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Abstract. In this paper, we solve an open problem on distributive lattices, which was pro-
posed by Stanley in 1998. This problem was motivated by a conjecture due to Griggs, which
equivalently states that the incomparability graph of the boolean algebra Bn is nice. Stanley
introduced the idea of studying the nice property of a graph by investigating the Schur pos-
itivity of its corresponding chromatic symmetric function. Since the boolean algebras form a
special class of distributive lattices, Stanley raised the question of whether the incomparability
graph of any distributive lattice is Schur positive. Stanley further noted that this seems quite
unlikely. We construct a family of distributive lattices which are not nice and hence not Schur
positive. We also provide a family of distributive lattices which are nice but not Schur positive.
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1 Introduction

The main objective of this paper is to study the Schur positivity of the chromatic symmetric
functions of the incomparability graphs of distributive lattices. Stanley stated in his 1998 paper
[18] that perhaps every distributive lattice is Schur positive, which implies that every distributive
lattice is nice. In this paper we provide several families of distributive lattices whose chromatic
symmetric functions are not Schur positive. Some of our examples showed that distributive
lattices need not be nice. This solves Stanley’s open problem in the negative.

Let us first give an overview of related backgrounds. Let Bn denote the boolean algebra of order
n, which is the poset of all subsets of [n] = {1, 2, . . . , n}, ordered by inclusion. The celebrated
Sperner’s theorem states that Bn has width

(
n

⌊n
2
⌋
)
, namely, the maximal size of antichains is

equal to the size of its middle rank. One can associate a partition λ of 2n to each chain
decomposition of Bn by rearranging the sizes of chains in weakly decreasing order, in which
case we also say that this chain decomposition is of type λ. Given two partitions µ and ν of
the same size, we say that µ is less than or equal to ν in dominance order, denoted by µ⊴ ν, if∑k

i=1 µi ≤
∑k

i=1 νi for any k ≥ 1. Griggs [7] proposed the following conjecture.

Conjecture 1.1 ([7, Problem 3]). If a partition λ of 2n is less than or equal to the partition
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corresponding to the symmetric chain decomposition of Bn in dominance order, then there is a
chain decomposition of type λ.

Stanley [18] proposed an approach to the above conjecture by studying the Schur positivity
of the chromatic symmetric function of the incomparability graph of the boolean algebra Bn.
For a given poset P , its incomparability graph inc(P ) has the vertex set P and the edge set
{(i, j) : i, j are incomparable in P}. In his seminal paper [17], Stanley introduced the concept
of the chromatic symmetric function of a graph. For a given graph G with vertex set V and
edge set E, a proper coloring κ of G is a map from V to {1, 2, . . .} such that κ(u) ̸= κ(v) if
(u, v) ∈ E. The chromatic symmetric function of G is defined by

XG = XG(x) =
∑
κ

∏
v∈V

xκ(v),

where x = {x1, x2, . . .} and κ ranges over all proper colorings of G. When x1 = · · · = xn = 1
and xi = 0 for i > n, the symmetric function XG gives the chromatic polynomial χG(n) of
Birkhoff [1].

Stanley [17] studied the expansions of XG in terms of various bases of symmetric functions. In
this paper we are interested in the expansion of XG in terms of Schur function basis {sλ}. Note
that the Schur functions are of special importance in the theory of symmetric functions, due to
their strong connection with irreducible representations of symmetric groups. See Fulton and
Harris [4], Stanley [16] or Sagan [13] for further details. Recall that if a symmetric function
f can be written as a nonnegative linear combination of certain basis {bλ} then it is said to
be b-positive. The elementary symmetric function basis {eλ} and the complete homogeneous
symmetric function basis {hλ} are both s-positive bases related to some classical representations.
By convention, we also say that a graph G (or a poset P ) is Schur positive or s-positive if the
chromatic symmetric function XG (or Xinc(P )) is s-positive.

There has been a substantial amount of research about the s-positivity and further, e-positivity
of chromatic symmetric functions. One of the most famous problems in combinatorics is the
(3 + 1)-free conjecture of Stanley and Stembridge proposed in 1993 [19], which states that the
chromatic symmetric function of the incomparability graph of any (3+1)-free poset is e-positive.
Haiman [8] and Gasharov [5] proved that these symmetric functions are s-positive. In 2024,
Hikita proved the Stanley-Stembridge conjecture [9]. Later in 2025, Griffin, Mellit, Romero,
Weigl and Wen developed an alternative proof [6]. Gasharov first raised the Schur positivity
conjecture of claw-free graphs in an unpublished work, see Stanley [18], which still remains
open.

Stanley [18] proposed a promising conjecture on the Schur positivity of the boolean algebra Bn,
which is stronger than Conjecture 1.1 in the sense that we shall describe below. For a graph G,
a stable partition of G is a partition of its vertex set so that any two vertices in the same part
are disconnected. The type of a stable partition is defined to be the partition λ obtained by
rearranging the sizes of parts in weakly decreasing order. Following Stanley [18], we say that
a graph G is nice if G has a stable partition of type λ, then it also has a stable partition of
type µ for each µ ⊴ λ. We also say that a poset P is nice if so is inc(P ). Thus Conjecture
1.1 equivalently states that the boolean algebra Bn is nice for any n. Stanley established the
following connection between the Schur positivity and the nice property for graphs.

Proposition 1.1 ([18, Proposition 1.5]). If G is Schur positive, then it is nice.

Motivated by Conjecture 1.1 and the above proposition, Stanley noticed that “inc(Bn) might
be s-positive, which is true for n ≤ 4” [18, p. 270]. This can be summarized as the following
conjecture.

Conjecture 1.2. For any n ∈ N, the incomparability graph inc(Bn) is Schur positive.
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Noting that the boolean algebras Bn are special distributive lattices, Stanley further speculated
that “perhaps even the incomparability graph of any distributive lattice is s-positive” [18, p.
270]. This broader consideration prompted the following open problem:

Problem 1.2. Is Xinc(L) Schur positive for any distributive lattice L?

Let L̂ be the poset obtained from a distributive lattice L by removing the maximal element 1̂
and the minimal element 0̂. Stanley gave a distributive lattice L which is Schur positive but
L̂ is not Schur positive. Based on his example, Stanley remarked that the Schur positivity of
Xinc(L) might not be true for all distributive lattices L.

