MORE INEQUALITIES FOR THE OVERPARTITION FUNCTION
SU-PING CUI, NANCY S.S. GU, AND QIAN WANG

ABSTRACT. Finding truncated identities is an efficient way to derive inequalities for par-
tition functions. This method was initiated by Andrews and Merca in 2012 and has
flourished since then. In this paper, in view of a transformation formula due to Bailey,
and combining two new Bailey pairs and an identity given by Wang and Yee, we find some
new truncated identities which imply more inequalities for the overpartition function.

1. INTRODUCTION

Here and throughout the paper, we assume that |¢| < 1. The g-shifted factorials are
defined by [9]

[e.9]

L . wa) e W@
(a7 Q)OO T ]H)(l q ) d ( 7Q)7L : (aqn;q)oo7 < L.

For convenience, the multiple ¢-shifted factorials can be written as

(a1, a9, ... am; Qn = (a1;¢Q)n(a2; On -+ (Qm; @n,

where n is an integer or infinity. Moreover, the ¢-binomial coefficient is given by

m N [ZL - (q;qus(g;) ;)n—k

The basic hypergeometric series ¢, is defined as [9]
ai, as a, > ((11 ag, ...,0.; Q)k k (k:) 1+s—r k
y yoo ey g,z _ ) ) 9 ) _1 2 ) P
r(bs b17b2)~.-7b5 4 ;(q,bl,bg,...,bs;q)k (( ) 4
A partition of a positive integer n is a finite nonincreasing sequence of positive integers

A1, A2, ..., A such that Ay + Ao + -+ + A\, = n. Let p(n) denote the number of partitions
of n and the generating function of p(n) is stated as

zp 1

T (@9

In 2004, Corteel and Lovejoy [3] mtroduced the definition of overpartitions. An overpar-
tition of n is a partition of n in which the first occurrence of each number may be overlined.
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For example, there are 8 overpartitions of 3: 3,3,2+1,2+1,2+1,2+1,1+1+1 and
1+ 1+ 1. Let p(n) be the number of overpartitions of n and p(0) = 1. We always set
p(n) = 0 if n is a negative integer. Then the generating function of p(n) is given by

ZP _ —dq,; Q) ' (1‘1)

(¢ 9o

In the literature, the study on inequalities for different kinds of partition functions at-
tracted lots of attention. Recall Euler’s pentagonal number theorem |[3] which is stated
as

o

Z(_l)nqn(3n+1)/2(1 — ) = (5 ). (12)

n=0

In 2012, Andrews and Merca || established the following truncated version of (1.2):

Ea
Ju

1

1N\ BiHD) /201 2541 k: L q +(k+1 1
: ! 1.3
(—1)’q (1—¢7) = Z k - 13)

As a corollary, they deduced the infinite family of inequalities for p(n), namely,

(=) ' (=1)7(p(n — j(3j +1)/2) — p(n — §(3j +5)/2 — 1)) > 0.

Since then, seeking truncated identities has become a very useful way to study inequalities
for partition functions. Motivated by Andrews and Merca’s work, Guo and Zeng |10] proved
the truncated forms of the following two identities due to Gauss:

1+ 2%(—1)]@]2 = —<(q; Dee , (1.4)

00 2. .2
S (11— ) = %, (1.5)
= (—4: %)

For instance, they obtained that

(R <1+22 ) Sy CECh e [n;l} (1.6)

(q @)oo S (4 9)n

which implies the infinite family of inequalities for p(n):

(-1 ( +2Z n—j))zo.
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In addition, Andrews and Merca [1] and Guo and Zeng [10] independently posed the
following conjecture: for m,n, k> 1 and 1 <r <m/2,

(=D > (=1 (T = j(mj +m = 2r)/2) = Jp(n = (5 + 1)(mj +2r)/2)) > 0

(1.7)

where

> Jma(n)q" = e !
n=0

(@ q" " 4™ 4™ )0
This was confirmed by Mao [11] and Yee [21]. Later, Wang and Yee [15]| reproved this

conjecture by providing an explicit formula which is analogous to (1.3) and (1.6). In
particular, taking m = 2 and r = 1 in (1.7) yields that

