
MORE INEQUALITIES FOR THE OVERPARTITION FUNCTION

SU-PING CUI, NANCY S.S. GU, AND QIAN WANG

Abstract. Finding truncated identities is an efficient way to derive inequalities for par-
tition functions. This method was initiated by Andrews and Merca in 2012 and has
flourished since then. In this paper, in view of a transformation formula due to Bailey,
and combining two new Bailey pairs and an identity given by Wang and Yee, we find some
new truncated identities which imply more inequalities for the overpartition function.

1. Introduction

Here and throughout the paper, we assume that |q| < 1. The q-shifted factorials are
defined by [9]

(a; q)∞ :=
∞∏
k=0

(1− aqk) and (a; q)n :=
(a; q)∞
(aqn; q)∞

, n ∈ Z.

For convenience, the multiple q-shifted factorials can be written as

(a1, a2, . . . , am; q)n := (a1; q)n(a2; q)n · · · (am; q)n,
where n is an integer or infinity. Moreover, the q-binomial coefficient is given by[

n

k

]
=

[
n

k

]
q

:=
(q; q)n

(q; q)k(q; q)n−k
.

The basic hypergeometric series rφs is defined as [9]

rφs

(
a1, a2, . . . , ar
b1, b2, . . . , bs

; q, z

)
=
∞∑
k=0

(a1, a2, . . . , ar; q)k
(q, b1, b2, . . . , bs; q)k

(
(−1)kq(

k
2)
)1+s−r

zk.

A partition of a positive integer n is a finite nonincreasing sequence of positive integers
λ1, λ2, . . . , λr such that λ1 + λ2 + · · · + λr = n. Let p(n) denote the number of partitions
of n and the generating function of p(n) is stated as

∞∑
n=0

p(n)qn =
1

(q; q)∞
.

In 2004, Corteel and Lovejoy [8] introduced the definition of overpartitions. An overpar-
tition of n is a partition of n in which the first occurrence of each number may be overlined.
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For example, there are 8 overpartitions of 3: 3, 3, 2 + 1, 2 + 1, 2 + 1, 2 + 1, 1 + 1 + 1 and
1 + 1 + 1. Let p(n) be the number of overpartitions of n and p(0) = 1. We always set
p(n) = 0 if n is a negative integer. Then the generating function of p(n) is given by

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

. (1.1)

In the literature, the study on inequalities for different kinds of partition functions at-
tracted lots of attention. Recall Euler’s pentagonal number theorem [3] which is stated
as

∞∑
n=0

(−1)nqn(3n+1)/2(1− q2n+1) = (q; q)∞. (1.2)

In 2012, Andrews and Merca [4] established the following truncated version of (1.2):

1

(q; q)∞

k−1∑
j=0

(−1)jqj(3j+1)/2(1− q2j+1) = 1 + (−1)k−1
∞∑
n=1

q(
k
2)+(k+1)n

(q; q)n

[
n− 1

k − 1

]
. (1.3)

As a corollary, they deduced the infinite family of inequalities for p(n), namely,

(−1)k−1
k−1∑
j=0

(−1)j(p(n− j(3j + 1)/2)− p(n− j(3j + 5)/2− 1)) ≥ 0.

Since then, seeking truncated identities has become a very useful way to study inequalities
for partition functions. Motivated by Andrews and Merca’s work, Guo and Zeng [10] proved
the truncated forms of the following two identities due to Gauss:

1 + 2
∞∑
j=1

(−1)jqj2 = (q; q)∞
(−q; q)∞

, (1.4)

∞∑
j=0

(−1)jqj(2j+1)(1− q2j+1) =
(q2; q2)∞
(−q; q2)∞

. (1.5)

For instance, they obtained that

(−q; q)∞
(q; q)∞

(
1 + 2

k∑
j=1

(−1)jqj2
)

= 1 + (−1)k
∞∑

n=k+1

(−q; q)k(−1; q)n−kq(k+1)n

(q; q)n

[
n− 1

k

]
, (1.6)

which implies the infinite family of inequalities for p(n):

(−1)k
(
p(n) + 2

k∑
j=1

(−1)jp(n− j2)

)
≥ 0.
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In addition, Andrews and Merca [4] and Guo and Zeng [10] independently posed the
following conjecture: for m,n, k ≥ 1 and 1 ≤ r < m/2,

(−1)k−1
k−1∑
j=0

(−1)j (Jm,r(n− j(mj +m− 2r)/2)− Jm,r(n− (j + 1)(mj + 2r)/2)) ≥ 0,

(1.7)

where
∞∑
n=0

Jm,r(n)q
n =

1

(qr, qm−r, qm; qm)∞
.

