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ABSTRACT. Knutson and Zinn-Justin recently found a puzzle rule for the expansion of
the product Gu(x, t)·Gv(x, t) of two double Grothendieck polynomials indexed by per-
mutations with separated descents. We establish its triple Schubert calculus version in
the sense of Knutson and Tao, namely, a formula for expanding Gu(x, y) · Gv(x, t) in
different secondary variables. Our rule is formulated in terms of pipe puzzles, incor-
porating the structures of both bumpless pipe dreams and classical puzzles. As direct
applications, we recover the separated-descent puzzle formula by Knutson and Zinn-
Justin (by setting y = t) and the bumpless pipe dream model of double Grothendieck
polynomials by Weigandt (by setting v = id and x = t). Moreover, we utilize the
formula to partially confirm a positivity conjecture of Kirillov about applying a skew
operator to a Schubert polynomial.
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1. INTRODUCTION

The core of this paper is to provide a combinatorial rule for the triple Schubert cal-
culus in the torus-equivariant K-theory of flag manifolds, with respect to the basis of
structure sheaves indexed by permutations with separated descents. The geometry of
triple Schubert calculus (particularly for the case of cohomology of Grassmannians)
was revealed by Knutson and Tao [9]. Combinatorially, we shall give a formula for ex-
panding the product of two double Grothendieck polynomials in different secondary
variables

Gu(x, y) ·Gv(x, t) =
∑
w

cwu,v(t, y) ·Gw(x, t), (1.1)

1



2 NEIL J.Y. FAN, PETER L. GUO, AND RUI XIONG

for two permutations u and v of {1, 2, . . . , n} with separated descents at position k,
that is,

maxdes(u) ≤ k ≤ mindes(v), (1.2)

where maxdes(u) = max{i : u(i) > u(i + 1)} and mindes(v) = min{i : v(i) > v(i +
1)}. Here, for the identity permutation id = 12 · · ·n, we use the convention that
maxdes(id) = 0 and mindes(id) = +∞.

Our formula for cwu,v(t, y), see Theorem 2.6, is described in terms of “pipe puzzles”,
see Section 2 for the precise definition. Pipe puzzles enjoy the features of both bump-
less pipe dreams and puzzles, as will be explained in Section 6. The formula includes
the following specializations and applications.

(i) The case y = t. Theorem 2.6 recovers the puzzle rule for permutations with
separated descents by Knutson and Zinn-Justin [12, Theorem 1], which is man-
ifestly positive in the sense of Anderson, Griffeth and Miller [1] (an equivariant
K-theory extension of Graham’s positivity theorem [6]).

(ii) The case β = 0. Theorem 2.6 becomes a combinatorial rule for the expansion
of the product Su(x, y) ·Sv(x, t) of two Schubert polynomials in different sec-
ondary variables, see Theorem 2.2. We point out that in the case y = t = 0,
Huang [7] derived a tableau formula for the product Su(x)·Sv(x) of two single
Schubert polynomials for u, v with separated descents.

(iii) The case that both u and v are k-Grassmannian permutations. Theorem 2.6
extends the puzzle formula for the product Gλ(x, t) · Gµ(x, t) by Wheeler and
Zinn-Justin [20, Theorem 2] (The latter formula on the one hand is an equivari-
ant extension of Vakil’s puzzle formula [21] for the product Gλ(x) · Gµ(x) of
two single Grothendieck polynomials, and on the other hand is a K-theory ex-
tension of the Knutson–Tao puzzle formula [9] for the product sλ(x, t) · sµ(x, t)
of two double Schur polynomials).

We remark that (1) an alternative puzzle formula (different from the one in
[20]) for Gλ(x, t) · Gµ(x, t) was conjectured by Knutson and Vakil, and proved
by Pechenik and Yong [18] (after a modification) based on their earlier tableau
formula established in [17], (2) Wheeler and Zinn-Justin [20, Theorems 2” and
3”] gave puzzle formulas for the product of two dual Grothendieck polynomi-
als in different secondary variables, and (3) puzzle formulations of the Molev–
Sagan tableau formula [16] for the product sλ(x, y)·sµ(x, t) of two double Schur
polynomials in different secondary variables were given by Knutson and Tao
[9, Section 6] and Zinn-Justin [23].

(iv) The case that k = n (this means u may be any permutation of {1, 2, . . . , n}),
v = id, and x = t. Theorem 2.6 reduces to the bumpless pipe dream model of
double Grothendieck polynomials by Weigandt [22], which, by setting β = 0,
leads to the bumpless pipe dream model of double Schubert polynomials by
Lam, Lee and Shimozono [13]. An alternative proof of Weigandt’s model was
given by Buciumas and Scrimshaw [4] based on colored lattice models.

(v) Kirillov [8, Conjecture 1] conjectured that after applying the skew divided dif-
ference operator ∂w/v to a single Schubert polynomial Su(x), the resulting poly-
nomial will have nonnegative integer coefficients. Setting y = 0 in Theorem
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2.2 leads to a positive expansion of the product Su(x) ·Sv(x, t), which, as will
be explained in Section 6.3, allows us to confirm Kirillov’s prediction for u and
v with separated descents and arbitrary w.

An innovation in our approach is finding that cwu,v(t, y) satisfies two kinds of recur-
rence relations, as given in Section 3. Such recurrence relations work well when u and
v are restricted to permutations with separated descents. This could essentially sim-
plify the proof of Theorem 2.6. Specifically, to prove Theorem 2.6, it suffices to show
that our pipe puzzle formula obeys the same recurrence relations (together with an
initial condition). This could be done (without too much efforts) by realizing pipe
puzzles as an integrable lattice model.

We remark that the above mentioned recurrence relations are no longer available in
the case y = t. The proof of the y = t case in [12, Theorem 1] is achieved by studying
the geometric representation of quantized loop algebras and quiver varieties [10, 11].
It turns out that while the problem of computing triple Schubert structure constants
is broader, its proof could be simpler. From this point of view, our approach may
provide new insights into the study of Schubert calculus for flag manifolds.

This paper is arranged as follows. In Section 2, we state the pipe puzzle formula for
cwu,v(t, y) in the case that u, v are permutations with separated descents, see Theorem
2.6. In Section 3, we provide two recurrence relations for cwu,v(t, y), and explain that
such recurrence relations still work when restricted to permutations with separated
descents. In Section 4, we realize pipe puzzles as a lattice model, and show that it sat-
isfies two types of Yang–Baxter equations. In Section 5, based on the lattice model, we
show that our pipe puzzle formula satisfies the same recurrence relations as cwu,v(t, y),
thus completing the proof of Theorem 2.6. Section 6 is devoted to applications of
Theorem 2.6, mainly including those aforementioned.

Ackowledgement. We would like to thank the anonymous referees for their valu-
able comments and suggestions. We are grateful to Paul Zinn-Justin for helpful dis-
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Natural Science Foundation of China (Nos. 11971250, 12371329) and the Fundamen-
tal Research Funds for the Central Universities (No. 63243072). R.X. acknowledges
the partial support from the NSERC Discovery grant RGPIN-2022-03060, Canada.