(D) (=17 (p(n — 5%) = pln — (j +1)%)) > 0. (1.8)

Recently, Xia et al. [19] established some new truncated identities related to (1.2), (1.4)

and (1.5) by using a g¢-series expansion formula due to Liu [12|. For instance, they estab-
lished that
k-1 o .
(_q. Q)oo ] g 2 —qq k k+]+2 q) q k(k+j+1)
AL VAt _1J1_qj+ q]+]:1+ ) ’ 7
(45 4)oo ;( " ) -1 (45 @)i—1 ]Z: (¢FH772; ¢)o
and then deduced that
k
p(n —k(k+ 1)) + (=1)* " > (=1)B(n — 5°) > 0.
j=—k
Very recently, in view of a Bailey pair due to Lovejoy [13], Yao [20] derived several
generalized truncated identities which include some known truncated forms of (1.2), (1.4)
and (1.5) [1,10,19] as special cases. For example, it is shown that
q’ OO n T n r—1)n
Z 2 +2 +1)<q +1. q)% 2(] n?+(r—1)
n=0
—q:q . -1 k—1 > _qk—l—n-i—r; q ooqk(k—i—r-‘rn—l)
— (g + )’“T e = )= L
(Q7 Q)kfl n—0 (q ) q>oo

which implies the following inequalities for p(n): for £k > 1 and n > r(r — 1)/2,

k—1

(DY (=" (6 5)p(n — i — (r — 1)i — j) >0,

i=0 §>0
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where
D (i )g = (1= ) (g™ @)oo
720
In addition, Wang and Yee [16] investigated truncated forms of Hecke-Rogers type series
and derived three infinite families of inequalities for some interesting partition functions.
For more on truncated identities and inequalities for partition functions, one can see |5, 11,
Y ) ]'
Inspired by the aforementioned work, the aim of this paper is to establish more truncated
identities and then derive some new inequalities for the overpartition function p(n). The
main results are stated as follows.

Theorem 1.1. Form >0, ift >0 and r > 4t + 1, then

m

—q;4)x n n-+r n n n? n
(< . >) (_1> (1 _q2 * )(q H?Q)rfl(_q +2t+1;Q)r74t71q 2

G Qoo =

= (=g )i~ 6P,
= (=¢; Q)21 + (=1)"q"" ) (—q; ¢)r 241
i7j7i17;,it:0 (% ¢*)i(¢* ¢%);
X 22D G (2 2)ia (24 )iz 4t {Z tithutntctu—1 (1.9)
m .
q

ift >1 andr >4t — 1, then

—4,4)x = n n-+r n n n? n—mnm
—((q. q)> D =DM =)@ eoa (0" Qs

n=0
oo

= (¢ Qr2+ (D" (=g e D

,J581,82,-++,8t=0

(=77 ¢%)i(—¢" " ¢%);
(2% 4%)i(q% 4%);

(2m-2r42)i+ (241) 42t +(2t4+2)ia -+ (4—2)iy {Z tithnti At tu -1 (1.10)

m
q2

X q

Corollary 1.2. Form >0,k >0,r >2k+1 andn > (Tgk), then

(—1)mZ(—1>iZbk,M(y‘>z—o<n—z’“’ — ki —j) >0, (1.11)

where
D brri(Nd = 1= )G @) (= )2k
Jj=>0
Notice that letting £k = 0 and 7 = 1 in Corollary 1.2 yields (1.8). Furthermore, by setting

different values of m, k and r, we may establish more inequalities. For example, taking
(m,k,7)=(0,2,5) and (0,1,5) in Corollary 1.2, we derive that

p(n) =p(n —1) =p(n = 2) +p(n = 5) +p(n — 6) + p(n —7) —=p(n — 8) = p(n - 9)
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—p(n—10) +p(n —13) +p(n — 14) —p(n — 15) > 0,

P(n) — Pln — 1) — 2p(n — 4) + Pln — 5) + p(n — 7) + B(n — 8) + Bln — 9) — p(n — 11)

