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Abstract

Let χ(G) and ρ(G) be the chromatic number and spectral radius of G, respectively.
In 1967, Wilf proved that for a graph G, we have χ(G) ≤ 1 + ρ(G). An r-dynamic
k-coloring of a graph G is a proper k-coloring of G such that every vertex v in V (G)
has neighbors in at least min{d(v), r} different color classes. The r-dynamic chromatic
number of a graph G, written χr(G), is the least k such that G has such a k-coloring.
Note that χ(G) = χ1(G) and χr(G) ≤ 1 + r∆(G) (*) ([11, 16]). By the inequality (*),
we observe that for a positive integer r ≥ 2 and a connected graph G, we have χr(G) ≤
1 + rρ2(G).

In this paper, for a positive integer k > r2, we provide graphs Hk,r with χr(Hk,r) =
Θ(ρ2(Hk,r)) to show that the bound is almost sharp. When r = 2, we prove that
χr(G) ≤ 1 + ρ2(G); equality holds only when G = P1, P2, P3, or C5. For r = 3
and ∆(G) ≤ 4, we prove that χr(G) ≤ 10; equality holds when G is the Petersen
graph. When r = 3 and ∆(G) ≥ 5, we prove that χr(G) ≤ 2∆(G) + 1, which implies
χr(G) ≤ 1 + 2ρ2(G). The graph Hk,3 guarantees that χ3(G) ≤ 2∆(G) + 1 is sharp.
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1 Introduction
For undefined terms of graph theory, see West [19]. For basic properties of spectral graph
theory, see Brouwer and Haemers [4] or Godsil and Royle [8].
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In this paper, we consider a finite, simple, and connected graph. A k-coloring of G is a
function from V (G) to S, where |S| = k; it is proper if adjacent vertices receive different
colors. The chromatic number of a graph G, denoted by χ(G), is the minimum k such that
G has a proper k-coloring. An r-dynamic k-coloring is a proper k-coloring of G such that
for each vertex v in V (G), at least min{r, d(v)} colors are used on the neighborhood N(v).
The r-dynamic chromatic number of a graph G, written χr(G), which was introduced by
Montgomery [15], is the minimum k such that G admits such a proper k-coloring. In the
thesis, he proved that χ2(G) ≤ 3 + ∆(G). Later, Lai, Montgomery, and Poon [13] proved
that if ∆(G) ≥ 4, χ2(G) ≤ 1 + ∆(G). For a positive integer r ≥ 2, Jahanbekam, Kim, O,
and West [11] proved that

χr(G) ≤ 1 + r∆(G). (1)

For r = 3 and a K1,3-free graph G, Lai and Li [14] improved the bound; χ3(G) ≤ max{3 +
∆(G), 7}. Asayama, Kawasaki, Kim, Nakamoto, and Ozeki [3] gave a sharp upper bound for
χ3(G) in a planar triangulation; χ3(G) ≤ 5. In this paper, we show that for ∆(G) ≤ 4, we
have χ3(G) ≤ 10 and for ∆(G) ≥ 5, we have χ3(G) ≤ 1 + 2∆(G), which gives a relation
between χ3(G) and the spectral radius of G (see Section 3). For history and recent results
on the theory of r-dynamic colorings, we refer the reader to an excellent survey [5] by Chen,
Fan, Lai, and Xu.

For a graph G with V (G) = {v1, . . . , vn}, the adjacency matrix of G, written A(G), is
defined to be an n × n matrix whose (i, j)-entry equals 1 if vi and vj are adjacent and 0
otherwise. The eigenvalues of G are the eigenvalues of its adjacency matrix. Since A(G)
is real and symmetric, its eigenvalues are real and can be arranged in a non-increasing
order as λ1(G) ≥ λ2(G) ≥ · · · ≥ λn(G). Let ρ(G) be the spectral radius of G, that is,
ρ(G) = max{|λi(G)| : 1 ≤ i ≤ n}. By the Perron-Frobenius Theorem (see [4, 8]), we have
ρ(G) = λ1(G).

In 1967, Wilf [20] gave a relation between the chromatic number and spectral radius of
G; χ(G) ≤ 1 + ρ(G). Note that χ(G) = χ1(G). Thus, it is natural to ask whether for r ≥ 2,
there is such a relation between the r-dynamic chromatic number and the spectral radius of
a graph. By the inequality (1) and Theorem 2.3, we observe that for a positive integer r ≥ 2,
we have

χr(G) ≤ 1 + rρ2(G). (2)

Note that since we have χr(H) = Θ(ρ2(H)) for r-regular Moore graphs H, we cannot reduce
from ρ2(G) to ρ(G) in (2). However, we may be wondering whether ρ2(G) can be replaced
with ρ3/2(G) in (2). In fact, we provide graphs F such that χr(F ) = Θ(ρ2(F )) and both of
χr(F ) and ρ(F ) are independent of r (see Section 4), which means that we cannot reduce
the exponent of ρ(G) in (2). Thus, we can say that the bound in (2) is almost sharp. When
r = 2, we improve the bound; χr(G) ≤ 1 + ρ2(G). For r = 3 and ∆(G) ≥ 5, we have
χ3(G) ≤ 1 + 2ρ2(G) by using the inequality χ3(G) ≤ 1 + 2∆(G). Note that for r = 3 and
∆(G) ≤ 4, the bound may not be true and in fact, we prove χ3(G) ≤ 10; equality holds
when G is the Petersen graph.
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2 Tools
In this section, we introduce tools to prove the main results.

