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Abstract

A graph G is called Cy-saturated if G is Ci-free but G + e is not for any e € E(G). The saturation number
of C, denoted sat(n, Cy), is the minimum number of edges in a Cj-saturated graph on n vertices. Finding the
exact values of sat(n,Cy) has been one of the most intriguing open problems in extremal graph theory. In this
paper, we study the saturation number of Cs. We prove that 4n/3 — 2 < sat(n,Cs) < (4n+1)/3 for all n > 9,
which significantly improves the existing lower and upper bounds for sat(n, Cs).
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1 Introduction

All graphs considered in this paper are finite and simple. Throughout the paper we use the terminology and
notation of [27]. For a graph G, we use e(G) to denote the number of edges, |G| the number of vertices, §(G) the
minimum degree and G the complement of G. For A, B C V(G), let B\ A := B — A and N (A) denote the subset
of V(G)\A in which each vertex is adjacent to some vertex of A in G. If A = {v}, then we write as B \ v and
N¢g(v). The degree of vertex v in G, denoted dg(v), is the size of Ng(v). Let Ng[v] = Ng(v) U {v}. For a graph
G and u,v € V(G), let dg(u,v) denote the length of a shortest path between u and v. Without confusion, we
abbreviate as N(A4), N(v), N[v], d(v) and d(u,v), respectively. We use k-path (resp. k-cycle) to denote the path
(resp. k-cycle) of length k. For positive integer k, let [k] := {1,2,...,k}.

Given a family of graphs F, a graph is F-free if it contains no any member in F as a subgraph. A graph G
is called F-saturated if G is F-free but G + e is not for any e € E(G). The saturation number of F, denoted
sat(n, F), is the minimum number of edges in an F-saturated graph on n vertices. If F = {F'}, then we write as
sat(n, F'). Erdés, Hajnal and Moon [11] initiated the study of the saturation numbers of graphs and proved that
sat(n, Kgy1) = (k—1)n — (g) with Kj_1V K,,_p+1 as the unique extremal graph. Later, Készonyi and Tuza [20]
extended this to the case when K}, is replaced by any family F of graphs, showing that sat(n,F) = O(n). Since
then, a large quantity of work in this area has been carried out in determining the saturation numbers of complete
multipartite graphs, cycles, trees, forests and hypergraphs, see e.g. [2, 4, 7, 13, 18, 19, 22-24, 26]. Surveys on the
saturation problem of graphs and hypergraphs could be found in [12, 16, 25]. It is worth noting that the proofs of
almost all results are quite technically involved and require significant efforts.

Finding the exact values of sat(n,C})) has been one of the most intriguing open problems in extremal graph
theory. Until now, the exact values of sat(n,C}) are known for a few k. The result of Erdds, Hajnal and Moon

[11] pointed out the star S,, is the unique extremal graph for C5. Ollmann [23] determined all extremal graphs for

Cy. Later, Tuza [26] gave a shorter proof for the exact value of sat(n,Cy4). Fisher, Fraughnaugh and Langley [14]



derived an upper bound for sat(n,C5) by constructing a class of Cs-saturated graphs. Chen finally [5, 6] confirmed
the upper bound obtained in [14] is the exact value for sat(n,Cs) and also characterized all extremal graphs. For
the case of Hamilton cycle, Bondy [3] first showed that sat(n,C,) > [22] for all n > 6, which was later improved

to sat(n,Cy) > [ 2%t | for all n > 20 in [8-10, 21]. We summarize some of these results as follows.

Theorem 1.1 Let n be a positive integer.
(a) (23] sat(n,C3) =n—1 for any n > 3.
(b) [23, 26] sat(n,Cy) = |3%52] for any n > 5.
(c) [5, 6, 14] sat(n,Cs) = [@] for any n > 21.
For the general case k > 6, many researchers devoted to the study of the saturation numbers of C}, see
[1, 3, 8-10, 15, 21, 28]. We present the previous best results as follows.

Theorem 1.2 ([17, 28]) For any n > 9, we have [2] — 2 < sat(n,Cg) < |2%3].

Theorem 1.3 ([15]) For allk > 7 and n > 2k —5, we have (1 + %ﬁ) n—1< sat(n,C) < (1 + ﬁ) n+ <k54).

Based on the constructions that yield the upper bounds, Fiiredi and Kim believed the upper bounds are

approximately optimal and proposed the following conjecture, which is widely open.

Conjecture 1.4 ([15]) There exists a constant ko such that sat(n,Cy) = (1 + ﬁ) n+ O(k?) for all k > k.

It seems quite difficult to determine the exact values of sat(n,C}) for any k > 6 as mentioned by Faudree,

Faudree and Schmitt [12]. In this paper, we prove the following result, which improves Theorem 1.2.

Theorem 1.5 Let n > 9 be a positive integer and n = € (mod 3) with € € {0,1,2}. Then

(a) sat(n,Cg) < 42 + % — %,

(b) sat(n,Ce) > 4 — 2.

From Theorem 1.5, one can see sat(n,Cs) = 4n/3 + O(1) for any n > 9, which confirms that the constant kg
in Conjecture 1.4 should be at least 7.

We organize our paper as follows. In Section 2, we prove Theorem 1.5(a) by giving a new construction. In
Section 3, we prove Theorem 1.5(b) by assuming Theorem 3.4 holds. To complete the proof of Theorem 3.4, we
investigate that we just need to prove Theorems 4.7, 4.8 and 4.9 in Section 4. Several lemmas are provided in
Section 5 but their proofs are contained in Appendix. We then prove Theorems 4.7, 4.8 and 4.9 in Sections 6-8.
We need to introduce more notations. Given a graph G, let F¢ denote the family of all graphs G + e containing a
6-cycle as a subgraph, where e € E(G), and Cg(e) denote the family of 6-cycles containing e in G + e. By abusing
notation, we also use Cg(e) to denote one member in Cg(e). Denote by P(uv) the path with ends u and v. Given

a graph G with vertex partition V(G) = V1 U--- UV, and = € V(G), let N;(z) = N(z) NV, and n;(z) = |N;(z)].



2 Proof of Theorem 1.5(a)

Let n and € be given as in the statement. Let H be the graph depicted in Figure 1(a). Let P’ be a path with vertices
a;,bi, c; in order. For n = 3t with t > 3, let GY be a graph on n = 3t vertices obtained from H U P! U---U P!~3
by adding edges x1a; and xqc; for any i € [t — 3]. Then GY is C-free and

4n

e(GY) =e(H) +e(P) 4+ +e(PT3) +2(t—3)=12+2(t —3) +2(t — 3) = 4t = 5

For n = 3t + ¢ with ¢t > 3 and ¢ € [2], let G§ be a graph on n = 3t + ¢ vertices obtained from GY U K. by joining
y4 to all vertices of K.. The graph G} is depicted in Figure 1(b). Then for any € € [2], Gf is Cg-free and

5(571)+€_4n75+5(5—1)_47n+£
3 2 3 2

e(G5) = (@) + e(K2) + ¢ = dt + %5

We next prove that Gf is Cg-saturated for any ¢t > 3 and € € {0,1,2}. Observe that if G} is Cg-saturated,
then both GY and G? are Cg-saturated. Thus, we shall prove that G} is Cg-saturated for any ¢ > 3. It has been
proved in [28] that H is Cg-saturated. Thus we just need to show that G} + z1v € Fgi for any v € V(H) \ ya,
and {G} + a;a;, G} + aibj, G} + a;cj, G} + bibj, G} + bicj, G} + cic;} C Fer forany 0 <@ <j <t¢—3. It is clear
that the latter holds since Cs(aia;) = a;bic;zazia;, Cs(ab;) = abicixacib;, Co(aic;) = ajx1y2yszzacy, Co(bib;) =
bja;x122¢;b5, Co(bicj) = bja;x1abjc; and Cg(cicj) = ¢;bja;xizacy. For v € {x1,y1,¢o,ys}, Cs(z1v) = 21 Ptv where
P! = yyxoysys or P! = yyyox129. For v € {ma,a0}, Cs(21v) = 21 P2, where P? = yqysy121. For v € {ya,b0},
Cs(z1v) = 21 P3v'v, where P3 = yywo2; and v' € N(z1) N N(v). Hence, for any ¢t > 3 and ¢ € {0,1,2}, G is
Ce-saturated. Thus, sat(n,Cs) < e(G%) < 4n/3 +¢2/2 — 5¢/6, as desired. O

Figure 1: (a) H and (b) G}.

3 Proof of Theorem 1.5(b)

We call a vertex of degree two in a graph a root. A root is good if it does not lie in any triangle, otherwise it is bad.
For any graph G, let B(G) denote the set of all bad roots in G, B1(G) = {v € B(G)|d(v") > 3 for every v' € N(v)}
and BQ(G) = B(G)\Bl(G)

Lemma 3.1 ([28]) Let G be a Cg-saturated graph with 6(G) = 2. Then at least one of the following is satisfied:
(1) There exists a root o € Bi(G) with N(a) = {a1,as} such that N(o,) = {a,asz—i,x;} for any i € [2] and
1 # Ta.

(2) D(X) > 3|X]| holds for X = V(G)\ ({v € V(G)|d(v) = 2}\B1(G)), where D(X) =", .« d(v).

In fact, we can derive a stronger result than Lemma 3.1.



Lemma 3.2 Let G be a Cg-saturated graph with §(G) = 2. Then we must have D(X) > 3| X| for X = V(G)\ ({v €
V(@)|d(v) = 2}\B1(G)), where D(X) = ZUEX d(v).

Proof. Suppose not. By Lemma 3.1, we see Lemma 3.1(1) holds. Let a be such a root. Let N(«a), N(aq) and
N(ag) be defined as in the statement of the Lemma 3.1. Then G has a 5-path P(ax;) because G + ax; € Fg. Let
P(ax1) = aajasagasry. Note that d(a;) = 3 for any ¢ € [2]. If a1 = ag, then ay = a; for some i € {2,3,4} because
G is Cg-free. But then d(aq) > 4, a contradiction. If a; = ay, then ay = a3 and a3 = x2. But then G has a copy

of Cg with vertices x1, a1, a, as, T, a4 in order, a contradiction. O

This immediately leads to the following theorem.

Theorem 3.3 Let n > 6 be a positive integer. Let G be a Cg-saturated graph on n vertices with Bo(G) = 0.
0(G) =2 and G has no good root, then e(G) > 4n/3 — 2.

=

Proof. Since G has no good root, we see {v € V(G)|d(v) = 2} = B1(G) U B3(G). Hence, {v € V(G)|d(v)
21\B1(G) = B32(G) = 0. By Lemma 3.2, D(V(G)) = 3_,cy(g) d(v) = 3|V(G)|. Then e(G) = (3, cv(q) d(v))/2
3n/2>4n/3 — 2.

LY

To complete the proof of Theorem 1.5(b), we just need to prove the following Theorem.

Theorem 3.4 Let n > 6 be a positive integer. Let G be a Cg-saturated graph on n vertices with Bo(G) = 0. If
0(G) =1, or 6(G) =2 and G has at least one good root, then e(G) > 4n/3 — 2.

Proof of Theorem 1.5(b): Let G be a Cg-saturated graph on n > 9 vertices with e(G) = sat(n,Cs). If
By(G) = 0, then by Theorems 3.3 and 3.4, we have e(G) > 4n/3 — 2. So we may assume By(G) # (). Let G1 be a
graph obtained from G by deleting every vertex of Bs(G). Clearly, G; is a Cg-saturated graph and By(G1) = 0.
If |G1] < 5, then G is a complete graph and so e(G1) = |G1|(|G1| —1)/2 > 4]|G1|/3 — 2. If |G1]| > 6, then
e(G1) > 4|G1|/3 — 2 by Theorem 3.4. It is easy to see that e(G[Bz2(G)]) + e(B2(G),V(G) \ B2(G)) = 3|B2(G)]/2.
Thus, e(G) = e¢(G1) + e(B2(G), V(G) \ B2(G)) + ¢(G[B2(G)]) > 4|G1]/3 — 2+ 3|B2(G)|/2 > 4n/3 — 2. O

4 Proof of Theorem 3.4

Let G be a Cg-saturated graph on n vertices. Let o € V/(G) such that d(a) = 6(G). Set N[a] = {a, a1, ..., a5)}-
Denote by O5 the graph obtained from a 5-cycle by joining two non-adjacent vertices. Let S = {v € V(G)|d(v) = 2},
C4 = {v € S|v is contained in a 4-cycle}, Cs = {v € S|v is contained in a 5-cycle}, S5 = {v € S|v is contained in a ©5},
Sy = {v € S|v is not contained in a O3}, S5 = {v|v € C4—Cs}, Sz = {v|v € C5—C4} and S; = S—C4—C5. We choose
such « satisfying: when 6(G) = 1, the number of 4-cycles containing «; is minimum; when §(G) = 2, « is a good
root and a € S; for some ¢ € [5] such that i is as small as possible. Let V3 = N]o] and V; = {z € V(G)|d(z, o) =i}
for any ¢ > 2. Clearly, V; = () for any ¢ > 6 because G is Cg-saturated, that is, any two non-adjacent vertices are

the ends of some 5-path in G. Thus, Vi, ..., Vs form a partition of V(G). We define a function as follows.

Definition 4.1 For any z € V; and i > 1, let

if 1=1;

(S

1
3ni(r) —
g(z) = ) A .
ni—1(z) +sni(x) — 5 if i>2.



Remark 1. For any z € V; with i > 2, g(z) > n;—1(2)/3 + n;(2)/6 > 2 if n;_1(x) > 2 or ni(z) > 2; g(z) = ¢ if
ni—1(z) =1 and n;(z) = 1; and g(z) = —% if n;_1(x) = 1 and n;(z) = 0.

ol

We define N} (z) := N;(z) N V* and nf(x) := |[N}(z)|, where x € {—,+,1,2,—1,—2}. By Remark 1, for i > 2,
V; can be partitioned into V", V,~ such that

Vit = {w € Vilg(x) 2 0} and V" = V\V;* = {x € Vilg(x) = ~1/3}.
Moreover, we partition V;" into V;', V2 and V;™ into V;~*, V"2 such that
VP = {x € Vi lg(e) 2 2/3) and V' = V;N\V? = {w € Vi [g(e) = 1/6};

Vi li={z €V Inf () > 2} and V2= VOV

0o ! ! A SN AU 0 O

WAL ‘i
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Figure 2: The partition of V;.

For any ¢ > 2, the partition of V; is depicted in Figure 2, where the hollow vertices do not necessarily belong to

the set shown in the Figure. By Definition 4.1,

5

5 5
1
(@) =D e(GVI) + Y e(Vi, Vi) =D 5 D mila) + 3 Y nicia)
=1 =2 i=1 z€eV; i=2 x€Vj;
> 4 4
Y Y (s +3) = S o)+ ox) + 3n
i=1z€eV; zeWVr zeV(G)\W1
4 4
= g(z) + 3" +e(G[W1]) - §|V1|
zeV(G)\V1
4 4
= g(x)+§”+(|V1|*1)*§|V1|
zeV(G)\W1
4
= g(x) + sn—|Vi[ -1
373
z€V(G)\V1
4
> g(x) + 3" 2, (1)
zeV(G)\V1

where e(V;, V;_1) is the number of edges with one end in V; and the other end in V;_;.

To obtain the desired lower bound in Theorem 3.4, we just need to show that >, i )\, 9(z) = 0. The
basic idea of our proof is as follows: we first allocate a charge to each vertex in G such that the initial charge
function is the function g defined in Definition 4.1, and then reallocate the charge to each vertex in G such that
the final charge at each vertex of V/(G) \ V1 is at least zero. To reallocate the charge to each vertex in G, we
need to define a series of charge functions, which can be regarded as two stages: at the first stage, the charge

function g¢; for any ¢ € [5] is defined; at the second stage, the charge function f; for any i € [7] is defined,



such that }° cyg) 9i-1(2) = Yo,ev(q) 9i(z) for any @ € [5] and Yo, oy g fi-1(2) = X, cv(q) fi(z) for any
j € [7], where go = g and fo = g5. Since the charges of vertices of V; are never altered, it suffices to prove that

> wevienw J7(z) = 0.

In the following, we define the charge functions at the first stage. For any vertex x uninvolved in the definition

of g;, gi(z) is still equal to g;_1(z). In the following, for z € V(G), we call z as j-vertex if g(z) = j; jT-vertex if
g(z) = J.

Definition 4.2 (1) Several % -vertices send charges to some —%—vertlces in the previous level and %—VGI‘UCGS in

the same level; several %—vertices send charges to —%—Vertices in the previous level. We define the concrete laws
as follows:
(1.1) For any u € V2, let g1(u) = g(u) — gnj(u), as depicted in Figure 3(ay). For any u € V;? with i € {3,4},
let g1(u) = g(u) — %\Al(u) — %|Bl (w)| — énzl (u), as depicted in Figure 3(ag). For any u € V2 with i =5, let
g1(u) = gu) — é|A1(u) - %|Bl( )| — %(né(u) — |Cy(u)]), as depicted in Figure 3(a3), where A;(u) = {v €
Ni_y(W)nf(v) = 2}, Bi(u) = {v € N;_y (u)|nf(v) = 1} and
@ {w € N} (u)|Ny(w) € Ny(w') for some w’ € N5(u) \w} if d(u) = 3,n4(u) =ny (u) = 1;
Cl u) =
0 else.
(1.2) For any w € V3, let g1(w) = g(w) + gn?(w), as depicted in Figure 3(b1). For any w € V;* with i € {3,4},
let g1(w) = g(w) + gn?(w) — §|A2(w)], as depicted in Figure 3(bs), where Az(w) = {v € N;_;(w)|n?(v) = 0}.
For any w € V3, let g1(w) = g(w) + gnd(w) if w ¢ Ci(u) for any u € VZ, as depicted in Figure 3(b3),
g1 (w) = g(w) otherwise.
(1.3) For any v € V;~ with i € {2,3,4}, let g1(v) = g(v) + §n?,1(v) if n?, | (v) > 2, as depicted in Figure 3(cy);
g1(v) = g(v) + 3 if n?, | (v) = 1, as depicted in Figure 3(c2); g1(v) = g(v) + gniyi(v) when i € {2,3} (as
depicted in Figure 3(c3)) and g1 (v) = g(v) when i = 4 if n?_; (v) = 0.

71 . r2 )
weVy ueVy weVI\Ci(u) UE V2
a1) (a3)
v € Ay(w) veV; vev; veV;
1 1 1 1 1
1 6 1 1 6 6 3 6
3 G 6
we Vy ue Vi we v} we V2 we VI\Ci(u) ueV? weVi, weV?, we Vi, we vV,
(b1) (by) (bs) (u)n,ﬂ( ) =2 (ex)nfiy(v) = 1 (ea)nfi(v) =0

Figure 3: (a1,as2,as), (b1,b2,b3), (c1,c2,c3) are the explanations of Definition 4.2(1.1), (1.2), (1.3) respectively,
where ¢ € {3,4}, j € {2,3,4} and k € {2,3}.

(2) Several %—Vertices of V5 send charges to some %—vertices in V5. Concretely, for any two adjacent vertices
wi,wy € V& with Ny(w;) = {5}, let go(w;) = g1(w;) — % and ga(ws—;) = g1(ws—;) + % if g1(y;) > 0 and
91(y3—i) < 0, as depicted in Figure 4(a); g2(w;) = g1(w;) otherwise.