In this paper we give a negative answer to Problem 1.2. The remainder of this paper is organized
as follows. In Section 2, we include some definitions and results on distributive lattices and
chromatic symmetric functions which will be used in subsequent sections. In Section 3 we
construct a family of distributive lattices which are not nice and hence not Schur positive by
Proposition 1.1. Lonc and Elzobi [10] proved that the product of two chains is always a nice
distributive lattice. In Section 4 we prove that the product of two chains are not Schur positive
in general. In Section 5, we summarize a few open problems for further research.

2 Preliminaries

The aim of this section is two-folds. Firstly, we present some basic definitions and results on
distributive lattices, where we adopt the terminologies and notations of Davey and Priestley
[2]. Secondly, we follow Wang and Wang [20] to review the Schur function expansion of the
chromatic symmetric functions in terms of special rim hook tabloids, which will be frequently
used later.

2.1 Distributive lattices

A lattice is a poset L in which for any pair of elements a, b ∈ L, the join a ∨ b and the meet
a ∧ b exist. A subposet M ⊆ L is a sublattice of L if for any a, b ∈ M , we have a ∨ b ∈ M and
a ∧ b ∈ M . A lattice L is said to be a distributive lattice if the operations ∨ and ∧ satisfy that
for any a, b, c ∈ L,

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c),

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

For any positive integers n, n1, n2, . . . , nr, let n be the n-element chain 1 ≤ 2 ≤ · · · ≤ n, and let
n1 × n2 × · · · × nr be the product of r chains. It is routine to check that n1 × n2 × · · · × nr is
a graded distributive lattice of rank n1 + n2 + · · · + nr − r. In particular, when ni = 2 for all
i = 1, . . . , r, n1 ×n2 × · · · ×nr gives the boolean algebra Br. Figure 1 gives examples of posets
6, 6× 3 and 6× 2× 2.

Figure 1: Posets 6, 6× 3 and 6× 2× 2.
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As mentioned before, the nice property of a distributive lattice is mainly concerned with its
chain decompositions, also known as its chain partitions. Recall that a chain partition of a
poset P is a partition {C1, . . . , Ck} of the set P , so that the induced subposet P [Ci] is a chain
for each i = 1, . . . , k. In this paper we also use the notion of semi-ordered chain partitions.
By a semi-ordered chain partition we mean a chain partition such that all parts are ordered
according to their sizes in decreasing order and the parts of the same size are also ordered. Let
SCPP,λ be the set of semi-ordered chain partitions of P of type λ. For example, SCP4,(2,1,1) is

{({1, 2}, {3}, {4}), ({1, 2}, {4}, {3}), ({1, 3}, {2}, {4}), ({1, 3}, {4}, {2}),
({1, 4}, {2}, {3}), ({1, 4}, {3}, {2}), ({2, 3}, {1}, {4}), ({2, 3}, {4}, {1}),
({2, 4}, {1}, {3}), ({2, 4}, {3}, {1}), ({3, 4}, {1}, {2}), ({3, 4}, {2}, {1})}.

2.2 Schur expansion of chromatic symmetric functions

We assume that the readers are familiar with the theory of symmetric functions. Here we only
present some necessary definitions and results which will be used in the Schur expansion of
chromatic symmetric functions. We refer the readers to Macdonald [11], Mendes and Remmel
[12], and Stanley [16] for more information on symmetric functions.

Let N be the set of nonnegative integers. By a weak composition of n ∈ N we mean a sequence
β = (β1, . . . , βℓ) ∈ Nℓ such that β1 + · · · + βℓ = n, denoted by β ⊨ n. A partition λ of n is a
weakly decreasing sequence λ = (λ1, . . . , λℓ) of positive integers such that λ1 + · · · + λℓ = n.
Let λ⟨k⟩ denote the partition obtained from λ by removing its first k − 1 parts, namely, λ⟨k⟩ =
(λk, . . . , λℓ). For any partition λ of n (denoted by λ ⊢ n), we also write λ = ⟨1α1 , 2α2 , . . . , nαn⟩,
where αk is the number of parts of size k. Given any partition λ = (λ1, . . . , λℓ) ⊢ n, the Ferrers
diagram (or Young diagram) of λ is the graph of n boxes arranged in ℓ left-justified rows, such
that there are λi boxes in row i (indexed from bottom to top). A rim hook (or ribbon) of a
partition λ is a set of connected boxes of its Ferrers diagram containing no 2 × 2 shape, such
that its removal also gives a Ferrers diagram of a partition. If one continues removing rim
hooks from the remaining shape until no boxes are left, then these removed rim hooks form a
decomposition of the original Ferrers diagram, called a rim hook tabloid of shape λ. A special
rim hook tabloid is a rim hook tabloid such that each rim hook has a cell in the first column.
See Figure 2 for examples of shape (5, 3, 2, 1).

Figure 2: A Ferrers diagram, a rim hook tabloid and a special rim hook tabloid.

For a (special) rim hook tabloid T , its shape is denoted by sh(T ). The content of T is the
partition of n formed by sizes of rim hooks in T , denoted by cont(T ). Notice that if T is a
special rim hook tabloid then sh(T )⊴cont(T ) in dominance order [3]. Given partitions λ, µ ⊢ n,
let Tλ be the set of special rim hook tabloids of shape λ, and let Tλ,µ be the subset of Tλ consisting
of those with content µ. It is clear that Tλ,µ ̸= ∅ only if λ ⊴ µ. For each rim hook B of some
T ∈ Tλ, its height ht(B) is defined to be the number of rows it spans minus one, and the height
ht(T ) is defined to be the sum

∑
B∈T ht(B). For example, the special rim hook tabloid T in

Figure 2 has ht(T ) = 2 and cont(T ) = (6, 3, 2).

Let [f ]g be the coefficient of f in g, and let {mλ} be the monomial symmetric function basis.
As a consequence of the Jacobi-Trudi formula, Eǧecioǧlu and Remmel [3] proved the following
result.
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Theorem 2.1 ([3, Theorem 1]). For any λ, µ ⊢ n, we have

[sλ]mµ =
∑

T∈Tλ,µ

(−1)ht(T ).

According to the definition of chromatic symmetric functions, Wang and Wang [20] generalized
the result of Eǧecioǧlu and Remmel and gave a Schur expansion formula for chromatic symmetric
functions. To state their result, we also need the notion of semi-ordered stable partitions of
graphs. Similar to the definition of semi-ordered chain partitions of posets, by a semi-ordered
stable partition of a graph G we mean a stable partition such that all parts are arranged
according to their sizes in weakly decreasing order and the parts of the same size are also
ordered. The following result gives a combinatorial interpretation of the coefficients in the
Schur expansion of chromatic symmetric functions.