To prove Theorem 3.1, we use the bound on χr(G) in terms of ∆(G) given by Jahanbekam,
Kim, O, and West [11].

Theorem 2.1 ([11]). For a graph G, χr(G) ≤ 1 + r∆(G), with equality if and only if G is
r-regular with diameter 2 and girth 5.

For r = 2, to improve the bound in Theorem 3.1, the bound for the 2-dynamic chromatic
number in Theorem 2.2 will be used.

Theorem 2.2 ([13]). For a graph G with ∆(G) ≥ 3, we have χ2(G) ≤ 1 + ∆(G). Further-
more, if ∆(G) ≤ 2, then χ2(G) ≤ 5; equality holds only when G ∼= C5.

For r = 3, the bound in Theorem 3.1 will be ameliorated by using induction on n.
To prove Theorem 3.1, we compare the spectral radii of a graph G and its certain subgraph

by using Theorem 2.3.

Theorem 2.3 ([4, 8]). If H is a subgraph of a connected graph G, then ρ(H) ≤ ρ(G); equality
holds only when H = G.

Let P = {V1, . . . , Vs} be a partition of the vertex set of a graph G into s non-empty
subsets. The quotient matrix Q corresponding to P is the s× s matrix whose (i, j)-entry is
the average number of incident edges in Vj of the vertices in Vi. More precisely, Qi,j =

|[Vi,Vj ]|
|Vi|

if i ̸= j, and Qi,i =
2|E(G[Vi])|

|Vi| . A partition P is equitable if for each 1 ≤ i, j ≤ s, any vertex
v ∈ Vi has exactly Qi,j neighbors in Vj.

Theorem 2.4 ([4, 8]). For a graph G, if P is an equitable partition of V (G) and Q is its
corresponding quotient matrix, then we have ρ(G) = ρ(Q).

Theorem 2.4 is used to compute the spectral radii of graphs in Section 4.

3 Bounds in terms of ∆(G) and ρ(G)

In this section, we first give an upper bound on χr(G) in terms of the spectral radius of a
graph G. Then for r = 2, 3, the bound will be ameliorated.

For simplicity, we use ∆ and δ instead of ∆(G) and δ(G) in this section.

Theorem 3.1. For a graph G and a positive integer r ≥ 2, we have

χr(G) ≤ 1 + rρ2(G). (2)
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Proof. By Theorem 2.1, we have ∆ ≥ χr(G)−1
r

. Thus G contains the star S
1,⌈χr(G)−1

r
⌉ as a

subgraph. By Theorem 2.3, we have√
⌈χr(G)− 1

r
⌉ = ρ(S

1,⌈χr(G)−1
r

⌉) ≤ ρ(G),

which implies that ⌈χr(G)−1
r

⌉ ≤ ρ2(G). Thus we have the desired result.

Even though the upper bound in Theorem 3.1 is easily achieved, it is almost tight in the
sense that there are graphs H with χr(H) = Θ(ρ2(H)) (see Section 4.)

Now, we improve the bound in (2) for r = 2.

Theorem 3.2. For a connected graph G, we have χ2(G) ≤ 1 + ρ2(G); equality holds only
when G = P1, P2, P3 or C5.

Proof. We consider two cases depending on the maximum degree of G.

Case 1: ∆ ≥ 3. By Theorem 2.2, we have ∆ ≥ χ2(G)−1. Thus G contains the star S1,χ2(G)−1

as a subgraph. By Theorem 2.3, we have√
χ2(G)− 1 = ρ(S1,χ2(G)−1) ≤ ρ(G), (3)

which implies that χ2(G) ≤ 1 + ρ2(G).
To have equality in (3), G must be the star by Theorem 2.3 with at least 4 vertices (since

∆ ≥ 3). Thus we have
χ2(S1,n−1) = 3 < n = 1 + (

√
n− 1)2.

Now, we see that for ∆ ≥ 3, equality does not hold in (3).

Case 2: ∆ ≤ 2. In this case, G must be a path or a cycle. If G is the n-vertex path, then

χ2(Pn) = 3 < 1+ρ2(Pn) = 1+4 cos2 (
π

n+ 1
) for n ≥ 4 or χ2(Pn) = 1+ρ2(Pn) for n = 1, 2, 3.

If G is the n-vertex cycle, then we have

χ2(Cn) ≤ 5 = 1 + 22 = 1 + ρ2(Cn);

equality holds only when G = C5.