(3) Several %—vertices send charges to their neighbours in the previous level. Concretely, for any y € V,~ with
92(y) < 0, where i € {2,3,4}, let g3(y) = g2(y) + t|A3(y)| and g3(z) = g2(2) — g2(2) = 0 for z € A3(y), where
As(y) = {z € N1 (y)|g2(2) = t}, and t = § when i € {2,3} and ¢ = & when i = 4, as depicted in Figure 4(b).

(4) Several g—vertlces of Vi send charges to some %—vertices in V5. Concretely, for any two adjacent vertices

wi,wy € V3 with Ny(w;) = {y;} and gs(w1) = g3(w2) = ¢, let ga(w;) = gs(w;) — § and ga(ws—;) = g3(ws—;)+ ¢
if g3(y;) > 0 and g¢3(ys—;) < 0, as depicted in Figure 4(c); g4(w;) = g3(w;) otherwise.

(5) Several %—vertices of Vs send charges to their neighbours in the previous level. Concretely, for any y € V,~ with

94(y) <0, let g5(y) = ga(y) + ZZ€N1 ) 9a(2) and g5(2) = ga(2) — g4(z) = 0 for any z € N2(y), as depicted in
Figure 4(d).

v eV ¥ € Vi yev yeVy y1 €V g EV) yevy
1 1 9(z)
3
1 1
6 6
w € V3 wy € V3 z € As(y) z € Asy) w € Vi wy € Vi zeVy
(@) g1(y1) >0, g1(y2) <0 (b) galy) < 0, i € {2,3} (¢) gs(y1) > 0, g3(y2) <O (d)ga(y) <0

Figure 4: (a), (b), (¢) and (d) are the explanations of Definition 4.2(2), (3), (4) and (5), respectively.

For any z € V(G), let g*(x) = g5(x) and go(z) = g(z). Clearly,

Y osw= Y g (2)

zeV(G)\W1 zeV(G)\V1
Moreover, for any 0 < i < j <5, if g;(z) > 0, then g;(z) > 0; and if g;(z) < 0, then go(z) < --- < g;(x) < 0. For
any i € [5], let V'™ = {z € Vi|g*(z) < 0}, N (z) := N;(z) NV~ and n; ™ (x) := |N;” (z)|. By Definitions 4.1
and 4.2, we see that for any x € V? and i € {3,4,5},

. 1 _ 1 1
0"(@) 2 g(@) = 3024 () — gnily(a) — gnt ()
1 1 _ 1
> gla) = 3 (2) = nfy () + i (@) = 5 () — (@)
2 1 1 1 1 4
= §n¢—1($) + g":rﬂ(l") + gn:1(x) + gm(x) + 6”?(37) 3 (3)
By Definition 4.2 and Ineq. (3), we have the following observations.

Observation 4.3 Let i € {2,3,4}. For z € V;"~, we have
(1) n%+1(gc) =0 and nzl+1(:lc) <1;(2ifye N141+1(33)7 then nllH(y) =1.

Observation 4.4 Let i € {3,4,5}. For any z € V%, g*(z) > in;_1(z) + gn;i(z) if one of the following holds.
(1) nj' () > 2o0r ni—1(z) > 3 and n;_1(x) + n;(x) > 5;
(2) niy(2) +nical@) 2 4

(3) ni_y(x) + ni—1(z) = 3 and nf(x) > 1;
(4) nf (2) + ni_1(x) = 3 and n; Y (z) + ni(x) > 2.

Observation 4.5 Let i € {3,4,5}. For any = € V2, g*(z) > ¢n;—1(x) + gni(z) if one of the following holds.
(1) nf (@) >20r ni—1(z) > 2 and n;—1(z) + ni(z) > 4;

(2) nf 4y (2) +nica(z) >3



(3) n y(x) + n;—1 =2 and nZ(x) > 1;
(4) nfy (@) +nimy =2 and 0 () + ni(2) > 3;
(5) nf”(x) +ni_1 =1 and n; ', (z) +n2(z) > 3.

Now we are ready to define the functions at the second stage. Here, the “initial charge” of x can be regarded
as g*(x). For any vertex uninvolved in the following definition of f;, the value of f; remains unchanged. For any
z € V(G), let N/~ (x) := {v € Ni(2)|f;(v) <0} and N/ T (z) = Ni(z) \ N/ (z). We define n/ ™ (z) = |N/~(x)| and
nit(x) = N/ (z)|. Let L(v) € N(v) denote the set of vertices with degree one.

Definition 4.6 (1) Every vertex of V5 sends charge equally to its neighbours in V4. Concretely, for any z € V; and
w e Vs, [1(2) = 97(2) + Xoen, () 97 (v)/na(v) and fr(w) = g% (w) = Xy, (w) 9 (w)/na(w) = 0, as depicted
in Figure 5(a). With the following two exceptional cases:

(1.1) Suppose w € Vs with N(w) = {21, 22, w1 } such that nz (21) # 0, ng (22) = 0 and N2 (w1)NN2 (22) # 0,
where 21,29 € V, and w; € V5. Then w will send 2¢*(w)/3 charge to z1, and g*(w)/3 charge to 23, as depicted
in Figure 5(b).

(1.2) Suppose w € V5 with N(w) = N, (w) = {21, 22, 23} such that nz (21) # 0, nz (22) = nj (22) =0 and
N3(z2) = N3(23). Then w will send g*(w)/2 charge to z1, and g*(w)/4 charge to zo, and g*(w)/4 charge to z3,
as depicted in Figure 5(c).

yeVs
z € Ny(w) o .
g'(w)
ny(w)
we Vs w eV
(a) (b)ng (21) # 0 and ng (22) =0 (c)ns (21) # 0 and ng (22) = n5 (23) = 0

Figure 5: (a), (b) and (c) are the explanations of Definition 4.6 (1), (1.1) and (1.2), respectively.

(2) Several é+—vertices of V4 send charges to their neighbours in Vj, as depicted in Figure 6. Concretely, for any
z € Vy, if fi(z) > %n}f(z), then fa(z) = fi(z) — %n}f(z), and fo(2') = fi1(2/) + § for any 2/ € N~ (2).
Moreover, for any two adjacent vertices z1,2z0 € V}' with N3(z;) = {y;} and fi(z;) = 0 and fi(y;) < 0, if
fi(zs—;) > % and fi(ys—;) < 0, or fi(z3—;) > % and fi(ys—;) > 0, then let fo(zs—;) = fi(z5—;) — é and
fa(zj) = fi(z) + §-

Y1 Y2 Y1 Y2

1 1 1

6 6
oO—@
z€eVy 2 € Nj7(2) 2 €V} HeV] n eV z eV}

_ 1 1
(@fi() > ™ 6<Z> (0)fi(21) = 0. filz) = 3, (fi(2) =0, filz) 2 ¢,
fily)) <0 for any i € 2] fi(y1) < 0,and fi(y2) >0

Figure 6: (a), (b) and (c¢) are the explanations of Definition 4.6(2).



(3) Several vertices of Vj send charges equally to their neighbours in V3. Concretely, for any y € V3, then

fa(y) = fa(y) +ZZ€N42+(y) f2(2)/n3(2) and f3(z) = fa(2) — fa(2) = 0 for any z € N (y), as depicted in Figure
7(a). With the exception of the following case:

(3.1) Suppose z € V4 with N3(z) = {vy1,y2,¥3}, na(z) < 1 and nz (z) = 0 such that L(y1) # 0 and
L(y2) = L(y3) = 0. Then z will send f2(2)/2 charge to y1, and f2(2)/4 charge to y2, and fo(2)/4 charge to ys,
as depicted in Figure 7(b).

y € Ny(z) yev; % y1 € Ay) yeV;
f2(2)
n3(z) —f3(2) —f3(2)
2 z € Nj (y) z e N7 (y) N
(@ h2) > 0 (BYNA(2) = {31, 42:va}. 05 () = 0, @h) > s+ 200 @) < sty) < st + AL

Figure 7: (a,b) and (¢, d) are the explanations of Definition 4.6(3) and (4), respectively.

(4) Several vertices of V3 send charges to their neighbours in V3 U Vy. Concretely, for any y € Vs, let s(y) =
Yens-(y —f3(2) and A(y) = {y1 € Ns(y)|fs(y1) — s(y1) < O}, if fs(y) > s(y) + §lA)], then fu(y) =
f2(W)=s(y)=§l1AW)], fa(2) = f3(2)+(=f3(2)) for any = € Ni~ (y) and fa(y1) = fa(y1)+§ for any y1 € A(y), as
depicted in Figure 7(c); if s(y) + gl A(y)] > f3(y) = s(y), then fa(y) = fs(y) —s(y) and fa(2) = f3(2) +(~f3(2))
for any z € N3~ (y), as depicted in Figure 7(d).

(5) Several vertices of V3 send charges to their neighbours in V. Concretely, for y € Vs, if f4(y) > ZZGN?— ) —f4(2),

then f5(y) = fa(y) — X.cni-(y) —fa(2) and f5(2) = fa(z) + (= fa(2)) = 0 for any z € Ni~ (), as depicted in
Figure 8(a).

(6) Several %—vertices of V3 send charges to their neighbours in V3. Concretely, for any two adjacent vertices y1,ys €
Vit with Na(yi) = {2}, if fs(x1) >0, fs(z2) <0, fs(y1) > § and fs(y2) = 0, then let fo(y1) = fs(y1) — 5,
fo(y2) = fs(y2) + &, as depicted in Figure 8(b).

(7) Every vertex of V3UVy sends charge to some vertices in V. Concretely, for x € Vo, if f6(x)+zyeN§+(w) fo(y)/naly) >

ZyeA4(z)UN§*(g;) —fe(y), then f7(z) = f6($)+zyeN§+(I) fﬁ(y)/RQ(y)+ZyeA4(m)uN§’*(m) fe), fr(y) = fo(y)—
fe(y) = 0 for any y € N3(x) U Ayg(x), where Ay(x) = {y € Ny(N3(2))|fs(y) < 0}, as depicted in Figure 8(c).

z €V
yEeVs o 2
—fu(2) 1
z € Ny(y) y VY Y2 € N3 (1) .z € Ay(z)
@fily) = DL ~hilz) O)fson) 2 g Jly) =0, @fl@)+ D f/ma@) = D> —fly)
N Fiwn) 2 0, fyfaz) <0 VN YEAGION ()

Figure 8: (a), (b) and (c¢) are the explanations of Definition 4.6(5), (6) and (7), respectively.



Clearly,
Yo fl@= ) g, (4)
zeV(G)\V1 zeV(G)\V1

Observe that for any = € V(G) and 1 <14 < j < 6, we have

() if fi(z) = 0, then f;(z) > 0; if fi(2) <O, then fi(z) <--- < fi(z) <0

In order to prove Theorem 3.4, it is enough to prove Theorem 4.9 by inequalities (2) and (4), which will be
proved in Section 8. Before we do this, we firstly prove the following two results in Sections 6 and 7, which indicate

that the number of vertices in V;>~ for any i € {3,4} are few.

Theorem 4.7 Let x € Va. Then 3, c v, () ny~(y) < 1.
Theorem 4.8 Let x € Vo. Then ngf(x) < 1. Moreover, if ngf(x) =1, then nif(y) =0 forany y € N§+(x).

Theorem 4.9 For all x ¢ V1, we have fr(x) > 0.

Now we are ready to prove Theorem 3.4.

Proof of Theorem 3.4: If §(G) > 3, then e(G) > 3n/2 > 4n/3—2. So we may assume that §(G) < 2. If §(G) =
then > . g(v) = 2x(3—3) = —3. If 6(G) = 2, then Y vey, 9(v) = 2x(4—3)+(1—3) = —2. By Theorem 4. 9and

inequalities (2) and (4), 3_,cy g\, 9(v) = 0. Therefore, by Ineq. (1), e(G) = 3-, v, 9(0)+2 ey 9V v)+3n >

5 — 2, as desired. O

5 Several Lemmas

Lemma 5.1 Lety € V3. For z € Ny~ (y) with d(z) > 2, we have
(a) ng (2) =0 and d(z) =2
(b) G has a 3-path P = zwwyz, such that d(w) = d(wy) = d(z1) = 2 and yz1 ¢ E(G).

Lemma 5.2 For any y € Vs, we have ny (y) < 1.

Remark 2. It is easy to check that ng (v) < 1 for any v € V,. From the above Definition 4.6, we see that
fo(v) =+ = fi(v) = g"(v) forany v € V3, f2(v) = f1(v) = g*(v) forany v € V3, f1(v) > g*(v)—3n5 (v) = g*(v)—3
for any v € Vy and fo(v) > f1(v) — tnl(v) > fi(v) — dna(v) for any v € VA,

Let tf := nf,glé)u) for any v € V; and i € {3,4,5}, t2 := 3:2(&)) for any v € Vy and #J, := 7’:72—((2)) for any v € V3 and
j € {5,6}.

Lemma 5.3 For any z € Vi with ng (z) > 1, we have fa(z) > 0; moreover, f3(y) > 0 for any y € N3(z).
By (%), Lemmas 5.2 and 5.3, one can easily see the following corollary.

Corollary 5.4 For any x € V3, Ni~(2) € N; ™ (x) and n’; (z) < 1 for any 2 <i < 5.

Lemma 5.5 For any y € Vs with N5 (Ny(y)) # 0, we have n]~ (y) = 0.

Lemma 5.6 Let z € V and N3(2) = {y1,y2,93}. If Na(y1) = No(y2) = No(y3) and na(y1) = 1, then nl~ (y;) = 0
for any i € [3].

Lemma 5.7 For any y € Vs with L(y) # 0, we have n~ (y) = 0, moreover fs5(y) > 0.

10



Lemma 5.8 Lety € V3™
(a) If z € N7~ (y), then nf (y) = 0.
(b) If z € Ni(y) and Ny(z) = {z1}, then nz (z1) = 0.

For readability, we have removed all proofs of these lemmas to Appendix.

6 Proof of Theorem 4.7

Suppose not. Let z; € N2~ (y;) for any i € [2], where y; € N3(x). By () and Corollary 5.4, N2~ (y;) = N2~ (y;) =
N; ™ (y;) = {2} and y; # y2. By Lemmas 5.7 and 5.1(a, b), for any i € [2], G has a 3-path P? = z;w;w!z} such that
d(v) = 2 for any v € V(P?) and z}y; ¢ E(G). Clearly, f3(z) > g*(z) > —¢. Hence, f3(y;) < ¢ for any i € [2],
else f1(z) > fs(z) + & > 0 because N3~ (y;) = {z}. Note that either P, = P, or V(P;) NV (P;) = §. Because
d(z}) = d(w}) =2, we see z; € V;~ and so zlys—; ¢ E(G) if z} # z3_,; for any i € [2]. Since G + 2122 € Fg, we see
G has a 3-path P(y1y2). Let P(y1y2) = y1a1a2y2. We next prove two claims.

Claim 6.1 = ¢ {a1,a2}.

Proof. W.lo.g., suppose z = ai. Then Ny (y2) U (N3(z) \ y2) = 0, else f3(y2) > g*(y2) > &. Hence, az € V3 and
g(z) < 0. By the choice of a, we see ajas ¢ E(G) if 6(G) = 2. This implies g(y1) = § because G + z10 € Fg,
d(z1,) = 4 and g(z) < 0. Clearly, g(y2) < ¢, else f3(y1) > g*(y1) > §. Note that G has a 5-path P(y2cr). Let
P(ysc) = yabrbabsa;ar. By the choice of «, a belongs to no 4-cycle because d(z;) = 2 and z; belongs to no 4-cycle.
Then by € Vj and by € V3 because d(y2, ) = 3, N3(z) \ y2 = 0 and g(z) < 0. By Lemma 5.5, n; (by) = 0. By
Observation 4.5(2), g*(b1) > $n3(b1) + §na(b1) because yo € N3 (b) and ng(by) > 2, which yields 7 > §. But
then fs(y2) > fa(y2) + 13, > %, a contradiction. This proves Claim 6.1. O

Claim 6.2 |{a1,a2} NV, = 1.

Proof. Obviously, [{a1,a2} V4| > 1, else f3(y;) > g*(y;) > & because n3(z)+n3(y;) > 1 for some i € [2]. Suppose
[{a1, a2} N V4| = 2. By Lemma 5.5, for any i € [2], n5 (a;) = 0 and fi(a;) > 0, which means nj~ (a;) < ny4(a;) — 1.
Then g(y;) < 0 for any i € [2], else let g(y1) > 0, we see fs(y1) > fa(y1) + 2, > § because fi(a1) > g*(a1) >
ing(ay) + #(na(ar;) — 1) and 2 > 1. Hence, G has a 3-path P(zy;) for some i € [2] as G + 21y2 € Fg. Let
P(xzy;) = xbiboy;. Then by € V3 and by € Vj. Since G + z;b; € Fg, we have g(by) > % or G —y; — by has a
2-path with ends  and by. By Observation 4.5(2), f1(b2) > g*(b2) > %ng(bg) + én4(b2) because ng (b2) = 0 and

nd (ba) + nz(b2) > 3, which implies ty > +. But then f3(y;) > fa(y:) + ty, > %, a contradiction. O

By Claims 6.1 and 6.2, w.l.o.g., let a1 € V4. Then a € V3 and so t2 > & because nj (a1) + n3(ai) > 3 and
ny (a1) = 0. But then f3(y1) > fa(y1) +t2, > £, a contradiction. This completes the proof of Theorem 4.7. O

7 Proof of Theorem 4.8

We first show that n3~ (z) < 1. Suppose not. Let y1,y2 € N5~ (). By (%) and Corollary 5.4, f;(y;) < 0 for any
j €[5 and i € [2], and y1,y2 € N3~ (z).

Claim 7.1 n3(y;) =0, ni(y;) < 1, N5 (Ny4(y;)) = 0 and there is no s-path P(zy;) for any s € {2, 3}.

Proof. The desired results hold by Observation 4.3(1) and Lemma 5.3. g

11



Claim 7.2 Suppose N} (y;) = {2}, Nu(2i) = {z’} w; € N5( 1) and w; € N5(z;). Then n3(z;) = n2(z;) = nk(w;) =
ns (2) = n?(w}) = 0. Furthermore, fi(2}) < % and filv) < 6 for any v € Na(y;).

Proof. By Observation 4.3(2), n%(z;) = 0. By Lemma 5.8(2), ns (2}) = 0. Clearly, fa(y;) = g*(yi) > —%. Hence,
fi1(v) < } for any v € Ny(y;), otherwise let f; (vo) L for some vy € Nu(y;), t2, > & as ny ™ (vo) = 0, which yields

s too
fs(yi) = fo(yi) + t2, > 0. Moreover, fi(2}) < 3, otherw1se by Definition 4.6(2), f2(z;) > 1 and so f3(y;) > 0.
Next we prove n2(z;) = nZ(w;) = 0. Suppose w; € N2(z;) or n2(w;) ;é 0. By Ineq. (3), g*(w;) > gna(w;) because
z; € Ni (w;), which means ¢}, > §. But then fi(z) > g*(z )—|—t* > 4,
to show nZ(w)) = 0. Suppose not. Then w] € V3 and g*(w}) < i, else, tw 23 + and so fi(z]) > t* > 1. By
Deﬁnltlon 4.2(1.1), we see there exists a vertex w’-’ € Ns(z;) \ w; such that t* vz %. Note that g*(w}) 2 5 and so

tfu > 2, which follows that fi(z]) > t* , i

a contradiction, as desired. It remains

> 3, a contradiction. (I

Claim 7.3 Suppose z; € N, (y;) and 2, € N2(z;). Then d(z]) < 3. Moreover, fi(z;) < 3.