This was confirmed by Mao [14] and Yee [21]. Later, Wang and Yee [15] reproved this
conjecture by providing an explicit formula which is analogous to (1.3) and (1.6). In
particular, taking m = 2 and r = 1 in (1.7) yields that

(−1)k−1
k−1∑
j=0

(−1)j
(
p(n− j2)− p(n− (j + 1)2)

)
≥ 0. (1.8)

Recently, Xia et al. [19] established some new truncated identities related to (1.2), (1.4)
and (1.5) by using a q-series expansion formula due to Liu [12]. For instance, they estab-
lished that

(−q; q)∞
(q; q)∞

k−1∑
j=0

(−1)j(1− qj+1)2qj
2+j = 1 + (−1)k−1 (−q; q)k

(q; q)k−1

∞∑
j=0

(−qk+j+2; q)∞q
k(k+j+1)

(qk+j+2; q)∞
,

and then deduced that

p(n− k(k + 1)) + (−1)k−1
k∑

j=−k

(−1)jp(n− j2) ≥ 0.

Very recently, in view of a Bailey pair due to Lovejoy [13], Yao [20] derived several
generalized truncated identities which include some known truncated forms of (1.2), (1.4)
and (1.5) [4, 10,19] as special cases. For example, it is shown that

(−q; q)∞
(q; q)∞

k−1∑
n=0

(−1)n(1− q2n+2r+1)(qn+1; q)2r−2q
n2+(r−1)n

= (−q; q)r−1 +
(−q; q)k+r−1(−1)k−1

(q; q)k−1

∞∑
n=0

(−qk+n+r; q)∞q
k(k+r+n−1)

(qk+n+2r−1; q)∞
,

which implies the following inequalities for p(n): for k ≥ 1 and n > r(r − 1)/2,

(−1)k−1
k−1∑
i=0

(−1)i
∑
j≥0

tr(i, j)p(n− i2 − (r − 1)i− j) ≥ 0,
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where ∑
j≥0

tr(i, j)q
j = (1− q2i+2r+1)(qi+1; q)2r−2.

In addition, Wang and Yee [16] investigated truncated forms of Hecke-Rogers type series
and derived three infinite families of inequalities for some interesting partition functions.
For more on truncated identities and inequalities for partition functions, one can see [5,11,
17,18,22].

Inspired by the aforementioned work, the aim of this paper is to establish more truncated
identities and then derive some new inequalities for the overpartition function p(n). The
main results are stated as follows.

Theorem 1.1. For m ≥ 0, if t ≥ 0 and r ≥ 4t+ 1, then

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1− q2n+r)(qn+1; q)r−1(−qn+2t+1; q)r−4t−1q
n2+2tn

= (−q; q)r−2t−1 + (−1)mqm(m+1)(−q; q)r−2t−1
∞∑

i,j,i1,i2,...,it=0

(−q−2m−r; q2)i(−qr−2t; q2)j
(q2; q2)i(q2; q2)j

× q(2m+2r+2)i+(2t+1)j+(2t+2)i1+(2t+4)i2+···+4tit

[
i+ j + i1 + i2 + · · ·+ it − 1

m

]
q2
; (1.9)

if t ≥ 1 and r ≥ 4t− 1, then

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1− q2n+r)(qn+1; q)r−1(−qn+2t; q)r−4t+1q
n2+2tn−n

= (−q; q)r−2t + (−1)mqm(m+1)(−q; q)r−2t
∞∑

i,j,i1,i2,...,it=0

(−q−2m−r; q2)i(−qr−2t; q2)j
(q2; q2)i(q2; q2)j

× q(2m+2r+2)i+(2t+1)j+2ti1+(2t+2)i2+···+(4t−2)it
[
i+ j + i1 + i2 + · · ·+ it − 1

m

]
q2
. (1.10)

Corollary 1.2. For m ≥ 0, k ≥ 0, r ≥ 2k + 1 and n >
(
r−k
2

)
, then

(−1)m
m∑
i=0

(−1)i
∑
j≥0

bk,r,i(j)p(n− i2 − ki− j) ≥ 0, (1.11)

where ∑
j≥0

bk,r,i(j)q
j = (1− q2i+r)(qi+1; q)r−1(−qi+k+1; q)r−2k−1.

Notice that letting k = 0 and r = 1 in Corollary 1.2 yields (1.8). Furthermore, by setting
different values of m, k and r, we may establish more inequalities. For example, taking
(m, k, r) = (0, 2, 5) and (0, 1, 5) in Corollary 1.2, we derive that
p(n)− p(n− 1)− p(n− 2) + p(n− 5) + p(n− 6) + p(n− 7)− p(n− 8)− p(n− 9)
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− p(n− 10) + p(n− 13) + p(n− 14)− p(n− 15) ≥ 0,

p(n)− p(n− 1)− 2p(n− 4) + p(n− 5) + p(n− 7) + p(n− 8) + p(n− 9)− p(n− 11)

− p(n− 12)− p(n− 13)− p(n− 15) + 2p(n− 16) + p(n− 19)− p(n− 20) ≥ 0.

Theorem 1.3. For m ≥ 0 and r ≥ 1,

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1− q4n+2r)(q2n+2; q2)r−1q
n2−n

= (−1)mqm(m+1)/2(−q; q)r
∞∑

i=m

(−q−m−r; q)i
(q; q)i

q(m+r+1)i

[
i

m

]
. (1.12)

Corollary 1.4. For m ≥ 0 and r ≥ 1,

(−1)m
m∑
i=0

(−1)i
∑
j≥0

cr,i(j)p(n− i2 + i− j) ≥ 0,

where ∑
j≥0

cr,i(j)q
j = (1− q4i+2r)(q2i+2; q2)r−1.