For each k > 2, we construct the graph Hk,2 with χ2(Hk,2) = k and ρ(Hk,2) =
√
2(k − 1)

in Section 4. Thus there are infinitely many graphs H such that χr(H) = Θ(ρ2(H)).
For positive integers a and b, a graph G is (a, b)-bireguar if it is a bipartite graph with

the vertices of one part all having degree a and the others all having degree b. For vertices in
a graph G, we use the following notations for their neighbors in the proofs of Theorem 3.3
and Theorem 3.4. For a vertex v ∈ V (G), N(v) = {v1, . . . , vd(v)} and for a vertex vi, N(vi) =
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{vi,1, . . . , vi,d(vi)}. Similarly, we can define for vertices vi,j and vi,j,k. Also, for a set A ⊆ V (G)
and for a coloring f on V (G), f(A) :=

⋃
v∈A f(v).

In addition to those, if a construction of a graph in the proof of Theorem 3.3 and Theo-
rem 3.4 creates multiple edges between two vertices, then we remove one edge between the
two vertices in order to assume that the resulting graph is simple. (#)

Note that the existence of multiple edges does not affect a vertex coloring.

Theorem 3.3. For a connected graph G, if ∆ ≤ 4, then we have χ3(G) ≤ 10.

Proof. We prove this by induction on |V (G)|. For ∆ ≤ 3, we have χ3(G) ≤ 3∆ + 1 ≤ 10.
Equality holds only when G is the Petersen graph by Theorem 2.1. Thus we may assume
that ∆ = 4 and |V (G)| ≥ 11. Then we consider the following four cases depending on the
minimum degree.

Case 1: δ = 1. Then there are two vertices v and v1 such that N(v) = {v1}. By apply-
ing the induction hypothesis to H := G − v, we have χ3(H) ≤ 10. Let f be a 3-dynamic
10-coloring of H. Note that dH(v1) = dG(v1) − 1 ≤ 3. Then by assigning v to a color in
S − f(NH [v1]), we can have a 3-dynamic 10-coloring of G.

Case 2: δ = 2. Then there are three vertices v, v1 and v2 such that N(v) = {v1, v2}. By
applying the induction hypothesis to to H : G− v + v1v2, (we may assume that H is simple
by (#).) then we have χ3(H) ≤ 10. Let f be a 3-dynamic 10-coloring of H. Since ∆ ≤ 4,
we can assign v to a color in S − f(NH [v1]) − f(NH [v2]). Thus we can have a 3-dynamic
10-coloring of G.

Case 3: δ = 3. In this case, we first show that G is (3, 4)-biregular by the folloiwng claims.

Claim 1. If there exist two vertices v and v1 such that d(v) = d(v1) = 3, then χ3(G) ≤ 10.

Proof. Suppose that H := G − {v, v1} + v2v3 + v1,1v1,2. Note that v, v1,1, and v1,2 are all
different, but v1,1, v1,2 are possibly equal to v2 or v3. By applying the induction hypothesis to
H, we have χ3(H) ≤ 10. Let f be a 3-dynamic 10-coloring of H. By the definition of f , there
exist two vertices in each neighborhood of v2, v3, v1,1, and v1,2 with two different colors. Thus
we may assume that f(v2,1) ̸= f(v2,2), f(v3,1) ̸= f(v3,2) ， f(v1,1,1) ̸= f(v1,1,2) and f(v1,2,1) ̸=
f(v1,2,2). Now, by assigning v1 to a color in S − {f(NG(v1)), f(v2), f(v3), f(v1,1,1), f(v1,1,2),
f(v1,2,1), f(v1,2,2,)} and by assigning v to a color in S−{f(NG(v)), f(v1,1), f(v1,2), f(v2,1), f(v2,2),
f(v3,1), f(v3,2)}, we can have a 3-dynamic 10-coloring of G.

Claim 2. If there exist three vertices v, v1 and v1,3 such that d(v) = 3 and d(v1) = d(v1,3) = 4,
then χ3(G) ≤ 10.

Proof. By setting H in the same way in Claim 1, the proof is similar to that of Claim 1. The
difference between Claim 1 and Claim 2 is the size of NH(v1).
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By Claim 1 and Claim 2, G must be (3, 4)-biregular since δ = 3.
Since δ ≥ 3, there exists a cycle in G. Let Cm be a shortest cycle in G.
If there exists a vertex v in V (G)− V (Cm) such that |N(v) ∩ V (Cm)| ≥ 2, then we have

m = 4 since G is biregular and Cm is a shortest cycle. Let C4 := a1a2a3a4 be a 4-cycle.
Without loss of generality, we may assume that the vertex v is adjacent to a1 and a3 so that
a1a2a3v is also a 4-cycle. Since G is (3, 4)-biregular, we have

(i) d(a1) = d(a3) = 3, d(a2) = d(a4) = d(v) = 4 or

(ii) d(a1) = d(a3) = 4, d(a2) = d(a4) = d(v) = 3.

For (i), we also have d(a2,1) = d(a2,2) = 3. Suppose that H := G − a1 − a2 + a2,1a3 +
a4v. By applying the induction hypothesis to H, we have χ3(H) ≤ 10. Let f be a 3-
dynamic 10-coloring of H. By the definition of f , we may assume that f(a2,1,1) ̸= f(a2,1,2),
f(a2,2,1) ̸= f(a2,2,2) ， f(a4,1) ̸= f(a3) and f(v1) ̸= f(a3). Then by assigning a2 to a color in
S −{f(a2,1), f(a2,1,1), f(a2,1,2), f(a2,2), f(a2,2,1), f(a2,2,2), f(a3), f(a4), f(v)} and by assigning
a1 to a color in S−{f(a2), f(a2,1), f(a3), f(a4), f(a4,1), f(v), f(v1)}, we can have a 3-dynamic
10-coloring of G.