Theorem 2.2 ([20, Theorem 3.1]). For any graph G = (V,E) and any partition λ ⊢ |V |, we
have

[sλ]XG
=
∑
T∈Tλ

(−1)ht(T )NT ,

where NT is the number of semi-ordered stable partitions of G of type cont(T ).

For example, taking graph G = (V,E) with V = {1, 2, 3} and E = ∅, we have

XG = e31 = s3 + 2s21 + s111. (1)

There are two special rim hook tabloids T1, T2 ∈ T(2,1) as shown in Figure 3. One can check
that ht(T1) = 0, NT1 = |{({1, 2}, {3}), ({1, 3}, {2}), ({2, 3}, {1})}| = 3, ht(T2) = 1 and NT2 =
|{({1, 2, 3})}| = 1. Thus, by Theorem 2.2, we have [s21]XG

= 3 − 1 = 2, which coincides with
the above expansion (1).

T1 T2

Figure 3: Two special rim hook tabloids in T(2,1).

Note that the semi-ordered chain partitions of a poset P are in bijection with the semi-ordered
stable partitions of its incomparability graph inc(P ). Thus, for the incomparability graph of a
poset P , Theorem 2.2 can be rephrased as follows.

Corollary 2.3. For any poset P with n elements and any partition λ ⊢ n,

[sλ]Xinc(P )
=
∑
T∈Tλ

(−1)ht(T )|SCPP,cont(T )|. (2)

3 Not all distributive lattices are nice

In this section, we construct a family of distributive lattices which are not nice. By Proposition
1.1, these lattices are not either Schur positive.

For any n ≥ 1, let B3,n be the poset on the set {a, b, c, d, e, f, 1′, 1, 2′, 2, . . . , n′, n} with
the Hasse diagram as shown in Figure 4. Note that B3,1 is just the boolean algebra of order 3.

First we have the following result.

Lemma 3.1. For any positive integer n, the poset B3,n is a distributive lattice.
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Figure 4: B3,n.

Proof. It is known that any sublattice of a distributive lattice is still distributive [15, p. 255].
One can check that B3,n is a sublattice of the distributive lattice (n+ 1) × 2 × 2, hence it is
distributive.

The main result of this section is the following.

Theorem 3.2. For each n ≥ 6 the distributive lattice B3,n is not nice.

Proof. Let λ = (n+ 3, n+ 1, 2) and let µ ⊢ 2n+ 6 be a partition of length 3 such that µ1 = n.
Note that if n ≥ 6 then such a partition µ always exists, say µ = (n, n, 6). It is also clear that
µ ⊴ λ in dominance order. Observe that {{a, d, f, 1′, · · · , n′}, {c, 1, · · · , n}, {b, e}} is
a chain partition of B3,n of type λ. We proceed to show that there exists no chain partition
of B3,n of type µ. Assume to the contrary there exists a chain partition {C1, C2, C3} of type
µ. Since {f, e, 1} is a 3-element antichain, |{f, e, 1} ∩ Cj | = 1 for j = 1, 2, 3. Without loss
of generality, assume that 1 ∈ C1 and hence i ∈ C1 for any 2 ≤ i ≤ n since each such i is
incomparable with f and e. Since {b, c, d} is a 3-element antichain, either b or c must belong
to C1 since d and 1 are incomparable. Hence |C1| ≥ n+1, contradicting to the assumption that
µ1 ≤ n.

Remark 3.1. When n = 1, B3,1 = B3 is the boolean algebra verified to be Schur positive. We
have also checked using Sagemath that B3,n is nice whenever n ≤ 5.

Now we see that distributive lattices do not necessarily have nice property. However, due to
the work of Lonc and Elzobi [10] that m×n is nice for any positive integers m and n, it is very
likely that the nice property holds at least for distributive lattices which are products of chains.

Conjecture 3.1. For any positive integers n1, n2, . . . , nr, the lattice n1 ×n2 × · · · ×nr is nice.

Proposition 1.1 tells that a Schur positive graph must be nice. Together with Theorem 3.2, we
know that not every distributive lattice is Schur positive. Motivated by Conjecture 1.2 it would
be very charming if a nice distributive lattice is Schur positive. Unfortunately, this is still not
true. In the next section, we will construct a family of nice distributive lattices which are not
Schur positive.

4 Nice distributive lattices which are not Schur positive

As we mentioned earlier, for any positive integers m and n Lonc and Elzobi [10] proved that
m×n is nice. Somewhat surprisingly, the product m×n is not Schur positive for many values
of m and n. In this paper, we denote the poset m× n as (n+ k)× n, where m = n+ k. The
main result of this section is as follows.
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Theorem 4.1. For any positive integers k ≥ 5 and n ≥ k+2
2 , the distributive lattice (n+ k)×n

is not Schur positive.

Let us first outline the idea to prove Theorem 4.1. It suffices to show that for some special
partition ρ the coefficient [sρ]Xinc((n+k)×n)

is negative. Here we shall take ρ = (2n+ k − 1, 2n+
k−3, . . . , k+3, k−3, 2, 2), a partition of n(n+k) of length n+2. By Theorem 2.2 or Corollary
2.3, we need to enumerate elements T ∈ Tρ such that |SCP(n+k)×n,cont(T )| ̸= 0. Note that for
any T ∈ Tρ there are some restrictions on the content of T , say cont(T ) = λ. On the one hand,
λ1 + · · ·+ λi ≥ ρ1 + · · ·+ ρi for any integer i since cont(T )⊵ sh(T ); on the other hand, in order
to make SCP(n+k)×n,cont(T ) nonempty, λ1 can be no larger than ρ1 since a chain of (n+ k)×n
contains at most 2n+ k − 1 elements, thus λ1 = ρ1; λ2 can be no larger than ρ2 since the next
longest chain contains at most 2n + k − 3 elements, thus λ2 = ρ2; continuing in this manner,
we deduce that λi = ρi for i = 1, . . . , n− 1, and the first n− 1 special rim hooks are exactly the
first n− 1 rows, as illustrated in Figure 5. Therefore, we have the following lemma.

Lemma 4.2. For any n, k ≥ 1, let T be a special rim hook tabloid of shape ρ = (2n + k −
1, 2n+ k − 3, . . . , k + 3, k − 3, 2, 2) and content λ such that |SCP(n+k)×n,λ| ̸= 0. Then we have
λi = ρi = 2n+ k − 2i+ 1 for 1 ≤ i ≤ n− 1.

