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Abstract. A sequence of {a,},>o satisfies the Briggs inequality if

ap(ay = An10n11) > ap_1 (a4 — nlpya)

holds for any n > 1. In this paper we show that both the partition function {p(n +
No)}nso and the overpartition function {p(n + No)}nso satisfy the Briggs inequality for
some Ny and Ny. Based on Chern’s formula for 7-quotients, we further prove that the
k-regular partition function {px(n + Ni)}.>0 and the k-regular overpartition function
{Pr(n + Ni)}nso also satisfy the Briggs inequality for 2 < k < 9 and some Ny, Ny
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1 Introduction

In the study of binding polynomials, Briggs [5] proposed the following conjecture.

Conjecture 1.1. Suppose that f(z) =Y/ ,ax' is a polynomial with nonnegative coeffi-
cients. If f(x) has only negative zeros, then, for 1 <l <n —1,

2 2 3
Q10740 + a[ a3 + Ay > G (@104 + 2aa042), (1)

ai(aj — ai1ai1) > aiy (0}, — @as). (2)

As pointed out by Zhang and Zhao [35], the first inequality (1) can be deduced from
a result due to Branden [1]. This paper is mainly concerned with the second inequality
(2), which has been proved by Fan and Wang [17] recently. Although Briggs’ original
conjecture is stated for a finite sequence, it is natural to study such inequalities for an
infinite sequence. Following Zhang and Zhao [35], we say that a sequence of {a,}n>0
satisfies the Briggs inequality if

ai(ai - anflan+1) > ai—l(ai—s—l - anan+2)



holds for any n > 1. Zhang and Zhao [35] proved that both the Boros-Moll sequence and
two of its variations satisfy the Briggs inequality.

In this paper we aim to show that the Briggs inequality is satisfied by some partition
function, such as the partition function, the overpartition function, the k-regular partition
function, or the k-regular overpartition function. Recall that a partition of n is a weakly
decreasing sequence of positive numbers whose sum is n. The partition function p(n)
counts the number of partitions of n. As a broad generalization of partitions, Corteel
and Lovejoy [!1] introduced the concept of overpartitions. By an overpartition of n we
mean a partition of n such that the frist occurrence of a number may be overlined. The
overpartition function p(n) counts the number of overpartitions of n. For example, there
are three partitions of 3, namely (3),(2,1),(1,1,1), and eight overpartitions of 3, namely
(3),(3),(2,1),(2,1),(2,1),(2,1),(1,1,1),(1,1,1). Thus p(3) = 3 and p(3) = 8. For k > 2,
by a k-regular partition of n we mean a partition of n with no part divisible by k. A k-
regular overpartition of n can be defined in the same manner. As usual, we use pi(n) and
Pr(n) to denote the k-regular partition function and the k-regular overpartition function
respectively.

Various interesting inequalities have been established for the partition function, the
overpartition function, the k-regular partition function and the k-regular overpartition
function. The log-concavity of {p(n)},>26 was independently proved by Nicolas [29] and
by DeSalvo and Pak [12]. Chen, Jia and Wang [9] showed that {p(n)},>05 also satisfies
higher order Turan inequalities. For more information on higher order Turan inequalities,
see [13, 30, 22]. Furthermore, Chen, Jia and Wang conjectured that for d > 4 there is
a positive number N, such that the order d Turdn inequalities are valid for p(n) when
n > N,. Later, this conjecture was solved by Griffin, Ono, Rolen, and Zagier [15]. Hou and
Zhang [20] proved the asymptotic r-log-concavity of {p(n)},>1 for any » > 1. In particular,
they established the 2-log-concavity of {p(n)},>221, which was independently proved by
Jia and Wang [23]. For the overpartition function, Engel [16] proved that {p(n)},>2
is log-concave. Liu and Zhang [25] showed that the higher order Turén inequalities are
satisfied by {p(n)},>16. Following the work in [23], Mukherjee [27] showed that {p(n) }n>42
satisfies the double Turdn inequalities. Later, Mukherjee, Zhang and Zhong [2%] proved
the asymptotic r-log-concavity of {p(n)},>1. By employing the result in [15], Craig and
Pun [10] showed that {p2(n)} satisfies the order d Turdn inequalities for sufficiently large n.
Furthermore, they conjectured that {pa(n)},>33 is log-concave and {ps(n)},>121 satisfies
the higher order Turdn inequalities. Based on Chern’s asymptotic formula [8], Dong
and Ji [14] showed that {px(n)},>n, is log-concave and satisfies higher order inequalities
for 2 < k < 5 and some Ny, thus particularly confirming the conjectures of Craig and
Pun. Wang and Yang [31] showed that {ps(n)},>271 satisfies double Turdn inequalities, as
conjectured by Dong and Ji [I1]. Peng [10], Zhang and Zhong [31] proved that {p,(n)},>7,

is log-concave and satisfies higher order inequalities for 2 < k£ < 9 and some N,.
We would like to point out that, for a given positive sequence {a,, }n>0, the inequality

(1) is equivalent to the double Turdn inequality, while the Briggs inequality (2) is closely
related to the log-concavity. Recall that a sequence {a,},>o is said to be log-concave if



a? — apy1a,_9 > 0 for any n > 1. Note that if a log-concave sequence {a, },>o satisfies

an-l—l(ai - an—lan+1> > an—l(ai.l,_l - anan+2>) (3)

then it also satisfies the Briggs inequality. This is clear since the log-concavity of {ay, }n>0
tells that a? > a,41a,_1, and hence

ai(ai - anflan+1> > anJrlanfl(ai - anflan+1> > ai—l(agwrl - anan+2>~

In order to show that p(n),p(n), px(n) and p,(n) (after ignoring some initial terms) satisfy
the Briggs inequality, it suffices to show that they satisfy the stronger inequality (3) in
view of the aforementioned log-concavity of these partition functions.