The proof for (ii) is similar to that for (i).
Now, we may assume that for every vertex v ∈ V (G)−V (Cm), we have |N(v)∩V (Cm)|≤1.

Let Cm := a1 . . . am be an m-cycle. Without loss of generality, assume that d(a1) = 4 and
d(am) = 3. Let H := G− V (Cm)−{a1,1}+ a1,1,1a1,1,2. By applying the induction hypothesis
to H, we have χ3(H) ≤ 10. Let f be a 3-dynamic 10-coloring of H. Then we assign the
vertices a1, . . . , am, a1,1 to colors in the following order; we assign
(i) a3 to a color in S − {f(a3,1), f(a3,2), f(a3,1,1), f(a3,1,2), f(a3,2,1), f(a3,2,2), f(a4,1), f(a2,1)},
(ii) for i ∈ [2, m−2

2
] in an increasing order, a2i+1 to a color in S−{f(a2i+1,1), f(a2i+1,2), f(a2i+1,1,1),

f(a2i+1,1,2), f(a2i+1,2,1), f(a2i+1,2,2), f(a2i+2,1), f(a2i,1), f(a2i−1)},
(iii) a1 to a color in S − {f(a1,2), f(a1,2,1), f(a1,2,2), f(a1,1,1), f(a1,1,2), f(a3), f(am−1), f(a2,1),
f(am,1)},
(iv) a1,1 to a color in S−{f(a1,2), f(a1,1,1), f(a1,1,2), f(a1,1,1,1), f(a1,1,1,2), f(a1,1,2,1), f(a1,1,2,2),
f(a1)},
(v) a2 to a color in S − {f(a1), f(a1,1), f(a2,1), f(a3), f(a3,1)},
(vi) for i ∈ [2, m−2

2
] in increasing order, a2i to a color in S−{f(a2i−2), f(a2i−1), f(a2i−1,1), f(a2i,1),

f(a2i+1), f(a2i+1,1)}
(vii) am to a color in S − {f(a1), f(a2), f(a1,1), f(am,1), f(am−1), f(am−1,1), f(am−2)}.

Then we can have a 3-dynamic 10-coloring of G.

Case 4: δ = 4. Thus G is 4-regular, and suppose that Cm is a shortest cycle in G.

Subcase 4-1: For each vertex v ∈ V (G) − V (Cm), |N(v) ∩ V (Cm)| ≤ 1. Let Cm :=
a1 . . . am be an m-cycle. Suppose that H := G − V (Cm) +

∑
i∈[m] ai,1ai,2. By applying the

induction hypothesis to H, we have χ3(H) ≤ 10. Let f be a 3-dynamic 10-coloring of H.
Then we extend f from V (H) to V (G) to have a 3-dynamic 10-coloring in the following way.
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First, we assign a1 to a color in S − {f(a1,1), f(a1,2), f(a1,1,1), f(a1,1,2), f(a1,2,1), f(a1,2,2),
f(a2,1), f(a2,2)}. Then for i ∈ [2,m − 2] in an increasing order, we assign ai to a color in
S − {f(ai,1), f(ai,2), f(ai,1,1), f(ai,1,2), f(ai,2,1), f(ai,2,2), f(ai+1,1), f(ai+1,2), f(ai−1)}. Now, if
f(a1) ∈ {f(am,1), f(am,2)}, then without loss of generality, assume that f(a1) = f(am,1).
Then we can assign am−1 to a color in S − {f(am−1,1), f(am−1,2), f(am−1,1,1), f(am−1,1,2),
f(am−1,2,1), f(am−1,2,2), f(am,1), f(am,2), f(am−2)} and am to a color in S−{f(am,1), f(am,2),
f(am,1,1), f(am,1,2), f(am,2,1), f(am,2,2), f(a1,1), f(a1,2), f(am−1)}. If f(a1) /∈ {f(am,1), f(am,2)},
then we can assign am to a color in S−{f(am,1), f(am,2), f(am,1,1), f(am,1,2), f(am,2,1), f(am,2,2),
f(a1,1), f(a1,2), f(a1)} and am−1 to a color in S−{f(am−1,1), f(am−1,2), f(am−1,1,1), f(am−1,1,2),
f(am−1,2,1), f(am−1,2,2), f(am), f(am−2)}.

Subcase 4-2: For some vertex v in V (G) − V (Cm), |N(v) ∩ V (Cm)| ≥ 2. Then, we
must have m = 3 or m = 4.

For m = 3, let C3 := a1a2a3 be a triangle. Suppose that for a vertex v ∈ V (G)− V (C3),
we have {a1, a2} ⊆ N(v) ∩ V (C3). Suppose that H := G − a1 − a2 + va3. By applying the
induction hypothesis to H, we have χ3(H) ≤ 10. Let f be a 3-dynamic 10-coloring of H. Now,
by assigning a1 to a color in S−{f(v), f(v1), f(a3), f(a3,1), f(a1,1)} and by assigning a2 to a
color in S − {f(a1), f(a3), f(a3,1), f(a2,1), f(v), f(v1)}, we can have a 3-dynamic 10-coloring
of G.

