x− b(n)b(n+ 1),(3.11)
for x ∈ R. By computation we get

h(g(n)) =
G1 +∆1∆2G2

16(n2 − 1)(n+ 1− i)(i2 + n− 1)2n4(n− i)4
,(3.12)

where ∆1, ∆2 are given by (3.9), and
G1 = (512i− 128)n10 + (1024i3 − 768i2 − 1664i+ 400)n9

+ (512i5 − 928i4 − 2304i3 + 2880i2 + 1392i− 328)n8

+ (−352i6 − 864i5 + 4424i4 − 192i3 − 3584i2 + 776i− 173)n7

+ (−64i8 − 160i7 + 2840i6 − 1896i5 − 6252i4 + 4448i3 + 922i2 − 1765i+ 410)n6

+ (64i9 + 688i8 − 1528i7 − 4340i6 + 6276i5 + 2279i4 − 4694i3 + 1440i2 + 885i− 224)n5

+ (64i10 − 496i9 − 1336i8 + 4396i7 + 1592i6 − 6645i5 + 1812i4 + 2068i3

− 1075i2 − 139i+ 46)n4

+ (−64i11 − 80i10 + 1320i9 + 332i8 − 4396i7 + 1554i6 + 3155i5

− 1916i4 − 305i3 + 149i2 + 3i− 3)n3

+ (144i11 + 48i10 − 1412i9 + 672i8 + 2152i7 − 1615i6 − 579i5 + 599i4 − 54i3 + 45i2)n2

+ (−192i11 + 88i10 + 740i9 − 551i8 − 537i7 + 471i6 − 20i5 + i4 + 9i3 − 9i2)n

+ 104i11 − 104i10 − 189i9 + 189i8 + 66i7 − 66i6 + 19i5 − 19i4

G2 = 240in8 + (240i3 + 16i2 − 604i)n7 + (32i5 + 16i4 − 676i3 + 76i2 + 396i)n6

+ (−32i6 − 280i5 + 276i4 + 864i3 − 392i2 + 134i)n5

+ (−32i7 + 184i6 + 564i5 − 932i4 − 310i3 + 482i2 − 249i)n4

+ (32i8 + 40i7 − 492i6 − 112i5 + 914i4 − 379i3 − 191i2 + 92i)n3
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+ (−72i8 − 24i7 + 484i6 − 276i5 − 325i4 + 296i3 + 9i2 − 9i)n2

+ (96i8 − 44i7 − 208i6 + 159i5 + 29i4 − 32i3)n− 52i8 + 52i7 + 49i6 − 49i5 + 3i4 − 3i3.

Clearly, the denominator of (3.12) is positive for n ≥ i+ 2. It suffices to show that
G1 +∆1∆2G2 > 0, for n ≥ i+ 2.(3.13)

Observe that
∆1∆2 =

√
i2 + n− 1

√
(4i2 + 1)(i2 + n− 1) + 4i2n

= 2i(i2 + n− 1)

√
1 +

1

4i2
+

n

i2 + n− 1

> 2i(i2 + n− 1),(3.14)
for n ≥ i+ 2. Also note that

G2 = i(n− i− 1)H1 +H2,

where
H1 = 240n7 + (240i2 + 256i− 364)n6 + (256i3 − 180i2 − 32i+ 32)n5

+ (8i4 + 352i3 + 652i2 − 392i+ 166)n4 + 32(n2 − i2)i4n3

+ (192i5 + 924i4 + 72i3 − 50i2 + 256i− 83)n3

+ (200i6 + 624i5 + 884i4 + 936i3 − 173i2 − 18i+ 9)n2

+ (128i7 + 800i6 + 1992i5 + 1544i4 + 438i3 + 105i2)n

+ 128i8 + 1024i7 + 2748i6 + 3328i5 + 2141i4 + 572i3 + 73i2,

H2 = 2i3(64i7 + 576i6 + 1860i5 + 3064i4 + 2759i3 + 1332i2 + 324i+ 35).