The remainder of this paper is organized as follows. In Section 2 we prove the Briggs
inequality of the partition function and the overpartition function by using the bounds of
p(n) and p(n) given by Wang and Yang. In Section 3 we show that, for 2 < k& < 9, the
k-regular partition function pg(n) and the k-regular overpartition function p,(n) satsify
the Briggs inequality by using some explicit bounds of px(n) and p,(n), which can be
obtained from Chern’s formula of n-quotients.

2 Partition functions

The main objective of this section is to prove that both the partition function and the
overpartition function satisfy the Briggs inequality. Taking a,, to be the partition function
p(n) or p(n), we only need to prove (3), as discussed earlier. Note that (3) can rewritten
as

2 2
Ang10y, — 20n_10y ) + p_10ppgo > 0. (4)

2.1 Partitions

For the partition function p(n), we have the following result.

Theorem 2.1. For alln > 114, we have
p(n +1)p(n)* = 2p(n — )p(n + 1)* + p(n — 1)p(n)p(n +2) > 0. (5)

To prove Theorem 2.1, we need the following upper and lower bounds for p(n) given

T/ 24n — 1

by Wang and Yang [33]. Let p(n) = and

Wang and Yang [33] obtained the following result.
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Lemma 2.2 ([33], Lemma 2.1). Let u(n), f(t),g(t) be defined as above. Then for all
n > 1520, i.e., u(n — 1) > 100, we have

V12712er(n)

_ V1272er ()
36

f(u(n)) < p(n) % g(p(n)).

Note that p(n — 1),p(n),p(n + 1) and p(n + 2) appear in (5). In order to use the
bounds of these values given by Lemma 2.2, for notational convenience, we set

T = :u(n - 1)7 r1 = M(n)7 T2 = /J(TL + 1)7 T3 = :u(n + 2) (7)

throughout this subsection. In our proof of (5), the value of = will be used to estimate
x1, 29 and x3. We have the following result.

Lemma 2.3. Let x,x1, x5 and x3 be functions of n as defined in (7), and let

T11 = hx(T), To1 = hm(?)a Tr31 = 7%(27T2)7 (8)
. 272 ~ 473 N
T12 = hx(T), To2 = hx(?)a T32 = hm(272>7 (9)
where
. a a? a® 5a*
he(a) == —— — - 1
(@) =2+ 3 Tow  oar (10)
- a a? a’
hy(a) == —— — 11
(@) =243 ~ 33 T 165 (11)
Then, for n > 5 and hence x > /2,
Til < X < T2 (12)
holds for 1 <i < 3.
Proof. One can directly verify that
272 472
T = x2+i, To = x2+i, 3 = Va2 + 2r2. (13)

3 3

Since each of z; is of the form v? + a for some positive number a, it suffices to show
that h,(a) < Va2 +a < hy(a) for 22 > a. Keeping in mind that z is always positive,
Newton’s binomial theorem tells that

m:x<1+%>%=$<z (i) <%)k)

k>0

a4 Y a2+ a’ 5at N 7a® 21ab —1—0(1)

2¢  8x3 1625 12827  2562° 1024zt z13”
By considering the difference of two adjacent terms in the above expansion, one can show
that if 22 > a then h,(a) < V2% + a < h,(a). This completes the proof. O
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Now we are in the position to prove Theorem 2.1.

Proof of Theorem 2.1. For 114 < n < 1519 one can directly verify (5). From now on we
assume that n > 1520, whence x > 100.

Recalling the bounds of p(n) given in Lemma 2.2, we obtain that

p(n+1)p(n)® = 2p(n — 1)p(n + 1) +p(n — 1)p(n)p(n + 2) > (@FQ) Fi(),

where

Fi(z) = €x21+2x11f($2)f($1)2 - 262%22%9@2)29@) + emﬂnﬂslf(x)f(xl)f(xﬁa)a (14)

the symbols z, z1, 9, T3, T11, T21, T31, T22 are defined as in (7), (8) and (9), and the func-
tions f(t), g(t) are given by (6).

It remains to show that Fi(z) > 0. Let 2o = l}m(%) Note that the sign of F(x)
coincides with that of Fj(z)e %2, We find that it is more convenient to deal with the
latter. It is routine to verify that, for z > 4,

—m4(18z* — 267?2? + 1357%)

To1 + 2wy — 320 = <0,

4867
—474 (922 — 107?)
2 3y, =
Tog + T — 329 YT <0,
P 5 —74(1262* — 1887%z% + 6157%) —0
T+ 31 — 329 = )
11 31 2 18627
While, for t < 0, we have
El(t) < €t < Eg(t), (15)
where
2 t2
El(t):1+t+§+g, Eg(t):1+t+§. (16)
Thus, for x > 4, there holds
TIN5 B (191 4 2211 — 322), (17)
2232 By Qw99 4+ 1 — 32), (18)
€Z+$11+1317322 > E1 (LL’ +x11 + Tr31 — 322). (19)

To prove that Fi(z)e 3?2 > 0, we also need to estimate the values of f(z;) and g(x;).
For ¢ =1, 2,3 letting

th — tSQZiQ —1 th — t8.’L’ﬂ +1
fi(t) = i and  g;(t) = iz



one can check that for z > 1,
filws) < f(x:) and 9(@;) < gi(;). (20)
Combining (14), (17), (18), (19) and (20), we see that
Fi(z)e 2 > Fy(x)
holds for x > 4, where
Fy(x) :(El(l’gl + 2211 — 329) fa(@2) f1(21)? — 2E5 (290 + & — 322) ga(22)g(x)
+ By (x4 m11 + 231 — 322) (@) f1(@1) f3(23)).
It turns out that Fy(z), after simplification, can be written as the following form:

92 l
1=0 apx

Fe =
(%) = D310, (22 1 277)5 (302 + 2702 (327  Am)12

(21)
where a; are the known numbers, and the values of ags, ag1, agy are given below
agy = 293875 ag = —2°3%7(2257° + 77%),  ago = 273%(1627° 4- 1277%).