2. MAIN RESULT

The main result is given in Theorem 2.6, a separated-descent pipe puzzle formula
for the coefficients cwu,v(t, y). Let us begin by giving the definition of Grothendieck
polynomials. As usual, we use Sn to denote the symmetric group of permutations of
{1, 2, . . . , n}. Let β be a formal variable. Denote

x⊖ y =
x− y

1+ βy
.
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Let πi be the Demazure operator:

πif =
(1+ βxi+1)f− (1+ βxi)f|xi↔xi+1

xi − xi+1

.

The double Grothendieck polynomial Gw(x, t) for w ∈ S∞ =
⋃

n≥0 Sn is determined by
the following two properties:

Gn···21(x, t) =
∏
i+j≤n

(xi ⊖ tj);

πiGw(x, t) = Gwsi(x, t), if w(i) > w(i+ 1).

Here, si = (i, i + 1) is the simple transposition, and wsi is obtained from w by swap-
ping w(i) and w(i+ 1). Since π2

i = −βπi, it follows that

πiGw(x, t) =

{
Gwsi(x, t), if w(i) > w(i+ 1),

−βGw(x, t), if w(i) < w(i+ 1).
(2.1)

Letting ti = 0 defines the single Grothendieck polynomial

Gw(x) = Gw(x, 0).

Setting β = 0, we get the double (resp., single) Schubert polynomial

Sw(x, t) = Gw(x, t)|β=0, (resp., Sw(x) = Gw(x)|β=0).

Remark 2.1. There appear different definitions for Grothendieck polynomials in the literature,
which will be equivalent after appropriate changes of variables. For example, [12] adopts the
following operator and initial condition:

∂̄if =
Xi+1f− Xif|Xi↔Xi+1

Xi+1 − Xi

, Gn···21(X, T) =
∏
i+j≤n

(1− Xi/Tj) .

It can be checked that Gw(X, T) can be obtained from Gw(x, t) by the following replacements:

β = −1, Xi = 1− xi, Ti = 1− ti.

Our definition is consistent with that used in [14, Section 5.1].

In the remaining of this section, we assume that u and v are permutations of Sn with
separated descents at position k. We are going to describe our pipe puzzle formula
for cwu,v(t, y). To begin, consider an n by n grid with labeled boundary:

θ1
v θ2

v · · · · · · θn
v

0 · · · · · · κ1
u

0 · · · · · · κ2
u...

...
... . . . . . . ...

...
...

...
... . . . . . . ...

...
0 · · · · · · κn

u

η1
w η2

w · · · · · · ηn
w

κi
u =

{
u−1(i), u−1(i) ≤ k,

0, u−1(i) > k.

θi
v=

{
0, v−1(i) ≤ k,

v−1(i), v−1(i) > k.

ηi
w= w−1(i).

(2.2)

We see that the nonzero labels on the right side are 1, . . . , k, and the nonzero labels
on the top side are k+ 1, . . . , n. There is no obstruction to rebuilding u, v and w from
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the boundary labeling, because of the separated-descent assumption. For the sake of
brevity, the label 0 on the boundary will often be omitted. See Example 2.5 for the
boundary labeling for u = 42135, v = 14532, w = 53412, and k = 2.

Our formula is a weighted counting of tilings of the n by n grid by unit tiles (with
pipes), subject to certain conditions. To warm up, we first give the formula for double
Schubert polynomials.

2.1. Statement for double Schubert polynomials. Assume that

Su(x, y) ·Sv(x, t) =
∑
w

cwu,v(t, y) ·Sw(x, t). (2.3)

The admissible tiles are

(2.4)

The curves drawn on the tiles are referred to as pipes. A tiling of (2.2) built upon the
tiles in (2.4) is a network of pipes such that

(1) there are a total of n pipes, among which k pipes enter horizontally from rows
on the right side labeled 1, . . . , k, and n−k pipes enter vertically from columns
on the top side labeled k + 1, . . . , n. The pipes inherit the labels of the corre-
sponding rows and columns.

(2) the n pipes end vertically on the bottom side, such that the label of each pipe
matches the label of the column where it ends.

A Schubert pipe puzzle for u, v,w is a tiling of (2.2) with the tiles in (2.4), subject to
the following restriction on the tiles :

The horizontal pipe in must receive a smaller label. For ex-
ample,

3

2
1

3 1 2

is allowed, while

3

1
2

3 2 1

is not allowed.
(2.5)

Denote by PP0(u, v,w) the set of Schubert pipe puzzles for u, v,w. For each π ∈
PP0(u, v,w), define its Schubert weight by

wt0(π; t, y) =
∏
(i,j)

(tj − yi),

where the sum is over empty tiles at the (i, j)-positions (in the matrix coordinate).

Theorem 2.2. Let u, v ∈ Sn be permutations with separated descents at position k. For
w ∈ Sn, we have

cwu,v(t, y) =
∑

π∈PP0(u,v,w)

wt0(π; t, y). (2.6)

Remark 2.3. It may happen that Sw(x, t), w ∈ Sn ′ with n < n ′, appears in the expansion
of Su(x, y) ·Sv(x, t). In such a case, to compute cwu,v(t, y), one needs only to embed naturally
Sn into Sn ′ , and then apply Theorem 2.2 (u and v are now viewed as permutations in Sn ′).
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Remark 2.4. An alternative expresssion for the coefficients in Theorem 2.2 was recently given
by Samuel [19, Theorem 3.1], which is described in terms of certain paths in the Bruhat order.
Its proof relies on a Pieri formula using three sets of variables as in (2.3). The formula in
[19, Theorem 3.1] also implies Kirillov’s conjecture in the separated-descent case, as discussed
in Section 6.3.

Example 2.5. Let u = 42135, v = 14532, and set k = 2. For w = 53412, there are four
Schubert pipe puzzles in PP0(u, v,w):

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

Here, the empty tiles are colored. So it follows from (2.6) that

c5341242135,14532 = (t4 − y1) + (t5 − y3) + (t3 − y2) + (t1 − y1).

2.2. Statement for double Grothendieck polynomials. We allow one more admissi-
ble tile than (2.4):

(2.7)

The extra tile in (2.7) is a “bumping” tile . We shall have the following restrictions
on the usage of :

If the two pipes in are from the same side, then the northwest
pipe must receive a larger label. For example,

3

2
1

3 2 1

is allowed, while

3

1
2

3 1 2

is not allowed.
(2.8)

If the two pipes in are from different sides, then the north-
west pipe must enter from the right side (equivalently, it receives
a smaller label). For example,

3
2

1
2 3 1

is allowed, while

3
2

1
2 3 1

is not allowed.

(2.9)

A (Grothendieck) pipe puzzle for u, v,w is a tiling of (2.2) with the tiles in (2.7) obeying
the restriction (2.5) on , as well as the restrictions (2.8) and (2.9) on .

