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CHERN CLASSES OF OPEN PROJECTED RICHARDSON
VARIETIES AND OF AFFINE SCHUBERT CELLS

NEIL J.Y. FAN, PETER L. GUO, CHANGJIAN SU, AND RUI XIONG

Abstract. The open projected Richardson varieties form a stratification for the par-
tial flag variety G/P . We compare the Segre–MacPherson classes of open projected
Richardson varieties with those of the corresponding affine Schubert cells by pushing
or pulling these classes to the affine Grassmannian. In the case of the Grassmannian
G/P = Grk(C

n), the open projected Richardson varieties are known as open positroid
varieties. We obtain symmetric functions that represent the Segre–MacPherson classes
of these open positroid varieties, constructed explicitly in terms of pipe dreams for
affine permutations.

1. Introduction

Let G be a reductive group such that the derived subgroup G′ is simple, and let B
and B− be the Borel and opposite Borel subgroups, T = B ∩ B− the maximal torus,
and W the associated Weyl group. For u ≤ w ∈ W in the Bruhat order, the open
Richardson variety R̊u,w over the full flag variety G/B is the intersection of the Schubert

cell Σ̊w = BwB/B and the opposite Schubert cell Σ̊u = B−uB/B, whose closure is the
closed Richardson variety Ru,w.

Fix a parabolic subgroup P containing B. Let π : G/B → G/P be the natural

projection. The open projected Richardson variety is Π̊u,w := π(R̊u,w). Its closure
Πu,w := π(Ru,w) is the closed projected Richardson variety, which originates from the
study of total positivity and Poisson geometry, see for example [27, 35, 12]. Let WP

be the Weyl group of P , and W P the minimal length coset representatives of W/WP .
Knutson, Lam and Speyer [18] showed that the open projected Richardson varieties

Π̊u,w, where w ranges over elements in W P (or equivalently, over equivalence classes of
P -Bruhat intervals [18, Section 2]), form a stratification of G/P . Many of the geometric
properties of Richardson varieties were shown to hold for projected Richardson varieties
[18], see also Billey and Coskun [4].

The projected Richardson varieties over Grassmannians are known as positroid vari-
eties studied systematically by Knutson, Lam and Speyer [17], motivated by previous
work of Postnikov [34]. Positroid varieties have drawn increasing attention in combina-
torics, representation theory, and algebraic geometry. For example, they are related to
affine Grassmannian [13], Gromov–Witten invariants [7, 6], cluster algebras [10], knot
invariants [11], and we refer the readers to the excellent surveys [23, 40].

In this paper, we investigate the Chern–Schwartz–MacPherson (CSM) and Segre–
MacPherson (SM) classes of open projected Richardson varieties. These classes are

2020 Mathematics Subject Classification. 14M15, 14C17, 05E10.
Key words and phrases. flag variety, Schubert calculus, open projected Richardson variety, affine

Schubert variety, Chern–Schwartz–MacPherson class.
1

http://arxiv.org/abs/2501.16172v1


2 NEIL J.Y. FAN, PETER L. GUO, CHANGJIAN SU, AND RUI XIONG

generalizations of the usual Chern classes of smooth varieties to singular varieties X , see
for example [28, 37, 38, 32]. They are assigned to constructible functions on the variety,
and behave well under pushforwards. We will focus on the characteristic function 1Y

of certain locally closed subvariety Y inside X . When X = G/B, the CSM classes of

the Schubert cells Σ̊w are equivalent to the Maulik–Okounkov stable envelopes, thereby
having close connections with the representation theory of the group G, see [2, 29].

Our first main result establishes a relationship between the SM classes of open pro-
jected Richardson varieties and the SM classes of opposite affine Schubert cells in the
affine flag variety.

Theorem A (Theorem 6.1). Let N be the normal bundle of G/P inside Grλ. Then, for
u ≤ w with w ∈ W P ,

iλ,∗

(
sSM(Π̊u,w) · c

T (N )

)
= (j∗λ ◦ r

∗)

(
sSM(Σ̊

f )

)
∈ H∗

T (Grλ)loc,

where f = utλw
−1 is an element in the extended affine Weyl group Ŵ , and cT (N ) is the

T -equivariant total Chern class of N .

Before we explain the notation in Theorem A, it should be noticed that taking the
lowest degree terms on both sides leads to a connection concerning the cohomology
classes of the projected Richardson varieties and the affine Schubert varieties studied by
He and Lam [13, Theorem 5.8], which, if further restricting to the type A Grassmannian
case, recovers [17, Theorem 7.8]. Indeed, the above implication is one of our main
motivations of this work. It is also worth mentioning that our proof differs from that
used in [13] and seems simpler. The proof in loc. cit. depends heavily on the Billey-
type localization formulae for Schubert classes. Instead, we employ the left and right
Demazure–Lusztig operators to deduce that both sides satisfy the same recurrences which
uniquely determine these classes. We believe that this strategy should still work in the
equivariant K-theory setting.