With the help of mathematical software, we find that the largest real zero of Fy(x) is less
than 15. Thus, for z > 100 we have Fy(z) > 0. This completes the proof. ]

Based on Theorem 2.1 we obtain the following result.

Corollary 2.4. The sequence {p(n)}n>114 satisfies the Briggs inequality.
Proof. From Theorem 2.1 it follows that

p(n+1)(p(n)* — p(n — 1)p(n+ 1)) > p(n — 1)(p(n + 1)*> — p(n)p(n + 2))

for n > 114. By the log-concavity of {p(n)},>26 proved in [29] and [12], we immediately
obtain the desired result. O
2.2 Overpartitions

For the overpartition function we have the following result.
Theorem 2.5. For all n > 18, we have

p(n+1)p(n)* — 2p(n — 1)p(n + 1)* + p(n — 1)p(n)p(n + 2) > 0. (22)

It’s worth noting that our approach to the partition function can be carried over
verbatimly to the overpartition function. Along the lines of the proof of Theorem 2.1, we
first recall the upper and lower bounds for p(n) given by Wang and Yang [33].
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Lemma 2.6 ([33], Lemma 5.1). Let i(n) = m\/n. Then for anyn > 821, i.e., i(n—1) >
90, we have

2 () 2 ()

g /(M) <p(n) < ——g(f(n))

Now the proof of Theorem 2.5 can be given in the same manner as that of Theorem
2.1.

Proof of Theorem 2.5. Set T =f(n —1),7T1 = fi(n), Ty = (n + 1), T3 = f(n + 2). Then
T =VZ +7, To= VT +271%, Tz3=VT + 3

One can directly check that (22) holds for 18 < @ < 820. Now we may assume that
n > 821, and hence T > 90.

Using the symbols given by (10) and (11), we set

Tip = ;Lf(ﬂ' )y Tog = iLT(27T2)7 Tgg = Af(37T2)
and
- 0 — 87,5 — 1 o — 87, +1 . Ax?
fz(t) = 112 ) z(t) - 112 5 Zo = T(?)

Similar to the proof of Lemma 2.3, we can show that if £ > 6 then 7;; < T; < Tj
for 1 < i < 3. One can also show that if # > 1 then f,(7;) < f(7;) and g(7;) < ,(%;),
where f(t) and g(t) are defined by (6). A little computation shows that To; 4271, —3Z3 <
O, 2T99 +T — 329 < 0and x +T11 + Tz — 322 <0 for T > 5.

Let
Fo(T) =(E1(Ta1 + 2T11 — 3%2) f2(T2) f1(T1)? — 2E5(2T0s + T — 3%2)7,(72)%9(7)
+ B\ (T + T11 + Ta1 — 3%2) £ (T) [1(T1) F3(T3)),
where E(t) and Es(t) are defined as in (16).

By using the same arguments as in the proof of Theorem 2.1, we find that the inequality
(22) is equivalent to the positivity of F'o(T). After some simplification, we see that

= = Zgi alfl
Fy(T) = 2597 A3 (=2 9 121_02 12 —2 26’ (23)
22537043 (T2 + 72) 7 (T° + 272) 7 (T° + 37?)

where a; are the known number, and the values of ags, ag1, agy are given below
agy = 2%23°7°,  agy = —2#3°(4507° + 77%), a9y = 2%°3°(1087° + 1277°).

By using mathematical software, one can check that the largest real zero of Fy(T) is less
than 18. Thus F3(Z) > 0 for T > 90, as desired. This completes the proof. ]
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Based on Theorem 2.5 and the log-concavity of {p(n)},>2 due to Engel [16], we im-
mediately obtain the following result.

Corollary 2.7. The sequence {p(n)}n>1s satisfies the Briggs inequality.

3 k-regular partition functions

In this section we aim to prove that, for 2 < k < 9, both the k-regular partition and
the k-regular overpartition satisfy the Briggs inequality. Here our approach is exactly the
same as that for the partition function and the overpartition given in Section 2.

Fixing an integer 2 < k < 9, let a,, to be px(n) or py(n). In order to prove that the
sequence {a,}n>o satisfies the Briggs inquality, it suffices to show that it is log-concave
and moreover it satisfies (4). Dong and Ji [11] proved the log-concavity of py(n) for 2, and
their proof also works for 3 < k£ < 9 provided that the appropriate upper and lower bounds
of pr(n) are given. The log-concavity of 7, (n) has been established by Peng, Zhang and
Zhong [31] when 2 < k < 9. The proofs of Theorems 2.1 and 2.5 reveal that, to prove (4)
for a, = pr(n) and a,, = P,(n), it is necessary to know some bounds of pi(n) and p,(n).
Dong and Ji [11] gave certain upper and lower bounds of pa(n). For our purpose, we shall
present some explicit bounds of pg(n) when 3 < k < 9. For the k-regular overpartitions
where 2 < k <9, we shall use the bounds of p,(n) given by Peng, Zhang and Zhong [31].