—p(n—12) = p(n — 13) — p(n — 15) 4+ 2p(n — 16) + p(n — 19) — p(n — 20) > 0.
Theorem 1.3. Form >0 andr > 1,

q q 00 Z 4n+2r)(q2n+2; q2>T71qn2fn

= (1) g, Y

i=m

T
Corollary 1.4. Form >0 and r > 1,

(-1 Z Zcrz pln—i*+i—j) >0,

1=0 7>0
where

D eil)d = (1= ") ¢
Jj=0
For example, setting »r = m = 2 in Corollary 1.4, we have
p(n—6) —p(n —12) — p(n — 14) + p(n — 20) > 0.
Theorem 1.5. For m > 0,

14 qn+l)qn(n+1)/ n

—q; @)oo 4r42\ r(r—3)/2
E E (1-¢"")q
q q n=0 1 + q r=0

— (= 1)mglm )2 Z Z oIk {k‘ + J} (1.13)
m

k=0 7=0

Corollary 1.6. For m > 0,

M
E?

pn—i(i+1)/2—7j) >0,

Z—O j>0
where
(14 gt ! N
Zd _T) (1—q4 +2)q( 3)/2
j>0 q r=0

For instance, setting m = 2 in the above Corollary yields that
2p(n —5) —=p(n —8) +p(n—9) —p(n — 10) — p(n — 12) + p(n — 13) — p(n — 14) > 0.

This paper is organized as follows. In Section 2, some preliminaries are provided. In
Section 3, based on a transformation formula due to Bailey, we prove Theorem 1.1 and
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Corollary 1.2. Furthermore, combining two new Bailey pairs constructed in Section 2 and
an identity given by Wang and Yee, we prove Theorems 1.3 and 1.5. Then Corollaries 1.4
and 1.6 follow immediately.
2. PRELIMINARIES
In this section, we give some preliminaries which will be used to prove the main results.
Lemma 2.1. [9, Appendiz (I1.2)] (The q-binomial theorem)
3 (@0 _ (050 ) (2.1)

— (¢ On (25 @)oo

Setting a = ¢~™ in (2.1) yields that

S-S — (i), (2:2)
—~ (g:q
In addition, the following identity [9] is frequently used.

(207" )0 = (a/ 2 @)n(—2/0)"q """V,

The next transformation formula is due to Bailey.

Lemma 2.2. [0, Eq. (6.1)] We have

S~ (P12 )n(—aq/b; Q)an (@2 \" (2P /p1. @*FP ) p2; 4P)oo
> () =

@2, a2q?/b% ¢2)n(—aq; @)an \ p1p2 a’q?, a?q*/ p1p2; ¢%) o

(1 . Z (1— ag® aq, Qn_1(b; q);(ﬂné%;f% < a’q? >nqn2) . (2.3)

= (q,aq/b;q)n(a®¢*/p1,a*q*/ p2;@*)n  \ p1p2b
Lemma 2.3. We have
— (1= ag®)(a,b;q)n fa\™ 2
;% (1 —a)(q,aq/b; Q)n <5>

_ (—1)mqm(’”“)( 2)m2m: g ", a* "2 ¢%)(—aq/b; q)an
(% ¢%) — (@ @/ ¢P)n(—ag; q)2n

(=

(2.4)

Proof. First, setting p; = ¢~*™ in (2.3), we obtain that

(077", 023 6%)n(—aq/b; q)2n ( 2q2""+2) _ (@*@/p2:¢)m
(q2,a%q? /% ¢%)n(—aq; q)on P2 (a?¢% ¢*)m

1+Z (1 — aq®)(aq; Q)n-1(0; Q)n (g™, p2: @) (@ @™ T2\" o
(g, aq/b;q)n(a2¢>™+2, a2q%/ p2; ¢*)n pab '

n=1

n=0
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Then letting p; = a?¢*™2 in the above identity yields that

> e (i

— (@ P/ ¢P)n(—ag; @)n

@) (1 — aq®)(aq; Qn-1(b;q)n fa\" 2
_ 1+ y) ¢
(a2q q Z Q>CLQ/b ‘J) <b>
B (—1)mq_m(m+1 (q2, q - Z 1 — aq aq- q)n 1(b; Q)n (g)nqng
(a2q2;q2 " q,GQ/b Q> b