Let us proceed with a sketch of the notations appearing in Theorem A, and more details
will be laid out in Section 2. The affine flag variety FlG and the affine Grassmannian GrG
are both infinite dimensional variants of the finite flag variety. They play a crucial role
in the geometric representation theory [41], and draw special interests because of their
relation to quantum Schubert calculus [33, 26, 16]. For an element f in the extended

affine Weyl group Ŵ , the affine Schubert cell Σ̊f ⊂ FlG is finite-dimensional. So its CSM

class cSM(Σ̊f ) is well defined in the (small) torus equivariant homology group HT
∗ (FlG).

These classes form a basis for the localized equivariant homology group. Inspired by the
behavior of CSM and SM classes over finite flag varieties [2], we define the SM classes

sSM(Σ̊
f ) of the opposite affine Schubert cells Σ̊f to be the dual basis of the CSM classes,

similar to the Schubert classes considered by Kostant and Kumar [20].
The SM classes of open projected Richardson varieties and affine Schubert cells are

related via the affine Grassmannian GrG = G((z))/G[[z]]. To see this, we need to fix
a dominant cocharacter λ, such that the stabilizer subgroup Wλ equals the parabolic
subgroup WP . Then the G-orbit of the element z−λG[[z]]/G[[z]] ∈ GrG is isomorphic to
G/P , and its G[[z]]-orbit Grλ, the spherical Schubert variety, is an affine bundle over the
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partial flag variety G/P . Let us consider the following diagram

G/P
iλ

// Grλ
jλ

// GrG
r

// FlG,

where iλ and jλ are inclusions, and r is a continuous section of the projection r : FlG →
GrG defined as follows. Let K ⊂ G be the maximal compact subgroup, and TR := K ∩T
the compact torus. Then r is the continuous map

r : GrG ≃ ΩK → LK → LK/TR ≃ FlG,

where LK and ΩK are the free loop space and based loop space of K, respectively. This
finishes explaining all the notations in Theorem A.

We next switch to the combinatorial sides of this paper. The study of characteristic
functions of open Richardson varieties and their CSM classes comes with the extended
P -Bruhat order ≤P on W . This is exhibited in Theorem 3.12:

Fun(G/P ) ∋ π∗(1R̊u,w
) 6= 0 ⇐⇒ u ≤P w.

As comparison, it was shown in [18, Lemma 3.1 and Corollary 3.4] that

H∗(G/P ) ∋ π∗([Ru,w]) 6= 0 ⇐⇒ u ≤′
P w,

where ≤′
P is the ordinary P -Bruhat order. A new feature of the extended P -Bruhat

order is the WP -invariance property. In fact, Theorem 3.6 implies that it is the strongest
WP -invariant partial order on W weaker than the Bruhat order.

When restricting to the Grassmannian G/P = Grk(C
n), as aforementioned, (open)

projective Richardson varieties are known as (open) positroid varieties, which are indexed
by bounded affine permutations f ∈ S̃n. As our another main result, we explicitly
obtain a symmetric rational function representative F̃f (x1, . . . , xk; y1, . . . , yn), which is

symmetric in x1, . . . , xk, for the SM class of the open positroid variety Π̊f .

Theorem B (Theorem 7.5). For a bounded affine permutation f , we have

sSM(Π̊f ) = F̃f(x1, . . . , xk; y1, . . . , yn) ∈ H∗
T (Grk(C

n))loc,

where x1, . . . , xk are the Chern roots of the dual of the tautological bundle over Grk(C
n),

and y1, . . . , yn ∈ H∗
T (pt) are the standard equivariant parameters.

The function F̃f is constructed via a weighted counting of certain colored string dia-
grams, which obviously admit a pipe dream realization. The proof of Theorem B relies
on a localization formula for SM classes along with a diagrammatic computation.

When we focus on the lowest degree terms on both sides of the equality in Theorem
B, and compare with a recent work (in progress) of Shimozono and Zhang [39], the
right-hand side will exactly be the double affine Stanley symmetric function in [25].
Therefore, if further letting y1 = · · · = yn = 0, the right-hand side becomes the ordinary
affine Stanley symmetric function of Lam [22], and thus Theorem B specializes to [17,
Theorem 7.1].

This paper is organized as follows. Section 2 is devoted to the geometric background.
In Section 3, we define the extended P -Bruhat order and give several equivalent charac-
terizations. Section 4 and Section 5 provide recursions satisfied by the finite and affine
Chern classes. Section 6 finishes the proof of Theorem A. Finally, in Section 7, our task
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is to prove Theorem B. This is achieved by combining a localization formula for SM
classes with computations on string diagrams.
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2. Preliminaries

2.1. Segre classes and Chern classes. Let X be a complex algebraic variety. The
group of constructible functions Fun(X) consists of functions ϕ =

∑
W cW1W , where the

sum is over a finite set of constructible subsets W ⊂ X , cW ∈ Z are integers, and 1W is
the characteristic function of W . For a proper morphism f : Y → X , there is a linear
map f∗ : Fun(Y ) → Fun(X), such that for any constructible subset W ⊂ Y ,

(1) f∗(1W )(x) = χtop(f
−1(x) ∩W ),

where x ∈ X and χtop denotes the topological Euler characteristic. Thus, Fun can be
considered as a (covariant) functor from the category of complex algebraic varieties and
proper morphisms to the category of abelian groups.