Clearly, H1 > 0, H2 > 0, and hence G2 > 0 for n ≥ i+ 2. It follows from (3.14) that
G1 +∆1∆2G2 > G1 + 2i(i2 + n− 1)G2.(3.15)

It remains to show that
G1 + 2i(i2 + n− 1)G2 > 0, n ≥ i+ 2.(3.16)

To this end, we rewrite the left hand side as
G1 + 2i(i2 + n− 1)G2 = (n− i− 2)K1 +K2,

where
K1 = (512i− 128)n9 + (1024i3 + 224i2 − 768i+ 144)n8 + (512i5 + 1056i4 + 872i2 − 40)n7

+ (704i6 + 1280i5 + 3496i4 + 800i3 + 160i2 + 736i− 253)n6

+ (512i7 + 3552i6 + 4832i5 + 5412i4 + 5272i3 + 1454i2 − 546i− 96)n5

+ (576i8 + 4032i7 + 11012i6 + 18152i5 + 16295i4 + 9052i3 + 3036i2 − 303i− 416)n4

+ (512i9 + 5120i8 + 20256i7 + 39796i6 + 50610i5 + 42818i4 + 21862i3

+ 5376i2 − 1161i− 786)n3
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+ (512i10 + 6272i9 + 30476i8 + 79692i7 + 130670i6 + 144333i5

+ 107116i4 + 49195i3 + 9538i2 − 3105i− 1575)n2

+ (512i11 + 7296i10 + 42912i9 + 140724i8 + 290172i7 + 405520i6 + 395929i5

+ 263352i4 + 107856i3 + 16034i2 − 7785i− 3150)n

+ 512i12 + 8320i11 + 57504i10 + 226576i9 + 571579i8 + 985899i7

+ 1206960i6 + 1055138i5 + 634619i4 + 231755i3 + 24274i2 − 18720i− 6300,

K2 = 512i13 + 9344i12 + 74144i11 + 341584i10 + 1024744i9 + 2129044i8 + 3178732i7

+ 3469084i6 + 2744908i5 + 1500980i4 + 487784i3 + 29828i2 − 43740i− 12600.

It is straightforward to check that K1 > 0, K2 > 0 for n ≥ i+ 2, and hence
G1 + 2i(i2 + n− 1)G2 > 0, n ≥ i+ 2.

So (3.16) is proved. Combining (3.12), (3.15) and (3.16), we have h(g(n)) > 0 for n ≥ i+2,
that is, the condition (iii) in Theorem 3.2 holds for n ≥ i+2. It follows from Theorem 3.2
and Remark 3.3 that (3.2) holds strictly for Sn = di(n). Therefore, we obtain the strict
ratio-log-convexity of the transposed Boros-Moll sequence {di(m)}m≥i for each i ≥ 1. □

4. Proof of Theorem 1.3

In this section we proceed to prove the Briggs inequality for the transposed Boros-Moll
sequence {di(m)}m≥i for i ≥ 1. Comparing with the proof of Theorem 1.1, it is natural to
consider the equivalent form of (1.11), that is, for i ≥ 1 and m ≥ i+ 1,

(vi(m+ 1)− 1)vi(m)− 1 +
1

vi(m)
> 0,(4.1)

where vi(m) = (di(m − 1)di(m + 1))/d2i (m). However, numerical experiment shows that
the left-hand side of (4.1) trends to zero very fast, and the known bounds for vi(m) are
not sufficiently sharp for the proof of (4.1). In order to prove Theorem 1.3, we find the
following sufficient conditions for the Briggs inequality.

Theorem 4.1. Let {an}n≥0 be a sequence with positive numbers. Let N0 be a positive
integer. If the following conditions are satisfied:

(i) {an}n≥N0 is strictly log-concave,
(ii) {an}n≥N0 is strictly ratio-log-convex,

then the Briggs inequality holds for {an}n≥N0. That is, for n ≥ N0 + 1,

a2n(a
2
n − an−1an+1) > a2n−1(a

2
n+1 − anan+2).(4.2)

Moreover, if {an}n≥N0 is strictly 2-log-convex and condition (ii) holds, then the Briggs
inequality (4.2) holds for n ≥ N0 + 2.

Proof. Let {an}n≥0 be a sequence with an > 0 for all n. Let N0 > 0 be an integer. We first
prove the first result that conditions (i) and (ii) imply (4.2) for n ≥ N0 + 1. By condition
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(i), the sequence {an}n≥N0 is strictly log-concave, that is, for n ≥ N0 + 1,
a2n − an−1an+1 > 0.(4.3)

Then we have for n ≥ N0 + 1,
a2n
a2n−1

>
a2n+1

a2n
.(4.4)

On the other hand, by condition (ii), the sequence {an}n≥N0 is strictly ratio-log-convex,
implying that

an−2an
a2n−1

<
an−1an+1

a2n
, n ≥ N0 + 2.(4.5)

Hence for n ≥ N0 + 1,
an−1an+1

a2n
<

anan+2

a2n+1

.(4.6)

It follows from (4.6) and (4.3) that

1− an−1an+1

a2n
> 1− anan+2

a2n+1

> 0,(4.7)

for n ≥ N0 + 1. Combining (4.4) and (4.7), we obtain
a2n
a2n−1

(
1− an−1an+1

a2n

)
>

a2n+1

a2n

(
1− anan+2

a2n+1

)
.(4.8)