)
)
(—1)mq*m(m“)(q2,q Jm (L= ag®)(a,biq)n (ay™ 2
- ) nz;; 1—a) q,aQ/bq) <5) '
This completes the proof. U
Definition 2.4. [2| A pair of sequences («,, 3,) is called a Bailey pair relative to (a, q) if
o, and (3, satisfy the following identity:

n

(678
o= z; (4 9)

rhr(aq; Q)nJrr‘ '

Moreover, for a Bailey pair relative to (a,q), Andrews [1] gave the following identity:

Ay =

(=1)"(1 — ag®)(a; @)ng"" V2 S,
(1 —a)(g;q)n 2

Based on a ¢-series expansion formula due to Liu [12, Theorem 9.2], Wang and Yee |15]
derived the following lemma.

" aq";q);q B;. (2.5)

J=0

Lemma 2.5. [/5, Lemma 2.1] For a Bailey pair (o, ) relative to (a,q) and m > 0,
there holds

( 1)mqm(m+1 /2 m

el (a4: @) Z b= (2.6)

Lemma 2.6. [7, Theorem 2.1] If (o, 8,) is a Bailey pair relative to (a,¢?), then (o, )
is a Bailey pair relative to (a,q), where

(—B;q)

o = n_pn 7n(n71)/2an’

" (“ag/Big)n ¢

g _i (_GQQQ>2k(Bz§ ) (g k/B Bq*t, @) k- k —k(k— 1/25
B (—aq/B, B; )n(@% ¢*)n—r

Based on the above lemma, we derive the following Bailey pair.
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Lemma 2.7. The pair of the sequences (a,, By) forms a Bailey pair relative to (a,q), where

(=1)"(1 — a®q*)(a% ¢*)ug" "
(1 —a?)(% ¢*)n ’

n

ay =

_T
(% ¢*)n
Proof. Recall the unit Bailey pair (a,, 8,) relative to (a,q) |2]

_ (=D"(L — ag®)(a; q)ug" "~V

671:

an - Y
(1 —a)(g; ¢)n
Bn = 5n,07
1, n — O . 2 2 . . .
where 0,0 = 0 n>0" Replacing a, ¢ by a” and ¢°, respectively, we obtain the Bailey

pair (@,, 3,) relative to (a2, ¢?), where

_ (_1)n(1 _ a2q4n)(a2; q2)nqn2—n

e (1 - a?)(¢* ¢*)n ’

Bn - 57170'
Then substituting the above Bailey pair into Lemma 2.6 and letting B — oo, we derive
the desired Bailey pair. O

Lemma 2.8. /7] For any nonnegative integer n,
zn: (1 B a2q4r)(q_n7_Bap1>p2;Q>T (aqn+1 )7"
— (1 —a*)(aq"*", —aq/B,aq/p1,aq/p2; ¢)r \ Bp1p2

(aq, aq/p1p2; @)n (q " Bq 1 P2 1/B )
— ’ ' ’ _’n ; q, . 2.7
(aq/pl,aq/pzsq)n5¢4 —aq/B, B, pipsq)a, —q T4 (2.7)

From (2.7), we construct the following Bailey pair.

Lemma 2.9. The pair of the sequences (o, B,) forms a Bailey pair relative to (a, q), where

(_1)n(1 _ CL(]Qn)(CL/pl; q)np?qn(n—l)ﬂ n (1 _ a2q4r—2)<p1; q)rqr(r—l)/Q

oy =

(1 —a)(pig;@)n —~  (1—a*q¢?)(a/p1; )P}
 (prnd"
o= (4,014, —@ @Q)n (2:8)

Proof. Combining (2.5) and (2.8), we have

o = (D" = ag®)(a;q)ug" "D
' (1= a)(g; a)n

n

(¢ aq", p1;9) ;4%
(¢, 19, —4; q);

J=0
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Then letting py = ag™** and B — oo in (2.7), we obtain that

n

Z": (1—a*¢")(p1;0):¢"" V2 (ag,p1¢; @) z”: (¢ aq™™, p15q) ;4%

—  (=a)(ag/pria)hpt  (ag/pr.q:anpt = (@010~ 0);
Next, setting a — ag~! in the above identity yields that
i (7" aq", p1;0);4* _ (a/p1,q; q)npni (1 —a*¢" ) (p1;q)rg "2
~ (0.m0—09); (@ maan = (1= a2q2)(a/p1;q)rp)

Finally, substituting (2.10) into (2.9), we complete the proof.