For example, setting r = m = 2 in Corollary 1.4, we have

p(n− 6)− p(n− 12)− p(n− 14) + p(n− 20) ≥ 0.

Theorem 1.5. For m ≥ 0,

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1 + qn+1)qn(n+1)/2

1 + q

n∑
r=0

(1− q4r+2)qr(r−3)/2

= (−1)mqm(m+1)/2

∞∑
k=0

∞∑
j=0

(−q−m−2; q)j
(q; q)j

q(m+3)j+k

[
k + j

m

]
. (1.13)

Corollary 1.6. For m ≥ 0,

(−1)m
m∑
i=0

(−1)i
∑
j≥0

di(j)p(n− i(i+ 1)/2− j) ≥ 0,

where ∑
j≥0

di(j)q
j =

(1 + qi+1)

1 + q

i∑
r=0

(1− q4r+2)qr(r−3)/2.

For instance, setting m = 2 in the above Corollary yields that

2p(n− 5)− p(n− 8) + p(n− 9)− p(n− 10)− p(n− 12) + p(n− 13)− p(n− 14) ≥ 0.

This paper is organized as follows. In Section 2, some preliminaries are provided. In
Section 3, based on a transformation formula due to Bailey, we prove Theorem 1.1 and
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Corollary 1.2. Furthermore, combining two new Bailey pairs constructed in Section 2 and
an identity given by Wang and Yee, we prove Theorems 1.3 and 1.5. Then Corollaries 1.4
and 1.6 follow immediately.

2. Preliminaries

In this section, we give some preliminaries which will be used to prove the main results.

Lemma 2.1. [9, Appendix (II.2)] (The q-binomial theorem)
∞∑
n=0

(a; q)n
(q; q)n

zn =
(az; q)∞
(z; q)∞

, |z| < 1. (2.1)

Setting a = q−n in (2.1) yields that
n∑

k=0

(q−n; q)k
(q; q)k

zk = (zq−n; q)n. (2.2)

In addition, the following identity [9] is frequently used.

(zq−n; q)n = (q/z; q)n(−z/q)nq−n(n−1)/2.

The next transformation formula is due to Bailey.

Lemma 2.2. [6, Eq. (6.1)] We have
∞∑
n=0

(ρ1, ρ2; q
2)n(−aq/b; q)2n

(q2, a2q2/b2; q2)n(−aq; q)2n

(
a2q2

ρ1ρ2

)n

=
(a2q2/ρ1, a

2q2/ρ2; q
2)∞

(a2q2, a2q2/ρ1ρ2; q2)∞

×

(
1 +

∞∑
n=1

(1− aq2n)(aq; q)n−1(b; q)n(ρ1, ρ2; q2)n
(q, aq/b; q)n(a2q2/ρ1, a2q2/ρ2; q2)n

(
a3q2

ρ1ρ2b

)n

qn
2

)
. (2.3)

Lemma 2.3. We have
m∑

n=0

(1− aq2n)(a, b; q)n
(1− a)(q, aq/b; q)n

(a
b

)n
qn

2

=
(−1)mqm(m+1)(a2q2; q2)m

(q2; q2)m

m∑
n=0

(q−2m, a2q2m+2; q2)n(−aq/b; q)2n
(q2, a2q2/b2; q2)n(−aq; q)2n

. (2.4)

Proof. First, setting ρ1 = q−2m in (2.3), we obtain that
m∑

n=0

(q−2m, ρ2; q
2)n(−aq/b; q)2n

(q2, a2q2/b2; q2)n(−aq; q)2n

(
a2q2m+2

ρ2

)n

=
(a2q2/ρ2; q

2)m
(a2q2; q2)m

×

(
1 +

m∑
n=1

(1− aq2n)(aq; q)n−1(b; q)n(q−2m, ρ2; q2)n
(q, aq/b; q)n(a2q2m+2, a2q2/ρ2; q2)n

(
a3q2m+2

ρ2b

)n

qn
2

)
.
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Then letting ρ2 = a2q2m+2 in the above identity yields that
m∑

n=0

(q−2m, a2q2m+2; q2)n(−aq/b; q)2n
(q2, a2q2/b2; q2)n(−aq; q)2n

=
(q−2m; q2)m
(a2q2; q2)m

(
1 +

m∑
n=1

(1− aq2n)(aq; q)n−1(b; q)n
(q, aq/b; q)n

(a
b

)n
qn

2

)

=
(−1)mq−m(m+1)(q2; q2)m

(a2q2; q2)m

(
1 +

m∑
n=1

(1− aq2n)(aq; q)n−1(b; q)n
(q, aq/b; q)n

(a
b

)n
qn

2

)

=
(−1)mq−m(m+1)(q2; q2)m

(a2q2; q2)m

m∑
n=0

(1− aq2n)(a, b; q)n
(1− a)(q, aq/b; q)n

(a
b

)n
qn

2

.

This completes the proof. �

Definition 2.4. [2] A pair of sequences (αn, βn) is called a Bailey pair relative to (a, q) if
αn and βn satisfy the following identity:

βn =
n∑

r=0

αr

(q; q)n−r(aq; q)n+r

.