Multiply a2na
2
n−1 on both sides of (4.8). Then we have (4.2) for n ≥ N0 + 1, and hence the

first result is proved.
We proceed to show the second statement that the strict 2-log-convexity of {an}n≥N0

together with condition (ii) imply the Briggs inequality (4.2) for n ≥ N0+2. Assume that
{an}n≥N0 is strictly 2-log-convex, that is, for n ≥ N0 + 2,

a2n − an−1an+1

a2n−1 − an−2an
<

a2n+1 − anan+2

a2n − an−1an+1

.(4.9)

To make the proof more concise, let

cn =
an−1an+1

a2n
, n ≥ 1.(4.10)

Thus, (4.9) can be rewritten as
1− cn
1− cn−1

< c2n
1− cn+1

1− cn
,(4.11)

for n ≥ N0+2. Clearly, {an}n≥N0 is strictly log-convex. Then we have cn > 1 for n ≥ N0+1.
So, the inequality (4.11) is equivalent to

(cn+1 − 1)c2n >
(cn − 1)2

cn−1 − 1
, n ≥ N0 + 2.(4.12)
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On the other hand, by condition (ii), we have (4.5), which can be restated as
cn−1 < cn, n ≥ N0 + 2.(4.13)

Combining (4.12) and (4.13), one can easily obtain that for n ≥ N0 + 2,

(cn+1 − 1)c2n >
(cn − 1)2

cn − 1
= cn − 1.(4.14)

Substituting (4.10) into (4.14) leads to the desired inequality (4.2) for n ≥ N0 + 2. □
To prove Theorem 1.3, we also need the following result due to Jiang and Wang [27],

where the log-concavity of the sequences {di(m)}m≥i for i ≥ 1 was established.
Theorem 4.2. ([27, Theorem 3.1]) For any i ≥ 1, the sequence {di(m)}m≥i is log-concave.

Notice that by the proof of Theorem 4.2, it is clear that the sequence {di(m)}m≥i is
strictly log-concave for any i ≥ 1. We would like to point out that Zhao [41] obtained an
inequality in studying the extended reverse ultra log-concavity of the transposed Boros-
Moll sequences {di(m)}m≥i, which implies the strict log-concavity of {di(m)}m≥i for i ≥ 1.
Theorem 4.3. ([41, Theorem 3.2]) For each i ≥ 0 and m ≥ i+ 1, we have

d2i (m)

di(m− 1)di(m+ 1)
>

(m− i+ 1)m3

(m− i)(m+ 1)(m2 + 1)
.(4.15)

Denote by R(i,m) the right-hand side of (4.15). Clearly, R(1,m) = m4/(m4−1) > 1 for
m ≥ 2, and it is easily checked that R(i,m) > (m2 + 1)/m2 > 1 for i ≥ 2 and m ≥ i+ 1.

We are now in a position to give a proof of Theorem 1.3.
Proof of Theorem 1.3. Fix i ≥ 1. To apply Theorem 4.1, set an = di(n) and let N0 = i. By
Theorem 4.2 or Theorem 4.3, the sequences {di(n)}n≥i are strictly log-concave for i ≥ 1.
By Theorem 3.1, the transposed Boros-Moll sequences {di(n)}n≥i are strictly ratio-log-
convex for any i ≥ 1. Thus, for any given i ≥ 1, it follows from Theorem 4.1 that (4.2)
holds for n ≥ i+ 1, or equivalently, (1.11) holds for m ≥ i+ 1.

It remains to prove the reverse Briggs inequality for i = 0. That is, for m ≥ 1,
d20(m)(d20(m)− d0(m− 1)d0(m+ 1)) < d20(m− 1)(d20(m+ 1)− d0(m)d0(m+ 2)).(4.16)

Observe that (4.16) holds if and only if

δ0(m) := r20(m)

(
1− r0(m+ 1)

r0(m)

)
− r20(m+ 1)

(
1− r0(m+ 2)

r0(m+ 1)

)
< 0,(4.17)

for m ≥ 1, where r0(m) = d0(m)/d0(m− 1). Recall that for i ≥ 0 and m ≥ i, Kauers and
Paule [28, Eq. (6)] showed a recurrence relation as follows.

di(m+ 1) =
m+ i

m+ 1
di−1(m) +

4m+ 2i+ 3

2(m+ 1)
di(m).(4.18)

By setting i = 0 in (4.18), we have

r0(m) =
4m− 1

2m
, m ≥ 1.