3. PROOFS OF THE MAIN RESULTS

In this section, we prove the main results.

Proof of Theorem 1.1. For m,t > 0 and r > 4t + 1, letting (a,b) = (¢", —¢"~%) in

we have
i 2n+r)(qr’ _qriﬂ; Q)n (_1>nqn2+2tn
—~ (1=q)(g,—*"5q)n
_ (_1)mqm(m+1)(q2r+2 m Zm: —2m 2m+27"+2 q2t+1’q2t+2’q )
(4% ¢*)m — (g q‘”+2 ¢*)n(=q"""; 0)2n
Notice that when 0 <t <n —1,
(q2t+2 @)n (q2t+2 7). (q4t+2 ) (¢%+2; ¢ )
(q4t+2’q2>n - (q4t+2’q2)n_t(q2n+2t+2’q2)t - (q2n+2t+27q2)t’
when t > n,
<q2t+2’ q ) _ (q2t+27q ), (q2n+2t+2’q Yin _ (q2t+2; 7).
(q4t+2’q2)n (2242 2), (222 ¢2), (222 ¢2),
So, for t > 0, there always holds
(%) (@

(@2 @), (@),
Therefore, substituting (3.2) into (3.1), we obtain that

i(l—q%*”)(q, —q"2 Q) (—1)ngn+am
—~ (1-q)(a, - )

(=Dt EX (g7, 2 0 (P @) e (P 0P
o (qz.q2> (q2'q2) ( 7~+1 ) 2n+2t+2 )t
) m ’I’LZO )

n(q
B (—1)mqm(m“)( g g q), i ‘2m,q2t+1,q )0 (@2 @) msn
- ( 2)m ( r+1 ) (q2n+2t+2 q )t'

n—=

(2.10)

O

(2.9),

(3.2)
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Then multiplying by (¢; ¢).(—¢*"™;q),_4_1 on both sides of the above identity, we arrive

at

m

Z<_1)n(1 o q2n+r>(qn+1;q)ril( qn+2t+1 q>r7 7lqn 242tn

n=0

(=1)"¢™ ™D (q: 0)r (¢ vz (5D o= (@72, 2 6206 6P i

Qa oo Z 2n+T)(qn+1;Q)r_1( qn+2t+1 q)r_ _1(] n2+42tn
n=0
_ (—q B0 (D)7 (=g ) s (0" )
(q q2'r+2. q2>oo <q2 q2)m

—2m 2t+1 2r+2.

XZ 7q 7Q) (q aQ>m+n
q q r+1 q) (q2n+2t+2. q2)

_ (—1)mqm(m“)(—qt“; q)r—3i-1(4"": q):
(4% @®)m(q; ¢%):

t

2n+r+1’ q)

" Z (2™ ¢*)n(—q
— (qZ’ q2>n<q2m+2n+2r+27 q2n+2t+1; q )Oo(q2n+2t+2; q2)t
_ (=" (=g q)r a1 (45 @)
(¢% ®)m (@ )45 )
y Zm: —Qm’q ) ( q2n—|—7‘+17 _q2n+7‘+27q )
q q 2m+2n+2r+2’ q2n+2t+1; q2)oo(q2n+2t+27 q2)t :

n=

Notice that
(0" Qs (@ @2 _ (=" @)r—5-1(0, % )
(@:4*)e(q: q)e (@:4°)e(q: 0)e
Furthermore, based on the ¢-binomial theorem (2.1), we have

—2m—r. 2) .
47 )i q(2m+2n+2r+2)i
Y

(=" ¢%) 0 i (—q
(gZmrantart2; g2) = pa (42 ¢%);
(=2 g?) o i M (2n+2t+1);
<q2n+2t+1;q2) (qQ;q2>] ¢ .

