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Abstract. A sequence of {an}n≥0 satisfies the Briggs inequality if
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N0)}n≥0 and the overpartition function {p(n + N0)}n≥0 satisfy the Briggs inequality for
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1 Introduction

In the study of binding polynomials, Briggs [5] proposed the following conjecture.

Conjecture 1.1. Suppose that f(x) =
∑n

l=0 alx
l is a polynomial with nonnegative coeffi-

cients. If f(x) has only negative zeros, then, for 1 ≤ l ≤ n− 1,

al−1a
2
l+2 + a2l al+3 + a3l+1 > al+1(al−1al+3 + 2alal+2), (1)

a2l (a
2
l − al−1al+1) > a2l−1(a

2
l+1 − alal+2). (2)

As pointed out by Zhang and Zhao [35], the first inequality (1) can be deduced from
a result due to Bränden [4]. This paper is mainly concerned with the second inequality
(2), which has been proved by Fan and Wang [17] recently. Although Briggs’ original
conjecture is stated for a finite sequence, it is natural to study such inequalities for an
infinite sequence. Following Zhang and Zhao [35], we say that a sequence of {an}n≥0

satisfies the Briggs inequality if

a2n(a
2
n − an−1an+1) > a2n−1(a

2
n+1 − anan+2)
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holds for any n ≥ 1. Zhang and Zhao [35] proved that both the Boros-Moll sequence and
two of its variations satisfy the Briggs inequality.

In this paper we aim to show that the Briggs inequality is satisfied by some partition
function, such as the partition function, the overpartition function, the k-regular partition
function, or the k-regular overpartition function. Recall that a partition of n is a weakly
decreasing sequence of positive numbers whose sum is n. The partition function p(n)
counts the number of partitions of n. As a broad generalization of partitions, Corteel
and Lovejoy [11] introduced the concept of overpartitions. By an overpartition of n we
mean a partition of n such that the frist occurrence of a number may be overlined. The
overpartition function p(n) counts the number of overpartitions of n. For example, there
are three partitions of 3, namely (3), (2, 1), (1, 1, 1), and eight overpartitions of 3, namely
(3), (3), (2, 1), (2, 1), (2, 1), (2, 1), (1, 1, 1), (1, 1, 1). Thus p(3) = 3 and p(3) = 8. For k ≥ 2,
by a k-regular partition of n we mean a partition of n with no part divisible by k. A k-
regular overpartition of n can be defined in the same manner. As usual, we use pk(n) and
pk(n) to denote the k-regular partition function and the k-regular overpartition function
respectively.

Various interesting inequalities have been established for the partition function, the
overpartition function, the k-regular partition function and the k-regular overpartition
function. The log-concavity of {p(n)}n≥26 was independently proved by Nicolas [29] and
by DeSalvo and Pak [12]. Chen, Jia and Wang [9] showed that {p(n)}n≥95 also satisfies
higher order Turán inequalities. For more information on higher order Turán inequalities,
see [13, 30, 22]. Furthermore, Chen, Jia and Wang conjectured that for d ≥ 4 there is
a positive number Nd such that the order d Turán inequalities are valid for p(n) when
n ≥ Nd. Later, this conjecture was solved by Griffin, Ono, Rolen, and Zagier [15]. Hou and
Zhang [20] proved the asymptotic r-log-concavity of {p(n)}n≥1 for any r ≥ 1. In particular,
they established the 2-log-concavity of {p(n)}n≥221, which was independently proved by
Jia and Wang [23]. For the overpartition function, Engel [16] proved that {p(n)}n≥2

is log-concave. Liu and Zhang [25] showed that the higher order Turán inequalities are
satisfied by {p(n)}n≥16. Following the work in [23], Mukherjee [27] showed that {p(n)}n≥42

satisfies the double Turán inequalities. Later, Mukherjee, Zhang and Zhong [28] proved
the asymptotic r-log-concavity of {p(n)}n≥1. By employing the result in [15], Craig and
Pun [10] showed that {p2(n)} satisfies the order d Turán inequalities for sufficiently large n.
Furthermore, they conjectured that {p2(n)}n≥33 is log-concave and {p2(n)}n≥121 satisfies
the higher order Turán inequalities. Based on Chern’s asymptotic formula [8], Dong
and Ji [14] showed that {pk(n)}n≥Nk

is log-concave and satisfies higher order inequalities
for 2 ≤ k ≤ 5 and some Nk, thus particularly confirming the conjectures of Craig and
Pun. Wang and Yang [34] showed that {p2(n)}n≥271 satisfies double Turán inequalities, as
conjectured by Dong and Ji [14]. Peng [10], Zhang and Zhong [31] proved that {pk(n)}n≥Nk

is log-concave and satisfies higher order inequalities for 2 ≤ k ≤ 9 and some Nk.
We would like to point out that, for a given positive sequence {an}n≥0, the inequality

(1) is equivalent to the double Turán inequality, while the Briggs inequality (2) is closely
related to the log-concavity. Recall that a sequence {an}n≥0 is said to be log-concave if
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a2n − an+1an−2 ≥ 0 for any n ≥ 1. Note that if a log-concave sequence {an}n≥0 satisfies

an+1(a
2
n − an−1an+1) > an−1(a

2
n+1 − anan+2), (3)

then it also satisfies the Briggs inequality. This is clear since the log-concavity of {an}n≥0

tells that a2n ≥ an+1an−1, and hence

a2n(a
2
n − an−1an+1) ≥ an+1an−1(a

2
n − an−1an+1) > a2n−1(a

2
n+1 − anan+2).

In order to show that p(n), p(n), pk(n) and pk(n) (after ignoring some initial terms) satisfy
the Briggs inequality, it suffices to show that they satisfy the stronger inequality (3) in
view of the aforementioned log-concavity of these partition functions.

The remainder of this paper is organized as follows. In Section 2 we prove the Briggs
inequality of the partition function and the overpartition function by using the bounds of
p(n) and p(n) given by Wang and Yang. In Section 3 we show that, for 2 ≤ k ≤ 9, the
k-regular partition function pk(n) and the k-regular overpartition function pk(n) satsify
the Briggs inequality by using some explicit bounds of pk(n) and pk(n), which can be
obtained from Chern’s formula of η-quotients.

2 Partition functions

The main objective of this section is to prove that both the partition function and the
overpartition function satisfy the Briggs inequality. Taking an to be the partition function
p(n) or p(n), we only need to prove (3), as discussed earlier. Note that (3) can rewritten
as

an+1a
2
n − 2an−1a

2
n+1 + an−1anan+2 > 0. (4)

2.1 Partitions

For the partition function p(n), we have the following result.