Let PP(u, v,w) be the set of pipe puzzles for u, v,w. For π ∈ PP(u, v,w), its weight
wt(π; t, y) is the product of factors contributed by all tiles of π: at the (i, j)-position,

(1) an empty tile contributes tj ⊖ yi;
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(2) an elbow tile , in which the pipe is from the right side, contributes 1+β(tj⊖
yi);

(3) an elbow tile , in which the pipe is from the top side, contributes 1+ β(tj ⊖
yi);

(4) a bumping tile , in which the two pipes are from the same side, contributes
β;

(5) a bumping tile , in which the two pipes are from different sides, contributes
β(1+ β(tj ⊖ yi));

(6) any other tile except for the above cases contributes 1.

Theorem 2.6. Let u, v ∈ Sn be permutations with separated descents at position k. For
w ∈ Sn, we have

cwu,v(t, y) =
∑

π∈PP(u,v,w)

wt(π; t, y). (2.10)

Note that Remark 2.3 is still valid for Theorem 2.6. We also remark that Theorem
2.6 specializes to Theorem 2.2 in the case β = 0 by noticing that wt(π; t, y)|β=0 = 0
whenever π /∈ PP0(u, v,w), and wt(π; t, y)|β=0 = wt0(π; t, y) for π ∈ PP0(u, v,w).

Example 2.7. Take the same setting as in Example 2.5. There are nine pipe puzzles in
PP(u, v,w), among which the pipe puzzles in the top row are those appearing in Example
2.5. Here, the tiles with weights not equal to 1 are colored.

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

As a result,

c5341242135,14532 = (t4 ⊖ y1)(1+ β(t1 ⊖ y1))(1+ β(t4 ⊖ y3))

+ (t5 ⊖ y3)(1+ β(t1 ⊖ y1))(1+ β(t4 ⊖ y1))

+ (t3 ⊖ y2)(1+ β(t1 ⊖ y1))(1+ β(t4 ⊖ y1))(1+ β(t5 ⊖ y3))

+ (t1 ⊖ y1)(1+ β(t4 ⊖ y1))(1+ β(t1 ⊖ y2))(1+ β(t5 ⊖ y3))

+ β(t4 ⊖ y1)(t3 ⊖ y2)(1+ β(t1 ⊖ y1))(1+ β(t4 ⊖ y3))

+ β(t1 ⊖ y1)(t4 ⊖ y1)(1+ β(t1 ⊖ y2))(1+ β(t4 ⊖ y3))

+ β(t1 ⊖ y1)(t1 ⊖ y2)(1+ β(t4 ⊖ y1))(1+ β(t1 ⊖ y3))

+ β(t1 ⊖ y1)(t3 ⊖ y3)(1+ β(t4 ⊖ y1))(1+ β(t1 ⊖ y2))
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+ β(t3 ⊖ y2)(t3 ⊖ y3)(1+ β(t1 ⊖ y1))(1+ β(t4 ⊖ y1)).

3. RECURRENCE RELATIONS

In this section, we present two recurrence relations, as well as an initial condi-
tion, for cwu,v(t, y), and explain that they can be used to determine the computation
of cwu,v(t, y) for u, v ∈ Sn with separated descents.

Let us first review the definition of Bruhat order on Sn. Let tij (1 ≤ i < j ≤ n) denote
the transpositions of Sn. Then Sn is generated by the set of simple transpositions
si = ti i+1 for 1 ≤ i < n. The length ℓ(w) of w ∈ Sn is the minimum number of simple
transpositions appearing in any decomposition w = si1 · · · sim . It is well known that
ℓ(w) equals the number of inversions of w:

ℓ(w) = #{(i, j) : 1 ≤ i < j ≤ n, w(i) > w(j)}.

Notice that wtij (resp., tijw) is obtained from w by swapping w(i) and w(j) (resp.,
the values i and j). Write w < wtij if ℓ(w) < ℓ(wtij) (namely, w(i) < w(j)). The
transitive closure of all relations w < wtij forms the Bruhat order ≤ on Sn. It should
be noted that the Bruhat order can be defined equivalently as the transitive closure of
relations w < tijw (which means ℓ(w) < ℓ(tijw)).

In the rest of this section, we shall often encounter the situation siw < w or siw > w.
By definition, siw < w means i appears after i+1 in w, while siw > w means i appears
before i+ 1 in w.

To describe the two recurrence relations for cwu,v(t, y), we define two operators act-
ing on a rational function f := f(x, t, y) in three sets of variables. The (left) Demazure
operator ϖi acts on the t variables:

ϖif = −
(1+ βti)f− (1+ βti+1)f|ti↔ti+1

ti − ti+1

.

Similarly, we define φi which acts on the y variables:

φif = −
(1+ βyi)f− (1+ βyi+1)f|yi↔yi+1

yi − yi+1

.

It should be noted that if the polynomial is in two sets of variables, it means that the
third set is set to 0.

The two recurrence relations for cwu,v(t, y) can be stated as follows. If there is no
confusion occurring, we sometimes simply write cwu,v for cwu,v(t, y).

Proposition 3.1. If siu < u, then

cwsiu,v = φi c
w
u,v = −

1+ βyi

yi − yi+1

cwu,v +
1+ βyi+1

yi − yi+1

cwu,v|yi↔yi+1
. (3.1)

Proposition 3.2. If siw > w, then

csiwu,v =


−ϖi c

w
u,v + cwu,siv|ti↔ti+1

, siv < v,

−ϖi c
w
u,v − βcwu,v|ti↔ti+1

, siv > v,
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that is,

csiwu,v =


1+ βti

ti − ti+1

cwu,v −
1+ βti+1

ti − ti+1

cwu,v|ti↔ti+1
+ cwu,siv|ti↔ti+1

, siv < v,

1+ βti

ti − ti+1

cwu,v −
1+ βti

ti − ti+1

cwu,v|ti↔ti+1
, siv > v.

(3.2)

In order to more quickly go into the proof of Theorem 2.6, we put the proofs of
Propositions 3.1 and 3.2 in Appendix A.

To give the initial condition, we need the following localization

Gw(t, t) =

{
1, w = id,

0, otherwise.
(3.3)

This is the very special case of the general localization formula for Grothendieck poly-
nomials, see for example Buch and Rimányi [3] and the references therein. Taking
x = t in (1.1) and then applying (3.3), we obtain the following relationship.

Lemma 3.3. We have

cidu,v(t, y) =

{
Gu(t, y), if v = id,

0, otherwise.

Denote by uk,n
0 = n(n−1) · · · (n−k+1) 12 · · · (n−k) ∈ Sn the unique longest permu-

tation among those u ∈ Sn with maxdes(u) ≤ k:

uk,n
0 (i) =

{
n+ 1− i, i ≤ k,

i− k, k < i ≤ n.
(3.4)

By direct computation, we have

Guk,n
0

(x, t) =

k∏
i=1

n−i∏
j=1

(xi ⊖ tj).

Indeed, this is clearly true for k = n. If the statement is true for k, then applying
operators π1 · · ·πk, we can compute the case of k − 1. This, along with Lemma 3.3,
leads to the initial condition.

Proposition 3.4. For v ∈ Sn,

cid
uk,n
0 ,v

=


k∏

i=1

n−i∏
j=1

(ti ⊖ yj), if v = id,

0, otherwise.