Proof. Clearly, fi(z) < %, else t2, > % and so f3(y;) > fa(y;) + 2, > 0. Suppose d(z]) > 4. By Ineq. (3),
g*(2]) = tny(2}), that is, t, > i. By Clalm 7.1, n5 (z) = 0. Hence, f1(z;) > g*(2;) + t%, > %, a contradiction. [

(3

Claim 7.4 G has no 4-cycle containing y;.

Proof. W.l.o.g., suppose G has a 4-cycle with vertices y1,u1,us, us in order. By Claim 7.1, we have uy,u3 € Vy
and ug € V5 and wiug ¢ E(G). By Claims 7.1, 7.2 and 7.3, ng (u;) =0, g(u;) < 0 for any i € {1,3} and d(ug) < 3.

We assert d(uz) = 2. Suppose not. By Ineq. (3), g*(uz) > gna(uz) because ny(uz) + ns(uz) = d(uz) > 3 and

ng(uz) > 2, which means ¢, > &. Hence, fo(u;) = fi(u;) > g*(u;) + t,, > & for any i € {1,3}, which means
tii > %. But then f3(y1) > fa(y1) + t%l + tig > 0, a contradiction, as asserted. By Claim 7.1, G — y; — us has a
2-path with vertices w1, u4, us in order such that uy € Vs as G + usx € Fgi. By Ineq. (3), g*(u2) > 6n4(u2) since

ng(ug) > 2 and uy,uz € N[l(uQ). Similarly, we have f3(y;) > 0, a contradiction. O

Clearly, d(y;) > 2 for some i € [2], else G + y1y2 ¢ F. W.lo.g., assume d(y;) > 2. Let 21 € Ny(y1). Note
that d(y2) > 2, otherwise by Claims 7.1 and 7.4, G has no 4-path with ends « and z; containing y;, which yields
G+ z1y2 ¢ Fg. By Claim 7.1, z1y2 ¢ E(G), which means G has a 5-path with vertices z1, a1, as, as, 22, y> in order.
By Claims 7.1 and 7.4, a1 ¢ V3 and 25 # 2 which implies zo € N4(y2). Note that 2120 ¢ E(G), otherwise a1,a3 € Vs
and as € V4 U V5 which violates Claim 7.2. This yields G has a 5-path with vertices z1, b1, b2, b3, by, 22 in order.
Note that {b1,b4} C V3 UV, U V5. Clearly, by Lemma 5.3, ny (z;) = 0 for any ¢ € [2], which yields f1(z;) > g*(2;).

Claim 7.5 |{b1,b4} N V3| <1.

Proof.  Suppose not. By Claim 7.1, by = yi, by = 9o, ba,b3 € V! and bibg ¢ E(G). This implies G has a
5-path with vertices by, ¢y, o, ¢3, ¢4, b3 in order. By Claims 7.1 and 7.4, ¢4 # y2 and ¢; # x. Then ¢; € V, as
9(y1) < 0. Moreover, ¢4 ¢ Vi, otherwise by Claim 7.2, ¢c3 € Vi, co € Vy, which yields g(e¢1) > % and so n3(y;) > 1
or nj(y1) > 2 violating Claim 7.1. Thus, ¢4 = by. By Claims 7.1 and 7.2, c3,c2 € Vs and d(c2) = d(c3) = 2. But
then G + ¢yc3 ¢ Fg by Claims 7.1 and 7.4, a contradiction. O

Claim 7.6 |{b1, b4} N V3| = 0.
Proof. Suppose not. By Claim 7.5, |[{b1,b4} N V3] = 1. We may assume by € V3. Then b; = y; and by € V, U V5.

Case A: by € V4. Then az = by, otherwise as, a3 € V51 and a; € V4 by Claim 7.2, we see g*(az) > % and so
ti, > &, which yields fi(22) > g*(22) + t};, > ¢ violating Claim 7.2. Note that az € V3 U V5. We next prove
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(a) az € V5.

To see why (a) is true, suppose as € V3. By Claim 7.1, a; € V4. Observe that fi(a;) < % for any i € {1, 3},
otherwise let fi(a1) > %, by Definition 4.6(2), fa(z1) > % and so til > % as g*(ag) > 0, which implies f3(y1) >
fa(y1) + t2, > 0. It follows that bs = ap, otherwise by € Vs and by € V4 by Claim 7.2, we see g*(bs) > gna(bs)
and so tj, > %, which yields fi(as) > g*(as) + ty, > +. Furthermore, by = & by Claim 7.1. Since G + z1a2 € Fa,
we set Cg(21a2) = 2z1¢102¢3¢4a2. Note that g(az) < 0, else fi(a3) > g*(a3) > % By Claims 7.1 and 7.4, ¢4 € Vj.
We assert ¢; ¢ V3. Suppose not. Then ¢; = y;. Note that ¢y = z, otherwise by Claim 7.1 and g(y1) <0, c2 € Vj
and cg € Vi, which yields G has a copy of Cg with vertices y1,x, as, ¢4, c3,c2 in order. So c3 € V3, which means

g(ca) > % But then f1(a1) > ¢*(a1) > % as g(cq) > 2 5, a contradiction. Clearly, ¢; € Vi, otherwise c1,co € Vi

and ¢z € V4 by Claim 7.2, which implies g*(c¢;) > é and so fi(z1) > %. Then ¢; = a1 and ¢y € V5. Moreover,
ca2,c3 € Vi, otherwise g*(c2) > gna(cz) and so ¢, > &, which 1mphes Ji(a1) > g*(a1) +t;, > 5. Then G has a
3-path P(agay) or P(azcy) as G + cacy € Fg. We have fi(a1) > =, a contradiction. This proves (a).

By (a), a1 € Vs and d(az) = 2, otherwise g*(az) > in

4(az) and so ¢} > %, which implies f1(by) > g*(bs) +1t}, >
by Claim 7.2. Moreover, g(z1) < 0, otherwise g*(a1) = ¢

% violating Claim 7.2. It is easy to check that d(a;) = 2

and so t; > , which yields fi(z1) > g*(z1) + 1}, > % violating Claim 7.2. Note that by € Vo U Vy as by = y;.
We assert ba € V4. Suppose not. Then by = x and b3 € V3. Since G + asx € Fg and d(a1) = d(ag) = 2,
asby € E(Cg(agx)), otherwise aga; € E(Cg(azx)) and G has a 3-path with ends z and z;, which violates g(z1) < 0
and g(y1) < 0. Then G has a 4-path with ends z and b4 containing b3, which means G has a 3-path with ends v
and bz, where v € {z, b4} as g(z2) = g(bs) = §. By Definition 4.6(2), we have n3(bs) = 0 and g(b3) < 0, otherwise
f2(z2) > § and so t2, > &, which means f3 (yg) > fa(y2) +1t2, > 0. It follows that G has no 3-path with ends 2 and
bs. Then G must have a 3-path P(bsby). Let P(bsby) = bsbsbjbs. Then by € Vi and by € V. We see d(b)) = 2,
g*(by) + ty, = :. Since G + b € Fg, there
exists one vertex of {by, b} }, say u, such that G — b} has a 4-path with ends « and u containing b3. It follows G — b
has a 3-path with ends b3 and w containing {b4, b5} \ {u} That is, there is a vertex b € (Ns(b4) N N5 (b5)) \ by.
Then g*(v) > gny(v) for any v € {b},b]} and so ¢} > &. But then fi(bs) > g*(bs) + ty, +ty = %, a contradiction,
as asserted. Thus, by € V4. Then b3 € V5. We have d(bs) = 2 and g(b2) < O, otherw1se ty, = £ and so
fi(by) > g*(bs) + thy = % Since G + a1bs € Fg, we see bsbs € F(Cg(a1bs)) as d(az) = 2, which implies G — b3 has
a 3-path P(byz1) or a 2-path P(bzbs). Note that g*(b3) > $na(bs) and so ty, = &. Since g(b2) < 0 and ng (b2) = 0,
we see 7 > . If the 3-path P(byz1) exists, let P(byz1) = bobhzjz1, then {bh, 21} C Vi. If n2(z1) # 0, then
g*(a1) > ¢ and so t%; > ¢. If n2(21) = 0, then gz(a1) = %, which follows g*(2}) > £ and so t2, 2 . In both cases,
we see 2 > & because ny (z1) = 0 and g(z1) < 0. But then f3(y1) > fa(y1) + 12, + ty, > 0, a contradiction. If the
2-path P(boby) exists, let P(baby) = bobhby. Then by € Vi, otherwise by, = y;, we see fg(yl) > g (1) > —%, which
yields f3(y1) > fa(y1) + tl272 > 0. Similarly, tZ; > = and so fi(bs) > g*(ba) + 15, + t*, > L violating Claim 7.2.

otherwise g* (b)) > 4n4(b}) and so ty, > %, which means fi(bs) >

Case B: by € V5. Then by € V3 and bg € V3 U V5. If by € Vj, then g(z2) < 0 and d(bs) = 2 otherwise ¢}, > &
and fi(bs) > g*(b3) +t;, > % Clearly, az € V5. Note that ag # by, otherwise as = b3 and a; € V;, which means
fi(bs) > g*(b3) + 15, +t5, > % because t, > & for any v € {a1,bs}. It is easy to check g*(v) > gn4(v) for any

v € {bs, az}, which means t}; > &. But then fi(22) > g*(22) + t;, +t;;, > 5, which contradicts to Claim 7.3. Next
we assume that bg € V5. By Claim 7.4, b3 # a;. Moreover, b3 # a3 and by ¢ {a1, a2}, otherwise there is a 6-cycle
in G, that iS, 06 = Zgygxylbgbg when b3 = ag, Or Cﬁ = 21y1$y22’264 when b4 = ajp, Or Cﬁ = 21y1b2b3b4a1 when

by = as. We next prove that

(b) {b4,03} N{az,as}| < 1.
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To prove (b), suppose {by,b3} = {a2,a3}. Then by = a3 and by = as. Then a; € Vs, else ty, = % and so

fi(ba) > g*(b2) + 85, > %, which violates Claim 7.2. Moreover, d(a1) = 2, else d(a1) > 3, g*(v) > gna(v) as
nZ(v) > 1 for any v € {a1,bs}, which implies t2 > ¢ for any u € {z1,b2} and so f3(y1) > fa(y1) + 2, +t;, > 0.
By Claim 7.3, d(b3) = 3. Since G 4 a1by € F¢ and by Claims 7.1 and 7.4, ajas € E(Cg(a1bz)) and G — a1 — a9
has a 3-path P(baby). Let P(babs) = bobhb)bs. By Claim 7.2, g(b2) < 0 and g(z2) < 0. Then b}, € Vs, else by =y,
we see G has a copy of Cg, that is, Cs = y12y222bsbl) when b = 21, or Cs = y121a1b3b4b) when b # z;. We assert
b, € V5. Suppose by € V4. Then by # 2, else there is a Cg = byboy1xy222 in G. By Ineq. (3), g*(v) > gna(v)
for any v € {by,bs} as ny ' (by) + ni (by) > 2, ny ' (bs) +nf (bs) > 1 and na(bs) + ns(bs) > 3, that is, t5 > L. But
then f1(b2) > g*(b2) +t;, + by = %, which contradicts to Claim 7.3, as asserted. So b} € V2. Since nZ(bs) > 2,
g*(bg) > %n4(b4) and so t; > % But fi(22) > g*(22) +t;, > 1 which contradicts to Claim 7.3. This proves (b).

> 3,
(¢) {bs, 03} N{az,az}| = 0.

To prove (c¢), suppose not. By (b), [{bs,b3} N {az,as3}| = 1. Clearly, by € {as,as}, otherwise b3 = as and
by # a3, which yields d(bs) > 4 violating Claims 7.2 and 7.3. Then by = a3 and b3 # as. By Claim 7.2, g(z2) < 0.
By Claim 7.3, d(bs) = 3. We assert d(bs) = 2. Suppose not. Then g*(b3) > #na(bs) because by € NZ(b3) and
d(bs) = na(bs) + ns(bs) > 3 and so t; > i. By Claim 7.2, a; € Vs, otherwise fi(bs) > g*(b2) + thy > LIt
follows that g*(bs) > $n4(bs) because ny(bs) + ns5(bs) = 3 and n(by) + ny t(bs) + nf (bs) > 2. That is, th, = 3.
But then fi(z2) > g*(22) + ty, = %, which contradicts to Claim 7.3, as asserted. Since G + z1b3 € Fg, let
Cs(21b3) = z1¢102¢3¢4b3. By Claims 7.1 and 7.4, ¢4 # be. Hence, ¢y = by as d(bs) = 2. We assert ¢; ¢ V3. Suppose
not. Then by = ¢; for some i € {2,3}, otherwise G has a copy of Cg = ¢1cac3cabszbe. By Claim 7.1, by = co. Since
d(bs) = 3, we have c3 = as. Note that as € V,;¥ U V2. Hence, g*(b3) > % or g*(by) > %n4(b4). That is, t;, > %
or ty > . But then fi(b2) > g*(b2) + t, = 3 or fi(z2) > g% (22) + ty, = %, a contradiction, as asserted. Since
d(by) = 3, we have c3 € {z3,a2}.

We next show that c3 # as. Suppose not. Then ¢y # ap, otherwise cg,¢; C Vi, we see g*(v) > %n;;(v) for
any v € {c1,ca} as nZ(v) > 1, which implies ¢ > % and so fi(z1) > g*(21) + 5, +1t5, > % We assert ¢; # aj.
Suppose not. By Claim 7.2, ¢; € V5. Moreover, as € Vy, otherwise as € Vi, we see le, = % because d(c1) > 3 and
nf (c1)+nyg'(c1)+n2(c1) > 2, which yields fi(z1) > g* (1) +t7, > 1 violating Claims 7.2 and 7.3. Clearly, c; € V3
and d(cz) = 2, otherwise ¢} > % and so fi(z1) > g*(21) + 1%, > % But then G + z1co ¢ Fg because d(cq) = 3
and d(c2) = 2, a contradiction, as asserted. By Claim 7.2, ¢; € V5. Furthermore, ¢y € Vi, otherwise a; € Vs by
Claim 7.2, we see t > % for any v € {c1,a1} and so fi(z1) > g*(21) + ), +t5 > %, which violates Claims 7.2
and 7.3. By Claim 7.2, a; € V5. Note that as € V3 U V5. Then d(v) = 2 for any v € {aj,¢1}, otherwise we see
ty > g and so fi(z1) > g*(z1) + 15, + 15, > §. By Claim 7.2, g(21) < 0. If ag € Vs, then fi(z1) > ¢*(21) > 3,
which violates Claim 7.3. If as € V4, then d(c2) > 3, otherwise, G + z1co ¢ Fg. By Claim 7.3, g*(c1) < % By
Definition 4.2(1), there exists a vertex ¢j € N5(z1) N Ns(c2). It is easy to check that for any v € {c1,¢}}, t) > &
and so fi(z1) > g*(21) + 15, + ty 2 %, which violates Claim 7.3, as desired.

Thus, ¢3 # ag and so ¢z = z9. By Claim 7.2, a1,¢; € V5. Recall that g(z2) < 0. Hence, ¢o € V5. Note that
az € V4 UVs. By Ineq. (3), t;, > & because ny(bs) + ns(bs) > 3 and ny'(bs) + n2(bs) > 1. If nZ(z1) # 0 or
a1 = c1, then ¢}, > &, which follows that fi(z2) > %, +t; > % violating Claim 7.3. If n2(z1) = 0 and a1 # c1,
then gi(a1) = 3 as d(bs) = 3. That is, 21b4 ¢ E(G). It follows that ga(c1) = 3, or ga(c1) = & and there exists
a vertex ¢j € Ns(z1) \ ¢1 such that g*(c}) > é. That is, g*(z1) > %, or tf > % for any v € {c1,¢}}. But then
f1(z1) = g*(z1) > 5 or fi(z1) > g* (1) + 5, + te 2 %, which violates Claim 7.3. This proves (c).

By (c), {b3,b4} N{ai,az2,a3} = 0. We first prove d(by) = 2. Suppose not. By Claim 7.2, g(z2) < 0 and so
ag € V5. By Claim 7.3, d(bs) = 3. Then ay € Vi, otherwise as € V, and so a1 € Vi, we see for any v € {as,bs},
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t5 > & because d(bs) = 3, 20 € N; ' (v) and as € Ny '(as) U N (as), which means f1(22) > g*(20) + ¢, + > %
violating Claim 7.2. Clearly, az € Vi and n2(bs) = 0, otherwise t; > & for any v € {as,bs}, which means
fi(z2) = 1. Moreover, ay € V', otherwise since by € NZ2(z2), we see g*(a3) > %, or there exists aj € N5(22) \ a3
such that t > % for any v € {as,a}}, which means f1(z2) > % Hence, a; € V4. Since G + azbs € Fg, we see G
has a 5-path P(asbs) = ascicacscabs. Note that ¢1 € {ag2,22} and ¢4 € {b2,bs} because d(az) = d(bs) = 2. We
assert ¢4 # by. Suppose not. Then z5 = ¢; for some i € [3] because G is Cg-free. Since d(ay) = d(a3) = 2, we see
23 = ¢1. By Claim 7.4, {c2,c3} C V5. But then c3 € N2(by), a contradiction, as asserted. Thus, ¢4 = by. Then
€1 = 29, otherwise ¢; = ag, ¢ = a1 and c3 € Vi, we see tf > % for any v € {c3,as} because nj (c3) + ny(cz) > 3,
which means fi(a1) > g*(a1) + t;, +t;, > 3. Since G is Cg-free, by = ¢; for some i € {2,3,4}. Since d(by) = 3
and by # ¢4, we see ¢ = by. By Claim 7.1, c3 € V5' because n2(bs) = 0. By Definition 4.2(1), g*(bs) = % and so
th, = . But then fi(22) > g*(22) + th, > %, a contradiction, as desired. Thus, d(bs) = 2.

We next prove d(b3) = 2. Suppose not. By Claim 7.2, g(v) < 0 for any v € {ba, 22}, which means az € V.
By Claim 7.3, d(b3) = 3. Then gi(bs) = 3, otherwise g1(bs) = & which implies g*(b3) > g1(b3) > 3, that is,
th, > %, and so fi1(bg) > th, > % Moreover, ag,az € Vi, otherwise fi(z2) > % It follows that a; € V4. Then
n4(bs) = 0 and n2(bs) + ny*(b3) = 0, otherwise by Ineq. (3), ty, > g and so fi(by) >ty > ¢ violating Claim 7.2.
Since G + asby € Fg, we see G has a 5-path P(agbs) = ascicacgeqby. Then ¢y € {29,b3} and ¢1 € {a1,as} since
as,as € V. Since G is Cg-free, ¢4 # 29 as az € V2. Hence, ¢y = bs. Since g1(bs) = % and g(z2) < 0, we see G — by
has no 2-path, which implies ¢; # as. Hence, ¢; = a1. By Claims 7.1 and 7.2, ¢5 = be. By Claim 7.1 and g(bs) < 0,
we have ¢y € V. But then by € N, *(b3), a contradiction, as desired. Thus, d(b3) = 2.