Theorem 2.1. For all n ≥ 114, we have

p(n+ 1)p(n)2 − 2p(n− 1)p(n+ 1)2 + p(n− 1)p(n)p(n+ 2) > 0. (5)

To prove Theorem 2.1, we need the following upper and lower bounds for p(n) given

by Wang and Yang [33]. Let µ(n) = π
√
24n− 1

6
and

f(t) =
1

t2

(
1− 1

t
− 1

t10

)
, g(t) =

1

t2

(
1− 1

t
+

1

t10

)
. (6)

Wang and Yang [33] obtained the following result.
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Lemma 2.2 ([33], Lemma 2.1). Let µ(n), f(t), g(t) be defined as above. Then for all
n ≥ 1520, i.e., µ(n− 1) ≥ 100, we have

√
12π2eµ(n)

36
f(µ(n)) < p(n) <

√
12π2eµ(n)

36
g(µ(n)).

Note that p(n − 1), p(n), p(n + 1) and p(n + 2) appear in (5). In order to use the
bounds of these values given by Lemma 2.2, for notational convenience, we set

x = µ(n− 1), x1 = µ(n), x2 = µ(n+ 1), x3 = µ(n+ 2) (7)

throughout this subsection. In our proof of (5), the value of x will be used to estimate
x1, x2 and x3. We have the following result.
Lemma 2.3. Let x, x1, x2 and x3 be functions of n as defined in (7), and let

x11 = ȟx(
2π2

3
), x21 = ȟx(

4π2

3
), x31 = ȟx(2π

2), (8)

x12 = ĥx(
2π2

3
), x22 = ĥx(

4π2

3
), x32 = ĥx(2π

2), (9)

where

ȟx(a) := x+
a

2x
− a2

8x3
+

a3

16x5
− 5a4

64x7
, (10)

ĥx(a) := x+
a

2x
− a2

8x3
+

a3

16x5
. (11)

Then, for n ≥ 5 and hence x >
√
2π,

xi1 < xi < xi2 (12)

holds for 1 ≤ i ≤ 3.

Proof. One can directly verify that

x1 =

√
x2 +

2π2

3
, x2 =

√
x2 +

4π2

3
, x3 =

√
x2 + 2π2. (13)

Since each of xi is of the form
√
x2 + a for some positive number a, it suffices to show

that ȟx(a) <
√
x2 + a < ĥx(a) for x2 > a. Keeping in mind that x is always positive,

Newton’s binomial theorem tells that
√
x2 + a = x

(
1 +

a

x2

) 1
2
= x

(∑
k≥0

(
1
2

k

)( a

x2

)k)

= x+
a

2x
− a2

8x3
+

a3

16x5
− 5a4

128x7
+

7a5

256x9
− 21a6

1024x11
+O(

1

x13
).

By considering the difference of two adjacent terms in the above expansion, one can show
that if x2 > a then ȟx(a) <

√
x2 + a < ĥx(a). This completes the proof.
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Now we are in the position to prove Theorem 2.1.

Proof of Theorem 2.1. For 114 ≤ n ≤ 1519 one can directly verify (5). From now on we
assume that n ≥ 1520, whence x ≥ 100.

Recalling the bounds of p(n) given in Lemma 2.2, we obtain that

p(n+ 1)p(n)2 − 2p(n− 1)p(n+ 1)2 + p(n− 1)p(n)p(n+ 2) >

(√
12π2

36

)3

F1(x),

where

F1(x) = ex21+2x11f(x2)f(x1)
2 − 2e2x22+xg(x2)

2g(x) + ex+x11+x31f(x)f(x1)f(x3), (14)

the symbols x, x1, x2, x3, x11, x21, x31, x22 are defined as in (7), (8) and (9), and the func-
tions f(t), g(t) are given by (6).

It remains to show that F1(x) > 0. Let z2 = ĥx(
8π2

9
). Note that the sign of F1(x)

coincides with that of F1(x)e
−3z2 . We find that it is more convenient to deal with the

latter. It is routine to verify that, for x ≥ 4,

x21 + 2x11 − 3z2 =
−π4(18x4 − 26π2x2 + 135π4)

486x7
< 0,

2x22 + x− 3z2 =
−4π4 (9x2 − 10π2)

243x5
< 0,

x+ x11 + x31 − 3z2 =
−π4(126x4 − 188π2x2 + 615π4)

486x7
< 0.

While, for t < 0, we have

E1(t) < et < E2(t), (15)

where

E1(t) = 1 + t+
t2

2
+

t3

6
, E2(t) = 1 + t+

t2

2
. (16)

Thus, for x ≥ 4, there holds

ex21+2x11−3z2 > E1(x21 + 2x11 − 3z2), (17)
e2x22+x−3z2 < E2(2x22 + x− 3z2), (18)
ex+x11+x31−3z2 > E1(x+ x11 + x31 − 3z2). (19)

To prove that F1(x)e
−3z2 > 0, we also need to estimate the values of f(xi) and g(xi).

For i = 1, 2, 3 letting

fi(t) =
t10 − t8xi2 − 1

t12
and gi(t) =

t10 − t8xi1 + 1

t12
,
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one can check that for x ≥ 1,

fi(xi) < f(xi) and g(xi) < gi(xi). (20)

Combining (14), (17), (18), (19) and (20), we see that

F1(x)e
−3z2 > F2(x)

holds for x ≥ 4, where

F2(x) =
(
E1(x21 + 2x11 − 3z2)f2(x2)f1(x1)

2 − 2E2(2x22 + x− 3z2)g2(x2)
2g(x)

+ E1(x+ x11 + x31 − 3z2)f(x)f1(x1)f3(x3)
)
.

It turns out that F2(x), after simplification, can be written as the following form:

F2(x) =

∑92
l=0 alx

l

25319x43(x2 + 2π2)6(3x2 + 2π2)12(3x2 + 4π2)12
, (21)

where al are the known numbers, and the values of a92, a91, a90 are given below

a92 = 25341π6, a91 = −25337(225π6 + 7π8), a90 = 27338(162π6 + 127π8).

With the help of mathematical software, we find that the largest real zero of F2(x) is less
than 15. Thus, for x ≥ 100 we have F2(x) > 0. This completes the proof.

Based on Theorem 2.1 we obtain the following result.

Corollary 2.4. The sequence {p(n)}n≥114 satisfies the Briggs inequality.

Proof. From Theorem 2.1 it follows that

p(n+ 1)(p(n)2 − p(n− 1)p(n+ 1)) > p(n− 1)(p(n+ 1)2 − p(n)p(n+ 2))

for n ≥ 114. By the log-concavity of {p(n)}n≥26 proved in [29] and [12], we immediately
obtain the desired result.