Propositions 3.1 and 3.2 are valid for any u, v,w ∈ Sn. We explain that such recur-
rences are closed when restricting u, v ∈ Sn to permutations with separated descents
at k. In other words, we could use Propositions 3.1 and 3.2 (only applied to permuta-
tions with separated descents at k), along with the initial condition in Proposition 3.4,
to compute cwu,v(t, y) for any u, v ∈ Sn with separated descents at k.
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• First, compute cidu,v(t, y) for w = id. The initial case is for the longest permu-
tation u = uk,n

0 , as done in Proposition 3.4. We next consider cidu,v(t, y) with
ℓ(u) < ℓ(uk,n

0 ). Since u ̸= uk,n
0 , one can always choose an integer i among the

first k values u(1), . . . , u(k), such that i appears before i+ 1 in u. For example,
given u = 7423156 and k = 4, we may choose i = 4 or i = 2.

Now we have u < siu ∈ Sn. It is easily checked that maxdes(siu) ≤ k. Set
u ′ = siu. By backwards induction on the length of u, the value of cidu ′,v(t, y) is
known, which allows us to compute cidu,v(t, y) = cidsiu ′,v(t, y) from cidu ′,v(t, y) by
means of Proposition 3.1.

• Second, compute cwu,v(t, y) for ℓ(w) > 0. In this case, choose any si such
that siw < w. It is also easily checked that if siv < v, then we still have
mindes(siv) ≥ k. Set w ′ = siw. By induction on the length of w, the values
of cw ′

u,v(t, y) and cw
′

u,siv
(t, y) are known. Applying Proposition 3.2, we may de-

duce cwu,v(t, y) = csiw
′

u,v (t, y) from cw
′

u,v(t, y) and cw
′

u,siv
(t, y).

4. INTEGRABLE LATTICE MODELS

Throughout this section, we assume that u, v ∈ Sn are permutations with separated
descents at k, and w is any permutation in Sn. We shall realize the pipe puzzles
in PP(u, v,w) as a (colored) lattice model, denoted L(u, v,w), so that the right-hand
side of (2.6) is equal to the partition function of L(u, v,w). For more background
about lattice models, we refer the reader to, for example, [2, 4, 5, 24]. We verify that
L(u, v,w) is integrable, in the sense that it satisfies Yang–Baxter equations with respect
to particular choices of R-matrices.

4.1. Lattice model. Consider a square grid with n horizontal lines and n vertical
lines. The intersection point of two lines will be a vertex (so there are a total of n2

vertices). The lines between two vertices are called edges. We shall also attach ad-
ditional half edges to the vertices on the boundary, so that there are four half edges
around each vertex.

A state is a labeling of all the (half) edges with labels from {0, 1, 2 . . . , n}, with a
fixed boundary condition which is consistent with that in (2.2): the left half edges are
all labeled 0, the right half edges are labeled κ1

u, . . . , κ
n
u from top to bottom, the top

(resp., bottom) half edges are labeled θ1
v, . . . , θ

n
v (resp., η1

w, . . . , η
n
w) from left to right.

The label of each (half) edge will be marked with a circle, and a vertex will be formally
assigned a parameter x. A state is admissible if the local configurations around each
vertex (namely, the labeled half edges adjacent to each vertex) satisfy exactly one of
the conditions as listed in the middle column of Table 1. Moreover, each allowable
local configuration is assigned a weight as given in the first column of Table 1.

Each configuration around a vertex naturally corresponds to a tile that is used to
define a pipe puzzle, as illustrated in the last column of Table 1, with pipes inheriting
the labels of edges. We display the information in Table 1 more intuitively in Table 2.
Therefore, each admissible state generates a pipe puzzle, and vice versa. See Figure 1
for an admissible state and its corresponding pipe puzzle.

The lattice model L(u, v,w) we are considering is defined as the set of all admissible
states (L(u, v,w) can be regarded as a colored lattice model if the labels 1, 2, . . . , n are
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⃝N
⃝W x ⃝E

⃝S
:

weights conditions tiles
x N = E = W = S = 0

1 E = W = 0 < N = S

1 N = S = 0 < E = W

1 0 < E = W < N = S

1+ βx E = S = 0 < N = W ≤ k

1 E = S = 0 and k < N = W

1 N = W = 0 < E = S ≤ k

1+ βx N = W = 0 and k < E = S

β 0 < E = S < N = W ≤ k

β k < E = S < N = W

β(1+ βx) 0 < N = W ≤ k < E = S

TABLE 1. Weights, local configurations, and tiles.

⃝0
⃝0 ⃝0

⃝0

⃝A
⃝a ⃝a

⃝A

⃝a
⃝0 ⃝0

⃝a

⃝0
⃝a ⃝a

⃝0
x 1 (0 < a < A) 1 (0 < a)

⃝a
⃝a ⃝0

⃝0

⃝0
⃝0 ⃝a

⃝a

⃝A
⃝A ⃝a

⃝a
1+ βx (0 < a ≤ k)

1 (k < a)
1 (0 < a ≤ k)

1+ βx (k < a)

β (0 < a < A ≤ k)
β (k < a < A)

β(1+ βx) (0 < A ≤ k < a)

TABLE 2. Diagram illustration of Table 1.

viewed as n colors). The weight wt(S; t, y) of a state S in L(u, v,w) is the product of
all the weights of vertices with x = tj⊖yi in row i and column j. The partition function
of L(u, v,w) is defined by

Zw
u,v(t, y) =

∑
S∈L(u,v,w)

wt(S; t, y).
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5 4 3

2

1

4 5 2 3 1

⃝0 ⃝5 ⃝4 ⃝0 ⃝3
⃝0 -t1⊖y1-⃝0 -t2⊖y1-⃝0 -t3⊖y1-⃝0 -t4⊖y1-⃝3 -t5⊖y1-⃝0

⃝0 ⃝5 ⃝4 ⃝3 ⃝0
⃝0 -t1⊖y2-⃝4 -t2⊖y2-⃝4 -t3⊖y2-⃝0 -t4⊖y2-⃝0 -t5⊖y2-⃝2

⃝4 ⃝5 ⃝0 ⃝3 ⃝2
⃝0 -t1⊖y3-⃝0 -t2⊖y3-⃝0 -t3⊖y3-⃝0 -t4⊖y3-⃝0 -t5⊖y3-⃝0

⃝4 ⃝5 ⃝0 ⃝3 ⃝2
⃝0 -t1⊖y4-⃝0 -t2⊖y4-⃝0 -t3⊖y4-⃝2 -t4⊖y4-⃝2 -t5⊖y4-⃝1

⃝4 ⃝5 ⃝2 ⃝3 ⃝1
⃝0 -t1⊖y5-⃝0 -t2⊖y5-⃝0 -t3⊖y4-⃝0 -t4⊖y5-⃝0 -t5⊖y4-⃝0

⃝4 ⃝5 ⃝2 ⃝3 ⃝1

FIGURE 1. Correspondence between a pipe puzzle and an admissible state.