3.1 k-regular partitions

For the k-regular partition function p(n), we obtain the following result.

Theorem 3.1. For 2 <k <9 and n > N, we have

pe(n 4+ 1)pr(n)® = 2pp(n — Dpr(n + 1) + pr(n — 1)pe(n)pe(n +2) > 0, (24)
where

N2 - 150, N3 = 220, N4 == 75, N5 - 164,
Ng =60, N; =148, Ng=178, Ny=138.

To prove the above theorm, we need to use the following explicit bounds of px(n). To
maintain readability, we will provide the proofs for the explicit bounds in the appendix,
as they are quite tedious.

Theorem 3.2. For2 <k <9, let

o7 _l ; B o) — (k —1)m? .
) = 0= k-0, ) = D g, e



where 11(s) denotes the first modified Bessel function of the first kind. Then

A@(n)(1-;;%53) <1%(n)<:ﬂﬁ(n)(1%—ﬂkg) ), (26)

whenever n > ny, where

iy = 1067, fi3 =821, 7y =711, f5 =695,
fig = 677, fip =652, g =651, gy =615.

We also need the following bounds of the first modified Bessel function of the first
kind, due to Dong and Ji [1].

Lemma 3.3 ([I1], Lemma 2.2 and equation(3.14)). Let I (s) denote the first modified
Bessel function of the first kind, and let
3 15 105 4725 72765

Di(s):=1—— — - - - .
1(s) 8s 1285 1024s3  32768s*  262144s°

(27)

Then for s > 26, we have

é% (DI(S) - %) < I(s) < \/‘;% (Dl(s) + i%) . (28)

Moreover,

For notational convenience, let

v=psn—=1), y=psn), z=ps(n+1), w=ps(n+2) (30)

throughout this subsection, where pg(n) is given by (25). Before giving the proof of
Theorem 3.1, let us estimate the values z, z and w in terms of y. By (25) we have

, om? , , om? 1()7T2
TENY Ty AT y+7, y? +

The following result is analogous to Lemma 2.3, and its proof is ommited here.

Lemma 3.4. Let x,y,z and w be defined as in (30), let hy(a) and hy(a) be given by (10)

and (11) respectively, and let
) - (10
y o) = hy ).
9 9

~ om ~ (om ~ (107
To = hy (—?) s Z9 hy (?) s Wo = hy (T) . (31)

Then, for y > 3, we have
T <xT<xo, 21<z2<29, w<w<ws. (32)

8
-
I
>«
<
/|\
o
©| §
~
N
A
I
>«
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We proceed to give a proof of Theorem 3.1.

Proof of Theorem 3.1. We shall take k& = 6 to illustrate our proof, and the proofs for
other values of k can be given in the same manner. Let x, z and w be defined in (30). By
Theorem 3.2, we find that for n > 1067, i.e., y > 61,

%]1@) (1 - %) < po(n) < %h(y) (1 + %) |

By further applying Lemma 3.3, we get that

3 3
Hrz2 - eY Sz - e¥

36\/§y%f(y)<pa(n)< 36\/§y%g

() (33)

whenever y > 61, where

fly) = (1 - %) (D.r(y) - %) . gly) = (1 + %) (Dz(y) + %)

and D;(y) is given by (27).
For t > 3, it is routine to verify that

3 15 105 4725 72765 32

S8t 12812 10243 3276814 26214415 (6’
3 15 105 4725 72765 +g (34)
St 1282 102413 3276814 26214415 ' 16

Combining (33) and (34), we obtain that for y > 61,

ft) > f(t)=1

g(t) <g(t) =1

pe(n+ 1)ps(n)* — 2ps(n — 1)ps(n + 1) + ps(n — 1)ps(n)ps(n + 2) > ( om? ) F(y),

36v/3
(35)
where
e2ytz . 2evt2z ~ ertytw ~ ~
Fly) = =W — —=59@)§)" + 55— /(@)f(y)f(w)
y-zz T2z r2Yy2w?2

To establish Theorem 3.1, it is sufficient to show F'(n) > 0. Let

- (57

We find that the sign of Fi(n) coincides with that of F(n)e=3%. One can verify that for
y=1

25 (432ry* — 16075y? + 12578)

0
419904y <

21+ 2y — 360, = —

10



25 (=57 + 5dmty?)

220 — 30y = — 0
T2t 2z = oh 13122, <
25 (302471'4y4 — 1240752 + 2125778)
1+ y+w — 30 =— <0
! oo 419904y7
Then according to (15), we have
r £(0)2 S\ )2
F(y) 26302 (El (Zl + 2y - 302)% - QEQ(ZEQ + 222 - 302)% (37)
23293 xr2z
F(x)f(y)f(w
+ El(xl + Yy + wy — 302)%) .
T2Y2W?

where Ei(y) and Es(y) are given by (16). Based on (34) and (32), one can verify that if
y > 3 then

Fe) > Aly) = 3 15 105 4735 72765 32
= S8r1 12822  1024z2x;  32768z*  262144x4z, 28’
" 3 15 105 4725 72765 32
No(y) =1 — > — _ _ _ _22
1(z) > Aa(y) 8z, 12822 102422z, 327687 26214421z, 20
N 3 15 105 4725 72765 39
As(y) =1 — — — _ _ _ _ 22
F(w) > As(y) 8wy  128w?  1024wlw;  32768wt  262144wtw, wS’ (38)
@) < Aly) = 1 — 315 105 4725 72065, 32
g = T g, T 12827 102422z, 3276820 26214dxtzy | 20
S2) < () —1- B 15105 725 765 32
g ) TR, T 12822 1024222, 3276821 26214421z, | 26
) < agly) =1 B 15105 725 1165 32
g O = T Ry 128w2 | 1024wlwy | 32768wt | 26214dwtwy | wb
Thus, it is enough to show for y > 61,
Ao () f(y)? ()5 (1)2
Eu(ar + 2y — 30,) 22T WS gy 10y — 5,y WA W) (39)
z2q3 x223
A A3
+E1(:C1+y+wl_39) 1( >3f<3 3()>0
xzyzw?