According to a conjecture attributed to Deligne and Grothendieck, there is a unique
natural transformation c∗ : Fun → H∗ from the functor of constructible functions on a
complex algebraic variety X to the Borel–Moore homology functor, where all morphisms
are proper, such that if X is smooth then c∗(1X) = c(TX) ∩ [X ], where c(TX) denotes
the total Chern class of the tangent bundle TX and [X ] denotes the fundamental class.
This conjecture was proved by MacPherson [28]; the class c∗(1X) for possibly singular
X was shown to coincide with a class defined earlier by Schwartz [37, 38].

The theory of CSM classes was later extended to the equivariant setting by Ohmoto
[32]. If X has an action of a torus T , Ohmoto defined the group Fun

T (X) of equivariant
constructible functions. Ohmoto [32, Theorem 1.1] proves that there is an equivariant
version of MacPherson transformation cT∗ : FunT (X) → HT

∗ (X) that satisfies cT∗ (1X) =
cT (TX)∩[X ]T if X is a non-singular variety, and that is functorial with respect to proper
push-forwards. The last statement means that for all proper T -equivariant morphisms
Y → X the following diagram commutes:

Fun
T (Y )

cT
∗

//

fT
∗

��

HT
∗ (Y )

fT
∗

��

Fun
T (X)

cT
∗

// HT
∗ (X).

If X is smooth, we will identify the (equivariant) homology and cohomology groups by
Poincaré duality: HT

∗ (X) ≃ H∗
T (X).

Definition 2.1. Let Z be a T -invariant constructible subvariety of X.
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(1) We denote by cSM(Z) := cT∗ (1Z) ∈ HT
∗ (X) the equivariant Chern–Schwartz–

MacPherson (CSM) class of Z.

(2) If X is smooth, we denote by sSM(Z) := cT
∗
(1Z)

cT (TX)
∈ Ĥ∗

T (X) the equivariant

Segre–MacPherson (SM) class of Z, where Ĥ∗
T (X) is an appropriate completion

of H∗
T (X).

2.2. Affine Flag Varieties. Let X∗(T ) be the cocharacter lattice of T , and let

Ŵ :=W ⋉X∗(T )

be the extended affine Weyl group. For a cocharacter λ ∈ X∗(T ), we denote by tλ the

corresponding element in Ŵ . Note that in Ŵ , we have

wtλw
−1 = twλ, w ∈ W,λ ∈ X∗(T ).

Denote the coroot lattice as Q∨ ⊆ X∗(T ). It is known that the subgroup Wa :=W ⋉Q∨,
called the affine Weyl group, is a Coxeter group of the corresponding affine Dynkin
diagram [15] with generators

si ∈ W (i ∈ I), and s0 = tθ∨sθ,

where θ is the highest root. The length function on Wa can be extended to Ŵ and it is
given explicitly by the Iwahori–Matsumoto [14] formula

ℓ(wtλ) =
∑

α>0,wα>0

∣∣〈α, λ〉
∣∣+

∑

α>0,wα<0

∣∣〈α, λ〉+ 1
∣∣.

Let C[[z]] (resp. C((z)) := C[[z]][z−1]) be the formal power series ring (resp. formal
Laurent series ring), and let G[[z]] (resp. G((z))) be the C[[z]]-points (resp. C((z))-points)
of G. There is an evaluation at z = 0 map from G[[z]] to G, and let I be the inverse
image of the Borel subgroup B. Then the affine flag variety is

FlG = G((z))/I,

whose T -fixed points (FlG)
T can be identified with Ŵ as follows. Any cocharacter

λ ∈ X∗(T ) defines a morphism C((z))∗ → T ((z)) ⊂ G((z)), we use zλ ∈ G((z)) to denote

the image of z. For any w ∈ W , let ẇ denote a lift of it in G[[z]]. Then for each wtλ ∈ Ŵ ,
the corresponding fixed point in FlG is ẇz−λI ∈ FlG, which will be just denoted by wtλ
throughout the paper. Let Σ̊wtλ := Iẇz−λI/I be the affine Schubert cell of dimension
ℓ(wtλ). The affine flag variety has a cell decomposition

FlG =
⊔

wtλ∈Ŵ

Σ̊wtλ .

For each n ≥ 0, let Xn :=
⊔

wtλ∈Ŵ ,ℓ(wtλ)≤n
Σ̊wtλ . Then FlG is the increasing limit of Xn,

which is called an ind-variety.
There is a loop rotation action of C∗

rot := C∗ on FlG by scaling the parameter z. Let
δ be the degree one character of this action, which is also the imaginary root for the
corresponding Kac–Moody Lie algebra ĝ. Then the positive (real) affine roots are

(2) R+
aff = {α + kδ | α ∈ R+, k ≥ 0 or α ∈ R−, k ≥ 1},
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and the negative (real) affine roots are

R−
aff = {α+ kδ | α ∈ R+, k ≤ −1 or α ∈ R−, k ≤ 0}.

The extended affine Weyl group Ŵ acts on the lattice X∗(T ) ⊕ Zδ by the following
formula

(3) wtλ(µ+ kδ) = w(µ) + (k − 〈λ, µ〉)δ,

where µ ∈ X∗(T ).