That is,

Zw
u,v(t, y) =

�
 �	θ1
v

�
 �	θ2
v ···

�
 �	θn
v

⃝0 t1⊖y1 ⃝ t2⊖y1 ⃝ ··· ⃝ tn⊖y1

�
 �	κ1
u

⃝ ⃝ ⃝
⃝0 t1⊖y2 ⃝ t2⊖y2 ⃝ ··· ⃝ tn⊖y2

�
 �	κ2
u

⃝ ⃝ ⃝
...

...
...

...
...

...

⃝ ⃝ ⃝
⃝0 t1⊖yn ⃝ t2⊖yn ⃝ ··· ⃝ tn⊖yn

�
 �	κn
u�
 �	η1

w

�
 �	η2
w ···

�
 �	ηn
w

Remark 4.1. It can be checked directly from Table 2 that the weights of vertices (with x =
tj ⊖ yi in row i and column j) are consistent with the weights of the corresponding tiles as
defined above Theorem 2.6.

Collecting the above observations, we summarize the following facts.

Proposition 4.2. Let u, v ∈ Sn be permutations with separated descents at position k. Then,
for w ∈ Sn,

(1) The set L(u, v,w) of admissible states are in bijection with the set PP(u, v,w) of pipe
puzzles.

(2) We have

Zw
u,v(t, y) =

∑
π∈PP(u,v,w)

wt(π; t, y).

That is, the partition function Zw
u,v(t, y) coincides with the right-hand side of (2.10).
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We next introduce two types of R-matrices: Rrow and Rcol, and check that the lattice
model satisfies the Yang–Baxter equation when attaching an Rrow (resp., an Rcol) to
rows (resp., columns).

4.2. The R-matrix Rrow. The R-matrix Rrow is given in Table 3.

A B1

⃝0 ⃝0
x

⃝0 ⃝0

⃝a ⃝a
x

⃝a ⃝a

⃝b ⃝b
x

⃝0 ⃝0

⃝0 ⃝0
x

⃝c ⃝c

⃝a ⃝a
x

⃝A ⃝A
1 (0 < a) 1 (0 < b ≤ k < c and 0 < a < A)

C B2

⃝a ⃝0
x

⃝0 ⃝a

⃝a ⃝A
x

⃝A ⃝a

⃝0 ⃝0
x

⃝b ⃝b

⃝c ⃝c
x

⃝0 ⃝0

⃝A ⃝A
x

⃝a ⃝a
x (0 < a < A) 1+ βx (0 < b ≤ k < c and 0 < a < A)

TABLE 3. The R-matrix Rrow.

Theorem 4.3 (Yang–Baxter Equation for Rrow). For the R-matrix Rrow, the partition func-
tions of the following two models are equal for any given boundary condition with a1, a2, a3, b1,
b2, b3 ∈ {0, 1, 2, . . . , n}.

⃝a1

⃝b1 ⃝ x ⃝a2

x⊖ y ⃝
⃝b2 ⃝ y ⃝a3

⃝b3

=

⃝a1

⃝b1 y ⃝ ⃝a2

⃝ x⊖ y

⃝b2 x ⃝ ⃝a3

⃝b3

(4.1)

Here, the partition function of the left (resp., right) model is the sum of all weights of admissible
configurations of the left (resp., right) diagram with the given boundary condition.

Proof. Note that (4.1) only depends on the relative values of k, a1, a2, a3, b1, b2, b3. By
Tables 2 and 3, it suffices to assume k = 3 and a1, a2, a3, b1, b2, b3 ∈ {0, 1, 2, . . . , 6} with
#{a1, a2, a3, b1, b2, b3} ≤ 3. So there are only finitely many cases to consider, which can
be directly dealt with via computer verification. The SageMath code that we used to
verify this theorem as well as Theorem 4.5 is available at https://cubicbear.github.
io/PipePuzzle.html. □

https://cubicbear.github.io/PipePuzzle.html
https://cubicbear.github.io/PipePuzzle.html
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Example 4.4. Take k = 3. Let (a1, a2, a3, b1, b2, b3) = (1, 0, 4, 1, 4, 0). By Tables 2 and 3, it
can be checked that the admissible configurations of both sides are illustrated below.

⃝1
⃝1 ⃝1 x ⃝0

x⊖ y ⃝0
⃝4 ⃝4 y ⃝4

⃝0

=

⃝1
⃝1 y ⃝4 ⃝0

⃝4 x⊖ y

⃝4 x ⃝0 ⃝4
⃝0

+

⃝1
⃝1 y ⃝0 ⃝0

⃝0 x⊖ y

⃝4 x ⃝4 ⃝4
⃝0

Again, in view of Tables 2 and 3, the partition function of the left model is 1 + βx, while the
partition function of the right model is β(1 + βy)(x ⊖ y) + (1 + βy). These two partition
functions are indeed the same. This agrees to the assertion in (4.1).

4.3. The R-matrix Rcol. The R-matrix Rcol is given in Table 4.

A B1

⃝0 ⃝0
x

⃝0 ⃝0

⃝a ⃝a
x

⃝a ⃝a

⃝b ⃝0
x

⃝b ⃝0

⃝0 ⃝c
x

⃝0 ⃝c

⃝a ⃝A
x

⃝a ⃝A
1 (0 < a) 1 (0 < b ≤ k < c and 0 < a < A)

C B2

⃝a ⃝0
x

⃝0 ⃝a

⃝A ⃝a
x

⃝a ⃝A

⃝0 ⃝b
x

⃝0 ⃝b

⃝c ⃝0
x

⃝c ⃝0

⃝A ⃝a
x

⃝A ⃝a
x (0 < a < A) 1+ βx (0 < b ≤ k < c and 0 < a < A)

TABLE 4. The R-matrix Rcol.

Theorem 4.5 (Yang–Baxter Equation for Rcol). For the R-matrix Rcol, the partition func-
tions of the following two models are equal for any given boundary condition with a1, a2,
a3, b1, b2, b3 ∈ {0, 1, 2, . . . , n}.

⃝a1 ⃝a2

x⊖ y

⃝ ⃝
⃝b1 x ⃝ y ⃝a3

⃝b2 ⃝b3

=

⃝a1 ⃝a2

⃝b1 y ⃝ x ⃝a3

⃝ ⃝
x⊖ y

⃝b2 ⃝b3

(4.2)
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Example 4.6. Still take k = 3, and (a1, a2, a3, b1, b2, b3) = (1, 0, 4, 1, 4, 0). Equality (4.2)
tells

β(1+ βx) = β(1+ βy)(1+ β(x⊖ y)),

as implied by the following admissible configurations

⃝1 ⃝0
x⊖ y

⃝1 ⃝0
⃝1 x ⃝4 y ⃝4

⃝4 ⃝0

=

⃝1 ⃝0
⃝1 y ⃝4 x ⃝4

⃝4 ⃝0
x⊖ y

⃝4 ⃝0

5. PROOF OF THE MAIN RESULT

We always set u, v,w ∈ Sn where u and v have separated descents at position k. We
finish the proof of Theorem 2.6 by showing that Zw

u,v(t, y) satisfies the same recurrence
relations (Propositions 3.1 and 3.2) and initial condition (Proposition 3.4) as cwu,v(t, y).