J=0

Meanwhile,
t

1 (2n4-2t425)is
(g2 26+2; g2), - H 1_ q2n+2t+2s H Z " 7

s=1 s=11s=0

= (_QS Q)T72t71-

(% ¢*)m = (q% ¢%)n(—q"1 @)2n (@2 %)

Next, multiplying by (—¢;9) o/ (4; @)oo o1 both sides of the above identity yields that

(3.7)
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Hence, substituting (3.4)-(3.7) into (3.3) yields that

m

q q n—+r n n n n
Z 2 + )(q +1;Q)r—1( q +2t+1, Q)r— 14 242t
_ (—1)mqm(m“) — 0 @)r-2t-1 i ‘2m;q2)n i (a7 @i omsonsorioy
(% ¢*) — (%), = (65
i q q 2 2t+1) ﬁi (2n42t+25)
% ) n+2t+1)j q n+2t+2s)is
3=0 s=11is=0
_ (=1)mq™ mH)( ¢ qQ)r—2t-1 i (—q 2" 2)'q(2m+2r+2)i
(g% %) —~ (%)
= 7q 2t+1)]HZ (2t+2s)is = - 7q n 2n(z+]+21+12+ +it)
XZ: q 2:
7=0 s=11is=0 n=0
( "q™ mH)( ¢ qQ)r—2t—1 Z (—q aqz)z (2m+2r+2) zi q- (2t+1)
(q q ) i=0 ( )'L ]:0 ]
t oo
> H Z q(2t+2s)i5 (q2(i+j+i1+i2+~~+it—m); q2)m, (38)
s=11is=0

where the last equality follows from (2.2). Let
h=i+j+i +ig+ - +i

Then according to

(q2h o . ) (_1)mq—m(m+1)’ h = 0’
i _ g, 1<h<m, (3.9)
(4% 6*)m 1.0, h>m+ 1,

the identity (3.8) implies (1.9).
For m > 0,¢t>1and r > 4t — 1, letting (a,b) = (¢", —¢"*™') in (2.4), we have

)

r—2t+1.

2n+7")( ) Q)n (_1)n n242tn—n

q,—q
~  (1=q)¢ =)

q

( 1)mqm(m+1) (q2r+2 m m 72m 2m+2r+27q2t q2t+1’q )
_ _ Z - — . (3.10)
(4% ¢*)m — (a0 )2
Notice that
(@) _ (=)@ ¢ (1=¢") (5% (54" (3.11)
("¢ (1 —q")(¢**?q )n—l (1=q¢*) (@ *56%) (5 ¢%):
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where the second equality follows from (3.2). Thus, substituting (3.11) into (3.10) yields
that

m 2n+r r—2t+1.
Z (q y —q q)n(_l)nqn2+2tn7n
— 1 — ') ¢ —*;@)n
_ (=mgromty Em: *Qm,q%ﬂq )n(@* % @) min (5 0%
(% P)m = (=" @)2n(g* 25 ¢%),
_ (—1)mqm(m+1’(—qt7qt;Q)t Zm: (@ 6@ 6 men
(¢*6*)m = (% P)n(—a" 5 @)2n (125 ¢%):

Then multiplying by (¢; q),(—¢*;q),_a:41 on both sides of the above identity, we arrive at

n n-—+r mn mn n2 n—m
D =01 =)@ e (0 Qs

n=0
(=1)mg™m (g5 ¢)r(—q"5 @) r—3+1(q"5 @)s zm: a2 4 (% )