Since G + byx € Fg, G has a 5-path P(xby) = xcicaczcsbs. Then ¢y € {29,053} as d(by) = 2. By Claims 7.1 and
7.4, ¢4 # 29. Hence, ¢y = bz and so c3 = by as d(b3) = 2. By Claim 7.1, co € V4. Then g(22) < 0 and n2(22) = 0,
otherwise t; > é so fi(ba) > th, > % violating Claim 7.2. Tt follows that a1,as,a3 € V5. Then ¢;(a3) = %, which

implies ¢ > %. But then fi(b2) > t;, > % violating Claim 7.2, a contradiction. O

Claim 7.7 b4 7é asz or b1 7é ai.

Proof. Suppose not. Then by = a3 and by = ay. Note that {a1,a3} C V4 U V5. We first assert ay ¢ {bs,bs3}.
Suppose not. By symmetry, assume az = by. Then az € Vs, otherwise {az,b3} C Vs and ay € V2, we see
th > % because ng(az) + ns(az) + nf (az) > 4, which follows fi(as) > g*(as) + t;, > i violating Claim 7.2. By
Claim 7.2, g(22) < 0. Moreover, ay € V4, otherwise az € Vs, we see t;, > % because n4(as) + ns(az) > 3 and
nj (as)+nj ' (az)+n2(as) > 2, which yields fi(z2) > g*(22) +t, > % violating Claim 7.3. By Claim 7.3, d(as) = 3.
Clearly, d(bs) = 2, otherwise ¢}, > 1 and so f1(22) > t;, > %. Since G + 22b3 € Fi, G — bs — ag has a 3-path with
vertices ag, ab, 25, 2o in order. But then G has a copy of Cg = agbzaszazbal, a contradiction, as asserted.

We next assert {a1,a3} C V5. W.lo.g., assume ag € V4. By Claims 7.1 and 7.2, a; € V4. By Claim 7.1,
{b2,b3} C V5, otherwise {ba,bs} C Vi, by Definition 4.6(2), f2(z1) > & and so t2, > &, which yields f3(y1) >
fa(y1) + tzl > 0as falyr) = 9*(y1) > —%. We see az € V3 and d(by) = d(bs) = 2, otherwise fi(a;) > % for
some ¢ € {1,3}. Then G has a 3-path P(aga;) for some ¢ € {1,3} since G + beag € Fg. W.lo.g., let i = 1. Let
P(azay) = agabaiar. Then a} € V5 and so ay € Vy. Thus for any v € {ba,a}}, g*(v) > tny(v) as a1 € N (v) and
so t5 > &. But then fi(a1) > g*(a1) + ty, t15, = %, violating Claim 7.2, as asserted.

By Claim 7.2, g(z;) < Osince d(ay1) > 3 and d(a3) > 3. Note that {be, b3}NVy # @ and {ba, b3}NV5 # B, otherwise
t: > % because d(a1) = na(a1) + ns(a1) > 3 and nj ' (a1) +nf (a1) + n2(ar) > 2, which yields fi(z1) > t5 > %
violating Claim 7.3. W.l.o.g., assume by € Vj and bs € V5. By Claim 7.3, d(a1) = d(a3) = 3. Clearly, d(b3) = 2,
otherwise t; > % and so f1(z2) > t;, > % Then G —a;y has a 2-path P(z1v) for some v € {as, b2}, or G—a3—bs has
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a 3-path P(z9a9) as G + bzas € Fg. We assert G has no 3-path P(z9a3). Suppose not. Let P(z9a2) = 2z22akas.
Then n}(y2) = 0, else g*(y2) > —2 and so f3(y2) > 0 because th, > 1 and so t2, > 1. Hence, 2§ € V3 U V5.

6 6 6
Moreover, z}, € Vs, otherwise 2, = ya, ab € V4 and so as € V5, which follows that fi(a}) > % as ty, > % violating
Claim 7.3. It is easy to verify that ¢} > } for any v € {as, 24}. But then fi(z2) >}, + 2 1 violating Claim

7.3, as asserted. Thus, G — ay has a 2-path P(z;v) for some v € {az,ba}. Let P(z1v) = z1v'v. By Claim 7.4,
v' ¢ V3. Hence, v/ € Vs as g(z1) < 0. Furthermore, one can easily check ¢} > ¢ for any u € {v/,a1}. But then
Ji(ze) > 85 4+t > % violating Claim 7.3. This completes the proof of Claim 7.7. O

Note that {a1,a3} C V4 U V5. By Claim 7.7 and symmetry, we may assume b; # a;. We first show g(z1) < 0.
Suppose not. Note that a; ¢ Vs, otherwise {a1,as} € Vit and so ag € V4 by Claim 7.2, we see g*(a;) > % and so
th > %, which yields fi(z1) > t;, > é violating Claim 7.2. By Claim 7.1, |{b1,a1} N V5| > 1. Thus, b; € V5. By
Claim 7.2, by € V3, {b2,bs} C Vi and b3 € V4. Then g*(by) > % because n2(bs) > 1, which means ty, > % But
then fi(z1) > th > %, which contradicts to Claim 7.2, as desired. Thus, {a1,b1} C V5. Clearly, g*(v) < ”4T(”) for
some v € {a1,b1}, otherwise fi(z1) > t; +t; > %, which contradicts to Claim 7.2.

Assume first that g*(a1) < gna(a1). We first assert d(ay) = 2. Suppose d(a1) > 3. Since g*(a1) < gna(a1),
na(ar) = 1 and n2(a1) +ny ' (a1) +nf(a;) = 0. Hence, ay € V4!, which means a3 € Vy. But then a; € N2(as)
violating Claim 7.2, as asserted. We next assert ag € V5. Suppose not. Then ay € V4. By Claim 7.1, ag € V5. Since

1

g*(a1) < £na(ar), we see by € V3!, which implies by € V5. Moreover, by € V3!, otherwise g*(b1) = % or G has a

vertex 2§ € (N5(z1) N Ns(b2))\ b1 such that g*(v) > £ny(v) for any v € {2{,b;}, which implies fi(z1) > % violating
Claim 7.3. Hence, b3 € V4. By Claim 7.1, by € V5. Clearly, bs # as, otherwise G + byas ¢ Fg. If by # as, then
d(by) =2, else t}, > ¢ for any u € {as, by}, which yields fi(z2) >t} +1;, > 5. Clearly, d(as) = 2, else t;, > % and
so fi(ze) > t5, > % Since G + b1by € Fi, G — by has a 2-path P(b3z2) or G has a 3-path P(z122). In both cases,
bsyz € E(G) or there exists 25 € N5(z2) \ ag such that ¢} > & for any v € {z5,a3}. But then fs(y1) +1t3, + 12, >0
because t2 > & for any v € {bs, 22}, or fi(22) > t +t, 2 %, a contradiction. If by = as, then d(as) = 3 by Claim
7.3. Since G + agbs € Fg, G — by — by has a 3-path with vertices 21, 2], a}, as in order, or G — by has a 2-path
with vertices zou'u for some u € {bs,as}. For the former, we have fi(z1) > o+t = % since ¢} > % for any
v € {2z1,b1}. For the latter, we have fi(z2) > t; > % because n (by) + nyt(bs) > 2 and ny(by) = 3 when v’ € Vs,
or u' € Ni(z3) when v’ € Vi, or f3(y2) > fa(y2) + t2, +t2 > 0 since t2 > § for any v € {z2,u} when v’ € V3, a
contradiction, as asserted. Thus, az € V5. Then a; € V3!, which yields n?(z1) = 0 since g*(a1) < gna(a1). Hence,
by € Vi and so by € V5. By Claim 7.2, a3 € Vs. Then b3y € Vj, otherwise g1(v) = % for any v € {a1,b1}, which
implies g*(z1) > %. Hence, by € V5. But then fi(z2) >t > 1, violating Claim 7.3.

Assume next that g*(b1) < $na(b1). We assert that d(by) = 2. Suppose d(b1) > 3. Since g*(b1) < gna(b1),
we see ny(by) = 1 and nZ(by) 4+ ny ' (by) + ng (b1) = 0. Hence, a1,by € V&', which means by € V and ag, by € Vs.
By Claim 7.2, a3 € V5. But then t; > % and so fi(z1) >t > %, which contradicts to Claim 7.3, as asserted.
Note that by € Vi, otherwise n2(z1) = 0 and g(z1) < 0 as g*(b1) < %m(bl), which implies ag, by € Vi, that is,
as, bs € Vj violating Claims 7.1 and 7.2. By Claim 7.2, g(z1) < 0. Since g*(b1) < gn4(b1), we have nj (b1) = 0 and
ny'(b1) < 1. Hence, by € V. Note that by € V3 U Vs. If by € Vj, then a; € Vi as ny ' (b)) < 1. Hence, ag € Vs. By
Claims 7.1 and 7.2, a3 = bs. Note that as # bs, otherwise f1(by) > th, > % violating Claim 7.2. But then t* > é
for any v € {ag,bs} and so fi(by) > %, a contradiction. If by € Vs, then g(z3) < 0, otherwise f;(z2) > ty, = %
violating Claim 7.2. Hence, a3z € V5. Clearly ay € Vy, else t; > %, which implies f1(z1) > % violating Claim 7.3.
Since ny '(b1) < 1, we see d(b3) = 2. As G + 21b3 € Fg and d(b1) = d(b3) = 2, G has a 4-path with vertices
z1,€1,C2,¢3,bq in order. Obviously, c¢s € Vj, otherwise ag # by and ¢ > % for any v € {as,bs}, which implies

fi(z2) > % Moreover, g(cs) < 0, otherwise c3 # z5 yields ty, = % and so fi(z2) > % It follows that ¢1,c0 € V5.
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Note that ¢; # a1, otherwise fi(ay) > t& > % It is easy to check that ¢} >

= Ya;

fi(z1) >t +t: > % violating Claim 7.3.

% for any v € {c1,a1}. But then

Finally, let N3~ (z) = {y1}. It remains to prove that n} (v) = 0 for any v € N3(x) \ y1. Suppose not. Let
z € NJ”(y), where y € N3(x) \ y1. By Corollary 5.4 and Lemmas 5.7 and 5.1(a,b), g*(2) < 0 and G has a
3-path P = zwwsyzy such that d(v) = 2 for any v € V(P) and zy ¢ E(G). Let N3(z2) = {y2}. Note that
g*(y) < fs3(y) < %, otherwise fy(z) > 0. Then G has a 3-path P(zy) since G + y1z € F¢ and f5(y1) < 0. Let
P(xy) = zz122y. Then z1y2 € E(G) or G — x1 — y has a path of length at most two with ends = and x5 as
G+ zxy € Fg. Clearly, x5 € Vy, otherwise g*(y) > %. Then z1 € V3. If 21y2 ¢ E(G), then G — z1 — y has a 2-path
with ends = and zo, that is, nz(ze) > 3. If 2192 € E(G), then nd (z2) + n3(z2) > 3. By Lemma 5.5, ng (z2) = 0.
Hence, in both cases, fi(z2) > g*(x2) > %ng(xg) + %n4(a:2) and so tiz > é. But then f3(y) > fa(y) + tiz > %, a

contradiction. This completes the proof of Theorem 4.8. (]

8 Proof of Theorem 4.9

By Definition 4.6(1), for all x € V3, f7(z) > 0. To prove f7(x) > 0 for all z € Vo U V3 U Vy, we just need to prove
that for any = € Va, fr(z) > 0, ni*(z) = nz(z) and n) " (v) = ny(v) for any v € N3(x). Let ay € No(z).

Case 1. nj (z) #0.

Let y € N5~ (x). By Theorem 4.8, ni"(z) > n3"(x) > nz(x) — 1 and ni"(v) = ni"(v) = n4(v) for any
v € N3(z) \ y. It remains to prove fr(x) > 0 and fr(y) > 0 and nl" (y) = na(y). If d(y) = 1, then V; = {a, a1},
which yields G has a 3-path P(xza;) because G + ya € Fg. Let P(xay) = x2z10)aq. Then G — x — o has a t-path
with vertices aq, ¢, 21 in order for some ¢t € [2] because G + yo) € Fg. Hence, G[{x, xt, o }] contains at least
two edges because G + axy € Fg, which implies g(z) > 2 or n3(z) > 1. Thus, f¢(z) > g*(z) > 3,

f7z(z) > 0 and f7(y) > 0. So we next assume d(y) > 2.

which means

Case 1.1 n) (y) # 0.

Let z € N)(y). By Theorem 4.7, ni"(y) > ni"(y) > na(y) — 1. So we shall prove f7(v) > 0 for any

v € {x,y,z}. Note that na(xz) # 0 as G + az € Fg, which yields fs(z) > g*(z) > %. By Corollary 5.4,

Lemma 5.1(a,b), g*(y) < 0, ¢*(z) < 0 and G has a 3-path P = zww;2; such that d(v) = 2 for any v € V(P),
and yz1 ¢ E(G), where z; € V4 and w,wy € V5. Let N3(z1) = {y1}. Clearly, f5(y) > —% and f5(z) > —3.
Thus, we need to prove fg(x) + Y ;51 15, > 5 or Y515, > §, where v; € N3(2) \ {y}. Since g*(y) < 0, we have
y12 € E(G) and G has a 3-path P(yy1) as {G + wz1,G + zz1} € Fg. Let P(y1y) = y1a1a2y. Since g*(y) < 0, we
see ag = x, otherwise ay € Vj violating Lemma 5.8(a). Thus, a; € Vo U V3. For any v € V3, let A(v) be defined
as in Definition 4.6(4), and n3~ (v) < n}~(v) < 1 by Corollary 5.4. Since d(z1) = d(w1) = 2, f3(z1) = —%, which

yields f5(y1) > fa(y1) — (= fs(z1)) — §lA(w)| = g* (1) — § — gna(y1)-

Suppose a; € V. Then ai,z € Ny (y1). By Observation 4.4(1), g*(y1) > ina(y1) + gns(y1) > ina(y1) +
F(ns(y1) + 1) which means t5 > 5 > &. If ny(y1) + ns(y1) > 3, then t§ > 5 > % as g*(y1) > Fna(y1) +
L(ng(y1) +1). If g(v) > 2 for some v € {ay, z}, then f(z) > g*(x) >  and so fs(z) +15, > 1. So we next assume

n2(y1) + n3(y1) = 2 and g(z) = g(a1) = §. Note that Ni(a1) = {1}, else aza; € E(G) yields G has a copy of

2
>

Cs = asaaasyiar. Then G has a 4-path P(«aqy1) containing a; and z or 4-path P(aqy;) because G + ay; € Fg.
Suppose P(aqy;) exists. Then G —ay — y; has a 2-path with vertices a1, as, x in order such that az € V3. Similarly,
th > % Hence, tgl + t23 > L. Suppose P(aoy;) exists. Then 6(G) = 2 and let P(aoy1) = aobibobsy;. Then

3
by € Vo \ {a1,z} since Ni(a1) = {o1} and g(z) = . Note that by ¢ Vi, otherwise by = a1, which violates
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the choice of o because « is contained in a 4-cycle but z; is a 2-vertex that is not contained in a 4-cycle. Since
na(y1)+ns(y1) = 2, we see by € VoUVy. In fact, bs € Vi, otherwise by € V5 and so G has a copy of Cg = b3babi aacva;
because by ¢ Vi. Then by € V3, which implies n3(b3) > 2 and y; € N5 (b3). Note that ng (b3) = 0 as 6(G) = 2. By

Observation 4.5(2), g*(b3) > §ns(bs) + §n4(bs), which implies th, > . Hence, f3(y1) > fo(y1) + t > g" () + :

. 46 1
and so by, > 3

Suppose a1 € V3. By contradiction, assume t35;1 + til < % as t8 =5 for any v € {a1,%1}. Then G has a 3-path
P(y1z) as G+y12 € Fg and g*(y) < 0. Let P(y12) = y1bibox. Note that fs(a1) > g*(a1) — (—fa(a})) — gl A(ar)| >
g*(a1) — & — $|A(a1)|, where af € N~ (a1). We next prove that

(a) a1 & {b1,ba}.

To prove (a), suppose first a; = by. Then by € VoUV3. In fact by € Vi, otherwise g*(a1) > ina(a1)+g(ns(a1)+1)

because by, z € N, (a1) and ng(ar) + nz(a;) > 3, which implies tzl > % as y1 ¢ A(ay). Moreover, y; € V3,

otherwise for any v € {a1,y1}, g*(v) > gn2(v) + gns(v) since & € Ny (v) and nj(v) > 1 which implies t} > &

as by, y1 ¢ A(ar) and a1 ¢ A(y1). Note that g*(y1) > % Clearly, tgl > é since a; ¢ A(y1). Then t‘zl < %. By

Ineq. (3), g*(a1) > &na(ar) + g(ns(ar) — 1) since z € N3 (a1) and ng(a;) > 2. Then nj (a;) = 1, otherwise

th > Las b,y ¢ A(ar). Let Ni~(a1) = {z2}. Then d(z2) = 1, otherwise f3(z2) > —%, which implies 5, > 1 as

b1,y1 ¢ A(ay). Then G — a; — x has a 2-path with vertices yi, b3, by in order such that bs € Vy as G + 201 € Fg

ing(bs) + & + gna(bs) since by, y1 € N (bs), which yields ty, > . Hence,

fa(yr) > fa(y1) + tﬁs > % But then tfh > % as a1 ¢ A(y1), a contradiction. Suppose now a; = by. Then
by € VouVs UV, In fact by € Vi, otherwise for any v € {a1,11}, 9°(v) > gna(v) + g(ns(v) + 1) because
z € Ni (v) and n3(v) + na(v) > 3, which implies t5 > & since y; ¢ A(a1) and a1 ¢ A(y1). For any v € {a1,y1},
then g*(v) > 4ns(v) + #ng(v) — & as @ € Ny (v). Then G — a; — y; has a 2-path with ends x and b; because
G+ z1a1 € Fe. By Ineq. (3), g*(b1) > ing(b1) + (n4(b1) +2) since ay,y; € N5 (b1) and ng(by) > 3, which implies
t7, > 3 and so f3(v) > fao(v) +t; . But then ¢} > & for any v € {a1, 51} as y1 ¢ A(a1) and a1 ¢ A(yy), that is,

o+t >

and y; € V4. Hence, g*(b3) >

> 1, a contradiction. This proves (a).

Then G—by—y; has an s-path with ends 2 and by as G+21by € Fg for some s € [2]. Note that by ¢ V5, otherwise
by Observation 4.4(2,4), *( ) > no(y1) + 2ns(y1) because z € Ny (y1), na(y1) > 2, by € Ny (y1) UN; *(y1) and
ns(y1) > 1, which yields t" s as a; ¢ A(yr). We assert by € Vy. Suppose not. Then b; € V3. Hence, n;'(bl) >1
or ng(by) +mn3(by) > 4 which 1mphes f3(b1) > g*(by) > % and so by ¢ A(y;). Since z € N (ay) and y; € N2(ay), we
have a; ¢ A(y1). Hence, |A(y1)| < nj(yl) —2. By Ineq. (3), g*(y1) > 3n2(y1) + §(ns(y1) — 1) because z € Ny (y1)
and by € NF(y1). But then £ > <, a contradiction, as asserted. Then y1 € Ny (b1) and nz(b1) > 3. Note that
when N (b1) = {w2}, we have n3 (b1) > 2 as G + wax € Fg. By Ineq. (3), g*(b1) > inz(b1) + gna(br) + 315 (b1)
and so t7 > . Hence, f3(y1) > fa(y1) +t7. By Ineq. (3), g*(y1) > tna(y1) + g(ns(yr) — 2) as © € Ny (y1).
Thus, a; € A(y1), otherwise ¢ > £. Hence, ny~ (a1) = 1. Let Nj™(a1) = {22}. Clearly, d(z2) = 1 and g(a1) = %.
Then G has a 3-path with vertices a1, ¢, c2, 2 in order such that ¢; € V4 as G + 22y € Fg. Hence, a1 € N;(cl)
and n3(c1) > 3 since G + 2202 € Fg, which yields g*(c1) > gns(c1) + gna(cr) + 3 and so 2 > £, It follows
f3(a1) > fa(ar) + 2, > %. But then a; ¢ A(y1), a contradiction.