Lemma 2.2. For any dominant cocharacter λ, the torus T ×C∗
rot weights of the tangent

space Ttλ(Σ̊tλ) are

{α + kδ | α ∈ R−, 1 ≤ k ≤ −〈λ, α〉}.

Proof. Since Σ̊tλ ≃ I/(I ∩ z−λIzλ), the desired weights are

R+
aff \ (R+

aff ∩Adtλ(R
+
aff)).

By (2) and (3),

R+
aff ∩ Adtλ(R

+
aff) = {α+ kδ | α ∈ R+, k ≥ 0, or α ∈ R−, k ≥ 1− 〈λ, α〉}.

Hence, the lemma holds. �

Let GrG := G((z))/G[[z]] be the affine Grassmannian. There is a natural projection
map FlG → GrG whose fibers are isomorphic to G/B. The T -fixed points (GrG)

T are

in bijection with the coset Ŵ/W ≃ X∗(T ). For any λ ∈ X∗(T ), we let tλW rep-
resent the fixed point z−λG[[z]]/G[[z]]. For any dominant cocharacter λ, let Grλ :=
G[[z]]z−λG[[z]]/G[[z]] ⊂ GrG. Then

GrG =
⊔

λ∈X∗(T )+

Grλ .

Let ev : G[[z]] → G be the evaluation at z = 0 map. Recall the parabolic subgroup
P containing the positive Borel subgroup B is associated with the simple roots {αi |
〈λ, α∨

i 〉 = 0}. By (3),

ev

(
G[[z]] ∩ z−λG[[z]]zλ

)
= P ⊂ G.

Hence,

Grλ ≃ G[[z]]/(G[[z]] ∩ z−λG[[z]]zλ)

maps to G/P via the map ev. Moreover, it is an affine bundle over G/P , and there is a
closed embedding

iλ : G/P ≃ G · z−λG[[z]]/G[[z]] ⊂ Grλ,

by regarding G as a subgroup of G[[z]] of constant loops, see [41].

Lemma 2.3. The T × C∗
rot weights of the tangent space TtλW Grλ is

{−α + kδ | 0 ≤ k < 〈λ, α〉}.
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Proof. By Grλ = G[[z]]/(G[[z]] ∩ z−λG[[z]]zλ), and (3), the desired weights are

{α+ kδ | α ∈ R, k ≥ 0} \ {α + kδ | α ∈ R+, k ≥ 0, or α ∈ R−, k ≥ −〈λ, α〉}

= {α + kδ | α ∈ R−, 0 ≤ k < −〈λ, α〉}

= {−α + kδ | α ∈ R+, 0 ≤ k < 〈λ, α〉}. �

3. Extended P -Bruhat order

In this section, we define the extended P -Bruhat order on a Weyl group, and give
several characterizations for this order.

3.1. Extended P -Bruhat order. Let W be a Weyl group with root system R and
positive root system R+. For a parabolic subgroupWP ofW , denote by R+

P the associated

positive system. For u, w ∈ W , write u
P
→ w to mean that w = usα for some α ∈ R+\R+

P

such that ℓ(w) > ℓ(v). Notice that the condition ℓ(w) > ℓ(v) is equivalent to saying
that u(α) ∈ R+. The extended P -Bruhat order ≤P on W is the transitive closure of the

relations u
P
→ w, that is,

u ≤P w ⇐⇒ there exists a path u = u0
P
→ u1

P
→ · · ·

P
→ uk−1

P
→ uk = w.

Remark 3.1. In the definition of u
P
→ w, if replacing the condition ℓ(w) > ℓ(u) by

ℓ(w) = ℓ(u) + 1, then the transitive closure forms the ordinary P -Bruhat order as intro-
duced in [18]. To distinguish, we shall denote the ordinary P -Bruhat order by ≤′

P . It is
clear that u ≤′

P w implies u ≤P w.

Example 3.2. Let us consider the rank 2 case. Then

W = 〈s, t|s2 = t2 = (st)m = 1〉, WP = 〈s〉 ⊂W,

where m = 3, 4, or 6, i.e., W is of type A2, B2 = C2, G2, see Figure 1.

id

st

stts

w0

id

st

stts

ststst

w0

id
st

stts

ststst

ststtsts

ststststst
w0

m = 3 m = 4 m = 6

Figure 1. Rank 2 extended P -Bruhat order
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Example 3.3. The case W = S4 and WP = S1 × S2 × S1 is illustrated in Figure 2.

1234

2134

1324

1243 2314

31241342 2143

1423

3214

2341 3142

14322413

4123

3241

24313412

4132

4213

3421

4231

4312

4321

Figure 2. W = S4 and WP = S1 × S2 × S1

Example 3.4. When W = Sn is the Weyl group of type An−1 and WP = Sk × Sn−k is
a maximal parabolic subgroup, we have

{sα : α ∈ R+ \R+
P } = {tab : 1 ≤ a ≤ k < b ≤ n}.

In this case, the extended P -Bruhat order is the extended k-Bruhat order ≤k investigated
in [8, Lemma 6.4] which admits the following combinatorial description:

u ≤k w ⇐⇒

{
∀ 1 ≤ a ≤ k, u(a) ≤ w(a),

∀ k < b ≤ n, u(b) ≥ w(b).