...

2n+ k − 1

k + 3

Figure 5: The first n − 1 special rim hooks of any T ∈ T(2n+k−1,2n+k−3,...,k+3,k−3,2,2) satisfying
|SCP(n+k)×n,cont(T )| ≠ 0.

Though for our purpose it would be enough to compute |SCP(n+k)×n,λ| with λi = 2n+k−2i+1
for 1 ≤ i ≤ n − 1 due to Lemma 4.2, we shall give a more general result. For any m ≥ n ≥ 1,
let λ = (λ1, . . . , λℓ) be a partition of m × n with λi = m + n − 2i + 1 for 1 ≤ i ≤ n − 1. One
can check that λ⟨n⟩ is a partition of m− n+ 1, and write λ⟨n⟩ = ⟨1α1 , . . . , (m− n+ 1)αm−n+1⟩
with αi being the number of occurrences of i in λ⟨n⟩. The following result gives a formula to
compute |SCPm×n,λ| for any such partition λ.

Proposition 4.3. If m ≥ n ≥ 1, λ = (λ1, . . . , λℓ) ⊢ m × n with λi = m + n − 2i + 1 for each
1 ≤ i ≤ n− 1, and λ⟨n⟩ = ⟨1α1 , . . . , (m− n+ 1)αm−n+1⟩, then

|SCPm×n,λ| = (n− 1)!
∑

(ai1, ..., ain)⊨αi
1≤i≤m−n+1

n∏
j=1

(
m−n+1∑
k=1

k · akj

)
!
m−n+1∏
k=1

(
αk

ak1, . . . , akn

)(
1

k!

)αk

. (3)

Proof. Let us first prove (3) for small values of n. When n = 1 a little thought shows that

|SCPm×n,λ| =
(

m

λ1, λ2, . . . , λℓ

)
=

m!

(1!)α1 · · · (m!)αm
,

which coincides with (3).

We proceed to consider the case n = 2. In this case, we need to enumerate the number of
semi-ordered chain partitions of m × 2 of type λ = (λ1, . . . , λℓ) with λ1 = m + 1. Note that
for any m ≥ 2 the maximal length that a chain of m × 2 can achieve is m (containing m + 1
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(1, 1)

(1, 2) (2, 1)

(2, 2) (3, 1)

(3, 2) (4, 1)

(4, 2) (5, 1)

(5, 2) (6, 1)

(6, 2) (7, 1)

(7, 2) (8, 1)

(8, 2)

1̂

0̂

Figure 6: The poset 8× 2 and a chain of size 9.

elements), and such a chain must connect 0̂ = (1, 1) and 1̂ = (m, 2), as illustrated in Figure 6
for m = 8 and n = 2.

Looking at Figure 6, we see that m × 2 has m chains of size m + 1, all connecting 0̂ and 1̂.
Moreover, each chain C with m + 1 elements is determined by an r ∈ [m] = {1, . . . ,m} such
that {(r, 1), (r, 2)} ⊆ C. Once the chain C is removed, the remaining elements of m × 2 will
form 2 chains, say R1 = {(1, 2), (2, 2), . . . , (r − 1, 2)} and R2 = {(r + 1, 1), . . . , (m, 1)} (each
may be empty). We further need to partition the set R1 ∪ R2 into chains whose sizes form a
partition λ⟨2⟩ = (λ2, . . . , λℓ). Since any two elements a ∈ R1 and b ∈ R2 are incomparable,
each chain in a chain partition of R1 ∪ R2 lies entirely inside R1 or entirely inside R2. Recall
that λ⟨2⟩ = ⟨1α1 , . . . , (m − 1)αm−1⟩. If we fix a weak composition (ak1, ak2) ⊨ αk for each
1 ≤ k ≤ m− 1, then the number of semi-ordered chain partitions of R1 ∪R2 of type λ⟨2⟩, such
that there are ak1 chains of size k in R1 and ak2 chains of size k in R2, is equal to

(r − 1)!∏m−1
k=1 (k!)

ak1 · ak1!
· (m− r)!∏m−1

k=1 (k!)
ak2 · ak2!

·
m−1∏
k=1

αk! = (r − 1)!(m− r)!
m−1∏
k=1

(
αk

ak1, ak2

)(
1

k!

)αk

.

Since |R1| = r − 1 =
∑m−1

k=1 k · ak1 and |R2| = m− r =
∑m−1

k=1 k · ak2, we have

|SCPm×2,λ| =
∑

(ai1,ai2)⊨αi
1≤i≤m−1

(
m−1∑
k=1

k · ak1

)
!

(
m−1∑
k=1

k · ak2

)
!
m−1∏
k=1

(
αk

ak1, ak2

)(
1

k!

)αk

,

as desired.

Now we move to the proof for general n, and the main idea is the same as the case n = 2.
To determine a semi-ordered chain partition of m × n with the desired type λ, we first take
n − 1 disjoint chains whose sizes are λ1, . . . , λn−1 respectively. As will be shown later, once
these n − 1 chains are taken out from m × n, the remaining part can be written as a disjoint
union of at most n chains, each of which is a saturated chain of the subposet consisting of
{(1, k), (2, k), . . . , (m, k)} for some k.

In order to choose the first n− 1 chains, let us first enumerate the number of elements for each
rank in the poset m× n. Note that, for each 1 ≤ k ≤ n− 1, there are k elements of rank k − 1
and rank m + n − k − 1 respectively, and, for each n − 1 ≤ i ≤ m − 1, there are n elements
of rank i. For example, the poset 16 × 4 in Figure 7 has 1 element of rank 0 and rank 18, 2
elements of rank 1 and rank 17, 3 elements of rank 2 and rank 16, and 4 elements of rank i for
i = 3, . . . , 15.
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Keep in mind that we want to enumerate semi-ordered chain partitions of m × n of type
λ = (λ1, . . . , λℓ) with λ1 = m+ n− 1, λ2 = m+ n− 3, . . . , λn−1 = m− n+ 3. We will choose
the first n−1 chains according to their sizes one by one. The first chain is of size λ1 = m+n−1,
which will use up all elements of ranks 0 and m + n − 2, and also use one element of rank i
for each 1 ≤ i ≤ m + n − 3. Once such a chain is taken from m × n, the second chain of size
λ2 = m+ n− 3, if it exists, will use up the remaining elements of ranks 1 and m+ n− 3, and
also use one element of rank i for each 2 ≤ i ≤ m+ n− 4. Continuing in this manner, the k-th
chain of size λk = m+ n− 2k+1, if it exists, will use up the remaining elements of ranks k− 1
and m+ n− k − 1, and also use one element of rank i for each k ≤ i ≤ m+ n− k − 2. Finally,
the (n − 1)-th chain of size λn−1 = m − n + 3, if it exists, will use up the remaining elements
of ranks n − 2 and m, and also use one element of rank i for each n − 1 ≤ i ≤ m − 1. For an
illustration of the above procedure, see Figure 7.