Case 1.2 n] (y) = 0.

Note that n} " (y) = n5"(y) = na(y). So we just need to prove fr(x) >0 and f7(y) >0

Case 1.2.1 nj (y) # 0.

Let z € N, (y). Note that na(z) # 0 because G + az € Fg and d(a, z) = 4 and ajae ¢ E(G), which yields
fo(z) > %. If f5(y) > f%, then fs(x) + fo(y) = fe(x) + f5(y) > 0, which yields f7(z) > 0 and f7(y) > 0. So we
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may assume f5(y) < —g. By (%), fi(y) < —¢ for any i € [4]. Then we just need to prove fg(x) + 3,51 15 > 3,
where v; € N3(z) \ y and ¢, > 0. If g(x) > % or n3(z) > 1, then fg(x) > g*(x) > 1. So we next assume g(z) = §
and n3(z) = 0. We claim G — « has a 3-path P(xa;). Suppose not. Then G has a 4-path with ends « and z
containing ay because G +ay € Fg and g*(y) < 0. It follows G — x has a 3-path P(aa;). Let P(aay) = acszaoy,
that is a € C4. Then x5 € V5. Since G + a1z € Fg, we see G has a 5-path with vertices aq, x3,ys, 23, w, 2z in order.
Then w € Vs, otherwise w = y and z3 = z because g*(y) < 0 and g(z) < 0, which implies G — a has a 3-path
P(zaq). Hence, z3 € V4. By Lemma 5.3, ng (2) = 0. Moreover, d(w) = 2 and N5(z) N N5(z3) = {w}, otherwise
tr, > %, which yields fa(2) > g*(z) +t;, > % and so f3(y) > fa(y) + t2 > —%. By the choice of a, w € C4 and
IN(2) N N(z3)] > 2. Let wy € N(z) N N(z3) and wy # w. Then wy; = y. Since G + wzx € Fg and g*(y) < 0, G
has a 3-path with ends y and v € {z, z3} containing v' € {z, z3} such that v # v'. But then |N5(z) N N5(z3)| > 2

as g(z) < 0, a contradiction, as claimed. Let P(za1) = zyrz1c;. Then y; € V5 and 21 € Vo as g(z) = % and

n3(x) = 0. Ifng~ (y1) = 0 or g(x1) > 0, then f3(y1) > g*(y1) > §na(y1)+gna(y1) +5(n3 (y1) —1) since z € N (1)
and ny(y;) > 2, which implies 5, > % and so fe(z) + > 1. So we next assume n3~(y1) = 1 and g(z;) < 0.
Let fo_(yl) = {z1}. Then G has a 4-path with ends «; and y; containing x and x; since G + z;; € Fg and
d(z1,a1) = 3. Then G — a; —y; has a 2-path with vertices x, y2, 1 in order. Then y; € V3 as g(z1) < 0. Hence, for
any i € [2], z € Ny (y;) and z1 € Ny '(y;), which yields f3(y;) > g% (v;) > 5no(yi) + & t(n3(y;) +2). Thus, 8 > > L

and so fe(z) 415 +15 > 1.
Case 1.2.2 ng (y) = 0.

By Observation 4.3(1), N4(y) = Ni( ) and d(y) = 2 which yields no 4-cycle contains y. By the choice of a,
o ¢ Cy. Clearly, fo(y) > —¢. If g(x) > ¢, then fo(x)+ fo(y) > 0, which yields f7(z) > 0 and f7(y) > 0. So we next
assume g(x) < 0. Let Ny(y) = {2z} and Ny(z) = {2z1}. By Observation 4.3(2), g(z1) = &. Let N3(z1) = {ys}. Then
G has a 3-path P(za;) because G + ay € Fg, g(x) < 0 and no 4-cycle contains «. Let P(zay) = zyix1;. Then
y1 € Vs and 21 € Va, which means f5(x) > g*(z) > 0. So we just need to prove Y, 5 > > 1, where v; € N3(z)\y.
Note that if n} (y1) = 1, then G — a; — y; has a 2-path with vertices x,yo,2; in order such that y, € Vj as
G + zmay € Fg, where N3 (y1) = {22}

Assume g(z1) > 0. If ni~ (y1) = 0, then g*(y;) > tna(y1) + $ns(y1) as nd (y1) + n2(y1) > 3, which yields
o > 3. If n3~(y1) = 1, then for any i € [2], g*(y;) > Lna(yi) + £ (n3(yi) + 2) since n3 (y;) + n2(y;) > 3 and
T € N{l(yi), which means tgi > ﬁ and so t6 + t6 >3 L

So we further assume g(x1) < 0. Suppose nZ (yl) = 1. Then z,z; € Ny '(y;) for any i € [2]. Note that

n2(y1) + n3(y1) > 3 as G + za € Fg and d(«, 22) = 4. Slmllarly, na(y2) +n3(y2) > 3 when n3~ (y2) # 0. Hence,
g (yi) > 12n2(y1) + ng(yz) + 1ni (yi), which implies t6 > 15 and so t6 +t§2 > %. Suppose ni_(yl) =0. If
0(G) =1, then z,z1 € Ny (yl) as G + ay; € Fg. Hence, g (yl) > 6n2(y1) + éng(yl), which yields tgl > %. If

0(G) = 2, then G has a 4-path P(zz1) or G —x — 1 has a 2-path with ends oy and y; as G+ yx1 € Fo. We claim
the later holds. Suppose not. Let P(zx1) = zajasazxi. Then a; € V4 U Vs, If a1 € Vi, then a1 = 21, as = y3 and
az € V3 as g(z1) < 0. Note that ng (1) = 0 as 6(G) = 2. Hence, f1(21) > g*(21) > & since y3 € N5 (21), which
means z; € NH'( ). Thus, t2 > l If a; € Vi, then ay € Vy, which implies ¢g*(aq) > n4(a1) since z € N+(a1) and
ng(ar) > 2. Thus, 12 > § as 21 € NH( ). But then in both cases, f3(y) > fa(y) +t2 > ¢ > 0, a contradiction, as

claimed. Thus, na(y1) > 3, which implies g*(y1) > %ng(yl) + %ng(yl) Hence, tgl > %.

Case 2. nj (z) = 0.

Note that n3*(z) = n3*(z) = n3(z). By Theorem 4.7, 2 veNs (@) " ny (v) < 1.

Case 2.1 3, cn, (1) ny~(v) = 1.
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Let z € NJ ™ (y), where y € N3(x). So we just need to prove that fz(z) > 0 and f(z) > 0. By Corollary 5.4,
Lemmas 5.7 and 5.1(a,b), g*(2) < 0 and G has a 3-path P = zww; 2 such that d(v) = 2 for any v € V(P )7 and
yz1 ¢ E(G), where z; € Vy and w,w; € V5. Let N3(z1) = {y1}. Note that fe(z) > —%. Then f3(y) < , else
f5(z) > 0. We claim g*(x) > . Suppose not. Then na(x) = 0, otherwise g*(x) > &. Since z ¢ C4, we see ny(z) = 1
by the choice of a, a ¢ C4. Tt follows g(x) < 0. Clearly, n3(y) # 0 and G has a 4-path with ends y and «; containing
z because {G + az,G + a1z} C Fg, g(xz) < 0 and g*(z) < 0. Note that G has no 3-path P(za;), otherwise let
P(zay) = xysx11, we see 1 € Vo and yo € V3, which yields f3(y) > g*(y) > 6 as yo € N2(x). Hence, G — oy
has a 3-path P(zy). Let P(zy) = abiboy. Then by € V3. Note that by € Vj, otherwise f3(y) > g*(y) > &. By
Lemma 5.5, ng (b2) = 0. Then g*(b2) > $ns(b2) + gna(bz) as y € N5 (b2) and ng(b2) > 2, which yields ty > + and
so fa(y) > faly) +t3, > &, a contradiction. Then fg(z) 4+ fs(z) > 0, which yields f7(z) > 0 and f7(z) > 0.

Case 2.2 ZUGNS(z “(v) =0.

Note that n}"(v) = n}"(v) = n4(v) for any v € N3(x). So we shall prove f7(z) > 0. We assume f(z) < 0,
then g*(z) < 0. Since G + ax € Fg, G has a 3-path P(ajas) where N(a) = {1, as} or a 3-path P(zz;) for some
x1 € V. Suppose P(ajas) exists, that is « € C5. Let P(anas) = a1biboas where by, by € Va. In this case, §(G) = 2
and v € Cq UCs for any vertex v € V(G) with d(v) = 2 by the choice of a. By Lemma 5.1, V7 = V'~ = 0.
Since G + zag € Fg, G has a 5-path P(zas). Let P(xas) = xcicacscaas. We have ¢1 € Vs, ¢4 € Vo, ca € V53UV,
and c3 € V3 U Vo, When ¢ € V3, then ¢z € V3 as g*(z) < 0 and so g(c;) = & for any i € [2] and g(c3) > &. It
follows that f5(c3) > 0 and f5(c2) > 6, which yields f7(x) > 0 by Definition 4.6(6). When ¢y € V4, then c3 € V3.
Observe that g(cy) < 0, otherwise g*(z) > —¢ and 2, > t5 > & and so t§ > } yielding fr(z) > 0. It follows
that d(x) > 3 otherwise x € C4 U C5. We assert d(c1) > 3. Suppose not. Then ¢; ¢ C4, otherwise there is another
vertex ¢g € (N(z) N N(cz)) \ {c1,¢3} and so 2, > t5, > &, 15 > & for i € {0,1} yielding fr(z) > 0. Then
No(a1) N No(an) =0, ¢c; € C5 and G —c; has a 3—path P(xcy). Let P(xey) = xeseges where ¢ € Va. Then ¢ € V)
otherwise ¢g*(z) > —% and t;, > £ and so tS > 1 yielding f7(z) > 0. Because G + csa € F¢; and na(z) = 0, there
is a 5-path P(acs). Let Placs) = awijwswswycs where wy € Vi and wy € Vo. When wy € Vi, then g(wy) = %,
wy € V5 and g(ws) > 0, which follows that fg(ws) > % and so f7(x) > 0 by Definition 4.6(6). When w4 € Vj,
we see w3 € V3 and ng(wy) > 2, which follows that ¢, > & and ¢}, > & yielding t§ > £ for i € {1,5}, which
follows that f7(z) > 0. Thus d(c;) > 3. There is another vertex ¢11 € Ny(er) \ {co} and ny(c11) > 1 because
G+ crio € F and n3(c) = na(z) = 0. We see ¢2 > #. When Na(aq) N Na(az) # 0, then d(cz) > 3, otherwise
co € Cy4 and there is a vertex v € (Ny(c1) N Na(es)) \ co, which follows that t5 > 1 yielding f7(z) > 0. We claim
falea) > %n;;(cz). Suppose not. Then nz(ca) + n4(c2) = 2 and there is a vertex ca1 € N5(cz). When d(c21) > 3 or
g(ca1) = §, we see fa(cz) > #ng(c2). Then we just consider the case N(ca1) = Ni(ca1) = {v1,c2}. By the choice of
a, we see ca1 € C4NCs. If there is a vertex cas € (N5(c2) N N5(v1)) \ e21 or g(v1) > 0, then fa(cg) > %ng(@). Thus
vics € E(G) otherwise civ1 € E(G) but then G + viar ¢ Fe. Note that there is a 3-path P(cov1) with g(cz) = 2
and g(v1) < 0. Let P(cov1) = coujugvy where u; € Vi for i € [2], which follows fa(ca) > %ng(@), as claimed. Note

that t2 | > 1, we see tS > 1 and so f7(z) > 0. When Na(aq) N Na(az) = ), we see there is a vertex da € Ny(dy)
with ng(da) > 2 because G + dya € Fg for di € N3(z) \ ¢;. Similarly we have g(dy) < 0 and there is a vertex
dy1 € Ny(dy) \ do with td11 > é, together with t%n > % we see fr(z) > 0.

Suppose P(xxy) exists and let P(zx1) = zy1y221. By Observation 4.3(1,2), y; € V3 for any i € [2]. Hence,
fo(@) = g*(x) > —§. So we just need to prove Y .o, 5 > &, where v; € N3(x). We shall proceed it by
contradiction. Then, fg(y1) < % and so f5(y1) < % B

Note that g*(x) < 0, we see G has no 3-path with ends z and «;. We assert that G — o1 has no 3-path with

ends x and y;. Suppose not. Let P(xy;) = xysz1y1. Then y3 € V3. By Observation 4.3(1), g(ys3) < 0 and so

20



z1 € V4. Note that nif(yg) = 0, otherwise let z3 € N;fff(yg)7 G + z3a € Fg yields n3(ys) + na(z) # 0 and so
g(ys) > 0 or g(z) > 0. Furthermore, ng (21) # 0, otherwise fa(z1) > g*(21) — gna(z1) > tns(z1) as y1 € Ny (21)
and n3(z1) > 2, which implies fs(y3) > f3(ys) > fa(ys) +t2, > & and so tgs > &. Let wy € N; (21). Then
G — x — z1 has a 2-path with vertices y1, 22, y3 in order such that zo € Vj because G + w1z € Fg. Hence, for any
i €2, f2(z:) = 9" (21) — 3ng (2:) — gna(zi) = 73n3(2;) because y1 € N5 (z;), ys € N;'(z) and ng (z;) < 1, which

means 2, > 5. But then fg(ys) > f3(ys) > g*(ys) + 12, + 12, > § and so t5 > &, a contradiction, as asserted.

Thus, G has no 4-path with ends y; and 5.

Since G + y1a € Fg, G has a 4-path P(yjas). Let P(y1a2) = y1ajasazas. Note that §(G) = 2. We claim
ni~ (v) = 0 for any v € N3(x). Suppose not. Let z; € N; ™ (y) for some y € N3(x). Then y = yy, else G+az, ¢ Fo
because d(z1,a) = 4, g(y) < 0 and g(z) < 0. By Corollary 5.4 and Lemma 5.1(a,b), G has a 3-path consisting
of vertices of degree 2 with one end z;. But then G has a 4-path with ends «; and y; containing x because
G + z1a1 € Fg, a contradiction, as claimed. Note that a; € Vo U V3 U Vy.

Assume a; € V4. Then ay € V3 and a3 € V,. Then fo(ar) > g*(a1) — %ng(al) > %n4(a1) since y1 € Ny (a1)
and ng(a;) > 2, which means t2 > . Hence, f3(y1) > f2(y1) +t2, > &. Then ni ™ (y2) # 0, otherwise yo ¢ A(y1)
yields fe(y1) > f3(y1) > % and so tgl > %. Let 29 € Nf*(yg). Similarly, G has a 3-path P = zowowsz3 such that
d(v) = 2 for any v € V(P) and z3y2 ¢ E(G), where wq,ws € V5 and z3 € V. Since G + a2z € Fg for some
i € [2] such that a; € Ny(x1), G has a 4-path with ends y and «; containing x1. Hence, g(x1) > 0 or n3(x;) > 1
or G has a 3-path P(z1y2). If g(z1) > 0 or nj(x1) > 1, then f3(y2) > g*(y2) > §. If 3-path P(z1y2) exists, then
let P(z1y2) = 2121 y4y2. Since yo € V3, we see y4 € V4 and 2} € Vi. Hence, fo(yh) > tn3(yh) as y2 € Ny (y5),
ns(ys) > 2 and ng (y4) = 0, which yields t?;g > Land so f3(y2) > fa(y2) +t§§ > &. Thus, in both cases, y2 ¢ A(y1)
as f3(22) > —% and f3(y2) + fs(z2) > 0. But then fs(y1) > f3(y1) > ¢ and so > %, a contradiction.

Assume a; € V3. Then a; = 4o, ag = 1 and a3 € Vo as y1,y2 € Vit. Then f5(y1) > g*(y1) > 0 and g*(y2)
as g(z1) > 0. Note that nj~ (y2) # 0, otherwise f5(y2) > g*(y2) > &, which means fs(y1) > fs(y1) + &
by Definition 4.6(6). Let zp € Nj (y2). Similarly, G has a 3-path P = zywowsz3 such that d(v) = 2 for any
v € V(P) and z3y2 ¢ E(G), where wy, w3 € Vs and z3 € V. Let y3 € N3(z3). We claim ysz ¢ E(G). Suppose
not. Then G has a 2-path with vertices ys, z4,ys in order such that z4 € V, because G + zow3z € Fg. Then
fa(za) = 9*(z4) — %n4(z4) > %n3(24) because y2 € N3 (z4) and n3(z4) > 2, which means ti > é. Hence,
faly2) > folyo) + 12, > 5 which means f5(y2) > fa(y2) — (—fa(22)) > § because f3(22) = —g. But then

fo(yr) > fs(y1) + % > é, a contradiction, as claimed. Hence, G — x has a 3-path P(y1y2) because G + xz9 € Fg

2
>

D= D=

V

and G — a7 has no 3-path with ends = and y1. Let P(y1y2) = y12526y2. Clearly, z5,26 € V4 and fa(zg) >
9" (26) — & (na(z6) — 1) > tns(z6) because ya € Ny (26) and 25 € N;(2), which means t2. > &. Similarly, we have
fs(y2) > fa(y2) + 2, > 5 and f5(y2) > ¢. But then fs(y1) > f5(y1) + § > §, a contradiction.