Moreover, for a Bailey pair relative to (a, q), Andrews [1] gave the following identity:

αn =
(−1)n(1− aq2n)(a; q)nqn(n−1)/2

(1− a)(q; q)n

n∑
j=0

(q−n, aqn; q)jq
jβj. (2.5)

Based on a q-series expansion formula due to Liu [12, Theorem 9.2], Wang and Yee [15]
derived the following lemma.

Lemma 2.5. [15, Lemma 2.1] For a Bailey pair (αn, βn) relative to (a, q) and m ≥ 0,
there holds

(−1)mqm(m+1)/2(aq; q)m
(q; q)m

m∑
n=0

(q−m, aqm+1; q)nβn =
m∑

n=0

αn. (2.6)

Lemma 2.6. [7, Theorem 2.1] If (αn, βn) is a Bailey pair relative to (a2, q2), then (α′n, β
′
n)

is a Bailey pair relative to (a, q), where

α′n =
(−B; q)n

(−aq/B; q)n
B−nq−n(n−1)/2αn,

β′n =
n∑

k=0

(−aq; q)2k(B2; q2)k(q
−k/B,Bqk+1; q)n−k

(−aq/B,B; q)n(q2; q2)n−k
B−kq−k(k−1)/2βk.

Based on the above lemma, we derive the following Bailey pair.
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Lemma 2.7. The pair of the sequences (αn, βn) forms a Bailey pair relative to (a, q), where

αn =
(−1)n(1− a2q4n)(a2; q2)nqn

2−n

(1− a2)(q2; q2)n
,

βn =
qn

(q2; q2)n
.

Proof. Recall the unit Bailey pair (αn, βn) relative to (a, q) [2]

αn =
(−1)n(1− aq2n)(a; q)nqn(n−1)/2

(1− a)(q; q)n
,

βn = δn,0,

where δn,0 =
{

1, n = 0
0, n > 0

. Replacing a, q by a2 and q2, respectively, we obtain the Bailey

pair (αn, βn) relative to (a2, q2), where

αn =
(−1)n(1− a2q4n)(a2; q2)nqn

2−n

(1− a2)(q2; q2)n
,

βn = δn,0.

Then substituting the above Bailey pair into Lemma 2.6 and letting B → ∞, we derive
the desired Bailey pair. �

Lemma 2.8. [7] For any nonnegative integer n,
n∑

r=0

(1− a2q4r)(q−n,−B, ρ1, ρ2; q)r
(1− a2)(aqn+1,−aq/B, aq/ρ1, aq/ρ2; q)r

(
aqn+1

Bρ1ρ2

)r

=
(aq, aq/ρ1ρ2; q)n
(aq/ρ1, aq/ρ2; q)n

5φ4

(
q−n, Bq, ρ1, ρ2, 1/B

−aq/B, B, ρ1ρ2q
−n/a, −q ; q, q

)
. (2.7)

From (2.7), we construct the following Bailey pair.

Lemma 2.9. The pair of the sequences (αn, βn) forms a Bailey pair relative to (a, q), where

αn =
(−1)n(1− aq2n)(a/ρ1; q)nρn1qn(n−1)/2

(1− a)(ρ1q; q)n

n∑
r=0

(1− a2q4r−2)(ρ1; q)rqr(r−1)/2

(1− a2q−2)(a/ρ1; q)rρr1
,

βn =
(ρ1; q)nq

n

(q, ρ1q,−q; q)n
. (2.8)

Proof. Combining (2.5) and (2.8), we have

αn =
(−1)n(1− aq2n)(a; q)nqn(n−1)/2

(1− a)(q; q)n

n∑
j=0

(q−n, aqn, ρ1; q)jq
2j

(q, ρ1q,−q; q)j
. (2.9)
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Then letting ρ2 = aqn+1 and B →∞ in (2.7), we obtain that
n∑

r=0

(1− a2q4r)(ρ1; q)rqr(r−1)/2

(1− a2)(aq/ρ1; q)rρr1
=

(aq, ρ1q; q)n
(aq/ρ1, q; q)nρn1

n∑
j=0

(q−n, aqn+1, ρ1; q)jq
2j

(q, ρ1q,−q; q)j
.

Next, setting a→ aq−1 in the above identity yields that
n∑

j=0

(q−n, aqn, ρ1; q)jq
2j

(q, ρ1q,−q; q)j
=

(a/ρ1, q; q)n
(a, ρ1q; q)n

ρn1

n∑
r=0

(1− a2q4r−2)(ρ1; q)rqr(r−1)/2

(1− a2q−2)(a/ρ1; q)rρr1
. (2.10)

Finally, substituting (2.10) into (2.9), we complete the proof. �

3. Proofs of the main results

In this section, we prove the main results.
Proof of Theorem 1.1. For m, t ≥ 0 and r ≥ 4t+1, letting (a, b) = (qr,−qr−2t) in (2.4),
we have

m∑
n=0

(1− q2n+r)(qr,−qr−2t; q)n
(1− qr)(q,−q2t+1; q)n

(−1)nqn2+2tn

=
(−1)mqm(m+1)(q2r+2; q2)m

(q2; q2)m

m∑
n=0

(q−2m, q2m+2r+2, q2t+1, q2t+2; q2)n
(q2, q4t+2; q2)n(−qr+1; q)2n

. (3.1)