Note that such a choice of the above n−1 chains will use up all elements of ranks 0, 1, . . . , n−2
and m,m + 1, . . . ,m + n − 2, leaving only one element for each rank in {n − 1, . . . ,m − 1}.
Due to their saturated property that each element (i, j) connects either (i + 1, j) or (i, j + 1),
these n − 1 chains between rank n − 2 and rank m form a non-crossing path family from
{(1, n − 1), (2, n − 2), . . . , (n − 1, 1)} to {(m − n + 2, n), (m − n + 3, n − 1), . . . , (m, 2)} in the
Hasse diagram of m×n. Since there are exactly n−1 elements of rank n−2, one can associate
a permutation σ ∈ Sn−1 to these first n − 1 chains by letting the i-th chain from left to right
(which contains (i, n− i) and (m−n+1+ i, n+1− i) simultaneously) to be of size λσi . Now the
set of the remaining elements is of the form {(1, n), (2, n), . . . , (r1−1, n), (r1+1, n−1), . . . , (r2−
1, n−1), . . . , (rn−1+1, 1), . . . , (m, 1)}, determined by some (n−1) elements r1 < r2 < · · · < rn−1

of [m]. Set r0 = 0 and rn = m+ 1 and for 1 ≤ i ≤ n let

Ri = {(ri−1 + 1, n+ 1− i), . . . , (ri − 1, n+ 1− i)}. (4)

For example, the semi-ordered chain partition in Figure 7 has R1 = {(1, 4), (2, 4), (3, 4)}, R2 =
{(5, 3), (6, 3), (7, 3), (8, 3), (9, 3)}, R3 = {(11, 2), (12, 2), (13, 2)} and R4 = {(15, 1), (16, 1)}. We
see that each Ri is a saturated chain, and their union is just the set of the remaining elements
after taking the first n− 1 chains from m× n. To summarize, a collection C of n− 1 chains of
respective sizes λ1, . . . , λn−1 will determine a permutation σC ∈ Sn−1 and an (n − 1)-element
set ΥC = {r1, . . . , rn−1} ⊆ [m]. In fact, the converse is also true.

(Claim I) Any permutation σ ∈ Sn−1 and any (n− 1)-element set Υ = {r1, . . . , rn−1} ⊆ [m]
also determine a collection C of n−1 chains of sizes λ1, . . . , λn−1 such that σ = σC and Υ = ΥC .

Now let us give a proof of this claim. Our aim is to construct a collection C of n − 1 chains
C1, C2, . . . , Cn−1 such that Ci is of size λi = m+n− 2i+1. Suppose that r1 < r2 < · · · < rn−1,
let us define R1, . . . , Rn−1 by using (4). For each 1 ≤ i ≤ n − 1 let Cσi contain the elements
{(i, n− i), . . . , (ri, n− i), (ri, n− i+ 1), . . . , (m− n+ 1 + i, n− i+ 1)}. Thus the k-th element
of rank n − 2 from left to right is assigned to the chain Cσk

for each 1 ≤ k ≤ n − 1. Now the
chain Cn−1 has been constructed. To complete the proof, it suffices to show how to use σ to
assign elements of ranks 0, . . . , n − 3 and m + 1, . . . ,m + n − 2 to C1, C2, . . . , Cn−2. For each
1 ≤ i ≤ n− 2 let σ(i) denote the permutation obtained from σ by deleting all numbers greater
than i. Now, for each 1 ≤ k ≤ i, assign the k-th element of rank i − 1 and the k-th element
of rank m + n − i − 1 from left to right to the chain C

σ
(i)
k

. Now we construct all the chains

C1, C2, . . . , Cn−1. It is routine to check that each Ci is from an element of rank i − 1 to an
element of rank m + n − i − 1, which has the desired size λi. Moreover, we have σ = σC and
Υ = ΥC . This completes the proof of the claim.

Figure 8 gives an example of the assignment of elements of ranks 0, 1, . . . , 6 when n = 8 and
σ = 3165274 ∈ S7. The elements of rank 6 will be assigned to chains C3, C1, C6, C5, C2, C7, C4

from left to right; the elements of rank 5 will be assigned to chains C3, C1, C6, C5, C2, C4 from

9



(1,3) (2,2) (3,1)

(14,4) (15,3) (16,2)

1̂

0̂

rank m

rank m− 1

rank n− 1

rank n− 2

Figure 7: The poset 16× 4.

left to right; the elements of rank 4 will be assigned to chains C3, C1, C5, C2, C4 from left to
right. Continuing in this manner, all the 28 elements of ranks 0, 1, . . . , 6 are assigned to the 7
chains as shown in Figure 8.

C3 C1 C6 C5 C2 C7 C4

rank 6

rank 5

rank 4

rank 3

rank 2

rank 1

rank 0

Figure 8: An assignment of elements of first 7 ranks of m× 8.

Given an (n − 1)-subset Υ = {r1, . . . , rn−1} of [m], let RΥ denote the subposet induced by
∪n
i=1Ri, where Ri is defined by (4). To complete the proof of the proposition, we further need

to enumerate the semi-ordered chain partitions of RΥ of type λ⟨n⟩ = (λn, . . . , λℓ). Notice that
each Ri form a chain (may be empty), and any two elements in different Ri’s are incomparable.
Hence all elements of every chain in the chain partition belong to the same Ri. Thus, the
number of semi-ordered chain partitions of RΥ of type λ⟨n⟩ = ⟨1α1 , . . . , (m − n + 1)αm−n+1⟩,
such that akj chains of size k are picked from Rj , is equal to

n∏
j=1

(
∑m−n+1

k=1 k · akj)!∏m−n+1
k=1 (k!)akj · akj !

·
m−n+1∏
k=1

αk! =
n∏

j=1

(
m−n+1∑
k=1

k · akj

)
!
m−n+1∏
k=1

(
αk

ak1, . . . , akn

)(
1

k!