Notice that there exist the annoying terms 1/, v/z and /w, we need to do a little change
to estimate theses terms. Let

572 [ 6 [0 [ 99
v+ o 97’ Wy = Y6 2623 13,67 wypud’ (40)

Then it can be calculated using Taylor expansion that for y > 5,

Wi > Wi, We< Wy, Wsi>Ws, (41)

11



where

254 2507 3812578 34375710
324y 6561y0 + 1889568y®  3188646y10°
2574 25076 1187578

* 81yt 6561y0 + 118098y3”

17574 387578 84812578 5171875710
324y 1312246 | 1839568y° 12754584310

Wih=1+

Wi =1+

We find that the left-hand side of (39) is greater than F(y)/v/6°, where

F(y) =E1(z1 + 2y — 302) Wit hao () f (y)® — 2Ba (w2 + 229 — 3‘92)W22)\4(y)>\5(y)~2 (42)

+ By (21 +y +wi — 302) W A (y)As(y) ().

By substituting the expressions for x1, xs, 21, 22, w1, wo, and @, into F (y), we can rewrite
F(y) as

104 k

Fly) = k=0 Y
() 275338y 83 [T, ()

where
Hy(y) =273%%y" (9y° — 57r2)3 (419904y® + 1166407*y° — 162007y + 450075y> — 31257%) x
(9y* + 5772)6 (419904y® — 1166407%y° — 162007*y* — 450075y — 31257%) x
(99 + 107%)° (26244y° + 145807%y® — 40507 y* + 225075y> — 31257°) x
(11664y° + 32407%y* — 4507'y* + 125776)2 (11664y° — 32407%y* — 4507!y* — 1257°) .
and a; are the known numbers. Specially, we give the values of a194 and aqp3 below:
aros = 22375375 ay3 = 2°°3%(225% 7% + 335%417° — 21339).

One can check that H;(y) is positive for y > 3. It remains to show that

H(y) =Y ay* > 0. (43)

It can be computed by mathematical software that the largest real zero of H(y) is less
than 12. Thus, for y > 61, i.e, n > 1067, we have F(y) > 0 along with the fact that
H(12) > 0. Additionally, for 150 < n < 1066 one can directly verify (24). This completes
the proof. O

For the log-concavity of the k-regular partition function, we have the following result.

Theorem 3.5. For 2 < k <9, let Ny be given as in Theorem 3.1. Then the sequence
{pr(n) }n>n, is log-concave.

12



Proof. The log-concavity of {pr(n)},>s5s when k = 2,3,4 or 5 has been proved by Dong
and Ji in [11, Theorem 1.4]. For each 6 < k < 9, one can give a proof the log-concavity
of {pr(n)}n>36, exactly like that of Theorem 3.1. Again we take k = 6 to illustrate the
idea. Following the approach to deduce (53), we obtain that for y > 61,

pe(n)? — pe(n — L)pg(n +1) > (%) e J(y), (44)
where
1 - 5 eT2tz2—2y ~ _
J(y) = Ef(y) - ﬁg(fﬁ)g@);

the symbols z, y, z, &3, 2, are defined as in (30) and (31), and the functions f(t), §(t) are
given by (34). It can be verified that x5 + 25 — 2y < 0 for y > 1. According to (15) and
the above bounds of g(z) and g(z) (immediately before (39)), we have

1 - Ey(xg + 29 — 2y
I = 5 f) - R0 ), (15)
Y T222
which \y(y) and A5(y) are defined in (38). Let
yb 25m% 437578 240625712
V=yos ad =lv et — e omsimsa

Using Taylor expansion, it can be checked that V' < V; for y > 4. Thus the right-hand

side of (45) is greater than J(y)/y®, where
T(y) = [(y)* = Ba(ws + 2 — 29)Vaha () As(y).

After some simplification, we see that

39

Ty) = Lo (46)
Jily)

where
Ji(y) = 249321992 — 572)3(9y% + 57%)3(11664%° — 32407%y* — 4507%y? — 1257°)
(11664y° 4 32407%y* — 4507y? 4 12579),
and q; are the known number, and the values of asg and asg are given below
ago = 2903415274 gu — 943425314

One can check that Ji(y) is positive for y > 3. Then it is sufficient to show the denominator of

J(y) > 0. It can be computed by mathematical software that the largest real zero of J(y) is less

than 5. Thus, for y > 61, i.e, n > 1067, we have J(y) > 0. Additionally, for 36 < n < 1066 one
can directly verify that pg(n)2 — pe(n — 1)pg(n + 1) > 0. This completes the proof. O

Based on Theorems 3.1 and 3.5, we immediately obtain the following result.

Corollary 3.6. For 2 < k <9, let N be given as in Theorem 5.1. Then the sequence
{pr(n) }n>n, satisfies the Briggs inequality.