5.1. Induction on u. Suppose that siu < u. It is easily checked that maxdes(siu) ≤ k.
Recalling the definition in (2.2), we see that 0 < κi+1

u < κi
u ≤ k or κi

u = 0 < κi+1
u ≤ k,

depending on the positions where i and i + 1 lie. Clearly, κsiu is obtained from κu by
interchanging κi

u and κi+1
u . For example, for n = 7 and k = 3, we list a descending

chain as follows:

u = 5431267 · · · > 5341267 · · · > 5241367 · · · > 4251367 · · ·
κu = 0032100 · · · → 0023100 · · · → 0203100 · · · → 0201300 · · ·

Theorem 5.1. If siu < u, then

Zw
siu,v

= −
1+ βyi

yi − yi+1

Zw
u,v +

1+ βyi+1

yi − yi+1

Zw
u,v|yi↔yi+1

. (5.1)

Proof. Consider the lattice model L(u, v,w). We attach an Rrow to the left boundary
of row i and row i + 1 (Meanwhile, we make the variable exchange yi ↔ yi+1 in the
states of L(u, v,w)), as illustrated in (5.2).

...
...

...
...

⃝0 ⃝ t1⊖yi+1 ⃝ t2⊖yi+1 ⃝ ··· ⃝ tn⊖yi+1

�
 �	κi
u

yi ⊖ yi+1 ⃝ ⃝ ⃝
⃝0 ⃝ t1⊖yi ⃝ t2⊖yi ⃝ ··· ⃝ tn⊖yi

�
 �	κi+1
u

...
...

...
...

(5.2)

By Table 3, there is exactly one admissible configuration for the R-matrix Rrow (from A
in Table 3). So the partition function of (5.2) reads as

Zw
u,v|yi↔yi+1

. (5.3)
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Noticing that (tj ⊖ yi+1)⊖ (tj ⊖ yi) = yi ⊖ yi+1, we may apply repeatedly the Yang–
Baxter equation in Theorem 4.3 to (5.2), resulting in a model depicted in (5.4), with an
R-matrix Rrow attached on the right boundary.

...
...

...
...

⃝0 t1⊖yi ⃝ t2⊖yi ⃝ ··· ⃝ tn⊖yi ⃝ �
 �	κi
u

⃝ ⃝ ⃝ yi ⊖ yi+1

⃝0 t1⊖yi+1 ⃝ t2⊖yi+1 ⃝ ··· ⃝ tn⊖yi+1 ⃝ �
 �	κi+1
u

...
...

...
...

(5.4)

Consider the partition function of (5.4). Keep in mind that 0 < κi+1
u < κi

u ≤ k or
κi
u = 0 < κi+1

u ≤ k. For each situation, there are two admissible configurations for the
R-matrix Rrow respectively from B2 and C in Table 3, corresponding respectively to the
models L(u, v,w) and L(siu, v,w). Thus, the partition function of (5.4) is

(1+ β(yi ⊖ yi+1))Z
w
u,v + (yi ⊖ yi+1)Z

w
siu,v

. (5.5)

Equating (5.3) and (5.5), we get the desired formula in (5.1). □

5.2. Induction on w. We now establish the recurrence relation for Zw
u,v, which is par-

allel to Proposition 3.2.

Theorem 5.2. If siw > w, then

Zsiw
u,v =


1+ βti

ti − ti+1

Zw
u,v −

1+ βti+1

ti − ti+1

Zw
u,v|ti↔ti+1

+ Zw
u,siv

|ti↔ti+1
, siv < v,

1+ βti

ti − ti+1

Zw
u,v −

1+ βti

ti − ti+1

Zw
u,v|ti↔ti+1

, siv > v.

(5.6)

Proof. This time we attach an Rcol to the top boundary of L(u, v,w). Applying the
Yang–Baxter equation in Theorem 4.5, we obtain equivalent models given in (5.7).�
 �	θi

v

�
 �	θi+1
v

ti ⊖ ti+1

⃝ ⃝
··· ti⊖y1 ⃝ ti+1⊖y1 ···

⃝ ⃝
···

...
... ···

⃝ ⃝
··· ti⊖yn ⃝ ti+1⊖yn ···�
 �	ηi

w

�
 �	ηi+1
w

=

�
 �	θi
v

�
 �	θi+1
v

··· ti+1⊖y1 ⃝ ti⊖y1 ···

⃝ ⃝
···

...
... ···

⃝ ⃝
··· ti+1⊖yn ⃝ ti⊖yn ···

⃝ ⃝
ti ⊖ ti+1�
 �	ηi

w

�
 �	ηi+1
w

(5.7)
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We first consider the partition function of the right model in (5.7). The assumption
siw > w implies 0 < ηi

w < ηi+1
w . Notice also that ηsiw is obtained from ηw by in-

terchanging ηi
w and ηi+1

w . In view of Table 4, there are two admissible configurations
for the R-matrix Rcol (one is from B1 in Table 4, and the other is from C in Table 4),
corresponding respectively to the models L(u, v,w) and L(u, v, siw). So the partition
function of the right model in (5.7) is

Zw
u,v|ti↔ti+1

+ (ti ⊖ ti+1)Z
siw
u,v |ti↔ti+1

. (5.8)

We next consider the partition function of the left model in (5.7). There are two
cases.

Case 1. siv < v. In this case, notice that k < θi+1
u < θi

u or 0 = θi+1
u < θi

u, and that θsiv

is obtained from θv by interchanging θi
v and θi+1

v . By Table 4, for either k < θi+1
u < θi

u

or 0 = θi+1
u < θi

u, there are two choices for the configurations of Rcol (one is from
B2, and the other is from C), corresponding respectively to the models L(u, v,w) and
L(u, siv,w). So, the partition function of the left model in (5.7) is

(1+ β(ti ⊖ ti+1))Z
w
u,v + (ti ⊖ ti+1)Z

w
u,siv

. (5.9)

Equating (5.8) and (5.9), we deduce that

Zsiw
u,v |ti↔ti+1

=
1+ β(ti ⊖ ti+1)

ti ⊖ ti+1

Zw
u,v + Zw

u,siv
−

1

ti ⊖ ti+1

Zw
u,v|ti↔ti+1

=
1+ βti

ti − ti+1

Zw
u,v + Zw

u,siv
−

1+ βti+1

ti − ti+1

Zw
u,v|ti↔ti+1

,

which, after the variable exchange ti ↔ ti+1, becomes the first equality in (5.6).
Case 2. siv > v. In this case, i appears before i + 1 in v. So we have 0 = θi

v = θi+1
v ,

or 0 = θi
v and k < θi+1

v , or k < θi
v < θi+1

v . By Table 4, for each of these situations,
there is exactly one admissible configuration (from A or B1) of Rcol, and we see that
the partition function of the left model in (5.7) is precisely equal to Zw

u,v. By equating
with (5.8), we obtain that

Zsiw
u,v |ti↔ti+1

=
1

ti ⊖ ti+1

Zw
u,v −

1

ti ⊖ ti+1

Zw
u,v|ti↔ti+1

=
1+ βti+1

ti − ti+1

Zw
u,v −

1+ βti+1

ti − ti+1

Zw
u,v|ti↔ti+1

.