Proposition 3.5. Let u, w ∈ W .

(1) For v ∈ WP , we have u ≤P w ⇐⇒ uv ≤P wv.
(2) For w ∈ W P , we have u ≤P w ⇐⇒ u ≤ w.

Proof. (1) Clearly, we only need to check that u ≤P w =⇒ uv ≤P wv for any v ∈ WP .

It suffices to verify u
P
→ w =⇒ uv

P
→ wv. Assume that w = usα for some α ∈ R+ \R+

P

with u(α) ∈ R+. Notice that

wv = usαv = uvv−1sαv = uvsv−1(α).

Since v ∈ WP and α ∈ R+ \ R+
P , we have v−1(α) ∈ R+ \ R+

P . This, together with the

fact that uv(v−1(α)) = u(α) ∈ R+, implies uv
P
→ wv.

(2) For any w ∈ W , it is obvious that u ≤P w =⇒ u ≤ w. We check the reverse
direction. Suppose that u ≤ w with w ∈ W P . Then u ≤′

P w in the ordinary P -Bruhat
order [18, Proposition 2.5]. This yields that u ≤P w. �
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Combining the above gives the following equivalent statements.

Theorem 3.6. Let u, w ∈ W . Then the following are equivalent:

(1) u ≤P w;
(2) uv ≤P wv for any v ∈ WP ;
(3) uv ≤ wv for some v ∈ WP such that wv ∈ W P .

Example 3.7. Recall that the Coxeter group of type BCn can be realized as

W = {w ∈ S{±1,...,±n} : w(−i) = −w(i)}.

We consider the parabolic subgroup WP
∼= Sn of w ∈ W such that w(i) > 0 for i > 0.

Then we have

(4) u ≤P w ⇐⇒ ∀1 ≤ i ≤ n, u(i) ≥ w(i).

To see this, we consider another Weyl group W = S2n with parabolic subgroup WP =
Sn × Sn. We have a natural embedding i :W ⊂ W such that

u ≤ w ⇐⇒ i(u) ≤ i(w),

see [5, Section 8.1]. Moreover, it is direct to check that

w ∈ WP ⇐⇒ i(w) ∈ WP , w ∈ W P ⇐⇒ i(w) ∈ WP .

By Theorem 3.6, we have

u ≤P w ⇐⇒ i(u) ≤P i(w).

By Example 3.4, we get (4).

3.2. Affine characterization. Let us fix a dominant cocharacter λ ∈ X∗(T ). For
u, w ∈ W , we define

(5) fλ
u,w = utλw

−1 ∈ Ŵ .

Assume that the stabilizer of λ in W is the parabolic subgroup WP . Let Wλ be the
Weyl group orbit of λ.

Theorem 3.8. For u, w ∈ W , we have

u ≤P w ⇐⇒ fλ
u,w ≤ tµ for some µ ∈ Wλ.

To give a proof of Theorem 3.8, we need the following length formula.

Lemma 3.9. If w ∈ W P , then

ℓ(fλ
u,w) = ℓ(u) + ℓ(tλ)− ℓ(w).

Proof. It is known [26, Lemma 3.3] that for w ∈ W P , tλw
−1 is the minimal representative

of the right coset Wtλw
−1. So

(6) ℓ(fλ
u,w) = ℓ(utλw

−1) = ℓ(u) + ℓ(tλw
−1).

Since
ℓ(fλ

w,w) = ℓ(twλ) = ℓ(tλ) = ℓ(fλ
id,id) =

∑

α∈R+

|〈λ, α〉|,

we obtain that ℓ(w) + ℓ(tλw
−1) = ℓ(tλ), which, together with (6), leads to the desired

formula in the lemma. �
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Proof of Theorem 3.8. Notice that when v ∈ WP ,

fλ
uv,wv = uvtλv

−1w = utλw
−1 = fλ

u,w.

Hence, according to (1) in Proposition 3.5, we may assume w ∈ W P . In this situation,
by (2) in Proposition 3.5, u ≤P w is equivalent to u ≤ w. If u ≤ w, by Lemma 3.9, the
decomposition fλ

u,w = utλw
−1 is reduced. So

fλ
u,w = utλw

−1 ≤ wtλw
−1 = twλ.

Conversely, assume that µ = w+λ for some w+ ∈ W P . Then

fλ
u,w = utλw

−1 ≤ tµ = w+tλw
−1
+ = fλ

w+,w+.

By [13, Proposition 2.1]1, there exists v ∈ WP such that

u ≤ w+v, w ≥ w+v.

So we have u ≤ w. �

3.3. Geometric characterization. Recall that for a constructible subset Y of a com-
plex algebraic variety X , 1Y ∈ Fun(X) denotes its characteristic function.

Lemma 3.10. For any v ∈ WP and u, w ∈ W , we have

π∗(1R̊u,w
) = π∗(1R̊uv,wv

).

Remark 3.11. From the proof below, we see that the equality π(R̊u,w) = π(R̊uv,wv) does
not hold in general.