)αk

.
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Then

|SCPRΥ,λ⟨n⟩ | =
∑

(ai1,...,ain)

n∏
j=1

(
m−n+1∑
k=1

k · akj

)
!
m−n+1∏
k=1

(
αk

ak1, . . . , akn

)(
1

k!

)αk

, (5)

summing over all weak compositions (ai1, . . . , ain) ⊨ αi such that
∑m−n+1

k=1 k · akj = |Rj | for
each 1 ≤ i ≤ m− n+ 1 and 1 ≤ j ≤ n. From Claim I it follows that

|SCPm×n,λ| =
∑

σ∈Sn−1

∑
Υ⊆[m]

|SCPRΥ,λ⟨n⟩ | = (n− 1)!
∑

Υ⊆[m]

|SCPRΥ,λ⟨n⟩ |, (6)

where the second equality holds since |SCPRΥ,λ⟨n⟩ | is independent of the permutation σ. Com-
bining (5) and (6) leads to (3), as desired. This completes the proof.

Remark 4.1. In view of our formula (3), the number |SCPm×n,λ| can also be computed by the
following two formulas:

|SCPm×n,λ| = (n− 1)!

(
m−n+1∏
k=1

(
n∑

i=1

xki
k!

)αk

) ∑
(γ1,...,γn)⊨m−n+1

n∏
j=1

γj !

x
γj
j

∣∣∣∣∣
constant term

, (7)

and

|SCPm×n,λ| = (n− 1)!

 ∑
(γ1,...,γn)⊨m−n+1

∂xγ

(m−n+1∏
k=1

( n∑
i=1

xki
k!

)αk
)
,

where ∂xγ = ∂xγ11 · · · ∂xγnn .

Now, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. As discussed in the paragraph immediately after Theorem 4.1, it suffices
to show that the coefficient [sρ]Xinc((n+k)×n)

is negative for ρ = (2n+ k − 1, 2n+ k − 3, . . . , k +
3, k − 3, 2, 2). In order to use (2) to compute this coefficient, we need to enumerate elements
T ∈ Tρ such that |SCP(n+k)×n,cont(T )| ̸= 0. By Lemma 4.2, if T ∈ Tρ has content λ, then
λi = ρi for 1 ≤ i ≤ n− 1 and the first n− 1 special rim hooks are exactly the first n− 1 rows,
as shown in Figure 5. We continue to consider the special rim hooks in the remaining top 3
rows of T ∈ Tρ. Due to its special shape, T has only 6 possibilities, labeled as T1, T2, . . . , T6

in Figure 9, where for each Ti only special rim hooks in the top 3 rows are shown. Thus
|Tρ| = 6, ht(T1) = 3, ht(T2) = ht(T3) = 2, ht(T4) = ht(T5) = 1 and ht(T6) = 0. We further need
to compute |SCP(n+k)×n,cont(Ti)| for each 1 ≤ i ≤ 6, which can be done by using Proposition
4.3. For convenience of notation, set δn,k = (2n+ k − 1, 2n+ k − 3, . . . , k + 3).

T1

k − 3

T2 T3

T4 T5 T6

Figure 9: The special rim hooks in top 3 rows of Ti ∈ T(2n+k−1,2n+k−3,...,k+3,k−3,2,2).
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Let us first compute |SCP(n+k)×n,cont(T1)|. Note that cont(T1) = (δn,k, k − 1, 2), and hence

cont(T1)
⟨n⟩ = ⟨21, (k − 1)1⟩ since k ≥ 5. Based on (3), we obtain

|SCP(n+k)×n,cont(T1)| =(n− 1)!×
∑

(a1,...,an)⊨1
(b1,...,bn)⊨1

n∏
j=1

(2 · aj + (k − 1) · bj)!×
1

(k − 1)! · 2!

=(n− 1)!× n · (k + 1)! + n(n− 1) · (k − 1)! · 2!
(k − 1)! · 2!

=n!

(
n+

k2 + k − 2

2

)
.

For T2 we have cont(T2) = (δn,k, k − 1, 1, 1) and hence cont(T2)
⟨n⟩ = ⟨12, (k − 1)1⟩. From (3) it

follows that

|SCP(n+k)×n,cont(T2)|

=(n− 1)!×
∑

(a1,...,an)⊨2
(b1,...,bn)⊨1

n∏
j=1

(1 · aj + (k − 1) · bj)! ·
(

2

a1, . . . , an

)
1

(k − 1)! · (1!)2

=(n− 1)!× n(n− 1)(n− 2) · (k − 1)! + 2n(n− 1) · k! + 2n(n− 1) · (k − 1)! + n · (k + 1)!

(k − 1)! · (1!)2

=n!(n2 + (2k − 1)n+ (k2 − k)).

For T3 one can check that cont(T3) = (δn,k, k − 2, 3). When k = 5, we have cont(T3)
⟨n⟩ = ⟨32⟩.

By using (3), we find that

|SCP(n+5)×n,cont(T3)| =(n− 1)!×
∑

(a1,...,an)⊨2

n∏
j=1

(3 · aj)! ·
(

2

a1, . . . , an

)
· 1

(3!)2

=(n− 1)!× n · 6! + n(n− 1) · 3! · 3!
(3!)2

=n!(n+ 19).

When k ≥ 6, we have cont(T3)
⟨n⟩ = ⟨31, (k − 2)1⟩. Similarly, by (3) we have

|SCP(n+k)×n,cont(T3)| =(n− 1)!×
∑

(a1,...,an)⊨1
(b1,...,bn)⊨1

n∏
j=1

(3 · aj + (k − 2) · bj)! ·
1

(k − 2)! · 3!

=(n− 1)!× n · (k + 1)! + n(n− 1) · (k − 2)! · 3!
(k − 2)! · 3!

=n!

(
n+

k3 − k − 6

6

)
.

For T4 we notice that cont(T4) = (δn,k, k − 2, 2, 1) and hence cont(T4)
⟨n⟩ = ⟨11, 21, (k − 2)1⟩ for

12



any k ≥ 5. By using (3) again, we obtain

|SCP(n+k)×n,cont(T4)|

=(n− 1)!×
∑

(a1,...,an)⊨1
(b1,...,bn)⊨1
(c1,...,cn)⊨1

n∏
j=1

(1 · aj + 2 · bj + (k − 2) · cj)! ·
1

(k − 2)! · 2! · 1!

=(n− 1)!× n(n− 1)(n− 2) · (k − 2)! · 2! + n(n− 1)(k! + (k − 1)! · 2! + (k − 2)! · 3!) + n · (k + 1)!