After the variable exchange ti ↔ ti+1 on both sides, we reach the second equality in
(5.6). □

5.3. Initial condition. We finally verify the initial case for u0 (as defined in (3.4)) and
w = id.

Theorem 5.3. For v ∈ Sn, we have

Zid
u0,v

=


k∏

i=1

n−i∏
j=1

(ti ⊖ yj), if v = id,

0, otherwise.

(5.10)
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Proof. Here, we go back to the pipe puzzle model PP(u0, v, id) for the computation of
Zid
u0,v

. The boundary condition is illustrated in the left diagram in Figure 2. Evidently,

θ1
v θ2

v · · · θk
v θ

k+1
v · · · θn

v

· · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

· · · · · ·
· · · · · · k

· · · · · · · · · · · · · · · · · · · · · ...
· · · · · · 2

· · · · · · 1

1 2 · · · k k+1· · · n

k+1· · · n

· · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

· · · · · ·
· · · · · · k

· · · · · · · · · · · · · · · · · · · · · ...
· · · · · · 2

· · · · · · 1

1 2 · · · k k+1· · · n

FIGURE 2. Boundary condition and the unique pipe puzzle in PP(u0, id, id).

the pipes labeled k+1, . . . , n must go vertically from the top side down to the bottom
side. So we have Zid

u0,v
= 0 whenever v ̸= id. It remains to check the case v = id. It

is easily checked that there is exactly one pipe puzzle in PP(u0, id, id), see the right
diagram of Figure 2. This pipe puzzle contributes a weight as displayed in (5.10). □

6. APPLICATIONS

We list three main applications of Theorem 2.6. The first application is to recover
the puzzle formula discovered by Knutson and Zinn-Justin [12, Theorem 1].

6.1. Separated-descent puzzles. Consider (1.1) by setting y = t:

Gu(x, t) ·Gv(x, t) =
∑
w

cwu,v(t, t) ·Gw(x, t).

Assume that u, v ∈ Sn have separated descents at k. For w ∈ Sn, a pipe puzzle
π ∈ PP(u, v,w) has weight zero if and only if π has (at least) one empty tile
on the diagonal. This implies that cwu,v(t, t) is a weighted counting of pipe puzzles
π ∈ PP(u, v,w) such that π has no empty tile on the diagonal. For such pipe puzzles,
we have the following observation:

• Each position on the diagonal is tiled with either or , and each position
lying strictly to the southwest of the diagonal is tiled with .

This can be checked as follows. First, the tile at the position (1, 1) must be tiled
with either or since (1) the tile cannot be empty, and (2) the labels on the left
boundary are all 0. Therefore, all positions below (1, 1) in the first column must be
tiled with . The same analysis applies to the remaining positions (2, 2), . . . , (n,n).

Let π ∈ PP(u, v,w) be a pipe puzzle without empty tile on the diagonal. Cut π
along its diagonal into two triangles, and denote by P(π) the upper-right triangle. By
the above observation, π can be recovered from P(π). To get the puzzle visualization
of Knutson and Zinn-Justin [12, Theorem 1], we rotate P(π) counterclockwise by 45
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degrees, and then warp it into an equilateral triangle. If further assuming that u and
v are both k-Grassmannian, there is a bijection to the classical Grassmannian puzzles,
see [12, §5.1] for more details.

Example 6.1. Consider the pipe puzzles in Example 2.7. The following four puzzles survive
after setting y = t.

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

5 4 3

2

1

4 5 2 3 1

Their upper-right triangular regions are

5 4 3

4@@

5@@ 2

2@@

3@@ 1

1@@

5 4 3

4@@

5@@ 2

2@@

3@@ 1

1@@

5 4 3

4@@

5@@ 2

2@@

3@@ 1

1@@

5 4 3

4@@

5@@ 2

2@@

3@@ 1

1@@

After rotation and warping, the corresponding puzzles are

@@ @@ @@ @@ @@

3

2

4

5 1

4 5 2 3 1 @@ @@ @@ @@ @@

3

2

4

5 1

4 5 2 3 1 @@ @@ @@ @@ @@

3

2

4

5 1

4 5 2 3 1 @@ @@ @@ @@ @@

3

2

4

5 1

4 5 2 3 1

In the second application, we explain that Theorem 2.6 could be used to recover the
bumpless pipe dream model of double Grothendieck polynomials by Weigandt [22].

6.2. Bumpless pipe dreams. Let k = n and v = id. In this case, arbitrary u ∈ Sn

satisfies the separated-descent condition in (1.2). By Lemma 3.3,

cidu,id(t, y) = Gu(t, y).

Let π ∈ PP(u, id, id). Then all pipes enter into π from the right side. Apply the
following operations to π:

• reflecting π across the diagonal;
• replacing κi

u = u−1(i) by i, and ηi
w = i by u(i).

The resulting diagram is denoted as B(π). Write

BP(u) = {B(π) : π ∈ PP(u, id, id)}.

By the restriction (2.5) on along with the restriction (2.8) on , it can be checked
that for a diagram in BP(u): (1) two pipes cross at most once, and (2) if two pipes have
a “bumping” at position (i, j), then they must cross at a position to the northeast
of (i, j). This implies that the set BP(u) is precisely the set of bumpless pipe dreams
of u, as defined in [22].
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Remark 6.2. As bumpless pipe dreams in BP(u) are obtained from pipe puzzles in PP(u, id, id)
after a reflection, a tile at position (i, j) is assigned a weight in the following way:

(1) an empty tile contributes ti ⊖ yj;
(2) an elbow tile contributes 1+ β(ti ⊖ yj);
(3) a bumping tile contributes β;
(4) any other tile contributes 1.

The weights described above are slightly different from the weights adopted in [22]. It seems
that when setting β = 0, the weights we used imply more explicitly the bumpless pipe dream
model of double Schubert polynomials due to Lam, Lee and Shimozono [13].

Example 6.3. Let u = 32514. Below are pipe puzzles in PP(u, id, id).

4
2
1
5
3

1 2 3 4 5

4
2
1
5
3

1 2 3 4 5

4
2
1
5
3

1 2 3 4 5

4
2
1
5
3

1 2 3 4 5

After reflection and relabeling, the resulting bumpless pipe dreams of u are

3
2
5
1
4

1 2 3 4 5

3
2
5
1
4

1 2 3 4 5

3
2
5
1
4

1 2 3 4 5

3
2
5
1
4

1 2 3 4 5

We finally apply Theorem 2.2 to investigate a conjecture posed by Kirillov [8].

6.3. Kirillov’s conjecture. Let us restrict to Schubert polynomials. Setting β = 0, the
operator πi is usually denoted as ∂i:

∂if =
f− f|xi↔xi+1

xi − xi+1

.