Assume ay € V5. Then a1 = x, ag = a; and a3 € Vs as g*(x) < 0. Since a € C4, then v € C4 for any
v € V(G) with degree two. Then G has a 5-path with vertices x, by, b, b3, 22, ap in order as G + zas € Fg. Since
G has no 3-path with ends = and ay, we see x5 € Vo. Note that by € V3 because g*(x) < 0 and d(a) = 2. Then
by € V5, otherwise by = y; and we get a contradiction by similar analysis with the case a; € V3 U V4. Hence,
by € V4 and bs € V3. We claim t§2 > é. Suppose not. Then ’I’L;(bg) = 0 and ng(b2) + nq4(b2) = 2 and ngl(bg) <1,
otherwise fo(b2) > g*(by) > £ns3(b2) since ny (b)) + ny~ (b2) = 0. By the choice of a, n5(by) # 0. Let w € Ns(by).
Note that g*(b2) > #ns(b2) — 3. Then nj (w) < 1 and d(w) = 2, otherwise ¢}, > % as by € N (w) which yields
fa(b2) = g*(b2) + t, > &ns(b2). Let by € N(w) \ ba. Since d(w) = 2, we have w belongs a 4-cycle, which means
G — w has a 2-path P(baby). Let P(babs) = babsbys. Note that bs € V3 U Vi. In fact, bs € Vi, that is, bs € {b1, b3},

otherwise t;, > ¢ for any v € {w, bs} which implies f5(by) > g*(ba) +1t5, +1t;. > §ns(ba). W.Lo.g., let bs = bs. Then
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by € V; as nf (w) < 1. We further may assume N (b2) N N(bs) = {w,bs}. Then for any i € [2], G has a 2-path
with vertices o, o, x5 in order because G + a;w € Fg. Note that of = af, else G has a copy of Cs with vertices
Za, A}, a1, a, an, b in order. This means « belongs to a graph ©5. By the choice of a, each vertex of degree two
belongs to a graph O3 which yields G has a 2-path with ends b3 and b; for some i € {2,4}. But then by, € V"
or ng(ba) + na(bz) > 3, a contradiction, as claimed. Thus, ¢ > §. We see ny (by) = 0, otherwise G + b ¢ Fa
because g(x) < 0 and g(b1) < 0 for any b} € Ny (b1). Hence, fo(b1) > f3(b1) > fa(br) +t7, > % and so th > :a

contradiction. O

Acknowledgments. Lan was partially supported by National Natural Science Foundation of China (No.12001154),
Natural Science Foundation of Hebei Province (No.A2021202025). Shi was partially supported by the National Nat-
ural Science Foundation of China (No.11922112), the Fundamental Research Funds for the Central Universities,
Nankai University (No0.63213037) and the Funds for International Cooperation and Exchange of the National Natu-
ral Science Foundation of China (No0.12161141006). Wang was partially supported by the National Natural Science
Foundation of China (No0.12422113). Zhang was partially supported by the China Postdoctoral Science Foundation
(N0.2024M764113).

References

[1] C. Barefoot, L. Clark, R. Entringer, T. Porter, L. Székely and Z. Tuza, Cycle-saturated graphs of minimum
size, Discrete Math. 150(1996) 31-48.
[2] T. Bohman, M. Fonoberova and O. Pikhurko, The saturation function of complete partite graphs, J. Combin.
1(2010) 149-170.
[3] J. Bondy, Variations on the Hamiltonian theme, Can. Math. Bull. 15(1972) 57-62.
[4] G. Chen, R. Faudree and R. Gould, Saturation numbers of books, Electron. J. Combin. 15(2008) #118.
[5] Y. Chen, Minimum Cjs-saturated graphs, J. Graph Theory 61(2009) 111-126.
[6] Y. Chen, All minimum Cj-saturated graphs, J. Graph Theory 67(2011) 9-26.
[7] Y. Chen, Minimum K> s-saturated graphs, J. Graph Theory 76(4)(2014) 309-322.
[8] L. Clark, R. Crane, R. Entringer and H. Shapiro, On smallest maximally nonhamiltonian graphs, Congr.
Numer. 53(1986) 215-220.
[9] L. Clark and R. Entringer, Smallest maximally nonhamiltonian graphs, Period. Math. Hung. 15(1983) 57—68.
[10] L. Clark, R. Entringer and H. Shapiro, Smallest maximally nonhamiltonian graphs II, Graphs Comb. 8(1992)
225-231.
[11] P. Erdés, A. Hajnal and J. Moon, A problem in graph theory, Amer. Math. Monthly 71(1964) 1107-1110.
[12] J. Faudree, R. Faudree and J. Schmitt, A survey of minimum saturated graphs, Electron. J. Combin. 18(2011)
#DS19.
[13] M. Ferrara, M. Jacobson, K. Milans, C. Tennenhouse and P. Wenger, Saturation numbers for families of graph
subdivisions, J. Graph Theory 71(4)(2012) 416-434.
[14] D. Fisher, K. Fraughnaugh and L. Langley, Ps-connected graphs of minimum size, Ars Combin. 47(1997)
299-306.
[15] Z. Furedi and Y. Kim, Cycle-saturated graphs with minimum number of edges, J. Graph Theory 73(2) (2013)
203-215.
[16] R.J. Gould, Developments on saturated graphs. In 50 years of Combinatorics, Graph Theory, and Computing
Chapman and Hall/CRC, 11(2019) 111-133.

22



[17] R. Gould, T. Luczak, J. Schmitt, Constructive upper bounds for cycle-saturated graphs of minimum size,
Electron. J. Combin. 13(2006) #29.

[18] R.J. Gould and J. Schmitt, Minimum degree and the minimum size of Ki-saturated graphs, Discrete Math.

307(2007) 1108-1114.

S. Huang, H. Lei, Y. Shi and J. Zhang, The saturation number of K3 3, arXiv:1910.04967.

L. Készonyi and Z. Tuza, Saturated graphs with minimal number of edges, J. Graph Theory 10(1986) 203—210.

sy
=)

™
=3

)
=

X. Lin, W. Jiang, C. Zhang and Y. Yang, On smallest maximally nonhamiltonian graphs, Ars Comb. 45(1997)

263-270.

[22] Y. Ma, X. Hou, D. Hei and J. Gao, Minimizing the number of edges in C>,-saturated graphs, Discrete Math.
344(2021) 112565.

[23] L. Ollmann, Ky s-saturated graphs with a minimal number of edges, Proc. 3rd coutheast conference on com-

binatorics, graph and computing (1972) 367-392.

[24] O. Pikhurko, The minimum size of saturated hypergraphs, Combin. Probab. Comput. 8(1999) 483-492.

[25] O. Pikhurko, Results and open problems on minimum saturated hypergraphs, Ars Combin. 72(2004) 111-127.

[26] Z. Tuza, Cy-saturated graphs of minimum size, Acta Univ. Carolin. Math. Phys. 30(1989) 161-167.

[27] D. West, Introduction to Graph Theory, Prentice hall, Upper Saddle River, 2001.

[28] M. Zhang, S. Luo and M. Shigeno, On the Number of Edges in a Minimum Cg-Saturated Graph, Graphs
Combin. 31(4)(2015) 1085-1106.

Appendix

Proof of Lemma 5.1 Suppose ng (z) # 0. Let w € N5 (2). Then d(w) = 1. Hence, G has a 4-path with vertices
Yy, 21, Wa, w1, 2 in order since G + yw € Fg. By Observation 4.3(1), we see that w; € Vit as 2 € V7. That
is, d(w1) = 2. Then G has a 4-path with ends z and ws containing w; because G + wws € Fg. But this is
impossible since d(w1) = 2. So we derive that ns (z) = 0. Note that n3(z) + na(z) = 1. By Observation 4.3(1),
ni(z) = ns(z) < 1. Thus, d(z) = 2, since otherwise ni(z) = n5(z) = d(z) — nz(z) — na(z) > 2. This proves (a).

5

To prove (b), let P = zww, z; be a 3-path of G such that w € V5. By Observation 4.3, w,w; € V4. This implies
z1 € Vy and d(w) = d(w;) = 2. Note that g(z1) < 0 and nZ(z) = 0, else go(w) = & which yields g*(z) > gs(z) > 0.

Now we shall show that yz; ¢ E(G). Suppose not. Then G has a 3-path with vertices y, 29, wa, 21 in order
because G + wz; € Fg and d(z) = 2. Then wy € Vs and 25 € Vj since g(z1) < 0. But then wy € NZ(21), a
contradiction. Hence yz; ¢ E(G).

It remains to show that d(z1) = 2. Let y; € N3(21). Then y; # y. Suppose d(z1) > 3. Let wa € N(z1)\ {y1, w1 }.
Then, wy € Vs and d(wy) < 2 because g(z1) < 0 and n2(z1) = 0. Moreover, d(ws) = 2, otherwise G has a 4-path
with ends w and z; containing w; because G + wws € Fg which means d(w;) > 3. Let ws € N(w2) \ 21.

Since n2(z1) = 0, we see w3 € Vi. Note that ny(wsz) = 1, else ng(ws) > 2, which means g1 (wz) > %, 93(z1) >0,
g4(w) > % and g*(2) = g5(z) > 0. Let Ny(ws) = {22}. We claim that yz2 € E(G). Suppose not. Note that G has a
5-path P(wyws) since G + wiws € Fg. Let P(wyws) = wiaragasasws. Then a; € {w, z1}. If a; = w, then ay = z,
as = y. And so a4 = z3 since ny(w3) = 1, which contradicts to yzo ¢ E(G). Hence, a; = z;. Then G has a 4-path
with ends z; and ws containing wy. But this is impossible because d(ws) = 2, as claimed. Since yz; ¢ E(G), we

5-path P(wjws) because G +wiws € Fg. Let P(wiws) = w1b1bobsbsws. Then by € {w, z1}. If by = w, then by = z,

see 21 # 2. Clearly, g(22) < 0, else ga(w2) > %, g3(21) > 0, ga(w) > 3 and so g*(2) = g5(z) > 0. Note that G has a
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bs = y. And so by = z; since d(ws) = 2, which contradicts to yz; ¢ E(G). Thus by = z; and so by = ws. Since
g(z1) < 0, we see that by € V3 U V5. In fact, by € Vs, else by = y; and bg = 29 as ny(ws) = 1, which contradicts to
g(22) < 0. Then b3 € V5 and bsz; ¢ E(G) because n2(z1) = 0. But then gy (w2) > %, g3(21) > 0, g4(w) > % and so
g*(z) = g5(2) > 0, a contradiction, as desired. O
Proof of Lemma 5.2: Suppose not. Let z1,z0 € N; ™ (y). We claim that d(z;) > 2 for any i € [2]. W.L.o.g., suppose
d(z1) = 1. Then d(z2) > 2, else G+ 2122 ¢ Fg. By Lemma 5.1(a), d(2z2) = 2. Let w € N(22)\y. Then G has a 4-path
with ends y and w containing zo because G + zyw € F¢. But this is impossible since d(z2) = 2, By Lemma 5.1, for
any i € [2], we see d(z;) = 2 and G has a 3-path P’ = z;w;w; 42242 such that d(w;) = d(w;y2) = d(zi12) = 2 and
yzit2 ¢ E(G). This implies V(P1) N V(P?%) = (. But then G + 2122 ¢ Fg, a contradiction. O

Proof of Lemma 5.3: Note that n; (z) = 1. Let N5 (2) = {w} and y; € N3(z). Clearly, d(z) > 3, else G +y1w ¢
Fa.
Firstly, we shall show that fp(z) > 0. Suppose f2(z) < 0. By (), we have fi(z) < 0. Clearly, g*(z) < %, else
1

fi(2) > g*(2) — 315 (2) > 0. We next prove several claims.

Claim 1. n3(z) = 1.

Proof. Suppose not. Let y2 € N5(z)\y1. Hence, for any i € [2], na(y;) = 1 and Na(y1) = Na(yz), else let z; € Na(y;),
G has a copy of Cg with vertices z,y1,x1, a1, T2, y2 since 6(G) = 1, where a; € Vi. Let Na(y1) = Na(y2) = {z}.
Then G has a 4-path with ends = and z containing y; and ys since G +wzx € Fg. Then G —z — z has an s-path with
ends y; and y» for some s € [2]. Hence, nj (z) > 1 or ny ' (z) > 2. But then by Ineq. (3), g*(2) > 1, a contradiction.
g

Claim 2. n5(z) = 1.

Proof. Suppose not. We first assert d(v) = 3 for any v € N5(z) \ w. If d(u) = 2 for some u € N;5(z), then
let N(u) = {z,u'}, G+ wu' ¢ Fg because G has no 4-path with ends z and «’ containing u, a contradiction.
If d(u) > 4 for some u € Ns(z), then g*(u) > in4(u) as d(u) = n4(u) + ns(u), which implies ¢ > % and
f1(z) = g*(2) — 3n5 (2) + ¢} > 0, a contradiction, as asserted. Hence, N5(z) \ w = N2(z). Note that ns(z) = 2,
otherwise let wy, ws € N5(2) \ w, g*(w;) > tn4(w;) because ny (wi) +nf (w;) > 1 and ng(w;) + ns(w;) = 3 which
yields ¢}, > & and fi(z) > g*(z) — 3n5 (2) + t5,, + 5, > 0. Let N5(2) = {w,w;}. Note that n] (w;) = 0, otherwise

tr o> % and so f1(z) > 0. We next prove that

(a) ng(wy) = 1.

To see why (a) is true, suppose ny(w;) > 2. Let 21 € Ny(w1) \ 2. Then g(z1) < 0 as nf (w1) = 0. Then G has a
4-path with ends z and z; containing w; because G + wz; € Fg. Since d(w1) = 3, G — 21 has a 3-path P(zw;) or
G —z has a 3-path P(z1w;). We assert that G—z; has no 3-path P(zw;). Suppose not. Let P(zw) = za1byw;. Since
g(2z) < 0 and n5(z) = 2, we see that a3 = y; and by € V4 \ 2;. Then G has a 4-path with ends z and b; containing
y1 and wy because G + wb; € Fg, which implies G — z — by has a 2-path between y; and w;. Hence, y121 € E(G)
as d(wy) = 3. Since ns(z) = 2, n3(z) = 1 and g(z) < 0, G has a 2-path with ends y; and v because G +ww; € Fg,
where v € {b1, 21 }. But then g(v) > 0 and so n; (w;) # 0, a contradiction, as asserted. Thus, G — z has a 3-path
P(z1w1) = z1a1bywy. We see that a; € V3 U Vi because g(z1) < 0. Assume first a; € V3. Then by € V. Moreover,
ng (21) + nz (b1) = 0, otherwise let we € N5 (21), we see y1 = aq because G + wab; € Fg which yields G — #
has a 3-path P(zw;) violating the above assert. But then fi(z) > g*(z) — 315 (2) + & > 0 by Definition 4.6(1.2),
a contradiction. Assume now a; € Vi. Then by € V4 U V;. Note that by € Vs, otherwise by Ineq. (3), we see

g*(w1) > 3ny(w;) because z1,by € N; ' (w), which implies tr, > 1 and fi(z) > g%(2) — 3n; (2) + 1, = 0. We
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see d(ay) > 3, else f1(z) > g*(z) — $n5 (2) + 5 > 0 by Definition 4.6(1.1). By Ineq. (3), ¢*(w1) > ina(w;) because
z1 € Ny '(w1) and by € N2(wy). That is, t, > 1. But then fi(2) > g*(2) — sn5 (2) + t,, > 0, a contradiction.
This proves (a).

By (a), N(w1) \ 2 = Ns(w1). Let wy € N(wq) \ z. Then G has a 4-path with ends z and ws containing w;
because G + wwy € Fg. Since g(2) < 0, ng(w1) = 1 and ns(2) = 2, we see G — wo has no s-path with ends z
and w; for any s € {2,3}. Hence, G — z has a 3-path P(wjws). Let P(wjws) = wiasbswsy. Then ay € V. Note
that {wa,az} N N2 (wy) # 0, otherwise g*(w1) > tny(w:) because wy,az € N2(wy) which yields fi(z) > 0. Hence,
by € V4. By Definition 4.2(1.1), we see g*(w;) = 3. But then fi(2) > 0, a contradiction. O

By Claims 1 and 2, N(2)\{y1,w} = Ny(z) # 0 since d(z) > 3. Let 21 € Ny(z) and y2 € N3(z1). We assert G—ys
has no 2-path with ends z and z;. Suppose not. Let P(z21) = zazz;. Then a3z € V3UV,. Clearly, az € V3, otherwise
az € Vi, {z1,a3} C N(z) yields g*(z) > 1. Then a3 = y;. Hence, 21 € N#(2) N Ni(y1). But then g*(2) > 1, a
contradiction, as asserted. Then G has a 4-path with ends z and ys containing z; because G 4+ wy, € Fg. Hence,

G — yo has a 3-path P(zz1) or G — z has a 3-path P(ysz1).

Claim 3. G — z has no 3-path P(y221).

1
6’
otherwise g*(z) > 1. Hence, d(z) = 3, by € V5 and a4 € Vy. Then y1y2 ¢ E(G)(if y1 # y2), else G has a copy of

Proof. Suppose not. Let P(y221) = y2a4bsz1. We assert g(y1) < 0. Suppose g(y1) > 0. Then g(z) = g(z1) =

Ces with vertices y1, 2, 21, ba, aa, y2 in order. Note that ng (z1) = 0, otherwise let wi € Ny (21), we see G — z has a
2-path with ends y; and z; because G + ww; € Fg and d(z) = 3 which yields g(z1) > % By Observation 4.5(2),
g*(bs) > na(bs) because z; € N, (by) and ng(bs) > 2. Hence, ty, = +and fi(z1) > g% (z1) + th, = %. Note
that g*(2) = & and fi(2) = g*(2) — 3 = —&. But then fa(z) > fi(z) + ¢ > 0, a contradiction, as asserted. Let
x1 € No(y1). Then G has a 4-path with ends z and 27 containing y; because G + wx; € Fg. Since ¢g(y1) < 0, we

see G — z has a 3-path P(z1y1) or G — 1 has a 3-path P(y;z). We next prove that
(b) G — z has no 3-path P(x1y1).

To see why (b) is true, suppose P(z1y1) exists and let P(x1y1) = x1cadayr. Then dy € Vy and ¢4 € V3 as
g(y1) < 0. Hence, d4 € NZ(y1), which means g*(z) > &. Hence, f1(2) > g*(z) — $n5 (2) > —%. Note that g(z1) = &,
otherwise g(z1) > % yields g*(z) > % Then by € V5 and a4 € Vj. Similarly, we have t; > é and y1y2 ¢ E(G)(if
y1 # y2). Then ng (z1) # 0, otherwise fi1(z1) > g*(zl)thz4 > %yields fa(z) > fl(z)Jr% > 0.Let wy € N5 (21). Then
G —z1 —ay has a 2-path P(ysbs) = y220bs and G has a 3-path P(zz1) = 22’221 because {G+wraq, G+ww:} € Fg.
Then 2’ € Vy because ng(z) = n5(2) = 1, g(z1) = & and y1y2 ¢ E(G)(if y1 # y2). Moreover, 2’ ¢ {22, a4}, clse let
z' = z9, we see G has a copy of Cg = byz122'ysa4. Clearly, 2] € V5 because g(z1) = %. Then 2] # by, else G has a

f1(z1) = g*(z1) — 3n5 (1) + 2+t = . But then fa(2) > fi(2) + § > 0, a contradiction. This proves (b).

copy of Cs = 22’2} 29y221. By Observation 4.4(1), g*(2}) > sn4(z}) because 2/, 21 € N (2}). Then = +. Hence,

By (b), G—x1 has a 3-path P(y1z). Let P(y12) = y1cadsz. Then cq,dy € Vy because g(y1) < 0. We assert dy = z1.
Suppose not. Note that dy € N7(z). Then g(z1) = §, N3(y1) = {2} and d(z) = 4, otherwise n3t(z) +ni(z) > 2
or n3(z) + n4(z) = d(z) — 1 > 4 which yields ¢*(z) > . This means by € V5 and a4 € Vj. Similarly, ty, > +. Note
that ng (z1) = 0, otherwise let wy € N5 (21), we see G has a 3-path P(zz1) = 22'2{z such that 2/ = d4 and 2] ¢
{y1, ¢4, 2} because G+ww, € Fg, which yields G has a copy of Cg = y1cadsz]z12. Hence, f1(z1) > g*(z1) +t5, > %.
Note that g*(z) > ¢ and so f1(z) > g*(z) — 2 > —%. But then f2(z) > f1(2) + § > 0, a contradiction, as asserted.
Note that 21 € N7(z). Moreover, Nf(y1) \ z = 0, else g*(2) > § because z1 € N7(z). Hence, y121 ¢ E(G). Then

G — z — ¢4 has a 2-path P(y;1z1) = y1y;21 because G + wey € Fg. We see cq,y] € Ni(y1) because g(y1) < 0.
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Note that ng (21) = 0, otherwise let w; € Ny (21), we see G has a 4-path with ends y; and z; containing each of
{z, ¢4,y } because G+y w1 € Fg, which yields zv € E(G) for some v € {c4,9]} and so v € NZ(y1). If by € V5, then
tr, > ¢ By Ineq. (3), fi(z1) > g% (21) +1;, > $na(21) because ny(z1) > 3. If by € V3UVy, then by ¢ {y], c4} because
yi,ca €V} and y1y2 ¢ E(G). Note that by # z. Thus na(z1) > 4 and by Ineq. (3), fi(z1) > g*(21) > tna(21). Since
ni(z) > 1 and nj(y1) > 2, we have g*(z) > ¢ and so fi(z) > g*(z) — 3 > —¢. But then fao(z) > fi(z) + § >0, a

contradiction. ([
By Claim 3, G — y2 has a 3-path P(zz1). Let P(zz1) = zasbsz1. Then a5 € V3 U V. We next prove that
(c) as € V4.