For m = 4, suppose that C4 := a1a2a3a4 is a 4-cycle. Without loss of generality, assume
that there is a vertex v ∈ V (G) − V (C4) such that v is adjacent to a1 and a3. Note that
a1a2a3v is also a 4-cycle. Suppose that H := G − a1 − a2 + a2,1a3 + a4v. By applying
the induction hypothesis to H, we have χ3(H) ≤ 10. Let f be a 3-dynamic 10-coloring
of H. By the definition of f , we may assume that f(a2,1,1) ̸= f(a2,1,2), f(a4,1) ̸= f(a3) and
f(v1) ̸= f(a3). Then by assigning a1 to a color in S−{f(NG(a1)), f(a2,1), f(a3), f(a4,1), f(v1)}
and by assigning a2 to a color in S−{f(NG(a2)), f(a2,1,1), f(a2,1,2), f(a4), f(v)}, we can have
a 3-dynamic 10-coloring of G.

Note that the Petersen graph holds equality in the bound in Theorem 3.3.

Observation 1. If P is the Petersen graph, then χ3(P ) = 10.

Proof. For any pair of two distinct vertices u and v, either u and v are adjacent or d(u, v) = 2.
Thus we must assign the vertices to all different colors.

Also, there is a graph whose 3-dynamic chromatic number is 9, close to 10.

Observation 2. If P ′ is the graph obtained from the Petersen graph P by adding a single
pendant vertex, then χ3(P

′) = 9.

Proof. Note that there is the vertex with degree 4 (say u), the vertex with degree 1 (say v),
and uv ∈ E(P ′). Except the vertices u, v, and another neighbor of u, we must assign the
other vertices to all different colors with the same reason in the proof of Observation 1. If
we assign the vertex u to a used color for a vertex, which is already colored, then there is
a vertex with only two colors including the used color on the neighborhood, which is not
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a 3-dynamic coloring. Thus we need to assign the vertex u to another color, which implies
that χ3(P

′) ≥ 9. By assigning the remaining neighbor of u with degree 3 to one of the colors
assigned the other two neighbors with degree 3, and by assigning v to any color, which is
not used for the neighbors of u with degree 3, we can have a 3-dynamic 9-coloring.

We handle the case ∆ ≥ 5 separately from ∆ ≤ 4. Note that the graph Hk,3 in Section 4
guarantees that the bound in Theorem 3.4 is sharp.

Theorem 3.4. For a connected graph G, if ∆ ≥ 5, we have χ3(G) ≤ 2∆ + 1.

Proof. We prove this by induction on |V (G)|. Since ∆ ≥ 5, we have |V (G)| ≥ 6.
Now, we consider the following four cases depending on the minimum degree. Note that

the graph H that we consider in the following cases may have the maximum degree smaller
than 5 so that we may not apply the induction hypothesis to H. However, even if ∆(H) ≤ 4,
then by Theorem 3.3, we have χ3(H) ≤ 10 < 2∆ + 1 since ∆ ≥ 5.

Case 1: δ = 1. Then there are vertices v and v1 such that N(v) = {v1}. By applying
the induction hypothesis to H := G − v, we have χ3(H) ≤ 2∆ + 1. Let f be a 3-dynamic
(2∆ + 1)-coloring of H. Then by assigning v to a color in S − {f(N [v1])}, we can have a
3-dynamic (2∆ + 1)-coloring of G.

Case 2: δ = 2. Then there are vertices v, v1, v2 such that N(v) = {v1, v2}. Suppose that
H := G−v+v1v2. By applying the induction hypothesis to H, we have χ3(H) ≤ 2∆+1. Let
f be a 3-dynamic (2∆+1)-coloring of H. If each neighborhood of v1 and v2 has two distinct
vertices with different colors, then without loss of generality, we assume that f(v1,1) ̸= f(v1,2)
and f(v2,1) ̸= f(v2,2). Now, we obtain a 3-dynamic (2∆ + 1)-coloring of G by assigning v to
a color in S−{f(v1), f(v2), f(v1,1), f(v1,2), f(v2,1), f(v2,2)}. If a neighborhood of v1 or v2 has
no such vertices, then we have more options to color v.

Case 3: δ = 3. There exists vertices v, v1, v2, v3 such that N(v) = {v1, v2, v3}. Suppose
that A = N(v1)∩{u ∈ V (G)|u ̸= v, d(u) = 3} and B = N(v1)−A−{v}. Let A = {a1, . . . , at}
and B = {b1, . . . , bd(v1)−t−1}.