Proof of Lemma 3.10. First of all, we can assume w ∈ W P . It suffices to show when
v = si is a simple reflection in WP . Now the projection π factorizes into

G/B
πi−→ G/Pi

ρi−→ G/P

for Pi = B ∪BsiB the maximal parabolic subgroup corresponding to i ∈ I. The Lemma
follows if πi∗(1R̊u,w

) = πi∗(1R̊usi,wsi
). Therefore, the Lemma is further reduced to the case

when P = Pi and π = πi. Since w ∈ W P , the case of u ∈ W P is proved in [18, Lemma
3.1].

Now we prove the other case usi > u. Note that πi is a P1 bundle. At any point
z ∈ G/Pi, we need to show

χ
(
R̊u,w ∩ π−1

i (z)
)
= χ

(
R̊usi,wsi ∩ π

−1
i (z)

)
.

The intersection of the Schubert cells Σ̊w, Σ̊wsi and the fibre π−1
i (z) ∼= P1 has two

possibilities

(1) Σ̊w ∩ π−1
i (z) = {p} a point, and Σ̊wsi ∩ π

−1
i (z) = π−1

i (z) \ {p} an affine line;
(2) both intersections are empty.

Similarly, the intersection of the opposite Schubert cells Σ̊u, Σ̊usi and the fibre π−1
i (z) ∼=

P1 has two possible possibilities

(a) Σ̊u ∩ π−1
i (z) = {q} a point, and Σ̊usi ∩ π−1

i (z) = π−1
i (z) \ {q} an affine line;

(b) both intersections are empty.

1Note that t−λ in loc. cit. is denoted by tλ here.
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In the case (2) or (b), we have

R̊u,w ∩ π−1
i (z) = R̊usi,wsi ∩ π

−1
i (z) = ∅.

Hence, we only need to deal with case (1) and (a). When p = q, we have

R̊u,w ∩ π−1
i (z) = {p}, R̊usi,wsi ∩ π

−1
i (z) = π−1

i (z) \ {p} ≃ C;

when p 6= q, we have

R̊u,w ∩ π−1
i (z) = ∅, R̊usi,wsi ∩ π

−1
i (z) = π−1

i (z) \ {p} ≃ C×.

In both cases, they have the same Euler characteristics. This finishes the proof. �

Theorem 3.12. For u, w ∈ W , we have

π∗(1R̊u,w
) 6= 0 ⇐⇒ u ≤P w.

Proof. By Lemma 3.10 and Proposition 3.5, we can assume w ∈ W P . In this case, the
restriction of π to Σ̊w is injective, thus π∗(1R̊u,w

) 6= 0 if and only if R̊u,w 6= ∅, i.e. u ≤ w.
Hence, the theorem follows from Theorem 3.6. �

4. Recursion of Chern classes, finite part

In this section, we will characterize the CSM classes of open projected Richardson
varieties.

4.1. Chern classes of open Richardson varieties. Let us first characterize the CSM
class of (unprojected) open Richardson varieties. Firstly, since the Schubert cells Σ̊w and

Σ̊u intersect transversally, we have (see [36])

(7) cSM(R̊u,w) = cSM(Σ̊w) · sSM(Σ̊
u).

Let us recall some operators acting on H∗
T (G/B) from [30]. The group G acts on

G/B by left multiplication. Hence, we have a Weyl group action on H∗
T (G/B), which is

denoted by wL for any w ∈ W .
Define

δi =
1

αi

(id−sLi ), TL
i = sLi − δi, TL,∨

i = sLi + δi,

i.e.,

(8) TL
i =

−1

αi

id+
αi + 1

αi

sLi , TL,∨
i =

1

αi

id+
αi − 1

αi

sLi .

Then we have ([30, Theorem 4.3])

(9) TL
i (sSM(Σ̊w)) = sSM(Σ̊siw), TL,∨

i (cSM(Σ̊
u)) = cSM(Σ̊

siu).

For the CSM classes of the Richardson cells, we have the following recursion formula.

Theorem 4.1. For u, w ∈ W and i ∈ I, we have

sLi (cSM(R̊u,w)) + αi · s
L
i (cSM(R̊siu,w)) = cSM(R̊u,w) + αi · cSM(R̊u,siw),(10)

where whenever u 6≤ w, the summand cSM(R̊u,w) is understood to be zero.
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Proof. Let ϕ, ψ ∈ H∗
T (G/B). From the definition of TL

i and TL,∨
i , we have

sLi (ϕ · ψ) + αi · s
L
i (ϕ · TL,∨

i (ψ)) = ϕ · ψ + αi · (T
L
i (ϕ) · ψ).

Applying this formula to ϕ = cSM(Σ̊w), ψ = sSM(Σ̊
u), and using (7) and (9), we get the

desired formula. �

4.2. Chern classes of open projected Richardson varieties. Let P be a parabolic
subgroup of G containing B. Recall that π : G/B → G/P is the natural projection. For

any u ≤ w ∈ W P , the open projected Richardson variety is Π̊u,w = π(R̊u,w). Since π|Σ̊w

is injective, we get

cSM(Π̊u,w) = π∗(cSM(R̊u,w)).

On the other hand, for any u, w ∈ W ,

π∗
(
cSM(R̊u,w)

)
= π∗

(
cSM(1R̊u,w

)
)
= cSM

(
π∗(1R̊u,w

)
)
.