2.2 Overpartitions

For the overpartition function we have the following result.

Theorem 2.5. For all n ≥ 18, we have

p(n+ 1)p(n)2 − 2p(n− 1)p(n+ 1)2 + p(n− 1)p(n)p(n+ 2) > 0. (22)

It’s worth noting that our approach to the partition function can be carried over
verbatimly to the overpartition function. Along the lines of the proof of Theorem 2.1, we
first recall the upper and lower bounds for p(n) given by Wang and Yang [33].
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Lemma 2.6 ([33], Lemma 5.1). Let µ(n) = π
√
n. Then for any n ≥ 821, i.e., µ(n−1) ≥

90, we have

π2eµ(n)

8
f(µ(n)) < p(n) <

π2eµ(n)

8
g(µ(n)).

Now the proof of Theorem 2.5 can be given in the same manner as that of Theorem
2.1.

Proof of Theorem 2.5. Set x = µ(n− 1), x1 = µ(n), x2 = µ(n+ 1), x3 = µ(n+ 2). Then

x1 =
√

x2 + π2, x2 =
√

x2 + 2π2, x3 =
√

x2 + 3π2.

One can directly check that (22) holds for 18 ≤ n ≤ 820. Now we may assume that
n ≥ 821, and hence x ≥ 90.

Using the symbols given by (10) and (11), we set

x11 = ȟx(π
2), x21 = ȟx(2π

2), x31 = ȟx(3π
2),

x12 = ĥx(π
2), x22 = ĥx(2π

2), x32 = ĥx(3π
2).

and

f i(t) =
t10 − t8xi2 − 1

t12
, gi(t) =

t10 − t8xi1 + 1

t12
, z2 = ĥx(

4π2

3
).

Similar to the proof of Lemma 2.3, we can show that if x ≥ 6 then xi1 < xi < xi2

for 1 ≤ i ≤ 3. One can also show that if x ≥ 1 then f i(xi) < f(xi) and g(xi) < gi(xi),
where f(t) and g(t) are defined by (6). A little computation shows that x21+2x11−3z2 <
0, 2x22 + x− 3z2 < 0 and x+ x11 + x31 − 3z2 < 0 for x ≥ 5.

Let

F 2(x) =
(
E1(x21 + 2x11 − 3z2)f 2(x2)f 1(x1)

2 − 2E2(2x22 + x− 3z2)g2(x2)
2g(x)

+ E1(x+ x11 + x31 − 3z2)f(x)f 1(x1)f 3(x3)
)
,

where E1(t) and E2(t) are defined as in (16).
By using the same arguments as in the proof of Theorem 2.1, we find that the inequality

(22) is equivalent to the positivity of F 2(x). After some simplification, we see that

F 2(x) =

∑92
l=0 alx

l

22537x43 (x2 + π2)
12
(x2 + 2π2)

12
(x2 + 3π2)

6 , (23)

where al are the known number, and the values of a92, a91, a90 are given below

a92 = 22238π6, a91 = −22135(450π6 + 7π8), a90 = 22336(108π6 + 127π8).

By using mathematical software, one can check that the largest real zero of F 2(x) is less
than 18. Thus F 2(x) > 0 for x ≥ 90, as desired. This completes the proof.
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Based on Theorem 2.5 and the log-concavity of {p(n)}n≥2 due to Engel [16], we im-
mediately obtain the following result.

Corollary 2.7. The sequence {p(n)}n≥18 satisfies the Briggs inequality.

3 k-regular partition functions

In this section we aim to prove that, for 2 ≤ k ≤ 9, both the k-regular partition and
the k-regular overpartition satisfy the Briggs inequality. Here our approach is exactly the
same as that for the partition function and the overpartition given in Section 2.

Fixing an integer 2 ≤ k ≤ 9, let an to be pk(n) or pk(n). In order to prove that the
sequence {an}n≥0 satisfies the Briggs inquality, it suffices to show that it is log-concave
and moreover it satisfies (4). Dong and Ji [14] proved the log-concavity of pk(n) for 2, and
their proof also works for 3 ≤ k ≤ 9 provided that the appropriate upper and lower bounds
of pk(n) are given. The log-concavity of pk(n) has been established by Peng, Zhang and
Zhong [31] when 2 ≤ k ≤ 9. The proofs of Theorems 2.1 and 2.5 reveal that, to prove (4)
for an = pk(n) and an = pk(n), it is necessary to know some bounds of pk(n) and pk(n).
Dong and Ji [14] gave certain upper and lower bounds of p2(n). For our purpose, we shall
present some explicit bounds of pk(n) when 3 ≤ k ≤ 9. For the k-regular overpartitions
where 2 ≤ k ≤ 9, we shall use the bounds of pk(n) given by Peng, Zhang and Zhong [31].

3.1 k-regular partitions

For the k-regular partition function p(n), we obtain the following result.

Theorem 3.1. For 2 ≤ k ≤ 9 and n ≥ Nk, we have

pk(n+ 1)pk(n)
2 − 2pk(n− 1)pk(n+ 1)2 + pk(n− 1)pk(n)pk(n+ 2) > 0, (24)

where

N2 = 150, N3 = 220, N4 = 75, N5 = 164,

N6 = 60, N7 = 148, N8 = 78, N9 = 138.

To prove the above theorm, we need to use the following explicit bounds of pk(n). To
maintain readability, we will provide the proofs for the explicit bounds in the appendix,
as they are quite tedious.

Theorem 3.2. For 2 ≤ k ≤ 9, let

µk(n) =
π

6

√
(1− 1

k
)(24n+ k − 1), Mk(n) =

(k − 1)π2

3k
√
kµk(n)

I1(µk(n)), (25)
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where I1(s) denotes the first modified Bessel function of the first kind. Then

Mk(n)

(
1− 1

µk(n)6

)
< pk(n) < Mk(n)

(
1 +

1

µk(n)6

)
, (26)

whenever n ≥ n̂k, where

n̂2 = 1067, n̂3 = 821, n̂4 = 711, n̂5 = 695,

n̂6 = 677, n̂7 = 652, n̂8 = 651, n̂9 = 615.

We also need the following bounds of the first modified Bessel function of the first
kind, due to Dong and Ji [14].