First, assume that t > 0. By setting H := G − {v, v1} + v2v3 and then applying the
induction hypothesis to H, we have χ3(H) ≤ 2∆ + 1. Let f be a 3-dynamic (2∆ + 1)-
coloring of H. By the definition of f , we may assume that for i ∈ [t] and j = 1, 2, f(ai,1) ̸=
f(ai,2) and let f(ai,j,1) ̸= f(ai,j,2). Let S ′ be a subset of S such that |S ′| = 2(∆ − 1) and
f(B) ∪ f(NH(A)) ⊆ S ′. Note that we can reassign the vertices of A to colors such that
f(NG(v1) \ {v}) ∪ f(NH(A)) ⊆ S ′ and |f(NG(v1) \ {v})| ≥ 2 since for each vertex ai ∈ A,
we can reassign to a color in S ′ − {f(ai,1), f(ai,2), f(ai,1,1), f(ai,1,2), f(ai,2,1), f(ai,2,2)}. For
t ≥ 2, when we recolor a2, we can allow f(a2) ̸= f(a1). For t = 1, when we recolor a1,
we can allow f(a1) ̸= f(b1). Now, we obtain a 3-dynamic 10-coloring of G by assigning
v1 to a color in S − {f(NG(v1) \ {v}) ∪ f(NH(N(A))), f(v2), f(v3)} and v to a color in
S − {f(v1), f(v2), f(v3), f(a1), f(a2), f(v2,1), f(v2,2), f(v3,1), f(v3,2)}.

8



Now, assume that t = 0, that is, A = ∅. By setting H := G − {v, v1} + v2v3 + b1b2
and then applying the induction hypothesis to H, we have χ3(H) ≤ 2∆ + 1. Let f be
a 3-dynamic (2∆ + 1)-coloring of H. By the definition of f , we may assume that for
i = 1, 2, f(bi,1) ̸= f(bi,2). Now, we obtain a 3-dynamic (2∆ + 1)-coloring of G by assign-
ing v1 to a color in S − {f(NG(v1) \ {v}), f(b1,1), f(b1,2), f(b2,1), f(b2,2)} and v to a color in
S − {f(v1), f(v2), f(v3), f(b1), f(b2), f(v2,1), f(v2,2), f(v3,1), f(v3,2)}.

Case 4: δ ≥ 4. Let Cm := a1 . . . am be a shortest cycle in G, and for each i ∈ [m], let ai,j
be the neighbors of ai in V (G) − V (Cm). We consider the following three cases depending
on m.

Subcase 4.1: m = 3. By setting H := G − {a1, a1,1} + a1,1,1a1,1,2 and then applying the
induction hypothesis to H, we have χ3(H) ≤ 2∆ + 1. Let f be a 3-dynamic (2∆ + 1)-
coloring of H. By the definition of f , we may assume that for i = 1, 2, f(a1,1,i,1) ̸=
f(a1,1,i,2). Now, we obtain a 3-dynamic (2∆ + 1)-coloring of G by assigning a1,1 to a color
in S − {f(NG(a1,1) \ {a1}), f(a1,1,1,1), f(a1,1,1,2), f(a1,1,2,1), f(a1,1,2,2), f(a2), f(a3)} and a1 to
a color in S − {f(NG(a1)), f(a1,1), f(a1,1,1), f(a1,1,2)}.

Subcase 4.2: m = 4.By setting H := G− {a1, a2}+ a1,1a4 + a2,1a3 and then applying the
induction hypothesis to H, we have χ3(H) ≤ 2∆ + 1 and let f be a 3-dynamic (2∆ + 1)-
coloring of H. By the definition of f , we can assume that for i = 1, 2, f(a4,1) ̸= f(a3),
f(a3,1) ̸= f(a4) and f(ai,1,1) ̸= f(ai,1,2). Then by assigning a1 to a color in S − {f(NG(a1) \
{a2}), f(a1,1,1), f(a1,1,2), f(a41), f(a3), f(a2,1)} and a2 to a color in S − {f(NG(a2)), f(a2,1,1),
f(a2,1,2), f(a31), f(a4), f(a1,1)}, we obtain a 3-dynamic (2∆ + 1)-coloring of G.

Subcase 4.3: m ≥ 5. By setting H := G − V (Cm) +
∑

i∈[m] ai,1ai,2 and then apply-
ing the induction hypothesis to H, we have χ3(H) ≤ 2∆ + 1. Let f be a 3-dynamic
(2∆ + 1)-coloring of H. Note that for any v ∈ V (G) − V (Cm), |N(v) ∩ V (Cm)| ≤ 1
since Cm is a shortest cycle in G. By the definition of f , we can assume that for i ∈ [m]
and j = 1, 2, f(ai,j,1) ̸= f(ai,j,2). If we have |f(NG(ai) \ V (Cm))| = 2 for all i ∈ [m],
then we obtain a 3-dynamic (2∆ + 1)-coloring of G by assigning a1 to a color in S −
{f(am,1), f(am,2), f(a1,1), f(a1,2), f(a1,1,1), f(a1,1,2), f(a1,2,1), f(a1,2,2)}, for i = [2,m−1] in an
increasing order, ai to a color in S−{f(ai−1), f(ai−1,1), f(ai−1,2), f(ai,1), f(ai,2), f(ai,1,1), f(ai,1,2),
f(ai,2,1), f(ai,2,2)}, and then am to a color in S−{f(a1), f(am−1), f(am−1,1), f(am−1,2), f(am,1),
f(am,2), f(am,1,1), f(am,1,2), f(am,2,1), f(am,2,2)}. Now, we assume that there exists i ∈ [m]
(say i = m− 1) such that |f(NG(ai) \ V (Cm))| ≥ 3. Then we obtain a 3-dynamic (2∆ + 1)-
coloring of G by assigning a1 to a color in S−{f(NG(a1)\V (Cm)), f(am,1), f(am,2), f(a1,1,1),
f(a1,1,2), f(a1,2,1), f(a1,2,2)}, for i = [2,m − 1] in an increasing order, ai to a color in S −
{f(NG(ai)\V (Cm)), f(ai−1), f(ai−1,1), f(ai−1,2), f(ai,1,1), f(ai,1,2), f(ai,2,1), f(ai,2,2)}, and am
to a color in S−{f(NG(am)\V (Cm)), f(a1), f(am−1), f(am,1,1), f(am,1,2), f(am,2,1), f(am,2,2)}.