Notice that when 0 ≤ t ≤ n− 1,

(q2t+2; q2)n
(q4t+2; q2)n

=
(q2t+2; q2)t(q

4t+2; q2)n−t
(q4t+2; q2)n−t(q2n+2t+2; q2)t

=
(q2t+2; q2)t

(q2n+2t+2; q2)t
;

when t ≥ n,

(q2t+2; q2)n
(q4t+2; q2)n

=
(q2t+2; q2)t

(q2n+2t+2; q2)t−n

(q2n+2t+2; q2)t−n
(q2n+2t+2; q2)t

=
(q2t+2; q2)t

(q2n+2t+2; q2)t
.

So, for t ≥ 0, there always holds

(q2t+2; q2)n
(q4t+2; q2)n

=
(q2t+2; q2)t

(q2n+2t+2; q2)t
. (3.2)

Therefore, substituting (3.2) into (3.1), we obtain that
m∑

n=0

(1− q2n+r)(qr,−qr−2t; q)n
(1− qr)(q,−q2t+1; q)n

(−1)nqn2+2tn

=
(−1)mqm(m+1)

(q2; q2)m

m∑
n=0

(q−2m, q2t+1; q2)n(q
2r+2; q2)m+n(q

2t+2; q2)t
(q2; q2)n(−qr+1; q)2n(q2n+2t+2; q2)t

=
(−1)mqm(m+1)(−qt+1, qt+1; q)t

(q2; q2)m

m∑
n=0

(q−2m, q2t+1; q2)n(q
2r+2; q2)m+n

(q2; q2)n(−qr+1; q)2n(q2n+2t+2; q2)t
.
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Then multiplying by (q; q)r(−q2t+1; q)r−4t−1 on both sides of the above identity, we arrive
at

m∑
n=0

(−1)n(1− q2n+r)(qn+1; q)r−1(−qn+2t+1; q)r−4t−1q
n2+2tn

=
(−1)mqm(m+1)(q; q)r(−qt+1; q)r−3t−1(q

t+1; q)t
(q2; q2)m

m∑
n=0

(q−2m, q2t+1; q2)n(q
2r+2; q2)m+n

(q2; q2)n(−qr+1; q)2n(q2n+2t+2; q2)t
.

Next, multiplying by (−q; q)∞/(q; q)∞ on both sides of the above identity yields that

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1− q2n+r)(qn+1; q)r−1(−qn+2t+1; q)r−4t−1q
n2+2tn

=
(−qr+1; q)∞
(q, q2r+2; q2)∞

(−1)mqm(m+1)(−qt+1; q)r−3t−1(q
t+1; q)t

(q2; q2)m

×
m∑

n=0

(q−2m, q2t+1; q2)n(q
2r+2; q2)m+n

(q2; q2)n(−qr+1; q)2n(q2n+2t+2; q2)t

=
(−1)mqm(m+1)(−qt+1; q)r−3t−1(q

t+1; q)t
(q2; q2)m(q; q2)t

×
m∑

n=0

(q−2m; q2)n(−q2n+r+1; q)∞
(q2; q2)n(q2m+2n+2r+2, q2n+2t+1; q2)∞(q2n+2t+2; q2)t

=
(−1)mqm(m+1)(−qt+1; q)r−3t−1(q; q)2t

(q2; q2)m(q; q2)t(q; q)t

×
m∑

n=0

(q−2m; q2)n(−q2n+r+1,−q2n+r+2; q2)∞
(q2; q2)n(q2m+2n+2r+2, q2n+2t+1; q2)∞(q2n+2t+2; q2)t

. (3.3)

Notice that
(−qt+1; q)r−3t−1(q; q)2t

(q; q2)t(q; q)t
=

(−qt+1; q)r−3t−1(q, q
2; q2)t

(q; q2)t(q; q)t
= (−q; q)r−2t−1. (3.4)

Furthermore, based on the q-binomial theorem (2.1), we have

(−q2n+r+2; q2)∞
(q2m+2n+2r+2; q2)∞

=
∞∑
i=0

(−q−2m−r; q2)i
(q2; q2)i

q(2m+2n+2r+2)i, (3.5)

(−q2n+r+1; q2)∞
(q2n+2t+1; q2)∞

=
∞∑
j=0

(−qr−2t; q2)j
(q2; q2)j

q(2n+2t+1)j. (3.6)

Meanwhile,

1

(q2n+2t+2; q2)t
=

t∏
s=1

1

1− q2n+2t+2s
=

t∏
s=1

∞∑
is=0

q(2n+2t+2s)is . (3.7)
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Hence, substituting (3.4)-(3.7) into (3.3) yields that

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1− q2n+r)(qn+1; q)r−1(−qn+2t+1; q)r−4t−1q
n2+2tn