2 · (k − 2)!

=n!

(
n2 +

k2 + k − 2

2
n+

k3 − k2 − 2k

2

)
.

Note that the tabloid T5 has content cont(T5) = (δn,k, k − 3, 3, 1) for k ≥ 5. When k = 6 we
have cont(T5)

⟨n⟩ = ⟨11, 32⟩. Applying (3) gives

|SCP(n+6)×n,cont(T5)|

=(n− 1)!×
∑

(a1,...,an)⊨1
(b1,...,bn)⊨2

n∏
j=1

(1 · aj + 3 · bj)! ·
(

2

b1, . . . , bn

)
1

(3!)2 · 1!

=(n− 1)!× n(n− 1)(n− 2) · (3!)2 · 1! + n(n− 1) · 6! · 1! + 2n(n− 1) · 3! · 4! + n · 7!
(3!)21!

=n!(n2 + 25n+ 114).

It is also clear that cont(T5)
⟨n⟩ = ⟨11, (k− 3)1, 31⟩ for k = 5, and cont(T5)

⟨n⟩ = ⟨11, 31, (k− 3)1⟩
for k ≥ 7. Thus, when k ̸= 6, the formula (3) gives

|SCP(n+k)×n,cont(T5)|

=(n− 1)!×
∑

(a1,...,an)⊨1
(b1,...,bn)⊨1
(c1,...,cn)⊨1

n∏
j=1

(1 · aj + 3 · bj + (k − 3) · cj)! ·
1

(k − 3)! · 3! · 1!

=(n− 1)!× n(n− 1)(n− 2) · (k − 3)! · 3! + n(n− 1)(k! + (k − 2)! · 3! + (k − 3)! · 4!) + n(k + 1)!

(k − 3)! · 3! · 1!

=n!

(
n2 +

k3 − 3k2 + 8k − 6

6
n+

k4 − 3k3 + 2k2 − 6k

6

)
.

For the tabloid T6 we have cont(T6) = (δn,k, k−3, 2, 2). If k ≥ 6, then cont(T6)
⟨n⟩ = ⟨22, (k−3)1⟩.

By using (3) we get

|SCP(n+k)×n,cont(T6)|

=(n− 1)!×
∑

(a1,...,an)⊨2
(b1,...,bn)⊨1

n∏
j=1

(2 · aj + (k − 3) · bj)! ·
(

2

a1, . . . , an

)
1

(k − 3)! · (2!)2

=(n− 1)!× n(n− 1)(n− 2)(k − 3)!(2!)2 + 2n(n− 1)(k − 1)!2! + n(n− 1)(k − 3)!4! + n(k + 1)!

(k − 3)!(2!)2

=n!

(
n2 + (k2 − 3k + 5)n+

k4 − 2k3 − 5k2 + 14k − 24

4

)
.
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When k = 5, we have cont(T6)
⟨n⟩ = ⟨23⟩. Again using (3) we obtain

|SCP(n+5)×n,cont(T6)| =(n− 1)!×
∑

(a1,...,an)⊨3

n∏
j=1

(2 · aj)! ·
(

3

a1, . . . , an

)
1

(2!)3

=(n− 1)!× n(n− 1)(n− 2)(2!)3 + 3n(n− 1)4!2! + 6!n

(2!)3

=n!(n2 + 15n+ 74).

Based on (2) and the above enumerative results on |SCP(n+k)×n,cont(Ti)|, one can check that for
ρ = (2n+ k − 1, 2n+ k − 3, . . . , k + 3, k − 3, 2, 2),

[sρ]Xinc((n+5)×n)
= n!(−4n+ 9),

[sρ]Xinc((n+6)×n)
= n!(−11n+ 32),

which are both negative when n ≥ 3. Similarly, for k ≥ 7, one can check that

[sρ]Xinc((n+k)×n)
=

n!(k − 4)

12

(
(−2k2 + 4k − 18)n+ (k3 − 7k + 18)

)
.

Now it suffices to show that for any k ≥ 7 and n ≥ k+2
2 the number (−2k2 + 4k − 18)n+ (k3 −

7k + 18) is negative. This is obvious since for k ≥ 7 there holds 2k2 − 4k + 18 > 0 and

k3 − 7k + 18

2k2 − 4k + 18
<

k + 2

2
.

This completes the proof.

We proceed to give a more general result than Theorem 4.1. Given two posets P and Q, let
P ⊕Q denote their direct sum. Based on the work of Lonc and Elzobi [10], we can obtain the
following result.

Theorem 4.4. For any p, q ≥ 0 and m,n ≥ 1, the poset p⊕ (m× n)⊕ q is a nice distributive
lattice.

Proof. It is routine to check that p⊕ (m× n)⊕ q is a distributive lattice. It remains to show
that this lattice is nice. Define a partition λ = (λ1, . . . , λn) by letting λi = m + n − 2i + 1 for
1 ≤ i ≤ n. Theorem 1 of Lonc and Elzobi [10] tells that there exists a chain partition of m× n
of type δ if and only if δ ⊴ λ. Set λ̃ = (λ1 + p + q, λ2, . . . , λn). A little thought shows that if
there exists a chain partition of p ⊕ (m × n) ⊕ q of type µ, then µ ⊴ λ̃. Thus, to prove that
p ⊕ (m × n) ⊕ q is nice, it suffices to show the converse of the above statement is also true.
Suppose that µ = (µ1, . . . , µℓ)⊴ λ̃ and hence ℓ ≥ n. We define t1, . . . , tℓ recursively as follows.
If µ1 ≤ λ1, then set t1 = 0, and otherwise, set t1 = µ1 − λ1. Assuming that t1, . . . , tj−1 have
been defined, we set

tj = max

{
0,

j∑
i=1

µi −
j∑

i=1

λi −
j−1∑
i=1

ti

}
. (8)

It is routine to check that

j∑
i=1

µi −
j∑

i=1

ti ≤
j∑

i=1

λi, for any 1 ≤ j ≤ ℓ. (9)
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It follows that tj ≥ 0 and
ℓ∑

i=1

ti ≥
ℓ∑

i=1

µi −
ℓ∑

i=1

λi = p+ q.

We claim that
∑ℓ

i=1 ti = p + q. Suppose that
∑ℓ

i=1 ti > p + q. Let j be the minimum integer

such that
∑j

i=1 ti > p+ q, and hence tj ≥ 1. Thus by (8) we get

tj =

j∑
i=1

µi −
j∑

i=1

λi −
j−1∑
i=1

ti.