By Theorem 3.4 and by following the idea of Theorem 3.1, for r = 3 and ∆ ≥ 5, we
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improve the bound in (2).

Corollary 3.5. For a connected graph G and ∆ ≥ 5, we have χ3(G) ≤ 1 + 2ρ2(G).

4 Example

1 2 3 4

(1, 2) (1, 3) (1, 4) (2, 3) (2, 4) (3, 4)

Figure 1: H4,2

In this section, for given positive integers k > r and r ≥ 2, we provide graphs Hk,r

such that χr(Hk,r) = k and ρ(Hk,r) =
√

r(k−1
r−1

). These examples show that χr(Hk,r) =

Θ(ρ2(Hk,r)), which implies that the bound in Theorem 3.1 is almost sharp. Thus for r ≥ 2,
we cannot replace ρ2(G) by ρ(G) in Theorem 3.1.

First, we provide such a family of graphs for r = 2.

Definition 4.1. For a positive integer k > 2, let Hk,2 be the bipartite graph with partite sets
A and B such that
(i) A = {v1, . . . , vk} and B = {xij : 1 ≤ i < j ≤ k}
(ii) For 1 ≤ i < j ≤ k, N(xij) = {vi, vj}.

Now, we determine the 2-dynamic chromatic number and the spectral radius of Hk,2.

Theorem 4.2. For a positive integer k > 2, we have

χ2(Hk,2) = k and ρ(Hk,2) =
√
2(k − 1).

Proof. Suppose that a 2-dynamic coloring f of Hk,2. If there exist u, v ∈ A such that f(u) =
f(v), then the vertex xuv in B (note that d(xuv) = 2) have the neighbors with the same color
violating the property of 2-dynamic coloring, which implies that χ2(Hk,2) ≥ k.

Since ∆(Hk,2) = k−1, we have χ2(Hk,2) ≤ k, which determines the 2-dynamic chromatic
number of Hk,2.
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The quotient matrix corresponding to the vertex partition {A,B} is

Q =

(
0 k − 1
2 0

)
.

Thus the characteristic polynomial of Q is p(x) = x2 − 2(k − 1). Since the vertex partition
is equitable, we have ρ(Hk,2) = ρ(Q) =

√
2(k − 1) by Theorem 2.4.

Thus for r = 2, we cannot reduce the exponent of ρ in the bound of Theorem 3.2 since
χ2(Hk,2) = Θ(ρ2(Hk,2)). This is different from the Wilf’s bound that the usual chromatic
number of G is linearly bounded above by its spectral radius. In fact, for r ≥ 3, we can
provide more graphs F such that χ2(F ) = Θ(ρ2(F )). This guarantees that for even r ≥ 3
(at least up to 9), the bound in Theorem 3.1 is almost sharp.

Now, we construct such graphs from the graph Hk,2 with partite sets A and B in Defini-
tion 4.1.

Definition 4.3. For r ≥ 2, let P = {B1, . . . , Bs} be a partition of B such that for each
1 ≤ i ≤ s, |Bi| =

(
r
2

)
and |∪v∈Bi

NHk,2
(v)| = r. The graph Hk,r is a bipartite graph with partite

sets A and P obtained from Hk,2 such that for each 1 ≤ i ≤ s, NHk,r
(Bi) = ∪v∈Bi

NHk,2
(v) .

Similarly to the proof of Theorem 4.2, we can also determine the r-dynamic chromatic
number and the spectral radius of Hk,r.

Theorem 4.4. For positive integers r and k with r ≥ 2 and k ≥ r2 + 1, we have

χr(Hk,r) = k and ρ(Hk,r) =

√
r(k − 1)

r − 1
.

Proof. Let f be an r-dynamic coloring of Hk,r. If there exist u, v ∈ A such that f(u) = f(v),
then a vertex in P (note that every vertex in P has degree r) has two neighbors with the
same color violating the property of r-dynamic coloring, which implies that χr(Hk,r) ≥ k.

Now, we prove that χr(Hk,r) ≤ k by showing the existence of an r-dynamic k-coloiring
f . First, for each i ∈ [k], we set f(vi) = i. Second, for a vertex v ∈ P not assigned to a color
yet, we assign a color to v by following the rules: (i) f(v) /∈ ∪w∈N(v)f(w) and (ii) we avoid
min{|f(N(w))|, r− 1} colors in N(w) for each w ∈ N(v). Since we have k− r(r− 1)− r ≥ 1,
we can do (i) and (ii).