THE BRIGGS INEQUALITY OF BOROS-MOLL SEQUENCES 15

It is easily checked that

δ0(m) = − 8m2 + 5m− 2

4m2(m+ 1)2(m+ 2)
< 0,

for m ≥ 1, and hence (4.17) is true. This completes the proof. □

5. Strict log-convexity of { n
√
di(i+ n)}n≥1

In this section, we show the strict log-convexity of the sequence { n
√

di(i+ n)}n≥1 for
i ≥ 1, by applying Theorem 3.1 and a sufficient condition given by Chen, Guo and Wang
[15]. Note that Zhao [41] proved an asymptotic result of this property for i ≥ 136.
Theorem 5.1. ([41, Theorems 7.1 & 7.2]) The sequence { n

√
di(i+ n)}n≥1 is strictly log-

concave for i = 0, and is strictly log-convex for each 1 ≤ i ≤ 135. For i ≥ 136, the
sequences { n

√
di(i+ n)}n≥i2 are strictly log-convex.

The main result of this section is as follows.
Theorem 5.2. The sequence { n

√
di(i+ n)}n≥1 is strictly log-convex for each i ≥ 1. That

is, for any i ≥ 1 and n ≥ 1, we have
n+1
√
di(i+ n+ 1)

n
√
di(i+ n)

<
n+2
√
di(i+ n+ 2)

n+1
√
di(i+ n+ 1)

.(5.1)

Chen, Guo and Wang [15] established the following criterion which indicates that ratio
log-convexity of a sequence {Sn} together with certain initial condition imply log-convexity
of the sequence { n

√
Sn}.

Theorem 5.3. ([15, Theorem 3.6]) Let {Sn}n≥0 be a positive sequence. If the sequence
{Sn}n≥N is ratio log-convex and

N+1
√
SN+1

N
√
SN

<
N+2
√
SN+2

N+1
√
SN+1

(5.2)

for some positive integer N , then the sequence { n
√
Sn}n≥N is strictly log-convex.

We are now ready to present a proof of Theorem 5.2.
Proof of Theorem 5.2. For i ≥ 1, setting Sn = di(i + n) and N = 1 in Theorem 5.3. By
Theorem 3.1, the sequence {di(i + n)}n≥0 is strictly ratio log-convex for each i ≥ 1. It
suffices to verify the condition (5.2), or equivalently,

di(i+ 2)

di(i+ 1) · 3
√

di(i+ 3)
< 1, i ≥ 1.(5.3)

For convenience, denote by r(i) the left-hand side of (5.3).
Notice that it was proved in [41, Lemma 7.5] that the sequence {r(i)}i≥0 is strictly

decreasing. That is, for i ≥ 0,
di(i+ 2)

di(i+ 1) 3
√

di(i+ 3)
>

di+1(i+ 3)

di+1(i+ 2) 3
√

di+1(i+ 4)
.(5.4)
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To be self-contained, we make a brief overview of the proof for (5.4). Since di(m) > 0 for
m ≥ i ≥ 0, the inequality (5.4) holds if and only if

di(i+ 2)di+1(i+ 2)

di(i+ 1)di+1(i+ 3)
>

3
√

di(i+ 3)
3
√
di+1(i+ 4)

.(5.5)

Applying (1.8), it is easy to obtain the expressions of the terms in (5.5). For example,

di(i+ 1) =
(2i+ 3)(2i+ 1)(2i)!

2i+1(i+ 1)(i!)2
.

Denote by V1 and V2, respectively, the LHS and RHS of (5.5). We have checked that

V 3
1 − V 3

2 =
(i+ 1)

∑18
k=0 ski

k

(i+ 2)6(2i+ 3)3(4i2 + 26i+ 43)3(4i2 + 30i+ 59)(2i+ 9)(2i+ 5)
,

where sk > 0 are integers for k = 0, 1, . . . , 18. Clearly, V 3
1 − V 3

2 > 0 for i ≥ 0, which leads
to (5.5), as well as (5.4).

Using (1.8) again, it is easily verified that

r(1) =
d1(3)

d1(2) · 3
√

d1(4)
=

43 · 885 2
3 · 32 1

3

13275
= 0.9 + ϵ1, 0 < ϵ1 < 10−1.

Thus, r(1) < 1. By (5.4), we see that r(i) < 1 for all i ≥ 1, and hence (5.3) is proved. That
is, for any i ≥ 1, the condition in (5.2) is satisfied for N = 1. It follows from Theorem
5.3 that the sequence { n

√
di(i+ n)}n≥1 is strictly log-convex for each i ≥ 1. The proof is

complete. □
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