To prove (c), suppose as € V3. Then as = y; because n3(z) = 1. Moreover, z; € N3 (z) as bs # y2. Hence, y; 21 ¢
E(G), g(y1) <0and N7 (y1)\ z =0, else g*(2) > +. Then G — z — bs has a 2-path P(y121) because G + wbs € F¢.
Let P(y121) = y1c521. We see bs,c5 € V{1t is easy to see g*(z) > ¢ and fi(2) > g*(z) — in5 (2) = —%. Then
ng (z21) = 0, otherwise let wq € N5 (21), we see G has a 4-path with ends y; and z; containing each of {z,bs,c5}
because G + y1w; € Fg, which yields zv € E(G) for some v € {bs,c5} and so v € N3 (y1). Note that n3(z;) = 0,
else fi(z1) > g*(#1) > %m;(zl) because n3(z1) + n4(2z1) > 4 and n3(z;) > 1, which implies fo(2) > fi(2) + % > 0.
This follows d(z) = 3. Moreover, ng (bs) # 0 or n; (c5) # 0, else fi(z1) > g*(21) > 2(na(z1) — 1) > Eng (21)
because nz(z1) + na(z1) > 4 and bs € N7 (21), which means fo(z) > fi(2) + & > 0. W.log, let wy € N; (b5).
Then G has a 3-path P(zbs) because G + wwy € Fg. Let P(zbs) = 22'bgbs. We see 2’ = 21, else 2/ = y; because
d(z) = 3, which means b5 € NZ(z1) or y121 € E(G). Moreover, b; € Vs. By Observation 4.4(1), we have ty =

because z1,bs € N, (b%). This implies b5 € N;T(21). Similarly, we have fi(z1) > %n}f(zl) and so fa(z) > 0,

Wl

contradiction. This proves (c).

By (¢), as € V. Then {z1,a5} N Nf(z) # 0, else g*(z) > &. W.Lo.g., let 21 € Nf(z). Then bs € V5 because
bs # ya. Note that z1a5 ¢ E(G). Hence, G — z — b has a 2-path P(z1a5) = z1dsas because G + wbs € Fg. Clearly,
ng (21) = 0, otherwise let w; € Ny (21) we see G has a 4-path with ends z; and as containing each of {z,bs,ds}
because G + wyas € Fg, which implies ds € Vy and so 21 ¢ N{(z). By Observation 4.4(1), g*(bs) > $n4(bs) and
so 1y, > 1 because z1,as € Nj (bs), which yields fi(z1) > g*(z1) + thy > 3. If as ¢ Ni(2), then g*(z) > ¢, which
yields f2(2) > fi(z) + & > 0, a contradiction. If as € NJ(z), then we have fi(as) > % by similar analysis with 21,
which implies f2(z) > fi(2) + & x 2 > 0, a contradiction. This completes the proof of f3(z) > 0.

Finally, we shall show that f3(y) > 0 for any y € N3(z). Suppose not. Let f5(y1) < 0 for some y; € N3(z). By
(%), g*(y1) < 0. By Observation 4.3(1), n3(y1) = 0 and nl(y;) < 1. Let 21 € Na(y1). Then G has a 4-path with
ends x; and z containing y; because G +wx1 € Fg. This implies that G has a 3-path P(y;2) = y1 21w 2z such that
wy € Vs and z1 € Vy because ¢g*(y1) < 0. Since G+ wz, € Fg, we have G — z — z1 has a 2-path P(yjw1) = y120w;.
Clearly, g(z;) < 0 for some ¢ € [2]. W.lo.g., let g(z1) < 0. We claim that nz (z1) + ng (22) # 0. Suppose not. We

say g(v) < 0 for any v € {2, 22}, otherwise by Observation 4.4(2), t; > % because nj (w1) > 1 and ny(w;) > 3,
which implies fo(z1) > fi(z1) > t5, , that is, t2 > %, and so f3(y1) > fa(y1) + t2, > 0. By Observation 4.5(2),

by, > % because n4(wi) > 3. Hence, fo(z:) > fi(zi) > 5, > % for any ¢ € [2]. That is, tzi > %. But then
fa(yr) > fa(y1) —|—t§1 —|—t§2 > 0, a contradiction, as claimed. Thus, ng (z1) +ng (22) # 0. W.Lo.g., let wa € Ny (22).
Then G has a 3-path P(z23) = zagbgz2 because G+wws € Fg. We claim that ag, bg € Vs. Suppose not. W.l.o.g., let
ag ¢ V5. Then ag € Vy and bg € V5 because n3(y1) = 0 and ni(y1) < 1. Clearly, f2(y1) = g*(y1) = —%. Moreover,
g(z2) < 0. We see bg # w1, otherwise ¢y, > % because ni‘(wl) > 2 and nyg(wq) > 4, which implies tzz > % and
fa(y1) = fa(yr) + ti > 0. By Observations 4.4(2) and 4.5(2), t3, > % because ny(wi) > 3 and z € N; (w),
and t; > % because ny(bg) > 2 and ag € Ni (bs). Hence, fa(22) > fi(z2) > g*(22) — %ng(,zQ) + iy, + i, > %,
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that is, tZ2 > 2. But then f3(y1) > fa(y1) + tﬁz > 0, a contradiction, as claimed. Thus, ag,bg € V5. Obviously,
d(ag) > 3 and d(bg) > 3, else G 4+ wbg ¢ Fg or G + waas ¢ Fg. Hence, ny(v) + ns(v) = d(v) > 3 for any
v € {ag,bs}. By Ineq. (3), t; > % because n2(v) > 1 and nj (v) + ny'(v) + d(v) > 4. We assert g(u) < 0 for
any u € {z,29}. Suppose not. Then fo(y1) > g*(yl) > 71 Similarly, ty, > % W.lo.g., we assume w; # ag.
Then fi(z) > g*(z) — 3n; (2) + ti, + t, = %, which means fa(z) > ¢ because g(z) < g. That is, t2 > ¢
But then f3(y1) > fa(y1) +t2 > 0, a contradiction, as asserted. If w; € {ag,bs}, say w; = bg, then th, = %
because ng(wi) 4+ ns(wi) > 4. Hence, fa(z) > fi(z) > g*(z) — sn5 (2) + t},, +ts, > 5. That is, t? > L. But
then f3(y1) > fo(y1) +t2 > 0, a contradiction. If wy ¢ {as,bs}, then ¢}, > % because ny(wi) > 3. Hence,
fa(u) > fr(u) > g*(u) — sng (u) + t5, +t}, > & for any u € {2, 22}, where v’ € {ag,bg} N N(u). That is, t2 > &
But then f3(y1) > fo(y1) + ¢ +t2, > 0, a contradiction. Thus, f3(y) > 0 for any y € N3(z). O

Proof of Lemma 5.5: Let w € N5 (z1) and z; € N4(y). Note that d(w) = 1. By Lemma 5.3 and (%), fs(y) >0
and f2(21) > 0. To establish the desired result, suppose f5(z) < 0 for some z € Ny(y)\2z1. Then g*(y) < f3(y) < 5.

y (%), fi(z) <0 for any i € [5]. By Corollary 5.4, g*(z) < 0. By Lemma 5.1(a,b), d(z) < 2 and G has a 3-path
P = zwjwszg such that d(u) = 2 for each u € V(P) and yzs ¢ E(G) when d(z) = 2, where wy,wy € Vs, 20 € V.
When d(z) = 2, let N3(z2) = {y2}. We first prove that

(a) for any v € NZ(y), nd (v) <1, or nj (v) = 2 and n?(v) =0, or n3 (v) = 2 and N} (v) N Ny(N3(v)) = 0.

To see why (a) is true, suppose first nj (v) > 3, or nj (v) = 2 and n3(v) > 1. By Ineq. (3), g*(v) > 3n3(v) +
#n4(v) + £. Thus, f2(v) > inz(v). Suppose ng (v) = 2 and Nj(v) N Ny(N3(v )) # 0. Let y1 € N3(v) and vy €
Nji(v) N Ny(y1). By Ineq. (3), g*(v) > ins(v) + gna(v) + & and g*(vi) = 3, which means fi(v1) > 0 and
so ny (v) < na(v) — 1. Hence, fo(v) > fi(v) — iny~(v) > inz(v). In both cases, we see t2 > 1. But then

f3(y) = fa(y) +t2 > 1, a contradiction. This proves (a).
Then G has a 3-path P(yz;) because G + zw € Fg and g*(z) < 0. Let P(yz1) = ya1b1z1. We then prove that
(b) a1z ¢ E(G)

To prove (b), suppose a1z1 € E(G). We claim that b; € Vi. Suppose not. Then by € V3 U Vy. Note that by € Vj,
otherwise by (a) and Ineq. (3), we see a1 € Vj and so g*(v) > gn3(v) + gna(v) + 3 for any v € {z1,a1} because
ny ' (v)+nd (v) > 2 and n(v) > 1, which means ¢2 > L and so f3(y) > fa(y)+t2, +t2, > L. By (a), a1 € V4. Hence,
{a1,z1,b1} C V2, which means that ¢g*(v') > % and fi(v') > 0 for any v’ € {a1,21,b1}. By Observation 4.5(2,3,5),
g*(v) > tng(v) + tna(v) for any v € {z1,a1} because n3 ' (v) + nd (v) > 1 and n3(v) > 2. This implies 2 > 1 as

1T (v) > 2. But then f3(y) > fo(y) +t2, + 12, > 1, a contradiction, as claimed. Then G — 21 — a; has a 2-path
P(yby) because G + ajw € Fg. Let P(yb1) = ycibi. Then G has a 4-path with ends y and b; containing each
of {z1,¢1,a1} since G + zby € Fg, which means cja; € E(G) or ¢121 € E(G). W.lo.g., let cia; € E(G). Then
a1 € V. Note that g*(by) > 3n4(b1) as njf (b1) > 3, which means ty, = 1. Then v € V{2 for any v € {z1,¢1},
otherwise let 27 € VjI, we see g*(z1) = % and so fa(z1) > g*(21) — % — % +t;, = 7, which yields t2 > % and
faly) > fg(y)—i—tgl > % Hence, for any v € {ay,21,¢1}, g*(v) > %nS(v) + %(n4( ) — 1) because n3 (v T (v )+n3 (v)>1
and n%(v) > 1, which implies 2 > % because f1(v) > g*(v) — % + ;.. But then f3(y) > fa(y) +12 12+t > %,

a contradiction. This proves (b).

(c) ybr ¢ E(G).

To see why (c¢) is true, suppose yby € E(G). Then by € V3 U Vy. We assert by € V4. Suppose not. Then b; € Vj.

Then a; ¢ V4, otherwise g*(v) > tnz(v) + £n4(v )—|— for any v € {21, a1} because n3 (v) > 2, which implies ¢2 > 1
and so f3(y) > fa(y)+12, +12, > 1. Since g*(y) < &, we see a1 ¢ V3. Hence, a1 € Va. Note that ysby ¢ E(G) When
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d(z) = 2, otherwise g*(y) > % Then G—y—b; hasa 2-path with ends a; and zl because G+ zb; € Fg. This implies
n3(z1) > 3. By Ineq. (3), g* (= ng(zl) + %n4( )+ £, which yields 2 P 3 But then f3(y) > fa(y) +t§1 >0,a

1) =
contradiction, as asserted. By (a), a; € V4. We assert y2b1 ¢ E(G). Suppose not. Then d(z) = 2 and g*(z) > —¢.
Hence, f3(y) < g, otherwise fi(y) > 0 and f4(z) > 0. By Observation 4.5(1), g*(b1) > gn3(b1) + §na(b1) because
ng(b1) > 2 and ng(b1) + na(by) > 4. Clearly, g*(v) > & for any v € {z1,a1} because by € V42, which implies

{z1,a1} € Ny (by). Thus iy > ¢ as ny~ (b1) < ny(b1)—2, which yields that fs(y) > fa(y)+ t§ > &, a contradiction,

as asserted. By (b), G—y—b; has a 2-path P(z1a1) because G+ zb; € Fg. Let P(z1a1) = z1c1a1. We assert ¢ € V.
Suppose not. Then c¢; € Vi, otherwise g*(v) > ns(v) + & (na(v) + 2) because n3 ' (v) +ni (v) > 2 and n3(v) > 1

for any v € {21,a1}, which means that 2 > ¢ and so f3(y) > fg( ) + 2, + 2 > . By Observation 4.5(2,3,5),

g*(v) > gnz(v) + $n4(v) for any v € {z1,a1,b1} and g*(c1) > 3 because nf(c1) > 2 which implies n)" (v) > 2.

Hence, 2 >  because ny~ (v) < ng(v) — 2 for any v € {zl,al,bl}. But then f3(y) > faly) + 2, +t2, +1t7 > 1

a contradiction, as asserted. By Observation 4.4(1), g*(c1) > ing(c1) + $ns(c1) because nf (c1) > 2, which means

ti > 1. We assert t2 > 1 for any v € {z1,a1}. W.Lo.g., suppose t? < &. Then z, € V2, otherwise g*(z1) > 1 and
so fi(z1) > g*(21) — § + 5, > %, which means t2 > &. By Ineq (3) g ( 1) > tn3(21) + $(na(z1) — 1) > 1 because
ng (z1)+nz'(21) > 1 and by € NF(21). Similarly, g*(by) > 1, which means b; € N} (21) and nj~ (21) < na(z1) — 1.
But then fi(z1) > g*(zl) — %ng(zl) +t7, > g (z1), which ylelds that ¢2,
f3(y) = faly) +t2 + 2 > %, a contradiction. This proves (c).

> é, a contradiction, as asserted. Hence,

By (b) and (¢), we may assume any 4-cycle containing the edge yz; is an induced cycle in G — z. By (¢),
G — 21 — ap has a 2-path P(yb;) since G + wa; € Fg. Let P(yby) = yc1b;. We assert yoby ¢ E(G). Suppose not.
Then d(z) = 2 and by € V3 U V. Hence, f3(y) < ¢ as f3(z) = g*(z) = —¢. If by € V3, then g(y) < 0, otherwise
by Observation 4. 4(1) g*(z1) > nsg(z1) + $na(z1) > gns(z1) + gna(z1) + & because {y,b1} € N3 (1), which
means that t2 > E and so f3(y) > fa(y) + til > %. Then {a1,c1} NV, # 0. W.lo.g., let ¢; € V4. By Ineq. (3), for
v € {z1,a}, g7 (v) > 5ns(v) + £(na(v) + 2) because by € N5 (v) and y € N, ' (v), which yields t2 > 2. But then
f3(y) = foly) + 12, + 12, > L a contradiction. If by € Vj, then y2z, ¢ E(G), otherwise by Ineq. (3), by € NjT (1)
and g*(21) > &nz(21) + & (na(z1) — 1) + & because ns(z1) > 2, n3 ' (21) +n3 (21) > 1 and by € N7(z1), which implies
2, > L andso fo(y) > 1

Hence, G has 2-path P(yz1) and P(yy2) because {G + ww;,G + wez} C Fg and y221 ¢ E(G). Let P(yz1) =
yz1121 and P(yy2) = yy1y2. By (¢), z11 # b1. Then y1 € {z1, 211}, else there is a Cs = yy1y20121211 in G. But
then G has a copy of Cg = yz1121y2b1a1 when y; = z1, or Cs = yz1211y2b1a1 when y; = 211, a contradiction, as
asserted. Because G + zby € Fg and y2b1 ¢ E(G), we see there are at least two edges in G[{z1,a1,c1}]- By (),
z1c1 € E(G). But this is impossible because 4-cycle Cy = yc1by21 is not an induced cycle in G, a contradiction.

This completes the proof of Lemma 5.5. (I

Proof of Lemma 5.6: By Corollary 5.4, N7~ (y;) € N;~ () and n}~ (y;) < 1 for any i € [3]. We proceed it by
contradiction. W.l.o.g., suppose 1} (y1) # 0. Let z; € N; ™ (y1). By (%), f;(21) < 0 for any j € [5]. By Lemma 5.5,
N5 (N(y1)) = 0. By Observation 4.5(2), f1(z) > g*(z) > &n3(z) + tna(z) because n3(z) > 3, which implies 2 > 1.
We claim d(z1) = 1. Suppose not. By Lemma 5.1(a), d(z1) = 2. One can easily check f3(z1) > g*(21) > —3 as
ng (z1) = 0. Note that f3(y1) > fo(y1)+t2 > ¢. But then fy(21) > f3(21)+¢ > 0, a contradiction, as claimed. Hence,
f3(21) = g(z1) = —% which means f3(y1) < &. Clearly, g(y;) < 0 for any i € [3] and n3t(2) +na(2) < 1, otherwise
by Observation 4.4(2,4), we see g*(z) > +n3(z) + gna(z) which implies t2 > £ and so f3(y1) > fa(y1) + 2 > 1.
Note that L(y;) # 0 for some i € {2,3}, otherwise by Definition 4.6(3.1), f3(y1) > f2(y1) + 5./2(2) > 3 because
f2(z) > 2ns(z) — 3 > 2. Wlo.g., let L(y2) = {22}. Then G has a 3-path P(y1y2) because G + 2122 € Fg. Let
P(y1y2) = y1a1a2y2. We see ay,as € Vy because g(y;) < 0. Moreover, {a, a2} NV} # 0 as ng ' (2) +n3(2) < 1. We
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next prove several claims.
Claim 1. a; # z.

Proof. Suppose not. Then a; € V}'. Then g*(az2) = % as z € Ni(y2) N N (az), which means fi(az) > 0 and so
as € N, T(z). Hence, ny~ (2) < n4(z)—1. By Ineq. (3), 9%(2) = 3n3(2)+ & (na(z) —1) since n3(z) > 3 and ny(z) > 1.

Hence, t2 > % Then f3(y1) > fa(y1) + 12 > g, a contradiction. O
By Claim 1, we see tzl < %, otherwise f3(y1) > fo(y1) +12 + til > %
Claim 2. ay € V! and ay € N;*(ay).