On the other hand, from µ⊴ λ̃ we deduce that

j∑
i=1

µi −
j∑

i=1

λi ≤ p+ q.

Combining the above two equations leads to
∑j

i=1 ti ≤ p + q, a contradiction. This completes
the proof of the claim.

Let ν = (µ1 − t1, µ2 − t2, . . . , µℓ − tℓ). For any 1 ≤ j ≤ ℓ, if tj = 0, then we have µj − tj ≥
µj+1 − tj+1. If tj ≥ 1, from (8) and (9) it follows that

j∑
i=1

(µi − ti) =

j∑
i=1

λi,

j−1∑
i=1

(µi − ti) ≤
j−1∑
i=1

λi,

j+1∑
i=1

(µi − ti) ≤
j+1∑
i=1

λi.

Hence µj−tj ≥ λj ≥ µj+1−tj+1. This means that ν is a valid partition. Moreover, according to
(9), we have ν⊴λ. Since m×n is nice, there exists a partition of m×n into chains C1, C2 . . . , Cℓ

such that Ci is of size νi. Take a partition of p⊕q into chains C ′
1, . . . , C

′
ℓ such that C ′

i is of size
ti. (The existence of such a chain partition is clear since p⊕ q is a chain.) Note that for each
1 ≤ i ≤ ℓ the elements in Ci ∪ C ′

i form a chain of size µi in p ⊕ (m × n) ⊕ q. In this way, we
obtain a chain partition of p⊕ (m× n)⊕ q of type µ. This completes the proof.

The following result can be considered as a generalization of Theorem 4.1 in some sense.

Corollary 4.5. For any p, q ≥ 0, k ≥ 5 and n ≥ k+2
2 , the distributive lattice p⊕((n+ k)×n)⊕q

is not Schur positive.

Proof. Let ρ be the partition (2n+ k− 1, 2n+ k− 3, . . . , k+ 3, k− 3, 2, 2) of n(n+ k) as in the
proof of Theorem 4.1, and let ρ̃ be the partition of n(n+ k) + p+ q such that ρ̃1 = ρ1 + p+ q
and ρ̃i = ρi for any i ≥ 2. Note that if [sλ]Xinc((n+k)×n)

̸= 0, then there exists some T ∈ Tλ such
that SCPP,cont(T ) ̸= ∅ by (2) and hence λ1 ≤ cont(T )1 ≤ 2n+k− 1 = ρ1 since the longest chain
(n+ k)× n is of size 2n+ k − 1. Suppose that

Xinc((n+k)×n) =
∑

λ⊢n(n+k)
λ1≤ρ1

aλsλ.

It is clear that
Xinc(p⊕((n+k)×n)⊕q) = Xinc((n+k)×n) · e

p+q
1 .

By using Pieri’s rule p + q times (see [16, Theorem 7.15.7]), we find that for any λ ⊢ n(n + k)
with λ1 ≤ ρ1 the coefficient [sρ̃](sλ·ep+q

1 ) vanishes unless λ = ρ. Thus,

[sρ̃]Xinc(p⊕((n+k)×n)⊕q)
= [sρ]Xinc((n+k)×n)

< 0

when k ≥ 5 and n ≥ k+2
2 . This completes the proof.
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5 Open problems

In this paper, we show that distributive lattices are not nice (thus not Schur positive) in general,
giving an answer of Problem 1.2. However, there are still some open problems about the nice
property and the Schur positivity for some special families of distributive lattices, which deserve
to be further studied.

Lonc and Elzobi [10] proved that the product of any two chains is nice. It is natural to consider
the nice property of the product of more than two chains. Data from computer program show
that n1×n2×· · ·×nr is nice whenever n1n2 · · ·nr ≤ 35. Nevertheless, they are generically not
Schur positive by the examples constructed in Section 4. Based on computations in SageMath
[14], we find a bigger number of lattices of the form m×n that are not Schur positive. Together
with Theorem 4.1, we have the following conjecture.

Conjecture 5.1. For any n ≥ 2, m ≥ 8 or n ≥ 3, m ≥ n+5, the distributive lattice inc(m× n)
is not Schur positive.

To support the above conjecture, let us see some examples. According to Equation (7) from
Remark 4.1, the cardinality |SCPm×n,λ| can be computed using computer software such as
SageMath. Combined with the expression for [sλ]Xinc(P )

in Corollary 2.3, we obtain the following
using SageMath. For the case when n = 2:

[s(m+1,m−8,2,2,2,1)]Xinc(m×2)
< 0 when 8 ≤ m ≤ 21,

[s(m+1,m−9,2,2,2,2)]Xinc(m×2)
< 0 when 9 ≤ m ≤ 45,

[s(m+1,m−10,2,2,2,2,1)]Xinc(m×2)
< 0 when 13 ≤ m ≤ 70,

[s(m+1,m−11,2,2,2,2,2)]Xinc(m×2)
< 0 when 20 ≤ m ≤ 142,

[s(m+1,m−12,2,2,2,2,2,1)]Xinc(m×2)
< 0 when 25 ≤ m ≤ 227,

[s(m+1,m−13,2,2,2,2,2,2)]Xinc(m×2)
< 0 when 47 ≤ m ≤ 424,

[s(m+1,m−14,2,2,2,2,2,2,1)]Xinc(m×2)
< 0 when 64 ≤ m ≤ 667,

[s(m+1,m−15,2,2,2,2,2,2,2)]Xinc(m×2)
< 0 when 117 ≤ m ≤ 1199,

implying that inc(m× 2) is not Schur positive for any 8 ≤ m ≤ 1199. We also have verified
that inc(m× 3) is not Schur positive for any 8 ≤ m ≤ 100 and inc(m× 4) is not Schur positive
for any 9 ≤ m ≤ 50.

For the product of three chains, we have verified that Xinc(m×2×2) is not Schur positive for
8 ≤ m ≤ 23. Our results about the Schur positivity of products of chains tend to imply that,
for distributive lattices of the form n1×n2×· · ·×nr, if the chain sizes ni’s have big differences,
then the lattice is generically not Schur positive. Since the boolean algebra Br is isomorphic to
the product of r chains of length 2, Conjecture 1.2 suggests that n1 × n2 × · · · × nr might be
Schur positive when ni’s are similar. Motivated by this, we propose the following conjecture.

Conjecture 5.2. For any positive integers n and r, the product nr = n × · · · × n of r chains
of length n is Schur positive.
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