=
(−1)mqm(m+1)(−q; q)r−2t−1

(q2; q2)m

m∑
n=0

(q−2m; q2)n
(q2; q2)n

∞∑
i=0

(−q−2m−r; q2)i
(q2; q2)i

q(2m+2n+2r+2)i

×
∞∑
j=0

(−qr−2t; q2)j
(q2; q2)j

q(2n+2t+1)j

t∏
s=1

∞∑
is=0

q(2n+2t+2s)is

=
(−1)mqm(m+1)(−q; q)r−2t−1

(q2; q2)m

∞∑
i=0

(−q−2m−r; q2)i
(q2; q2)i

q(2m+2r+2)i

×
∞∑
j=0

(−qr−2t; q2)j
(q2; q2)j

q(2t+1)j

t∏
s=1

∞∑
is=0

q(2t+2s)is

m∑
n=0

(q−2m; q2)n
(q2; q2)n

q2n(i+j+i1+i2+···+it)

=
(−1)mqm(m+1)(−q; q)r−2t−1

(q2; q2)m

∞∑
i=0

(−q−2m−r; q2)i
(q2; q2)i

q(2m+2r+2)i

∞∑
j=0

(−qr−2t; q2)j
(q2; q2)j

q(2t+1)j

×
t∏

s=1

∞∑
is=0

q(2t+2s)is
(
q2(i+j+i1+i2+···+it−m); q2

)
m
, (3.8)

where the last equality follows from (2.2). Let

h = i+ j + i1 + i2 + · · ·+ it.

Then according to (
q2h−2m; q2

)
m

(q2; q2)m
=


(−1)mq−m(m+1), h = 0,
0, 1 ≤ h ≤ m,[
h−1
m

]
q2
, h ≥ m+ 1,

(3.9)

the identity (3.8) implies (1.9).
For m ≥ 0, t ≥ 1 and r ≥ 4t− 1, letting (a, b) = (qr,−qr−2t+1) in (2.4), we have

m∑
n=0

(1− q2n+r)(qr,−qr−2t+1; q)n
(1− qr)(q,−q2t; q)n

(−1)nqn2+2tn−n

=
(−1)mqm(m+1)(q2r+2; q2)m

(q2; q2)m

m∑
n=0

(q−2m, q2m+2r+2, q2t, q2t+1; q2)n
(q2, q4t; q2)n(−qr+1; q)2n

. (3.10)

Notice that
(q2t; q2)n
(q4t; q2)n

=
(1− q2t)(q2t+2; q2)n−1
(1− q4t)(q4t+2; q2)n−1

=
(1− q2t)
(1− q4t)

(q2t+2; q2)t
(q2n+2t; q2)t

=
(q2t; q2)t

(q2n+2t; q2)t
, (3.11)
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where the second equality follows from (3.2). Thus, substituting (3.11) into (3.10) yields
that

m∑
n=0

(1− q2n+r)(qr,−qr−2t+1; q)n
(1− qr)(q,−q2t; q)n

(−1)nqn2+2tn−n

=
(−1)mqm(m+1)

(q2; q2)m

m∑
n=0

(q−2m, q2t+1; q2)n(q
2r+2; q2)m+n(q

2t; q2)t
(q2; q2)n(−qr+1; q)2n(q2n+2t; q2)t

=
(−1)mqm(m+1)(−qt, qt; q)t

(q2; q2)m

m∑
n=0

(q−2m, q2t+1; q2)n(q
2r+2; q2)m+n

(q2; q2)n(−qr+1; q)2n(q2n+2t; q2)t
.

Then multiplying by (q; q)r(−q2t; q)r−4t+1 on both sides of the above identity, we arrive at
m∑

n=0

(−1)n(1− q2n+r)(qn+1; q)r−1(−qn+2t; q)r−4t+1q
n2+2tn−n

=
(−1)mqm(m+1)(q; q)r(−qt; q)r−3t+1(q

t; q)t
(q2; q2)m

m∑
n=0

(q−2m, q2t+1; q2)n(q
2r+2; q2)m+n

(q2; q2)n(−qr+1; q)2n(q2n+2t; q2)t
.

So,

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1− q2n+r)(qn+1; q)r−1(−qn+2t; q)r−4t+1q
n2+2tn−n

=
(−qr+1; q)∞
(q, q2r+2; q2)∞

(−1)mqm(m+1)(−qt; q)r−3t+1(q
t; q)t

(q2; q2)m

×
m∑

n=0

(q−2m, q2t+1; q2)n(q
2r+2; q2)m+n

(q2; q2)n(−qr+1; q)2n(q2n+2t; q2)t

=
(−1)mqm(m+1)(−qt; q)r−3t+1(q

t; q)t
(q2; q2)m(q; q2)t

×
m∑

n=0

(q−2m; q2)n(−q2n+r+1; q)∞
(q2; q2)n(q2m+2n+2r+2, q2n+2t+1; q2)∞(q2n+2t; q2)t

=
(−1)mqm(m+1)(−qt; q)r−3t+1(q; q)2t−1

(q2; q2)m(q; q2)t(q; q)t−1

×
m∑

n=0

(q−2m; q2)n(−q2n+r+1,−q2n+r+2; q2)∞
(q2; q2)n(q2m+2n+2r+2, q2n+2t+1; q2)∞(q2n+2t; q2)t