13



3.2 k-regular overpartition

For the k-regular overpartition function p(n), we obtain the following result.
Theorem 3.7. For 2 <k <9 and n > N, we have
Br(n+ Dpy(n)* = 2p(n — Dpi(n + 1)* + Bi(n = DB ()pp(n+2) >0, (47)
where
No=30, N3=9, N,=21, N;=2I,

N¢=15, N,;,=18, Ng=18, Ng=15.
To prove Theorem 3.7, we need the following upper and lower bounds of p,(n) for
2 < k <9 given by Peng, Zhang and Zhong [31].

Theorem 3.8 ([31], Corollary 3.4). Let I,(s) denote the first modified Bessel function of
the first kind and

_ 1
fir(n) =4/ (1 - E)mr

For2 <k <9 and f;, > ny, we have
1
M) (1= 215 ) <o) <20 (14 215, (19
where My(n) = Cx(n)I1(f1,,), and the values of ny and Cy(n) are given in Table 1.

k 2 3 4 5 6 7 8 9

2 21372 | 3x3 | 852 | 5v6n2 | 18V/7x2 | 7v/2r2 872
Cr(n)

V8, 93 47y 2505 1816 497, 8ig 9ig

g, 43 49 43 58 130 102 129 | 268

Table 1: Values of iy, and Cy(n) for 2 < k < 9.

Now we are in the position to prove Theorem 3.7.

Proof of Theorem 5.7. We shall take k = 6 to illustrate our proof, and the proofs for
other values of k can be given in the same manner. Set

r=Tgn—1), y=rmnsn), z=mpsn+1), w=rmg(n+2). (49)
Then
Y 6 6 Y 3



By Theorem 3.8, we find that for n > 225, i.e., y > 43,

5\/677211(y) (1 _ l) < Psln) < 5x/67r2]1(y) (1 + iﬁ) .

18y y° 18y Yy

Applying Lemma 3.3, we have

572 - eV _ 573 - eV
Wf(y) <Pg(n) < Wg(y) (50)

whenever y > 43, where the functions f(y), g(y) are given by (34). Using the symbols
given by (31)and (36), we set

. 5 2 . 5 2 . 5 2
wh () () mon (%)
. 5m2 - (br? . (5r?
Ty = hy (-7) s 9 = hy (7) , Wo = hy <?> s (51)

and 0 = b (%).

18

Similar to the proof of Lemma 2.3, we can show that if y > 3 then
T <x< Ty, 21<2z2<29, w<w<ws. (52)
Recall the expressions of f(¢) and §(t) in (34). Combining (50) and (34), we obtain that
for y > 43,

Pe(n + 1)ps(n)? — 2p6(n — 1)Pg(n + 1) + ps(n — 1)ps(n)ps(n + 2) > (57T_2> F(y),

6v/3
(53)
where
€2y+z 5 B 2€;r:+2z 6I+y+w - - -
F) = S FOT0P ~ @i + e Fo i)

A little computation shows that z;+2y—360, < 0, x94+22,—3605 < 0 and z1+y+w;—302 < 0
for y > 1. By (15), we have

[(2) ()

3
2

— 2E2 (1‘2 + 22’2 - 392)

F(y) €™ <E1(21 + 2y — 362) .
y T

z

+ El(l’l + Yy +w1 — 392)§—

15



Using the same arguments as in the proof of Theorem 3.1, it is sufficient to show for
y > 43,

E1(21 -+ 2y — 362)% — 2E2(l’2 + 222 — 392)/\4<yx)§—):3(y)2 (54)
+ Ey(x1 +y + wy — 302) Aily >§f<§) g( y) > 0.
Tr2y2w?a

Using the symbols given by (40), we set

572 [0 /0 | 99
0 =1/y? +1_8 Wy = Y6 26237 73567 3w’

257 12575 3812578 34375710
T4dy* 07245 3732485 41990410
257t 12575 1187578

36yt 97240 + 23328y8’

17574 387576 84812578 5171875710
144y* 38885 + 373248y 1679616y10°

One can check that for y > 1, Wy > Wiy, Wy < Woy, W3 > W3, We find that the left-hand
side of (54) is greater than F(y)/v/69, where

and

Wi=1+

Wa =1+

Wa =1+

ﬁ(y) :E1<Zl + 2y - 392)W11)\2(y)f(y)2 — QEQ(ZL’Q + 22’2 — 392)W22)\4(y))\5(y)2 (55)

+ Ev(ry 4y +wi = 302)Wai A (y) As(y) [ (y)-
Note that for 1 < i < 4, the function \;(y) is defined in a similar way to (38) by substi-
tuting the variables in (38) with the variables in (49) and (51). After some simplification,

we see that

104

F(y) = ﬁagy (56)

where
H (y) =2°3%4® (572 4 3%)° (=572 + 6¢%)° (572 + 61/%)°
x (—12575 — 300my? — 144072y + 3456y°) (12578 — 3007%y? + 14407%y* + 3456y°)”
x (—31257° + 15007°y* — 18007"y" + 43207%y° + 5184y°)
x (—31257° — 30007592 — 72007*y* — 345607m%y® + 82944y®)
x (—31257% + 30007%y? — 72007y* + 3456072y5 + 82944y%) ,

and q; are the known numbers, and the values of a194 and a1z are given below

a104 — 2139355527T6, a103 — 2136353(2547T8 _ 32534171'6 _ 21635).