Lemma 3.3 ([14], Lemma 2.2 and equation(3.14)). Let I1(s) denote the first modified
Bessel function of the first kind, and let

DI(s) := 1− 3

8s
− 15

128s2
− 105

1024s3
− 4725

32768s4
− 72765

262144s5
. (27)

Then for s ≥ 26, we have
es√
2πs

(
DI(s)−

31

s6

)
≤ I1(s) ≤

es√
2πs

(
DI(s) +

31

s6

)
. (28)

Moreover,

I1(s) ≥
es√
2πs

(
1− 1

2s

)
. (29)

For notational convenience, let

x = µ6(n− 1), y = µ6(n), z = µ6(n+ 1), w = µ6(n+ 2) (30)

throughout this subsection, where µ6(n) is given by (25). Before giving the proof of
Theorem 3.1, let us estimate the values x, z and w in terms of y. By (25) we have

x =

√
y2 − 5π2

9
, z =

√
y2 +

5π2

9
, w =

√
y2 +

10π2

9
.

The following result is analogous to Lemma 2.3, and its proof is ommited here.

Lemma 3.4. Let x, y, z and w be defined as in (30), let ȟy(a) and ȟy(a) be given by (10)
and (11) respectively, and let

x1 = ȟy

(
−5π

9

)
, z1 = ȟy

(
5π

9

)
, w1 = ȟy

(
10π

9

)
,

x2 = ĥy

(
−5π

9

)
, z2 = ĥy

(
5π

9

)
, w2 = ĥy

(
10π

9

)
. (31)

Then, for y ≥ 3, we have

x1 < x < x2, z1 < z < z2, w1 < w < w2. (32)

9



We proceed to give a proof of Theorem 3.1.

Proof of Theorem 3.1. We shall take k = 6 to illustrate our proof, and the proofs for
other values of k can be given in the same manner. Let x, z and w be defined in (30). By
Theorem 3.2, we find that for n ≥ 1067, i.e., y ≥ 61,

5π2

18
√
6y

I1(y)

(
1− 1

y6

)
< p6(n) <

5π2

18
√
6y

I1(y)

(
1 +

1

y6

)
.

By further applying Lemma 3.3, we get that

5π
3
2 · ey

36
√
3y

3
2

f(y) < p6(n) <
5π

3
2 · ey

36
√
3y

3
2

g(y) (33)

whenever y ≥ 61, where

f(y) =

(
1− 1

y6

)(
DI(y)−

31

y6

)
, g(y) =

(
1 +

1

y6

)(
DI(y) +

31

y6

)
and DI(y) is given by (27).

For t ≥ 3, it is routine to verify that

f(t) > f̃(t) = 1− 3

8t
− 15

128t2
− 105

1024t3
− 4725

32768t4
− 72765

262144t5
− 32

t6
,

g(t) < g̃(t) = 1− 3

8t
− 15

128t2
− 105

1024t3
− 4725

32768t4
− 72765

262144t5
+

32

t6
. (34)

Combining (33) and (34), we obtain that for y ≥ 61,

p6(n+ 1)p6(n)
2 − 2p6(n− 1)p6(n+ 1)2 + p6(n− 1)p6(n)p6(n+ 2) ≥

(
5π

3
2

36
√
3

)3

F (y),

(35)

where

F (y) =
e2y+z

y3z
3
2

f̃(z)f̃(y)2 − 2ex+2z

x
3
2 z3

g̃(x)g̃(z)2 +
ex+y+w

x
3
2y

3
2w

3
2

f̃(x)f̃(y)f̃(w).

To establish Theorem 3.1, it is sufficient to show F (n) > 0. Let

θ2 = ĥy

(
5π2

27

)
. (36)

We find that the sign of F (n) coincides with that of F (n)e−3θ2 . One can verify that for
y ≥ 1,

z1 + 2y − 3θ2 = −25 (432π4y4 − 160π6y2 + 125π8)

419904y7
< 0
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x2 + 2z2 − 3θ2 = −25 (−5π6 + 54π4y2)

13122y5
< 0

x1 + y + w1 − 3θ2 = −25 (3024π4y4 − 1240π6y2 + 2125π8)

419904y7
< 0.

Then according to (15), we have

F (y) ≥e3θ2

(
E1(z1 + 2y − 3θ2)

f̃(z)f̃(y)2

z
3
2y3

− 2E2(x2 + 2z2 − 3θ2)
g̃(x)g̃(z)2

x
3
2 z3

(37)

+ E1(x1 + y + w1 − 3θ2)
f̃(x)f̃(y)f̃(w)

x
3
2y

3
2w

3
2

)
.

where E1(y) and E2(y) are given by (16). Based on (34) and (32), one can verify that if
y ≥ 3 then

f̃(x) > λ1(y) = 1− 3

8x1
− 15

128x2
− 105

1024x2x1
− 4725

32768x4
− 72765

262144x4x1
− 32

x6
,

f̃(z) > λ2(y) = 1− 3

8z1
− 15

128z2
− 105

1024z2z1
− 4725

32768z4
− 72765

262144z4z1
− 32

z6
,

f̃(w) > λ3(y) = 1− 3

8w1
− 15

128w2
− 105

1024w2w1
− 4725

32768w4
− 72765

262144w4w1
− 32

w6
, (38)

g̃(x) < λ4(y) = 1− 3

8x2
− 15

128x2
− 105

1024x2x2
− 4725

32768x4
− 72765

262144x4x2
+

32

x6
,

g̃(z) < λ5(y) = 1− 3

8z2
− 15

128z2
− 105

1024z2z2
− 4725

32768z4
− 72765

262144z4z2
+

32

z6
,

g̃(w) < λ6(y) = 1− 3

8w2
− 15

128w2
− 105

1024w2w2
− 4725

32768w4
− 72765

262144w4w2
+

32

w6
.

Thus, it is enough to show for y ≥ 61,

E1(z1 + 2y − 3θ2)
λ2(y)f̃(y)

2

z
3
2y3

− 2E2(x2 + 2z2 − 3θ2)
λ4(y)λ5(y)

2

x
3
2 z3

(39)

+ E1(x1 + y + w1 − 3θ2)
λ1(y)f̃(y)λ3(y)

x
3
2y

3
2w

3
2

> 0.

Notice that there exist the annoying terms
√
x,
√
z and

√
w, we need to do a little change

to estimate theses terms. Let

θ =

√
y2 +

5π2

27
, W1 =

√
θ9

y6z3
, W2 =

√
θ9

x3z6
, W3 =

√
θ9

x3y3w3
. (40)

Then it can be calculated using Taylor expansion that for y ≥ 5,

W1 > W11, W2 < W22, W3 > W31, (41)

11



where

W11 = 1 +
25π4

324y4
− 250π6

6561y6
+

38125π8

1889568y8
− 34375π10

3188646y10
,

W22 = 1 +
25π4

81y4
− 250π6

6561y6
+

11875π8

118098y8
,

W31 = 1 +
175π4

324y4
− 3875π6

13122y6
+

848125π8

1889568y8
− 5171875π10

12754584y10
.