. (3.12)

Observe that

(−qt; q)r−3t+1(q; q)2t−1
(q; q2)t(q; q)t−1

=
(−qt; q)r−3t+1(q; q

2)t(q
2; q2)t−1

(q; q2)t(q; q)t−1
= (−q; q)r−2t. (3.13)
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Hence, combining (3.5)-(3.7), (3.12) and (3.13), we derive that

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1− q2n+r)(qn+1; q)r−1(−qn+2t; q)r−4t+1q
n2+2tn−n

=
(−1)mqm(m+1)(−q; q)r−2t

(q2; q2)m

m∑
n=0

(q−2m; q2)n
(q2; q2)n

∞∑
i=0

(−q−2m−r; q2)i
(q2; q2)i

q(2m+2n+2r+2)i

×
∞∑
j=0

(−qr−2t; q2)j
(q2; q2)j

q(2n+2t+1)j

t∏
s=1

∞∑
is=0

q(2n+2t+2s−2)is

=
(−1)mqm(m+1)(−q; q)r−2t

(q2; q2)m

∞∑
i=0

(−q−2m−r; q2)i
(q2; q2)i

q(2m+2r+2)i

×
∞∑
j=0

(−qr−2t; q2)j
(q2; q2)j

q(2t+1)j

t∏
s=1

∞∑
is=0

q(2t+2s−2)is
m∑

n=0

(q−2m; q2)n
(q2; q2)n

q2n(i+j+i1+i2+···+it)

=
(−1)mqm(m+1)(−q; q)r−2t

(q2; q2)m

∞∑
i=0

(−q−2m−r; q2)i
(q2; q2)i

q(2m+2r+2)i

∞∑
j=0

(−qr−2t; q2)j
(q2; q2)j

q(2t+1)j

×
t∏

s=1

∞∑
is=0

q(2t+2s−2)is
(
q2(i+j+i1+i2+···+it−m); q2

)
m
,

where the last equality follows from (2.2). By the discussion of (3.9), we prove (1.10). �
Proof of Corollary 1.2. In view of (1.1) and (1.9), for m ≥ 0, t ≥ 0 and r ≥ 4t+ 1, we
have

∞∑
n=0

p(n)qn
m∑
i=0

(−1)i(1− q2i+r)(qi+1; q)r−1(−qi+2t+1; q)r−4t−1q
i2+2ti

= (−q; q)r−2t−1 + (−1)mqm(m+1)(−q; q)r−2t−1
∞∑

i,j,i1,i2,...,it=0

(−q−2m−r; q2)i(−qr−2t; q2)j
(q2; q2)i(q2; q2)j

× q(2m+2r+2)i+(2t+1)j+(2t+2)i1+(2t+4)i2+···+4tit

[
i+ j + i1 + i2 + · · ·+ it − 1

m

]
q2
. (3.14)

Then multiplying both sides of (3.14) by (−1)m, we find that for n >
(
r−2t
2

)
, the coefficients

of qn on the right-hand side are nonnegative. Therefore, we have

(−1)m
m∑
i=0

(−1)i
∑
j≥0

b′t,r,i(j)p(n− i2 − 2ti− j) ≥ 0, (3.15)

where ∑
j≥0

b′t,r,i(j)q
j = (1− q2i+r)(qi+1; q)r−1(−qi+2t+1; q)r−4t−1.
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Similarly, combining (1.1) and (1.10) yields that
∞∑
n=0

p(n)qn
m∑
i=0

(−1)i(1− q2i+r)(qi+1; q)r−1(−qi+2t; q)r−4t+1q
i2+(2t−1)i

= (−q; q)r−2t + (−1)mqm(m+1)(−q; q)r−2t
∞∑

i,j,i1,i2,...,it=0

(−q−2m−r; q2)i(−qr−2t; q2)j
(q2; q2)i(q2; q2)j

× q(2m+2r+2)i+(2t+1)j+2ti1+(2t+2)i2+···+(4t−2)it
[
i+ j + i1 + i2 + · · ·+ it − 1

m

]
q2
, (3.16)

where m ≥ 0, t ≥ 1, r ≥ 4t − 1. If we multiply by (−1)m on both sides of (3.16), then
for n >

(
r−2t+1

2

)
, the coefficients of qn on the right-hand side are nonnegative. Hence, we

obtain that

(−1)m
m∑
i=0

(−1)i
∑
j≥0

b′′t,r,i(j)p(n− i2 − (2t− 1)i− j) ≥ 0, (3.17)

where ∑
j≥0

b′′t,r,i(j)q
j = (1− q2i+r)(qi+1; q)r−1(−qi+2t; q)r−4t+1.

Observe that (3.15) and (3.17) are the even and odd cases of k in (1.11), respectively.
Hence, we complete the proof. �
Proof of Theorem 1.3. Substituting the Bailey pair in Lemma 2.7 into (2.6), we have

(−1)mqm(m+1)/2(aq; q)m
(q; q)m

m∑
n=0

(q−m, aqm+1; q)nq
n

(q2; q2)n
=

m∑
n=0

(−1)n(1− a2q4n)(a2; q2)nqn
2−n

(1− a2)(q2; q2)n
.