16



One can check that Hp(y) is positive for y > 3. Then it is sufficient to show the denominator
of f(y) > 0 It can be computed by mathematical software that the largest real zero of ﬁ(y) is
less than 9. Thus, for y > 43, i.e, n > 225, we have ﬁ(y) > 0. Additionally, for 15 < n < 224
one can directly verify that inequality (47). This completes the proof. O

For 2 < k < 9, Peng, Zhang and Zhong [31] proved that the log-concavity of
{pr(n)}n>1. Based on their result and Theorem 3.7, we have the following result.

Theorem 3.9. For 2 < k <9, let N be given as in Theorem 3.7. Then the sequence
{Pr(n)},>w, satisfies Briggs inequality.

kokkok

4 Appendix: proof of Theorem 3.2

In this appendix, we will follow Dong and Ji [11] to establish upper and lower bounds of
pr(n) for 3 <k <9 by using Chern’s formula for n-quotients.

Firstly, let us review Chern’s theorem. We adopt the notations in [I1]. Let m =
(mq,...,mg) be a sequence of R distinct positive integers and § = (d1,...,0r) be a

sequence of R mnon-zero integers. Assuming that h and j are positive integers with
ged(h, j) =1, set

LB R
C, = —§;5r, CzZ;mﬂsm
R 9 R —3r
Cull) = — Zl 5, gcdm(rmr,l)’ Cu(l) = ]1 (—gcd?:r;,l)) ,
. 2rnhi & m,h l
Ay(n) = 0;; exp (— T i ;&g (gcd(mr, 0 ged(mn, l))) : (57)
ged(h,))=1
where s(h, j) is the Dedekind sum. Take L = lem(my, ..., mg), the least common multiple
of my,...,mg. We divide the set {1,2---, L} into the following two disjoint subsets:
Loog:={1<I<L|C5) >0}, Loo:={1<I<L|Cs) <0}. (58)
Define
(1, Cy =0,
25, =1,
Ee,(s) = slog(s + 1), C = -1, (59)
\ s720-1 (=), otherwise,

where ((-) is Riemann zeta-function. Now, we are able to give Chern’s theorem.

17



Theorem 4.1 ([8], Theorem 1.1). Let

R
Glg) =) _gm)g" =[] q™)%
n>0 r=1
If Cy <0 and the inequality
. (ged?*(my, 1) Cs(1)
>
i, (550 = o

holds for all 1 <1 < L, then for positive integers N and n > —2%, we have

C1+1 ~

. 24n + CQ T2 ™ At(n)

lEL>0 1;511\/

(61)
where

2~ Crp—l N—C1+2 27 Cy Cg(l)ﬂ'

|E(n)| < - exp <— <n+ —)) Z exp ( )
n+ 5—4 N2 24 vl 3
27 02 7T03(l)
+ 2exp (N2 (n + 24)) Ec, (N) x (— l; Cy(l) exp ( o4 (62)

1<I<IL, 24 —1 (1 — exp (—7r ged?(m,., l)/mT))2

+ Z Cu(l) exp (@+Z |6,| exp (= ged®(my, 1) /m,) ))

and I,(s) is the v-th modified Bessel function of the first kind.

Recall that, for £ > 2, the generating function for the sequence {px(n)}, is as follows:

T l-d" (65 ¢
pr(n)q" = = ; 63
; ) gl—qn (4 ¢)oc (62)

where (a;¢)o0 = [[524(1 — a¢’). In order to use Theorem 4.1 to get bounds of py(n), we
need to g(n) = px(n) in Chern’s theorem, in which case we have m = (1,k), 6 = (—1,1),
R=2L=Fand

2
G=0 G=k-1 ou=1- By D gy

We also need to check the conditions of theorem 4.1. The condition C; < 0 naturally
holds for any k£ > 2, while inequality (60) is satisfied only for 2 < k < 24. Consequently,
it is feasible to apply Chern’s theorem to asymptotically estimate py(n) for 2 < k < 24.
We have the following result.
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Proposition 4.2. For any k > 2, let cy(k) = k — 1,e3(k, 1) = 1 — B4 0 (g ) —

ged(k,l)

- and

pr(n) = %\/C;g(k, 1)(24n + co(k)).
Then, for 2 < k < 24 and any positive integers n, N, we have
(k —1)m?
31/ ()
where Ry(n) = Ex(n) + Bg(n) and
|Ex(n)] < 7r(24i44]—v;(k)) exp (W (247112}:[?(’6))) Z exp (@) + 2exp <7T (247112—];?(16)))

l€£>0

) o (el ) exp(—) exp (—m ged?(k, 1) /k)
X (1§k 4(k, 1) exp ( o1 T (1 —exp(—m))? * (1 —exp (—wgch(k,l)/k))2>

=3 ke (mg(j ”) ) (66)

l€£>0

pr(n) = Li(p(n)) + R (n), (65)

and

By(n)| < 7rc4kl Yes(k, 1) Z Z I1<yk> (67)

€L 2<t<N
t= kl

with cy(k,l") = max{cs(k,l) | | € Lso}.