By Lemma 3.10, for u, w ∈ W and v ∈ WP ,

(11) π∗
(
cSM(R̊u,w)

)
= π∗

(
cSM(R̊uv,wv)

)
.

By the same reason as in the previous section, we can define the operators sLi on
H∗

T (G/P ). Moreover, since the projection π commutes with the G-action, sLi commutes
with the pushforward π∗. Applying π∗ to the equation (10) in Theorem 4.1, we get the
following Corollary.

Corollary 4.2. For u, w ∈ W and i ∈ I, we have

sLi
(
π∗
(
cSM(R̊u,w)

))
+ αi · s

L
i

(
π∗
(
cSM(R̊siu,w)

))
= π∗

(
cSM(R̊u,w)

)
+ αi · π∗

(
cSM(R̊u,siw)

)
,

where whenever u 6≤P w, the term cSM(R̊u,w) is understood as zero.

Now, let us rewrite the recursion in terms of the extended affine Weyl groups. Let λ
be a dominant cocharacter whose stabilizer is WP . Recall that f

λ
u,w = utλw

−1 as defined

in (5). Notice that fλ
u,w = fλ

uv,wv for any v ∈ WP . Let us denote

(12) B = {fλ
u,w | u ≤P w} and B+ = {fλ

u,w | u, w ∈ W}.

Note that for any u, w ∈ W , there exists a v ∈ WP , such that wv ∈ W P , and fλ
u,w =

fλ
uv,wv. Hence, B

+ = {fλ
u,w | u ∈ W,w ∈ W P}.

We parameterize open projected Richardson varieties using B+ by denoting

Π̊f = Π̊u,w, where f := fλ
u,w for u ∈ W,w ∈ W P .

Note that when f /∈ B, Π̊f = ∅ by Proposition 3.5. Thanks to (11),

π∗
(
cSM(R̊u,w)

)
= cSM(Π̊f ), where f := fλ

u,w for u, w ∈ W..

Hence, Corollary 4.2 can be written as follows.

Corollary 4.3. For f = fλ
u,w ∈ B+ and i ∈ I, we have

sLi (cSM(Π̊f )) + αi · s
L
i (cSM(Π̊sif)) = cSM(Π̊f ) + αi · cSM(Π̊fsi).(13)
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The torus fixed points (G/P )T are indexed by W/WP ≃Wλ, the Weyl group orbit of
λ. For any µ ∈ Wλ, let

·|µ : H∗
T (G/P ) −→ H∗

T (pt)

denote the localization to the fixed point µ. By the localization theorem,

H∗
T (G/P ) −→ H∗

T (pt)
⊕

Wλ, γ −→ (γ|µ)µ∈Wλ

is an injective map. From the definition of the operator sLi , we get for any γ ∈ H∗
T (G/P ),

sLi (γ)|µ = si(γ|siµ),

where the right-hand side denotes the usual Weyl group action on H∗
T (pt) = Sym t∗.

4.3. Characterization of Chern classes. First of all, we have the following recursion
for the CSM classes of the open projected Richardson varieties.

Theorem 4.4. Assume we are given {γf,µ ∈ H∗
T (pt) : f ∈ B+, µ ∈ Wλ} such that

γutλ,µ = δu,idδµ,λ
∏

α∈R+\R+

P

(−α), ∀u ∈ W,µ ∈ Wλ.

si(γf,siµ) + αi · si(γsif,siµ) = γf,µ + αi · γfsi,µ, ∀f ∈ B+, µ ∈ Wλ, i ∈ I.

Then for any f ∈ B+ and µ ∈ Wλ,

γf,µ = cSM(Π̊f )|µ.

Proof. Let us define

{γu,w,µ : u, w ∈ W,µ ∈ Wλ}

by setting γu,w,µ = γf,µ where f = fλ
u,w. We will show by induction on w ∈ W that

(14) γu,w,µ = π∗
(
cSM(R̊u,w)

)
|µ, ∀u ∈ W,µ ∈ Wλ.

If w = id, then R̊u,w = Σid if u = id, and empty otherwise. Thus,

π∗
(
cSM(R̊u,w)

)
|µ = δu,id[Σid]|µ = δu,idδµ,λ

∏
α∈R+\R+

P

(−α) = γu,id,µ.

Localizing both sides of (13) in Corollary 4.3 to the fixed point µ ∈ G/P , we get

si(cSM(Π̊f)|siµ) + αi · si(cSM(Π̊sif)|siµ) = cSM(Π̊f )|µ + αi · cSM(Π̊fsi)|µ.

Assume (14) holds for w, then the above equation and the second equation in the The-
orem imply that (14) also holds for siw. This finishes the proof. �

Recall the SM classes are defined as

sSM(Π̊f ) =
cSM(Π̊f )

cT (T (G/P ))
.

We get the following recursion for the SM classes.