We find that the left-hand side of (39) is greater than F̃ (y)/
√
θ9, where

F̃ (y) =E1(z1 + 2y − 3θ2)W11λ2(y)f̃(y)
2 − 2E2(x2 + 2z2 − 3θ2)W22λ4(y)λ5(y)

2 (42)
+ E1(x1 + y + w1 − 3θ2)W31λ1(y)λ3(y)f̃(y).

By substituting the expressions for x1, x2, z1, z2, w1, w2, and θ2 into F̃ (y), we can rewrite
F̃ (y) as

F̃ (y) =

∑104
k=0 aky

k

275338y43H1(y)
,

where

H1(y) =275338y43
(
9y2 − 5π2

)3 (
419904y8 + 116640π2y6 − 16200π4y4 + 4500π6y2 − 3125π8

)
×(

9y2 + 5π2
)6 (

419904y8 − 116640π2y6 − 16200π4y4 − 4500π6y2 − 3125π8
)
×(

9y2 + 10π2
)3 (

26244y8 + 14580π2y6 − 4050π4y4 + 2250π6y2 − 3125π8
)
×(

11664y6 + 3240π2y4 − 450π4y2 + 125π6
)2 (

11664y6 − 3240π2y4 − 450π4y2 − 125π6
)
.

and ak are the known numbers. Specially, we give the values of a104 and a103 below:

a104 = 29839953π6, a103 = 295396(2254π8 + 335341π6 − 21339).

One can check that H1(y) is positive for y ≥ 3. It remains to show that

H(y) =
104∑
k=0

aky
k > 0. (43)

It can be computed by mathematical software that the largest real zero of H(y) is less
than 12. Thus, for y ≥ 61, i.e, n ≥ 1067, we have F (y) > 0 along with the fact that
H(12) > 0. Additionally, for 150 ≤ n ≤ 1066 one can directly verify (24). This completes
the proof.

For the log-concavity of the k-regular partition function, we have the following result.

Theorem 3.5. For 2 ≤ k ≤ 9, let Nk be given as in Theorem 3.1. Then the sequence
{pk(n)}n≥Nk

is log-concave.

12



Proof. The log-concavity of {pk(n)}n≥58 when k = 2, 3, 4 or 5 has been proved by Dong
and Ji in [14, Theorem 1.4]. For each 6 ≤ k ≤ 9, one can give a proof the log-concavity
of {pk(n)}n≥36, exactly like that of Theorem 3.1. Again we take k = 6 to illustrate the
idea. Following the approach to deduce (53), we obtain that for y ≥ 61,

p6(n)
2 − p6(n− 1)p6(n+ 1) ≥

(
π

3
2

12

)2

e2yJ(y), (44)

where

J(y) =
1

y3
f̃(y)2 − ex2+z2−2y

x
3
2 z

3
2

g̃(x)g̃(z),

the symbols x, y, z, x2, z2 are defined as in (30) and (31), and the functions f̃(t), g̃(t) are
given by (34). It can be verified that x2 + z2 − 2y < 0 for y ≥ 1. According to (15) and
the above bounds of g̃(x) and g̃(z) (immediately before (39)), we have

J(y) ≥ 1

y3
f̃(y)2 − E2(x2 + z2 − 2y)

x
3
2 z

3
2

λ4(y)λ5(y), (45)

which λ4(y) and λ5(y) are defined in (38). Let

V =

√
y6

x3z3
and V2 = 1 +

25π4

108y4
+

4375π8

y8
+

240625π12

12754584
.

Using Taylor expansion, it can be checked that V < V2 for y ≥ 4. Thus the right-hand
side of (45) is greater than J̃(y)/y3, where

J̃(y) = f̃(y)2 − E2(x2 + z2 − 2y)V2λ4(y)λ5(y).

After some simplification, we see that

J̃(y) =

∑39
l=0 aly

l

J1(y)
, (46)

where

J1(y) = 240321(9y2 − 5π2)3(9y2 + 5π2)3(11664y6 − 3240π2y4 − 450π4y2 − 125π6)

(11664y6 + 3240π2y4 − 450π4y2 + 125π6),

and al are the known number, and the values of a39 and a38 are given below

a39 = 24634152π4, a38 = −24434253π4.

One can check that J1(y) is positive for y ≥ 3. Then it is sufficient to show the denominator of
J̃(y) > 0. It can be computed by mathematical software that the largest real zero of J̃(y) is less
than 5. Thus, for y ≥ 61, i.e, n ≥ 1067, we have J̃(y) > 0. Additionally, for 36 ≤ n ≤ 1066 one
can directly verify that p6(n)

2 − p6(n− 1)p6(n+ 1) ≥ 0. This completes the proof.

Based on Theorems 3.1 and 3.5, we immediately obtain the following result.
Corollary 3.6. For 2 ≤ k ≤ 9, let Nk be given as in Theorem 3.1. Then the sequence
{pk(n)}n≥Nk

satisfies the Briggs inequality.
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3.2 k-regular overpartition

For the k-regular overpartition function p(n), we obtain the following result.

Theorem 3.7. For 2 ≤ k ≤ 9 and n ≥ Nk, we have

pk(n+ 1)pk(n)
2 − 2pk(n− 1)pk(n+ 1)2 + pk(n− 1)pk(n)pk(n+ 2) > 0, (47)

where

N2 = 30, N3 = 9, N4 = 21, N5 = 21,

N6 = 15, N7 = 18, N8 = 18, N9 = 15.

To prove Theorem 3.7, we need the following upper and lower bounds of pk(n) for
2 ≤ k ≤ 9 given by Peng, Zhang and Zhong [31].

Theorem 3.8 ([31], Corollary 3.4). Let I1(s) denote the first modified Bessel function of
the first kind and

µk(n) =

√
(1− 1

k
)nπ.

For 2 ≤ k ≤ 9 and µk ≥ n̂k, we have

Mk(n)

(
1− 1

µk
6

)
≤ pk(n) ≤ Mk(n)

(
1 +

1

µk
6

)
, (48)

where Mk(n) = Ck(n)I1(µk), and the values of n̂k and Ck(n) are given in Table 1.

k 2 3 4 5 6 7 8 9

Ck(n)
π2

√
8µ2

2
√
3π2

9µ3

3π3

4µ4

8
√
5π2

25µ5

5
√
6π2

18µ6

18
√
7π2

49µ7

7
√
2π2

8µ8

8π2

9µ9

n̂k 43 49 43 58 130 102 129 268

Table 1: Values of n̂k and Ck(n) for 2 ≤ k ≤ 9.