The operator ∂i is also called the divided difference operator. For w ∈ S∞, define ∂w =
∂i1 · · ·∂iℓ for any reduced decomposition w = si1 · · · siℓ(this is well defined since the
∂i’s satisfy the braid relations). It can be deduced that [8, Proposition 2]

∂wSu(x, t) =

{
Suw−1(x, t), if ℓ(uw−1) = ℓ(u) − ℓ(w),

0, otherwise.
(6.1)

The skew operator ∂w/v is characterized by

∂w(fg) =
∑
v

(∂w/vf)(∂vg). (6.2)

See [8, Definition 4] for a more concrete description of ∂w/v. Kirillov [8, Conjecture
1] conjectured that for any u, v,w, the polynomial ∂w/vSu(x) has nonnegative integer
coefficients:

∂w/vSu(x) ∈ Z≥0[x1, x2, . . .].



BUMPLESS PIPE DREAMS MEET PUZZLES 21

Setting y = 0 in (2.3) yields that

Su(x) ·Sv(x, t) =
∑
w

c̄wu,v(t, 0) ·Sw(x, t). (6.3)

Proposition 6.4. We have
∂w/vSu(x) = c̄wu,v(x, 0).

Proof. Apply ∂w to both sides of (6.3), and then take the specialization x = t. In
view of (6.1), (6.2) and the localization formula in (3.3) (which is still valid for double
Schubert polynomials), the left-hand side becomes ∂w/vSu(x), and the right-hand side
is left with c̄wu,v(x, 0). □

Setting y = 0 in Theorem 2.2, we arrive at the following conclusion.

Corollary 6.5. Let u, v ∈ Sn be permutations with separated descents. Then

Su(x) ·Sv(x, t) ∈
∑
w

Z≥0[t] ·Sw(x, t).

Combining Proposition 6.4 with Corollary 6.5 enables us to confirm Kirillov’s con-
jecture for permutations with separated descents.

Corollary 6.6. Kirillov’s conjecture is true for u and v with separated descents and arbitrary
w.

APPENDIX A. LEFT DEMAZURE OPERATORS

Recall that the (left) Demazure operator ϖi and φi are as defined in Section 3.

Proposition A.1. We have

ϖiGw(x, t) =

{
Gsiw(x, t), if siw < w,

−βGw(x, t), if siw > w.
(A.1)

A geometric proof of Proposition A.1 can be found in [15]. Here, we provide an
algebraic proof. To this end, we need the Hecke product on permutations:

si ∗w =

{
siw, if siw > w,

w, if siw < w,
and w ∗ si =

{
wsi, if wsi > w,

w, if wsi < w.

This defines a monoid structure over S∞ called the 0-Hecke monoid.

Proof of Proposition A.1. Let w0 = n · · · 21 be the longest element in Sn. For w ∈ Sn,
denote

Gw(x, t) = Gw0w(x, t).

Then (2.1) can be rewritten as

πiG
w = (−β)ℓ(w)+1−ℓ(w∗si)Gw∗si . (A.2)

Note that the identity in (A.1) can be restated as

ϖiG
w = (−β)ℓ(w)+1−ℓ(sn−i∗w)Gsn−i∗w. (A.3)
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We prove (A.3) by induction on the length of w. When ℓ(w) = 0 (namely, w = id),
it follows from direct computation that

ϖiG
id(x, t) = ϖiGw0

(x, t) =
∏

a+b≤n
(a,b) ̸=(n−i,i)

(xa ⊖ tb),

which coincides with Gsn−i(x, t) = Gw0sn−i
(x, t) = πn−iGw0

(x, t).

For ℓ(w) > 0, one can find an index j such that wsj < w, and so by induction,

ϖiG
w = ϖiπjG

wsj = πjϖiG
wsj = (−β)ℓ(wsj)+1−ℓ(sn−i∗wsj)πjG

sn−i∗wsj

= (−β)ℓ(wsj)+1−ℓ(sn−i∗wsj)(−β)ℓ(sn−i∗wsj)+1−ℓ(sn−i∗wsj∗sj)Gsn−i∗wsj∗sj

= (−β)ℓ(wsj)+2−ℓ(sn−i∗w)Gsn−i∗w

= (−β)ℓ(w)+1−ℓ(sn−i∗w)Gsn−i∗w.

Here, we used (A.2) in the first and fourth equality, and used the fact that the opera-
tors πj and ϖj commute in the second equality. □

Now, we can present proofs of Propositions 3.1 and 3.2.

Proof of Proposition 3.1. Assume that siu < u. Applying φi to (1.1), by Proposition A.1,
the left-hand side is

Gsiu(x, y) ·Gv(x, t) =
∑
w

cwsiu,v(t, y) ·Gw(x, t).

While the right-hand side is ∑
w

φic
w
u,v(t, y) ·Gw(x, t).

Comparing the coefficients of Gw(x, t), we are given cwsiu,v = φic
w
u,v, as desired. □

Proof of Proposition 3.2. Apply ϖi to (1.1). By Proposition A.1, the left-hand side is{
Gu(x, y) ·Gsiv(x, t) =

∑
w cwu,siv(t, y) ·Gw(x, t), siv < v,

−βGu(x, y) ·Gv(x, t) =
∑

w −βcwu,v(t, y) ·Gw(x, t), siv > v.

To compute the right-hand side, we use the following property of ϖi:

ϖi(fg) = (f|ti↔ti+1
)(ϖig) −

1+ βti

ti − ti+1

(f− f|ti↔ti+1
)g. (A.4)

By (A.4) and Proposition A.1, the right-hand side is∑
w

ϖi

(
cwu,v ·Gw(x, t)

)
=

∑
w

(
(cwu,v|ti↔ti+1

)ϖiGw −
1+ βti

ti − ti+1

(cwu,v − cwu,v|ti↔ti+1
)Gw

)
=

∑
siw<w

(
(cwu,v|ti↔ti+1

)Gsiw −
1+ βti

ti − ti+1

(cwu,v − cwu,v|ti↔ti+1
)Gw

)
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+
∑

siw>w

(
−β(cwu,v|ti↔ti+1

)Gw −
1+ βti

ti − ti+1

(cwu,v − cwu,v|ti↔ti+1
)Gw

)
= −

∑
siw<w

1+ βti

ti − ti+1

(cwu,v − cwu,v|ti↔ti+1
)Gw

+
∑

siw>w

(
csiwu,v |ti↔ti+1

− βcwu,v|ti↔ti+1
−

1+ βti

ti − ti+1

(cwu,v − cwu,v|ti↔ti+1
)

)
Gw

= −
∑

siw<w

1+ βti

ti − ti+1

(cwu,v − cwu,v|ti↔ti+1
)Gw

+
∑

siw>w

(
csiwu,v |ti↔ti+1

−
1+ βti

ti − ti+1

cwu,v +
1+ βti+1

ti − ti+1

cwu,v|ti↔ti+1

)
Gw.

Extracting the coefficients of G(w) with siw > w on both sides, we deduce that

csiwu,v |ti↔ti+1
=

1+ βti

ti − ti+1

cwu,v −
1+ βti+1

ti − ti+1

cwu,v|ti↔ti+1
+

{
cwu,siv, siv < v,

−βcwu,v, siv > v,

which coincides with (3.2) after the variable exchange ti ↔ ti+1. □
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