The quotient matrix corresponding to the vertex partition {A,B} is

Q =

(
0 k−1

r−1

r 0

)
.

Thus the characteristic polynomial of Q is p(x) = x2 − r(k−1
r−1

). Since the vertex partition is
equitable, we have the desired result by Theorem 2.4.

11



Now, we say that the bound in Theorem 3.1 is almost sharp by Theorem 4.4 because
χr(Hk,r) = Θ(ρ2(Hk,r)). However, by looking at Definition 4.3, how can we guarantee the
existence of a partition of B? Note that the existence of such a partition of B is equivalent
to the existence of a Steiner system S(2, r, k). For r = 2, see Definition 4.1. In fact, for each
3 ≤ r ≤ 9, a Steiner system S(2, r, k) exists (see [1, 2, 6, 9, 10, 17]). Thus we can guarantee
the existence of Hk,r for 2 ≤ r ≤ 9. The existence of Hk,3 says that the bound in Theorem
3.4 is also sharp.

Definition 4.5. A Steiner system S(a, b, c) is a c-set C together with a family B of b-subsets
of C with the property that every a-subset of C is contained in exactly one b-subset.

We mention that very recently, Jendrol and Onderko [12] improved the bound in The-
orem 2.1; χr(G) ≤ (r − 1)(∆(G) + 1) + 2. They also provided graphs whose r-dynamic
chromatic number equals (r − 1)∆(G) + 1, and the graphs are related to the existence of
Steiner systems S(2, r, k). In fact, they are the same as Hk,r.

Acknowledgements
Dedicated to Professor Fuji Zhang on the occasion of his 88th birthday. The third author
would like to thank the China Scholarship Council (CSC) for supporting this work.

References
[1] R.J.R. Abel, Some new BIBDs with λ = 1 and 6 ≤ k ≤ 10, J. Combin. Des., 4(1)

(1996), 27-50.

[2] R.J.R. Abel and W.H. Mills, Some new BIBDs with k = 6 and λ = 1, J. Combin.
Des., 3(5) (1995), 381-391.

[3] Y. Asayama, Y. Kawasaki, S.J. Kim, A. Nakamoto, and K. Ozeki, 3-dynamic coloring
of planar triangulations. Discrete Math., 341(11) (2018), 2988-2994.

[4] A.E. Brouwer and W.H. Haemers, Spectra of Graphs, Springer, New York, (2011).

[5] Y. Chen, S. Fan, H. Lai, and M. Xu, Graph r-hued colorings - A survey. Discrete Appl.
Math., 321 (2022), 24-48.

[6] C.J. Colbourn and J.H. Dinitz,(eds.) Handbook of combinatorial designs, Second edition,
Chapman and Hall/CRC, Boca Raton, London, New York, (2007).

[7] D. Cvetković, Chromatic number and the spectrum of a graph, Publ. Inst.
Math.(Beograd), 14(28) (1972), 25-38.

[8] C. Godsil and G. Royle, Algebraic Graph Theory, Graduate Texts in Mathematics, 207.
Springer-Verlag, New York, (2001).

12



[9] H. Hanani, The existence and construction of balanced incomplete block designs, Ann.
Math. Statist., 32 (1961), 361-385

[10] H. Hanani, Balanced incomplete block designs and related designs, Discrete
Math., 11 (1975), 255-369.

[11] S. Jahanbekama, J. Kim, S. O, and D.B. West, On r-dynamic coloring of graphs, Discrete
Appl. Math., 206 (2016), 65-72.

[12] S. Jendroľ and A. Onderko, Brooks-type theorem for r-hued coloring of graphs, Discrete
Appl. Math., 332 (2023), 129-134.

[13] H.-J. Lai, B. Montgomery, and H. Poon, Upper bounds of dynamic chromatic number,
Ars Combin., 68 (2003), 193-201.

[14] H. Li and H.-J. Lai, 3-Dynamic coloring and list 3-dynamic coloring of K1,3 -free graphs,
Discrete Appl. Math., 222 (2017) 166-171.

[15] B. Montgomery, Dynamic Coloring of Graphs, ProQuest LLC, Ann Arbor, MI, Ph.D.
Thesis, West Virginia University. (2001)

[16] S. O, Connectivity, matchings, and eigenvalues in Regular Graphs, (Ph.D. thesis), Uni-
versity of Illinois, 2011.

[17] M. Reiss, Über eine Steinersche combinatorische Aufgabe, Z. Reine Angew. Math., 56
(1859), 326-344

[18] G. Szekeres and H.S. Wilf, An inequality for the chromatic number of a graph, J.
Combin. Theory, 4 (1968), 1-3.

[19] D.B. West, Introduction to Graph Theory, Prentice Hall, Inc., Upper Saddle River, NJ,
(2001).

[20] H.S. Wilf, The eigenvalues of a graph and its chromatic number, J. London Math. Soc.,
42 (1967), 330-332.

13