Now we are in the position to prove Theorem 3.7.

Proof of Theorem 3.7. We shall take k = 6 to illustrate our proof, and the proofs for
other values of k can be given in the same manner. Set

x = µ6(n− 1), y = µ6(n), z = µ6(n+ 1), w = µ6(n+ 2). (49)

Then

x =

√
y2 − 5π2

6
, z =

√
y2 +

5π2

6
, w =

√
y2 +

5π2

3
.
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By Theorem 3.8, we find that for n ≥ 225, i.e., y ≥ 43,

5
√
6π2

18y
I1(y)

(
1− 1

y6

)
< p6(n) <

5
√
6π2

18y
I1(y)

(
1 +

1

y6

)
.

Applying Lemma 3.3, we have

5π
3
2 · ey

6
√
3y

3
2

f(y) < p6(n) <
5π

3
2 · ey

6
√
3y

3
2

g(y) (50)

whenever y ≥ 43, where the functions f(y), g(y) are given by (34). Using the symbols
given by (31)and (36), we set

x1 = ȟy

(
−5π2

6

)
, z1 = ȟy

(
5π2

6

)
, w1 = ȟy

(
5π2

3

)
,

x2 = ĥy

(
−5π2

6

)
, z2 = ĥy

(
5π2

6

)
, w2 = ĥy

(
5π2

3

)
, (51)

and θ2 = ĥy

(
5π2

18

)
.

Similar to the proof of Lemma 2.3, we can show that if y ≥ 3 then

x1 < x < x2, z1 < z < z2, w1 < w < w2. (52)

Recall the expressions of f̃(t) and g̃(t) in (34). Combining (50) and (34), we obtain that
for y ≥ 43,

p6(n+ 1)p6(n)
2 − 2p6(n− 1)p6(n+ 1)2 + p6(n− 1)p6(n)p6(n+ 2) ≥

(
5π

3
2

6
√
3

)3

F (y),

(53)

where

F (y) =
e2y+z

y3z
3
2

f̃(z)f̃(y)2 − 2ex+2z

x
3
2 z3

g̃(x)g̃(z)2 +
ex+y+w

x
3
2y

3
2w

3
2

f̃(x)f̃(y)f̃(w).

A little computation shows that z1+2y−3θ2 < 0, x2+2z2−3θ2 < 0 and x1+y+w1−3θ2 < 0
for y ≥ 1. By (15), we have

F (y) ≥e3θ2

(
E1(z1 + 2y − 3θ2)

f̃(z)f̃(y)2

z
3
2y3

− 2E2(x2 + 2z2 − 3θ2)
g̃(x)g̃(z)2

x
3
2 z3

+ E1(x1 + y + w1 − 3θ2)
f̃(x)f̃(y)f̃(w)

x
3
2y

3
2w

3
2

)
.
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Using the same arguments as in the proof of Theorem 3.1, it is sufficient to show for
y ≥ 43,

E1(z1 + 2y − 3θ2)
λ2(y)f̃(y)

2

z
3
2y3

− 2E2(x2 + 2z2 − 3θ2)
λ4(y)λ5(y)

2

x
3
2 z3

(54)

+ E1(x1 + y + w1 − 3θ2)
λ1(y)f̃(y)λ3(y)

x
3
2y

3
2w

3
2

> 0.

Using the symbols given by (40), we set

θ =

√
y2 +

5π2

18
, W1 =

√
θ9

y6z3
, W2 =

√
θ9

x3z6
, W3 =

√
θ9

x3y3w3
.

and

W11 = 1 +
25π4

144y4
− 125π6

972y6
+

38125π8

373248y8
− 34375π10

419904y10
,

W22 = 1 +
25π4

36y4
− 125π6

972y6
+

11875π8

23328y8
,

W31 = 1 +
175π4

144y4
− 3875π6

3888y6
+

848125π8

373248y8
− 5171875π10

1679616y10
.

One can check that for y ≥ 1, W1 > W11,W2 < W22,W3 > W31. We find that the left-hand
side of (54) is greater than F̃ (y)/

√
θ9, where

F̃ (y) =E1(z1 + 2y − 3θ2)W11λ2(y)f̃(y)
2 − 2E2(x2 + 2z2 − 3θ2)W22λ4(y)λ5(y)

2 (55)
+ E1(x1 + y + w1 − 3θ2)W31λ1(y)λ3(y)f̃(y).

Note that for 1 ≤ i ≤ 4, the function λi(y) is defined in a similar way to (38) by substi-
tuting the variables in (38) with the variables in (49) and (51). After some simplification,
we see that

F̃ (y) =

∑104
l=0 aly

l

H1(y)
, (56)

where

H1(y) =289324y43
(
5π2 + 3y2

)3 (−5π2 + 6y2
)3 (

5π2 + 6y2
)6

×
(
−125π6 − 300π4y2 − 1440π2y4 + 3456y6

) (
125π6 − 300π4y2 + 1440π2y4 + 3456y6

)2
×
(
−3125π8 + 1500π6y2 − 1800π4y4 + 4320π2y6 + 5184y8

)
×
(
−3125π8 − 3000π6y2 − 7200π4y4 − 34560π2y6 + 82944y8

)
×
(
−3125π8 + 3000π6y2 − 7200π4y4 + 34560π2y6 + 82944y8

)
,

and al are the known numbers, and the values of a104 and a103 are given below

a104 = 213935552π6, a103 = 2136353(254π8 − 325341π6 − 21635).
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One can check that H1(y) is positive for y ≥ 3. Then it is sufficient to show the denominator
of F̃ (y) > 0 It can be computed by mathematical software that the largest real zero of F̃ (y) is
less than 9. Thus, for y ≥ 43, i.e, n ≥ 225, we have F̃ (y) > 0. Additionally, for 15 ≤ n ≤ 224
one can directly verify that inequality (47). This completes the proof.

For 2 ≤ k ≤ 9, Peng, Zhang and Zhong [31] proved that the log-concavity of
{pk(n)}n≥1. Based on their result and Theorem 3.7, we have the following result.

Theorem 3.9. For 2 ≤ k ≤ 9, let Nk be given as in Theorem 3.7. Then the sequence
{pk(n)}n≥Nk

satisfies Briggs inequality.

****

4 Appendix: proof of Theorem 3.2

In this appendix, we will follow Dong and Ji [14] to establish upper and lower bounds of
pk(n) for 3 ≤ k ≤ 9 by using Chern’s formula for η-quotients.