(4% ¢*)m (@2 P)n(—q 5 @)2n(® 25 62),
n=

So,
00 n+r n n n2 n—mn
Z N D (4 ) s g
n=0

_ (—q B (=1)"q" D (—q"q)r-se41 (01 @)
(q, q””'qQ)oo (4% 4*)m

y Z *2m7q2t“,q )n (@ @) mn
"5 Q)an (@2 2,

_ <_1)mqm(m+1)(—q ; Q>r—3t+1(qt; q)t
(%:¢®)m(q; ¢*)e

271—}—7‘—1—17 q>

y f: (72 ¢%)u(—q
et 2. q2 2m+2n+2r+2’ q27“L+2t+17 q )Oo(q2n+2t; q2)t

q
( 1)mqmm+1( qt;Q)r—3t+1(q;Q)2t—1
(7% @®)m (2 6®)e(q; @)1

72m,q ) ( (]27L+r+17 _q2n+r+2’ q )

m
X Z 2 +2n+2r+2 42n+2t+1. 42 n+2t. 42\ ° (3'12>
= ANtk g2 1% oo (@225 %),

Observe that
(=" Dr—s3t1(6 Dat—1 (=55 Dr—3e1(0; ) e (@5 ) o1

q — (— -
(GG (@ (T 0)s = (=€ @)rat- (3.13)
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Hence, combining (3.5)-(3.7), (3.12) and (3.13), we derive that

—q;49) - n n+r n n n? n—n
—<(q. q)) ()" = "N @) ra (=" @Q)r—arir g™
9 [o.¢] ’I’LZO
_ (—1)mqm(m+1)( )r—2t o= (@725 ¢%)n = (=72 2)' (2m+2n+2r+2)i
= P Z Z q
n=0 ’ 1=0
y i (_qr_%;q g2 HZ (2n+2t+25—2)i
(4% ¢°) !
j=0 1)y s=11i5=0
_ (—1 mqm(mﬂ)( T qQ)r—2t Z q ) (2m+2r+2)i
(4% ¢%)m P
% i (_qrdt;q 2t+lei (2t425—2)i i 72maq )n 2n(2+j+21+12+ +iy)
() !
=0 e s=1is=0 n=0
_ (—1 mqm(m+l)(—q; Q)r—2 f: (=g 2" q2)iq(2m+2r+2)i i (=4 4%); q(2t+1)j
(% ¢*)m —~ (¢% %) = (@597
t 00
% H Z q(2t+25—2)iS (q2(i+j+z‘1+i2+---+it—m); q2)m,
s=11is=0

where the last equality follows from (2.2). By the discussion of (3.9), we prove (1.10). O
Proof of Corollary 1.2. In view of (1.1) and (1.9), for m >0, ¢ > 0 and r > 4t + 1, we

have
— n i i+r\ (0 i i24-2t0
> )" (1A =)@ Qe (¢ @) reaig”
n=0 =0

i (=¢™ " ¢%)i(—q4" % %),

(a%¢*)i(d* ¢?);

= (¢ Q)r—20-1 + (=1)"g™ " (—q;q)r_211

1,J,81,825--+,4t=0

3 22 )i )+ (U 2)in (24 Ain+ A {Z tithutint+u-1 : (3.14)

m e

Then multiplying both sides of (3.14) by (—1)™, we find that for n > ("5 2t) the coefficients
of ¢" on the right-hand side are nonnegative. Therefore we have

(—1) Z thm p(n —i* —2ti — ) >0, (3.15)

7>0
where

>t = (1= ) (g™ )1 (=42 )i
Jj=0
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Similarly, combining (1.1) and (1.10) yields that

= n i+ (i i i2 —1)i
> Bn)g™ ) (-1 N e (=0 rarag” Y
n=0 =0

= (G2 ()" g ) D (=g 7 ;]q)i)(; Z)j

—2m—r r—2t

1 q%);

1,7,01,22;5--+5

Y
m 2

x @M 2rH2)it (2t+1)j4+ 2t -+ (24 D)in -+ (4-2)ie ll A R (3.16)
q

where m > 0, t > 1, r > 4t — 1. If we multiply by (—1)™ on both sides of (3.16), then

for n > (T_ét“), the coefficients of ¢" on the right-hand side are nonnegative. Hence, we

obtain that

’”Z ) () — i — (2t = 1)i — 5) >0, (3.17)

7>0
where
Z bt Ty z . q2i+7") (qi—i—l; q)'r’—l (—QH%Q Q)r—4t+1~
7>0

Observe that (3.15) and (3.17) are the even and odd cases of k in (1.11), respectively.
Hence, we complete the proof. O
Proof of Theorem 1.3. Substituting the Bailey pair in Lemma 2.7 into (2.6), we have