Proof. Suppose az ¢ V}. Then a; € V}'. Hence, g*(a;) > % because a € Ni(a1) and z € NZ(y;). But then
falar) > % and so t?l > é, a contradiction. Thus, as € V. Clearly, g*(az) > %. Now we prove as € Nfr(al).
Suppose not. Clearly, g(a;) = § and nj (az2) # 0. Let wy € Nj (az). Then G has a 3-path P(y2az) because
G + zows € Fg. Let P(yzaz) = yabibaas. Then bs € V5 and by € Vy as g(az) = g(a1) = % and ¢(y;) < 0 for any

i € [2]. By Observation 4.5(2), g*(b2) > £na(b2) + £ns5(b2) as nf (b2) + na(bz) > 3, which means th, = . But then
filaz) > g*(az) — 3n5 (az) +t;, > 0, a contradiction. O

By Claims 1 and 2, we see ng(a;) = 1, otherwise g*(a1) > gns(a1) + g(na(a1) — 1) because nz(ar) > 2 and
y1 € 1\73_1((11)7 which implies tzl > %. Then G has a 4-path with ends y; and as containing aq because G+z1a2 € Fa.
Note that N(y1) N N(ay) =0, else let by € N(y1) N N(a1), we see G has a copy of Cs = y1b1aiasysx when by # as
or Cg = y1b1y22ysz when by = as. Thus, G — ag has a 3-path P(y1a1) or G — y; has a 3-path P(ajaz). We next
prove that

(a) G — az has no 3-path P(yia1).

To prove (a), suppose 3-path P(yja1) exists and let P(y1a1) = yicicaar. Then ¢o € V3 U Vs as ng(ar) = 1.
We assert ¢y € V. Suppose not. Then ¢; € Vj because g(y1) < 0. By Ineq. (3), g*(a1) > sns(ar) + g(na(ar) — 1)
because c; € NZ(ar) and y; € N3 '(a1). By Claim 2, nj ™ (a1) < na(ar) — 1. But then #2, > i, a contradiction, as
asserted. Then ¢; € V. By Observation 4.5(2), g*(c2) > gna(cz) + $ns(c2) because nj (c2) + na(cz) > 3, which
means 7, > &. Thus, fi(a1) > g*(a1) + t%,. One can easily check g*(a1) > $ns(a1) + (na(ar) — 2). But then

t2 > & because ny~ (a1) < nyg(ay) — 1, a contradiction. This proves (a).

By (a), G — y; has a 3-path P(ajas2) and let P(ajas) = ajcicaas. Then ¢; € V4 U Vs as ns(ar) = 1. We assert
c1 € V. Suppose not. Then ¢y € V3 U Vs since ap € VL. If c3 € V3, then ¢y = yo, which implies g*(c;) > % as
a1 € Ni(c1) and z € N (y2). Hence, fi(c1) > 0.1If c; € V3, then by Observation 4.4(2), g*(c2) > +na(c2) + gns(c2)
as {c1,a2} C NI(CQ), which means ¢} > % Hence, fi1(c1) > 0. By Claim 2, {¢1,a2} C Ni+(a1), which yields
ny~(a1) < na(ar) — 2. But then t2 > % because g*(a1) > ins(ar) + 1(na(ar1) — 2), a contradiction, as asserted.
Then ¢z € V5 as ap € V{. By Ineq. (3), g*(c1) > gna(c1) since a1 € N (c1), which means t; > . Hence,
fi(ar) > g*(ay) + ;. But then t2. > & because g*(a1) > tns(a1) + & (na(ar) — 2), a contradiction. This completes
the proof of Proposition 5.6. O
Proof of Lemma 5.7: Clearly, we only need to prove n}~ (y) = 0. Suppose not. Then f3(y) < % and f4(y) < %
By Lemma 5.5, N5 (Ny(y)) = 0. Let z € L(y), € Na(y) and Ni(z) = {a1}. For any v € V3, Ni~(v) € Nj~ (v)

and n3~ (v) < 1 by Corollary 5.4. We first prove several Claims.

Claim 1. If g(y) = ¢, then n3(y) = 0, or g(z) < 0 and n3(z) = 0. If g(y) > %, then n3 (y) = 0 and n3(y)+nyt(y) <
1.

Proof. Obviously, the results hold since otherwise f5(y) > g*(y) >

c.oh—t
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Claim 2. G contains no 2-path P(yv) for some v € {x, a1 }.

Proof. Suppose G contains 2-path P(yv) for any v € {x,a;}. Then g(x) > 0 and g(y) > 0. Let P(xy) = za1y. By
Claim 1, y,a; € V4. Hence, f3(y) > fa(y) = g*(y) = % Then G — ay has a 3-path P(zy) or G — y has a 3-path
P(zay) because G + za; € Fg. We assert G — ay has no 3-path P(zy). Suppose not. Let P(xy) = xbibay. Then
by € V3 and by € Vj because y € V3. By Observation 4.5(2), g*(by) > %n?,(bg) + %n4(b2) because ng(bz) > 2 and
y € N5 (b2). Since ns (bg) = 0, we have ty > +. But then f3(y) > fa(y) + ty, > %, a contradiction, as asserted.
Hence, G — y has a 3-path P(za;). Let P(xay) = abiboa;. Similarly, by € V3, be € V4. Then nf’l_(al) # 0, else
fay) > fs(y) + & > 5 since fs(a1) > g*(a1) = §. Let 21 € N3~ (ay). Then G has a 4-path with ends y and 2
containing a1 as G + 221 € Fg. Then G has a 3-path P(yaq) because g*(z1) < 0. Let P(ya1) = ycicear. Then
c1,co € Vy. Clearly, G — y — ¢o has an s-path with ends ¢; and a; for some s € [2] since G + zco € Fg. Then
na(cr) +na(er) > 3 and y € N3 (e1). By Ineq. (3), fi(er) > g*(c1) > gna(er) + g(na(er) — 1) as ng (e1) = 0. Note
that g*(cg) > % because a; € Nj (c2) and ¢; € NZ(cg), which means fi(ca) > 0 and so ¢y € N41+(cl). Hence,
ny~(c1) < ng(cr) — 1. Then, 2. > 1. But then f3(y) > fa(y) + 2, > 1, a contradiction. This proves Claim 2. [

?7c1 — 6° c1 = 3
Note that G has a 4-path with ends a7 and y containing x since G + za; € Fg. By Claim 2, G —y has a 3-path

with ends « and a3 or G — @y has a 3-path with ends z and y. We next prove the following claim.
Claim 3. G — a7 has no 3-path with ends x and y.

Proof. Suppose not. Let P(zy) = zx122y. By Claim 1, xzes ¢ E(G). Then G has a 4-path with ends y and
containing = and x5 as G + zx1 € Fg. We thus see that G — y — 21 has a 2-path P(zxs). Let P(z23) = zx3zs. By
Claim 1, 1,23 € V3 and x5 € V3 U V4. We next prove that

(a) z9 € V3 and L(zq) = 0.

To see why (a) is true, suppose first zo € Vj. Clearly, N3(z2) = {y, z1,x3}, else by Observation 4.4(2), g*(z2) >
ins(z2) + gna(w2) which implies t2, > 1 and so f3(y) > fa(y) + t2, > 3. Moreover, we see Na(y) = Na(1) =
Ny(z3) = {z}, else we assume 2’ € Ny(z1) \ z, we see G has a copy of C5 = ayzzsreriz’. But then n}~ (y) = 0
by Lemma 5.6, a contradiction. Thus, zo € V3. We now show that L(z) = 0. Suppose not. Let z; € L(x3). Then
z1 € V4. Then G has a 4-path with ends z and x2 containing each of {y,x1,z3} because G + xz; € Fg. Hence,
G[{y, 1, z3}] has at least two edges. W.Lo.g., let yz3 € F(G). Then y € Vi and {z2, 23} C NZ(y), which violates

Claim 1. This proves (a).

By (a) and Claim 1, g(z) < 0 and x1, 23 € V3. For any v € V3, let A(v) be defined as in Definition 4.6(4). By
(a) and Lemma 5.1(a,b), f3(v) > —¢ for any v € N}~ (x3). Hence, fs(z2) < FA(z2)| + %ni_(xg), else fa(y) >
f3(y)+% > 3. Since g(x2) > 2, wesee f3(v) > g*(v) > § forany v € {y, 1,23} By Ineq. (3), g* (z2) > &(n3(z2)—1)
because na(z2) + n3(w2) > 4. We assert g(y) = &. Suppose not. For any i € {1,3}, fs(x;) > ¢*(z;) = § because
y € N3(x) and xo € N3(z;), which yields f3(z;) + f3(x}) > 0 for any x} € Ny(z;). Hence, x1, 23 ¢ A(z2), which
means |A(z2)| < nz(z2) — 2. But then f3(z2) > g*(22) > $[A(z2)| + & > 1| A(z2)| + a7} (22), a contradiction, as
asserted. We further assert L(z1) U L(x3) # 0. Suppose not. By Lemma 5.1(a, b), f3(v) > —% for any v € N3~ (),
which yields fs(z;) + fa(a}) > 0 for any 2 € Ny(z;) and i € {1,3}. Hence, x1,23 ¢ A(xz). Similarly, we also get
a contradiction, as asserted. W.l.o.g., let z; € L(z1). Because G + zz1 € F¢, we see G has a 3-path P(yz1). Let
P(yx1) = yajasxzy. We next show that

(b) ay,az € V5.
To prove (b), suppose first a; ¢ V41. We assert a; € Vf. Suppose not. Then a; = x5 and ay € V4 because

9(y) = g(a1) = § and wzs ¢ E(G). By Ineq. (3), g*(az) > gns(az) + §(na(az) +2) because 1,22 € Ni (a2), which

30



means 2, > 1. Hence, f3(x1) > fo(x1) +t2, > %. Then a1 ¢ A(z2), which means |A(z2)| < nz(z2) — 1. But then
fs(@2) = folwa) + 12, > g*(x2) + 2 > L A(22)| + ni (22), a contradiction, as asserted. Thus, a; € V2. Note that
as € Vy, else as = x5 yields til > % and so f3(y) > fa(y) + tfh > % Then g*(az) > % because z1 € N5 (as) and

ay € N?(ay), which means as € N; ¥ (a1) and son} ™ (a1) < n4(a1)—1. By Ineq. (3), g*(a1) > tng(ar)+3(na(ar)—1)
because y € N3 (a1). Then, t2 > & because nj (a1) = 0. But then f3(y) > f2(y) + 2, > 3, a contradiction. Thus
a; € V. Then ay € Vj. Moreover, ay € V', otherwise fi(ai) > g*(ay) >

which means ¢2 > 1 and so f3(y) > f2(y) +t2, > 1. This proves (b).

% because y € N, (a;) and ng (a1) = 0,

By (b), g*(a1) = % asy € N3 (a1). Then G has a 4-path with ends y and ay containing a; because G+ zas € Fg.
Since g(a1) = %, we see G — as has a 3-path P(a1y) or G — y has a 3-path P(ajasz). Let P(aiv) = a1b1bav, where
v € {y,az}. Then by € V5 because g(ar) = ¢. Clearly, g*(b1) > $nu(b1) since a1 € Ny (by), which means ¢} > }.

Thus, fi(a1) > g*(a1) + ¢}, > % as ng (a1) = 0, which means 2 > . But then f3(y) > fa(y) + 2, > 3,

a
contradiction. O

By Claim 3, G — y has a 3-path P(zxa;) and let P(xa;) = zasaijc;. Then aq € Vi since 6(G) = 1. We
assert na(y) = 1. Suppose not. Let 2’ € No(y) \ . By Claim 1, 2’ # as. Hence, ' = ay, else G has a copy of

Cs = ajajazryz’. But then nd (y) +ny ' (y) > 2, which violates Claim 1, as asserted. We next prove that
(¢) n3(y) = 0.

To see why (c) is true, suppose n3(y) # 0. By Claim 1, n3(y) = 0. So N3(y) = Ni(y). Let y; € N3(y) and
x1 € Na(y1). Clearly, f3(y) > g*(y) > + because x € N (y) or N3(z) \ y # 0.

We first show that G — x; has no 3-path with ends y and y;. Suppose not. Let P(yy;) = ycicoyr. Then
¢y € Vi because g(y1) = %. We claim ¢; € Vj. Suppose not. Then ¢; € V3. Clearly, Nao(c1) = {x1}. Hence,
f2(y1) = g*(y1) > & because y € N3 (y1). By Ineq. (3), g*(c2) = sns(c2) + g(na(c2) + 2) because c1,y1 € Ny (c2),
which implies 2, > &. Hence, f3(y1) > fa(y1) + t2, > 5. Moreover, L(y1) # 0, otherwise by Lemma 5.1(a, b),
f3(v) > —% for any v € N}~ (y1), which yields fi(y) > fs(y) + & > 3. Let 2/ € L(y1). We see G —¢1 — o1

1

has a path of length at most two with ends y and ¢y because G + z'¢c; € Fg, which implies té > 5 and so

f3(y1) = f2(y1) + 2, > 5. But then fi(y) > f3(y) + § = 3, a contradiction, as claimed. Note that yic1 ¢ E(G),
otherwise fi(c1) > g*(c1) > gns(c1) + gna(c1) because y,y1 € Ny (c1) and ng (c1) = 0, which means 2, > %
and so f3(y) > fa(y) + til > % Then G — y — ¢o has a 2-path P(yic1) as G + zea € Fg. Let P(yic1) = yidic-
Then di € Vi as g(y1) = & By Ineq. (3), fi(c1) > g*(c1) > gns(c1) + g(na(cr) — 1) since y € Ny (c1) and
ng (1) = 0. Clearly, f1(c2) > 0, which means ¢; € Ni+(c1) and so ni_(cl) < ny(er) — 1. Hence, tzl > %. But then
f3(y) = fa(y) +t2 > 1, a contradiction.

Thus, G has no 3-path with ends y and y;. Clearly, n3 (y1) = 0, else let v € Ny (y1), G + 2v ¢ Fg by
Lemma 5.1(a, b). Since G+ zx1 € Fg and y; € N1 (y), we see G has a 3-path P(y;21) = y1c1c271 such that ¢; € V)
and ¢z € Vi. If ng (c1) = 0, then by Observation 4.5(2), g*(c1) > &ns(c1) + gna(c1) because y1 € N5 (c1) and
ng(c1) > 2, which means 2, > ¢ and so f3(y1) > fa(y1) + 12, = ¢. If ny (c1) # 0, then let w € N5 (c1). Then
G — x1 — ¢ has a 2-path P(yic2) = y1c3ce such that ¢ € Vj because G + wxy € Fg and y; € Ni(y). Hence, for
i €{1,3}, g*(c;) > $5n3(ci) + gna(c;) + 3 because y1 € Ny (¢;), n3(c;) > 2 and ¢ € Ny (¢;)UN;*(c;). This implies
t2 > . Thus, f3(y1) > fo(y1) +t2 +t2, > ¢. But then in both cases fi(y) > f3(y)+ & > %, a contradiction. This

proves (c).

Let Ni(a1) = {a}. By the choice of «, y belongs to some 4-cycle with vertices y, 21, 22, 23 in order. By (¢) and
Claim 3, 21,23 € V4. Note that ng (z;) = 0 for any ¢ € {1,3}, which means f1(z;) > ¢*(2;). Since G + zz3 € Fg,
we have z123 € E(G) or G —y — 29 has a 2-path P(z123) = z12423. We assert g(z;) > 0 for any ¢ € {1,3}. W.Lo.g.,
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suppose g(z1) < 0. Then 23,24 € V5. By Ineq. (3), for any i € {2,4}, g*(2;) > gnu(z;) because ny(z;) > 2 and
ni(z,) + nzl(z,;) > 2, which means t} > %. Hence, fa(21) > g*(21) +t5, +15, > %, which means tzl > % But
then f3(y) > fa(y) + 12, > %, a contradiction, as asserted. Then g*(y) > 0. Obviously, t2. < ¢ for some i € {1, 3},
else f3(y) > fo(y) + t2, + 12, > 3. We further assert Ns(z1) N Ns(z3) # 0. Suppose not. Then zy, 23 € V2. By
Ineq. (3), for any i € {1,3}, g*(2;) > #n3(2;) + gna(z;) because ni (z;) + nz () + n3(z) > 3, which yields

t2, > %, a contradiction, as asserted. W.Lo.g., let 23 € N5(21) N N5(z3). By Ineq. (3), g*(22) > 3n4(z2) because
{21,23} € N (22), which means ¢, > 1. Note that ¢? < } for some i € {1,3}. W.Lo.g., suppose ¢, < &. Then
z1 € V2, otherwise g*(21) > 0 and f1(21) > g*(21) + t;, > %, which implies ¢2 > 1. Moreover, z3 € V2, otherwise
g*(23) > & because z1 € N7 (y), which implies fa(z3) > g*(23)+15, — % > % and so f3(y) > fo(y)+t2, > 5. It is easy
to see that if z4 exists, then z4 € V3UVj otherwise ¢, > 1 and t2 > . By Ineq. (3), g*(21) > gns(z1)+§(na(z1)—2)
because nj (z1) +n3 ' (21) + n3(z1) > 2 and n3(21) +na(z1) > 2. Hence, fi(z1) > g*(21) + 5, > Ing(z1) + $na(z1).
But then tﬁl > %, a contradiction. This completes the proof of Lemma 5.7. ([
Proof of Lemma 5.8: To prove (a), suppose nj (y) # 0. Let zo € N; (y). By (%) and Corollary 5.4, g*(y) <
f3(y) < 0 and ¢g*(z) < 0. By Lemmas 5.7 and 5.1(a,b), G has a 3-path P = zww;2; such that d(v) = 2 for any
v € V(P), and yz; ¢ E(G), where z; € Vj, w,w; € V5. By Observation 4.3(1), N, (y) = Ni(y) = {2}, which
yields fa(y) = g*(y) > —4. Let N3(21) = {s1}, Na(z0) = {22} and Na(y) = {«}. Then G has a 2-path with
vertices x,x’,y; in order because G + wxr € Fg and ¢g*(y) < 0. Then y120 ¢ E(G), else y12'xyz022 is a 6-cycle.
This means G has no 2-path with ends y; and zp. Then G has a 3-path P(yzo) because G + wzg € Fg. Let
P(y20) = yaiaszy. Then a; € N (y) and ap € Vs. Note that zp € N; (az) and n4(as) > 2. By Observation 4.5(2),
g*(az) > tny(az) + #ns(az) and so ¢, > . By Lemma 5.5, n; (a1) = 0. Hence, fa(a1) > g*(a1) +t;, > & and so
t2 > 1. But then f3(y) > fa(y) + 2, > 0, a contradiction. This proves (a).

Now we shall prove (b). Suppose nj (z1) # 0. Let wy € Ny (21). By (%) and g(2) = ¢, —¢ < f2(y) < f3(y) < 0.
Then G has a 4-path with ends y and z; containing z as G + yw; € F¢. Clearly, G — z; has no 3-path with ends y
and z, otherwise f3(y) > 0 by similar analysis with the case P(yzg) exists in the proof of Lemma 5.8(a). Then G —y
has a 3-path P(zz1). Let P(221) = zajasz;. By Observation 4.3(2), g(z1) = % Hence, a1,ao € V5. Then G — 21 —ay
has a path of length at most two with ends z and as because G + wia; € Fg. Hence, ay € N2(a1), which means
g*(a1) > n4(ay) because z € N (a1) and so t;, > %. By Lemma 5.3, ny (z) = 0. Hence, f1(z) > g*(z) + 5 > %

and so t2 > 1. But then f3(y) > fa(y) + t2 > 0, a contradiction. O
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