Firstly, let us review Chern’s theorem. We adopt the notations in [14]. Let m =
(m1, . . . ,mR) be a sequence of R distinct positive integers and δ = (δ1, . . . , δR) be a
sequence of R non-zero integers. Assuming that h and j are positive integers with
gcd(h, j) = 1, set

C1 = −1

2

R∑
r=1

δr, C2 =
R∑

r=1

mrδr,

C3(l) = −
R∑

r=1

δr gcd
2(mr, l)

mr

, C4(l) =
R∏

r=1

(
mr

gcd(mr, l)

)− δr
2

,

Âl(n) =
∑
0≤h<l

gcd(h,l)=1

exp

(
−2πnhi

l
− πi

R∑
r=1

δrs

(
mrh

gcd(mr, l)
,

l

gcd(mr, l)

))
, (57)

where s(h, j) is the Dedekind sum. Take L = lcm(m1, . . . ,mR), the least common multiple
of m1, . . . ,mR. We divide the set {1, 2 · · · , L} into the following two disjoint subsets:

L>0 := {1 ≤ l ≤ L | C3(l) > 0}, L≤0 := {1 ≤ l ≤ L | C3(l) ≤ 0}. (58)

Define

EC1(s) :=



1, C1 = 0,

2
√
s, C1 = −1

2
,

s log(s+ 1), C1 = −1,

s−2C1−1ζ(−C1), otherwise,

(59)

where ζ(·) is Riemann zeta-function. Now, we are able to give Chern’s theorem.
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Theorem 4.1 ([8], Theorem 1.1). Let

G(q) =
∑
n≥0

g(n)qn =
R∏

r=1

(qmr ; qmr)δr∞.

If C1 ≤ 0 and the inequality

min
1≤r≤R

(
gcd2(mr, l)

mr

)
≥ C3(l)

24
(60)

holds for all 1 ≤ l ≤ L, then for positive integers N and n > − c2
24

, we have

g(n) = E(n)+
∑
l∈L>0

2πC4(l)

(
24n+ C2

C3(l)

)−C1+1
2 ∑

1≤t≤N
t≡Ll

I−C1−1

( π

6t

√
C3(l)(24n+ C2)

)Ât(n)

t
,

(61)

where

|E(n)| ≤ 2−C1π−1N−C1+2

n+ C2

24

exp

(
2π

N2

(
n+

C2

24

)) ∑
l∈L>0

exp

(
C3(l)π

3

)

+ 2 exp

(
2π

N2

(
n+

C2

24

))
EC1(N)×

(
−
∑
l∈L>0

C4(l) exp

(
πC3(l)

24

)
(62)

+
∑

1≤l≤L

C4(l) exp

(
πC3(l)

24
+

R∑
r=1

|δr| exp
(
−π gcd2(mr, l)/mr

)(
1− exp

(
−π gcd2(mr, l)/mr

))2)
)
.

and Iν(s) is the ν-th modified Bessel function of the first kind.

Recall that, for k ≥ 2, the generating function for the sequence {pk(n)}n is as follows:∑
n≥0

pk(n)q
n =

∞∏
n=1

1− qkn

1− qn
=

(qk; qk)∞
(q; q)∞

, (63)

where (a; q)∞ =
∏∞

j=0(1 − aqj). In order to use Theorem 4.1 to get bounds of pk(n), we
need to g(n) = pk(n) in Chern’s theorem, in which case we have m = (1, k), δ = (−1, 1),
R = 2, L = k and

C1 = 0, C2 = k − 1, C3(l) = 1− gcd(k, l)2

k
, C4(l) =

√
gcd(k, l)

k
. (64)

We also need to check the conditions of theorem 4.1. The condition C1 ≤ 0 naturally
holds for any k ≥ 2, while inequality (60) is satisfied only for 2 ≤ k ≤ 24. Consequently,
it is feasible to apply Chern’s theorem to asymptotically estimate pk(n) for 2 ≤ k ≤ 24.
We have the following result.
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Proposition 4.2. For any k ≥ 2, let c2(k) = k − 1, c3(k, l) = 1 − gcd(k,l)2

k
, c4(k, l) =√

gcd(k,l)
k

and

µk(n) =
π

6

√
c3(k, 1)(24n+ c2(k)).

Then, for 2 ≤ k ≤ 24 and any positive integers n,N , we have

pk(n) =
(k − 1)π2

3k
√
kµk(n)

I1(µk(n)) + Rk(n), (65)

where Rk(n) = Ek(n) + Bk(n) and

|Ek(n)| ≤
24N2

π(24n+ c2(k))
exp

(
π (24n+ c2(k))

12N2

) ∑
l∈L>0

exp

(
c3(k, l)π

3

)
+ 2 exp

(
π (24n+ c2(k))

12N2

)

×

( ∑
1≤l≤k

c4(k, l) exp

(
πc3(k, l)

24
+

exp(−π)

(1− exp(−π))2
+

exp
(
−π gcd2(k, l)/k

)(
1− exp

(
−π gcd2(k, l)/k

))2)

−
∑
l∈L>0

c4(k, l) exp

(
πc3(k, l)

24

))
. (66)

and

|Bk(n)| ≤
π2c4(k, l

′)c3(k, 1)

3yk

∑
l∈L>0

∑
2≤t≤N
t≡kl

I1

(yk
t

)
, (67)

with c4(k, l
′) = max{c4(k, l) | l ∈ L>0}.

Proof. By substituting the values of (64) into Theorem 4.1, we get

pk(n) = Ek(n) +
∑
l∈L>0

2π
c4(l)

√
c3(l)√

24n+ c2
×
∑

1≤t≤N
t≡kl

I1

( π

6t

√
c3(l)(24n+ c2)

) Ât(n)

t
, (68)

where Ek(n) plays the role of E(n) of (61) and satisfies (66). We find that for any
2 ≤ k ≤ 24, 1 ∈ L>0. Moreover, 1 ≡k 1 for any k, and hence t = 1 will appear in the
second sumnation of (68). Based on the fact that Â1(n) = 1, (68) can be written as

pk(n) =
π2c4(1)c3(1)

3yk
I1(yk) + Ek(n) + Bk(n),

where

Bk(n) =
π2c4(1)c3(1)

3yk

∑
2≤t≤N
t≡k1

I1

(yk
t

) Ât(n)

t
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+
∑

l∈L>0\{1}

π2c4(l)
√
c3(l)

√
c3(1)

3yk
×
∑

2≤t≤N
t≡kl

I1

(√
c3(l)yk√
c3(1)t

)
Ât(n)

t
.