(3.18)

Setting a = qr in (3.18) and multiplying by (q2; q2)r on both sides, we derive that

(−1)mqm(m+1)/2(q2; q2)r
(q; q)m

m∑
n=0

(q−m; q)n(q
r+1; q)m+nq

n

(q2; q2)n

=
m∑

n=0

(−1)n(1− q4n+2r)(q2n+2; q2)r−1q
n2−n.

Therefore,

(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1− q4n+2r)(q2n+2; q2)r−1q
n2−n

=
(−q; q)∞
(q; q)∞

(−1)mqm(m+1)/2(q2; q2)r
(q; q)m

m∑
n=0

(q−m; q)n(q
r+1; q)m+nq

n

(q; q)n(−q; q)n
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=
(−1)mqm(m+1)/2(−q; q)r

(q; q)m

m∑
n=0

(q−m; q)nq
n

(q; q)n

(−qn+1; q)∞
(qm+n+r+1; q)∞

=
(−1)mqm(m+1)/2(−q; q)r

(q; q)m

m∑
n=0

(q−m; q)n
(q; q)n

qn
∞∑
i=0

(−q−m−r; q)i
(q; q)i

q(m+n+r+1)i

=
(−1)mqm(m+1)/2(−q; q)r

(q; q)m

∞∑
i=0

(−q−m−r; q)i
(q; q)i

q(m+r+1)i

m∑
n=0

(q−m; q)n
(q; q)n

q(i+1)n

=
(−1)mqm(m+1)/2(−q; q)r

(q; q)m

∞∑
i=0

(−q−m−r; q)i
(q; q)i

q(m+r+1)i
(
qi+1−m; q

)
m
, (3.19)

where the third equality follows from (2.1) and the last equality follows from (2.2). Observe
that

(qi+1−m; q)m
(q; q)m

=

{
0, 0 ≤ i ≤ m− 1,[
i
m

]
, i ≥ m.

(3.20)

Therefore, (3.19) implies (1.12). �
Proof of Corollary 1.4. Similar to the proof of Corollary 1.2, Corollary 1.4 can be
deduced from Theorem 1.3 immediately. �
Proof of Theorem 1.5. Inserting the Bailey pair in Lemma 2.9 into (2.6), we have

(−1)mqm(m+1)/2(aq; q)m
(q; q)m

m∑
n=0

(q−m, aqm+1, ρ1; q)nq
n

(q, ρ1q,−q; q)n

=
m∑

n=0

(−1)n(1− aq2n)(a/ρ1; q)nρn1qn(n−1)/2

(1− a)(ρ1q; q)n

n∑
r=0

(1− a2q4r−2)(ρ1; q)rqr(r−1)/2

(1− a2q−2)(a/ρ1; q)rρr1
. (3.21)

Setting (a, ρ1) = (q2, q) in (3.21) and multiplying by (1− q2) on both sides, we have

(−1)mqm(m+1)/2

(q; q)m

m∑
n=0

(q−m; q)n(q; q)m+n+2q
n

(q; q)n+1(−q; q)n

=
m∑

n=0

(−1)n(1− q)(1 + qn+1)qn(n+1)/2

n∑
r=0

qr(r−3)/2
1− q2(2r+1)

1− q2

=
m∑

n=0

(−1)n(1 + qn+1)qn(n+1)/2

1 + q

n∑
r=0

(1− q4r+2)qr(r−3)/2.

Then
(−q; q)∞
(q; q)∞

m∑
n=0

(−1)n(1 + qn+1)qn(n+1)/2

1 + q

n∑
r=0

(1− q4r+2)qr(r−3)/2

=
(−q; q)∞
(q; q)∞

(−1)mqm(m+1)/2

(q; q)m

m∑
n=0

(q−m; q)n(q; q)m+n+2q
n

(q; q)n+1(−q; q)n
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=
(−1)mqm(m+1)/2

(q; q)m

m∑
n=0

(q−m; q)nq
n

(q; q)n(1− qn+1)

(−qn+1; q)∞
(qm+n+3; q)∞

=
(−1)mqm(m+1)/2

(q; q)m

m∑
n=0

(q−m; q)n
(q; q)n

qn
∞∑
k=0

q(n+1)k

∞∑
j=0

(−q−m−2; q)j
(q; q)j

q(m+n+3)j

=
(−1)mqm(m+1)/2

(q; q)m

∞∑
k=0

∞∑
j=0

(−q−m−2; q)j
(q; q)j

q(m+3)j+k

m∑
n=0

(q−m; q)n
(q; q)n

q(k+j+1)n

=
(−1)mqm(m+1)/2

(q; q)m

∞∑
k=0

∞∑
j=0

(−q−m−2; q)j
(q; q)j

q(m+3)j+k
(
qk+j+1−m; q

)
m
,

where the third equality follows from (2.1) and we derive the last equality by (2.2). Similar
to the discussion of (3.20), we complete the proof of (1.13). �
Proof of Corollary 1.6. Similar to the proof of Corollary 1.2, we derive Corollary 1.6
from Theorem 1.5. �
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