(—1)mqm(m+1)/2(aq; (])m zm: (q—m’ aqm+1; q)nqn _ i”: (_1) (1 a2q4n)(a2; q2)nqn2_n
(¢ @)m ot 14%)n — (1= a?)(¢% ¢*)n
(3.18)
Setting a = ¢” in (3.18) and multiplying by (¢?; ¢?), on both sides, we derive that
(=1)"gm IR (g ¢%), zm: (" Q)@ Dmind”
(G D)m — (4% ¢*)n
n ‘s n n27n
Z 4 +2 )(q2 +2;q2)r71q _
n—0
Therefore,
q q S Z 4n+2r)<q2n+2, q2>rilqn2—n
P 1)m m(m+1)/2 m +1. n
_ ( q; q) ( ) q 7" Z 7Q)m+nq
(4 @)oo (¢ @)m Q) ( ¢ 9n

n=0
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_ (=)mgmtm R (g q)sz:(q‘m; )nd”  (—=¢"" @)oo
(45 @)m (:q)n (g4 g)

(=Lt (—gs ), i (™ )nqn (_q_m_TQQ)iq(m+n+r+1)i
(43 @)m ~ (¢ = (G
_ (=1)mgmm IR (—gsq), i (_q_m_TQQ)iq(m r+1)ii (q‘m;q)nq(m)n
(43 @)m —~  (59) = (G0
—1)"q" R (—q1q)r N~ (i (i (i1em
_ & : i) Z( ‘ Ji gty (@™ q), | (3.19)
(43 @)m —~  (49)

where the third equality follows from (2.1) and the last equality follows from (2.2). Observe
that

i+1—-m. <1< —
Therefore, (3.19) implies (1.12). O
Proof of Corollary 1.4. Similar to the proof of Corollary 1.2, Corollary 1.4 can be
deduced from Theorem 1.3 immediately. U

Proof of Theorem 1.5. Inserting the Bailey pair in Lemma 2.9 into (2.6), we have

(—1)mqm(m+1)/2 aq q m Z ’pqu)nqn
(q q n=0 q P14, —4, q)n
i ¢)(a/pr; @uptq" "V G~ (L= a?g" ) pri@)eg 2 g
=0 1 — (P16 @) — (1 —=d*q?)(a/p1;q)rp}

Setting (a, p1) = (¢, ¢) in (3.21) and multiplying by (1 — ¢?) on both sides, we have

(=172 ES (4™ D@ Dimins2q”
GOm = (G Dnrr (=G Dn

n n(n r(r— ]'_q
(—1)"(1 = q)(1+¢")q “”Zq R o

—~

2(2r+1)

I
Ms

3
Il
=)

(_1)n(1+qn+1)qn(n+1)/2 n

Z(l _ q4r+2)qr(r—3)/2.

I
NE

n=0 1+ q r=0
Then
q q - "1+ CITle)(]n(nJrl)/2 - Ar+2y r(r—3)/2
1 —g¥ r(r
a Z T r:o( q"")q

_( 10)oc ( D)™™ (07006 @ mens2g”
(; C])oo (4 @)m (4 D1 (=4 On

n=0
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(_1)m m(m+1)/2 zm: ?q nq (_qn+17Q)oo
1 _ qn+1) (qm+n+3; q)oo

(@a)m =
(_1>mqm(m+1 2 & 7q n n (n+1)k (m+n+3)j
- E E q E q J
(@G Dm = (q, =

(_1)m m(m+1)/2

q Z Z (—q ™ m+3 j+k ZO k+]+1)

G = (@ Q) a:q

_ (_1>mqm(m+1)/2 0o o0 (_q—m—Q;q)j q(m+3)j+k(
@GOm  Zs (@9

k+j+1—m.
1q),

q

where the third equality follows from (2.1) and we derive the last equality by (2.2). Similar

to the discussion of (3.20), we complete the proof of (1.13). O

Proof of Corollary 1.6. Similar to the proof of Corollary 1.2, we derive Corollary 1.6

from Theorem 1.5. O
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