Proof. By substituting the values of (64) into Theorem 4.1, we get

C4 \/? ™ At(n)
pi(n) lgz et 1<tZ<NI (a\/c;),(l)(%n—l—cz)) o (68)

where Ejx(n) plays the role of E(n) of (61) and satisfies (66). We find that for any
2< k<24, 1€ L. Moreover, 1 = 1 for any k, and hence ¢ = 1 will appear in the
second sumnation of (68). Based on the fact that A;(n) =1, (68) can be written as

m2cy(1)es(1)

pk(n) B 3y

Li(yr) + Ex(n) + By(n),

where

By(m) =Wl = (%> (n)

3yk 2<t<N
=51



A R UNCIUNGIDIE ( (>yk>At<n>_

3Yk 1)t t

leLso\{1} 2<t<N

t=gl

Noting that ¢5(1) < ¢5(1) for I > 1, Iy(s) is increasing for s > 0 and |A,(n)| < ¢ for t > 1,
we get

Bu(n)| < 7Tc43yk Z I (yk>+ Z w2 04 03 Z I (yk)

2<t<N leLso\{1} Yk 2<t<N
t=p1 t=gl
We immediately obtain the desired result. O]

One can see that the above bound of Ry(n) in (65) is complicated, and it is not

sufficient for our purpose. By using the following upper bound on the first modified
Bessel function of the first kind I (s):

oz o

due to Bringmann, Kane, Rolen and Trippin [6], we are able to give a simpler bound of
Ry (n). We have the following result.

Theorem 4.3. For 2 <k <9, let ux(n) and Ri(n) be given as in Proposition (4.2), and
let ng and Ry(n) be given as in Table 2. If ug(n) > ny, then |Ri(n)| < Ry(n).

3 3
72 7] _20m2 Yo
2|15 3\@@@@(;) 6|16 | 57 /5 exp (%)
3 3
1672 Y3 4812 y7
3114 o B OXP ( 23) 7121 5 7y EXP ( 27)
e
g m
4|15 Iyy; OXP (&) 8123 T6,/55 ©XP (%)
3 3
6472 6472
5116 | = 5 OXP (L) |9 28 543 /55 XP (2)

Table 2: Values of ng and Ry(n) for 2 < k < 9.

Proof. We prove the theorem for £ = 6 and omit the details for other values of k. By
Proposition 4.2, it is enough to show that for pg(n) > 16,

2072

|Es(n)] +[Bs(n)| < TR
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where Eg(n) satisifies (66) and Bg(n) satisfies (67).

To further estimate Fg(n) and Bg(n), we first determine the values of ¢3(6,1) and

c4(6,1), which are listed in Table 3. For notational convenience, set a(x) = ﬁ By
[ 1 2 3 4 5 6
o0 1 1 1 1 1 o
11 1 1 1
al) % 5 5 5 v !

Table 3: The values of ¢3(6,1) and ¢4(6,1) for 1 <[ <6.

(66) we obtain

24N2 24 5 s 24
| Ee(n)| < ) exp(( n+5)ﬂ) <26ﬁ +265>+2exp (—W( n+5)> x T
s

(24n + 5 12N72 12N?
where
2 oT 2 o
T=— - —7/6)+— | — — —
\/éexp (a( ) +a(—7/6) + 144> = oXP (144>
2 2
+ 7 exp (a(—ﬂ) +a(—27/3) + %) ~ 5P (%)
+ = exp (a(=m) +a(=37/2) — 7= ) +exp ((a(~m) + a(~67) — 2
—exp | a(— a(— - — exp | a(— a(—6m) — — |.
7 p T T 3 p i ™) = oy
Now let y = pg(n), implying that 24n + 5 = 6537352. By taking N = |y], one can verify that

5 |y ( 182 ) 5 - ( 18y? )
Es(n)| < ex 2e18 + 2e9 | + 2ex x Y.

Then, using the following two inequalities:

2 2 2
Ly sz2<(ygl)2<2 for y > 4,

we deduce that

|Eg(n)] < 5 esr (els +e%) +2¢57 x T < 812

holds when n satisfies y = ug(n) > 4.
Next we focus on estimating the value of |Bg(n)|. From Proposition 4.2 it follows that

Bl € 7 S 3 (%):1855%2 n(Y).

1e{1,2,4,5} 2<t<|y| <t<l|y]
t=¢ 3t
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Thus,

572 2\y| . sy 572 sy\ _ 10msed
= 2 () < 2 (1)<
[Bo(n) 18v3y 3 ' \2) 7 273 \2) T a7y /3y
where the last inequality is obtaind by using (69). Combining the bounds of Eg(n) and
Bg(n), we get

10m2es
Rg(n)| = |Eg(n)| + |Bs(n)| < 812 4 T
[Ro(m)| = [ Es(m)| + | Bo(o) it
whenever n satisfies y = pug(n) > 4. Thus, it remains to show for y > 16,
10mse’
Y(y) == > 812. 70
W)= e (70)

By studying the derivative of 7(y), one can show that it is increasing on the interval
[1,400). Thus if y > 16 then v(y) > ~(16) > 812, as desired. This completes the
proof. ]

Finally, we are able to prove Theorem 3.2.

Proof of Theorem 3.2. As before, we only proof the case of k = 6. According to Theorem
4.3, if n satisfies the condition that ug(n) > 17, then

pe(n) = Ms(n) + Rg(n),

» _ 20m3 ¢ _
where |Rg(n)| < Rg(n) = py 3 and y = pg(n).
If we let . ¥ .
Rg(n 8vV2 Jyez
GG(TL) = 6< ) = . \/_ s
Ms(n)  3vm  L(y)
then

Mg(n)(1 = Gg(n)) < ps(n) < Mg(n)(1 + Gs(n)).
Note that (29) allows us to deduce that
32y%e 2
G < 2 -
)= 30y 1)
whenever n satisfies that y > 26. It remains to show

32y%e 1

— <

32y —1) — ¢°
or equivalently,

32y° — 3(2y — 1)e? <0,

holds for y > 61. But this can be verified by showing the derivative of L(y) = 32y® —
3(2y — 1)e? is negative and L(y) < L(61) on the interval [61,400) with the help of
mathematical software. This completes the proof. ]
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