Noting that c3(l) ≤ c3(1) for l ≥ 1, I1(s) is increasing for s > 0 and |Ât(n)| ≤ t for t ≥ 1,
we get

|Bk(n)| ≤
π2c4(1)c3(1)

3yk

∑
2≤t≤N
t≡k1

I1

(yk
t

)
+

∑
l∈L>0\{1}

π2c4(l)c3(1)

3yk
×
∑

2≤t≤N
t≡kl

I1

(yk
t

)
.

We immediately obtain the desired result.

One can see that the above bound of R̂k(n) in (65) is complicated, and it is not
sufficient for our purpose. By using the following upper bound on the first modified
Bessel function of the first kind I1(s):

I1(s) ≤
√

2

πs
es, (69)

due to Bringmann, Kane, Rolen and Trippin [6], we are able to give a simpler bound of
R̂k(n). We have the following result.

Theorem 4.3. For 2 ≤ k ≤ 9, let µk(n) and Rk(n) be given as in Proposition (4.2), and
let nk and R̂k(n) be given as in Table 2. If µk(n) ≥ nk, then |Rk(n)| ≤ R̂k(n).

k nk R̂k(n) k nk R̂k(n)

2 15 π
3
2

3
√
2
√
y2

exp
(
y2
2

)
6 16 20π

3
2

27
√
3y6

exp
(
y6
2

)
3 14 16π

3
2

27
√
3y3

exp
(
y3
2

)
7 21 48π

3
2

49
√
7y7

exp
(
y7
2

)
4 15 π

3
2

4
√
y4

exp
(
y4
2

)
8 23 7π

3
2

16
√
y8

exp
(
y8
2

)
5 16 64π

3
2

75
√
5y5

exp
(
y5
2

)
9 28 64π

3
2

243
√
y9

exp
(
y9
2

)
Table 2: Values of nk and R̂k(n) for 2 ≤ k ≤ 9.

Proof. We prove the theorem for k = 6 and omit the details for other values of k. By
Proposition 4.2, it is enough to show that for µ6(n) ≥ 16,

|E6(n)|+ |B6(n)| ≤
20π

3
2

27
√

3µ6(n)
,
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where E6(n) satisifies (66) and B6(n) satisfies (67).
To further estimate E6(n) and B6(n), we first determine the values of c3(6, l) and

c4(6, l), which are listed in Table 3. For notational convenience, set a(x) = ex

(1−ex)2
. By

l 1 2 3 4 5 6
c3(l)

5
6

1
3

−1
2

1
3

5
6

−5

c4(l)
1√
6

1√
3

1√
2

1√
3

1√
6

1

Table 3: The values of c3(6, l) and c4(6, l) for 1 ≤ l ≤ 6.

(66) we obtain

|E6(n)| ≤
24N2

(24n+ 5)π
exp

(
(24n+ 5) π

12N2

)(
2e

5π
18 + 2e

π
9

)
+ 2 exp

(
π (24n+ 5)

12N2

)
×Υ

where

Υ =
2√
6
exp

(
a(−π) + a(−π/6) +

5π

144

)
− 2√

6
exp

(
5π

144

)
+

2√
3
exp

(
a(−π) + a(−2π/3) +

π

72

)
− 2√

3
exp

( π

72

)
+

1√
2
exp

(
a(−π) + a(−3π/2)− π

48

)
+ exp

(
a(−π) + a(−6π)− 5π

24

)
.

Now let y = µ6(n), implying that 24n+ 5 = 63y2

5π5 . By taking N = ⌊y⌋, one can verify that

|E6(n)| ≤
5π ⌊y⌋2

9y2
exp

(
18y2

5π ⌊y⌋2

)(
2e

5π
18 + 2e

π
9

)
+ 2 exp

(
18y2

5π ⌊y⌋2

)
×Υ.

Then, using the following two inequalities:

⌊y⌋2

y2
≤ 1 and y2

⌊y⌋2
<

y2

(y − 1)2
< 2 for y ≥ 4,

we deduce that

|E6(n)| ≤
10π

9
e

36
5π

(
e

5π
18 + e

π
9

)
+ 2e

36
5π ×Υ ≤ 812

holds when n satisfies y = µ6(n) ≥ 4.
Next we focus on estimating the value of |B6(n)|. From Proposition 4.2 it follows that

|B6(n)| ≤
5π2

18
√
3y

∑
l∈{1,2,4,5}

∑
2≤t≤⌊y⌋

t≡6l

I1

(y
t

)
=

5π2

18
√
3y

∑
2≤t≤⌊y⌋

3∤t

I1

(y
t

)
.
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Thus,

|B6(n)| ≤
5π2

18
√
3y

2 ⌊y⌋
3

I1

(y
2

)
≤ 5π2

27
√
3
I1

(y
2

)
≤ 10π

3
2 e

y
2

27
√
3y

1
2

,

where the last inequality is obtaind by using (69). Combining the bounds of E6(n) and
B6(n), we get

|R6(n)| = |E6(n)|+ |B6(n)| ≤ 812 +
10π

3
2 e

y
2

27
√
3y

1
2

whenever n satisfies y = µ6(n) ≥ 4. Thus, it remains to show for y ≥ 16,

γ(y) :=
10π

3
2 e

y
2

27
√
3y

1
2

≥ 812. (70)

By studying the derivative of γ(y), one can show that it is increasing on the interval
[1,+∞). Thus if y ≥ 16 then γ(y) ≥ γ(16) > 812, as desired. This completes the
proof.

Finally, we are able to prove Theorem 3.2.

Proof of Theorem 3.2. As before, we only proof the case of k = 6. According to Theorem
4.3, if n satisfies the condition that µ6(n) ≥ 17, then

p6(n) = M6(n) + R6(n),

where |R6(n)| ≤ R̂6(n) =
20π

3
2 e

y
2

27
√
3y

1
2
and y = µ6(n).

If we let
G6(n) :=

R̂6(n)

M6(n)
=

8
√
2

3
√
π
·
√
ye

y
2

I1(y)
,

then
M6(n)(1−G6(n)) ≤ p6(n) ≤ M6(n)(1 +G6(n)).

Note that (29) allows us to deduce that

G6(n) ≤
32y2e−

y
2

3(2y − 1)

whenever n satisfies that y ≥ 26. It remains to show
32y2e−

y
2

3(2y − 1)
≤ 1

y6
,

or equivalently,
32y8 − 3(2y − 1)e

y
2 ≤ 0,

holds for y ≥ 61. But this can be verified by showing the derivative of L(y) = 32y8 −
3(2y − 1)e

y
2 is negative and L(y) ≤ L(61) on the interval [61,+∞) with the help of

mathematical software. This completes the proof.
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