Corollary 4.5. Assume we are given {γf,µ ∈ H∗
T (pt)loc : f ∈ B+, µ ∈ Wλ} such that

γutλ,µ = δu,idδµ,λ
∏

α∈R+\R+

P

−α

1− α
, ∀u ∈ W,µ ∈ Wλ.(15)

si(γf,siµ) + αi · si(γsif,siµ) = γf,µ + αi · γfsi,µ, ∀u, w ∈ W,µ ∈ Wλ.(16)
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Then for any f ∈ B+ and µ ∈ Wλ, we have

γf,µ = sSM(Π̊f )|µ.

Proof. Since the tangent bundle T (G/P ) is G-equivariant, it is fixed by the action sLi .
Hence,

sLi (sSM(Π̊f))|µ = si(sSM(Π̊f))|siµ) =
si(cSM(Π̊f )|siµ)

cT (T (G/P ))|µ
.

Then the Corollary follows from this and Theorem 4.4. �

5. Recursion of Chern classes, affine part

5.1. CSM/SM classes of affine flag variety. Let us first recall some properties of
the CSM/SM classes of the Schubert cells in the affine flag variety FlG.

Let Iaff := I ⊔ {0} be the vertices of the affine Dynkin diagram. By [21], FlG can

be realized as a Kac–Moody flag variety Ĝ/B̂, which is an ind-finite ind-scheme with
a stratification by the finite-dimensional Schubert cells. The Weyl group of the Kac–

Moody group Ĝ is Ŵ . Hence, the operator TL
i for i ∈ Iaff in (8) can also be constructed

for HT
∗ (FlG), with α0 = −θ as we only consider the small torus instead of the affine torus

in Ĝ. On the other hand, there is another Weyl group Ŵ action on HT
∗ (FlG), see [20,

Definition 5.8]. To distinguish the operator wL from Section 4.1, we use wR to denote
this action. For any i ∈ Iaff , we use ∂i to denote the BGG operator [3], and let

TR
i := ∂i − sRi

be the Hecke operator, see [1, 30]. Then both sets of operators {TL
i | i ∈ Iaff} and

{TR
i | i ∈ Iaff} satisfy the relations in Ŵ , and TR

i T
L
j = TL

j T
R
i .

Recall that for any f ∈ Ŵ , Σ̊f denotes the Schubert cell. The CSM class cSM(Σ̊f ) ∈
HT

∗ (FlG) is well defined as FlG is an ind-scheme, and they form a basis for the local-

ized equivariant homology ring. Since the Schubert variety Σf := Σ̊f also has a Bott–
Samelson resolution as in the finite type case (see [21]), the proof of [1, Theorem 1.1]
also works for the affine flag variety FlG. Hence, we have the following formula

TR
i (cSM(Σ̊f )) = cSM(Σ̊fsi),

where i ∈ Iaff . Moreover, the proof in [30, Theorem 4.3] only depends on the above
formula and a computation for P1, we get

TL
i (cSM(Σ̊f )) = cSM(Σ̊sif).

Recall that the T -equivariant cohomology of the affine flag variety H∗
T (FlG) can be

identified with HomH∗

T
(pt)(H

T
∗ (FlG), H

∗
T (pt)), see [24, Chapter 4]. Hence, there is a per-

fect pairing

〈−,−〉 : HT
∗ (FlG)×H∗

T (FlG) → H∗
T (pt).

We define the SM class of opposite Schubert cells sSM(Σ̊
f) ∈ H∗

T (FlG) to be the dual
basis of the CSM classes:

(17) 〈cSM(Σ̊f ), sSM(Σ̊
g)〉 = δf,g.
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Remark 5.1. To be more precise, we need to consider the thick affine flag variety F̃lG,
and the SM class is defined in the cohomology ring H∗

T (F̃lG), which is isomorphic to
HomH∗

T
(pt)(H

T
∗ (FlG), H

∗
T (pt)), see [24, Proposition 3.46 in Chapter 4].

Let

TL,∨
i =

1

αi

id+
αi − 1

αi

sLi , and TR,∨
i := ∂i + sRi .

Then for any γ1 ∈ HT
∗ (FlG) and γ2 ∈ H∗

T (FlG), we have (see [2, 30])

〈TR
i (γ1), γ2〉 = 〈γ1, T

R,∨
i (γ2)〉, and 〈TL

i (γ1), γ2〉 = si · 〈γ1, T
L,∨
i (γ2)〉.

Combining all the above equations, we get

TL,∨
i (sSM(Σ̊

f )) = sSM(Σ̊
sif ), TR,∨

i (sSM(Σ̊
f )) = sSM(Σ̊

fsi).

For any f ∈ Ŵ , we use [ef ] ∈ HT
∗ (FlG) to denote the class of the fixed point corre-

sponding to f . Then we have the following formula (see [30]):

TR
i ([ef ]) =

1 + fαi

fαi

[efsi ]−
1

fαi

[ef ].

5.2. Recursions of affine SM classes. Recall that H∗
T (FlG) is defined to be the dual

of HT
∗ (FlG), there is a well-defined localization at fixed points as follows (see [24, Chapter

4])

γ|f := 〈[ef ], γ〉,

where f ∈ Ŵ and γ ∈ H∗
T (FlG). Then we have the following recursion for the localization

of the SM classes. Recall that α0 = −θ.

Proposition 5.2. Let f, t ∈ Ŵ . For any i ∈ Iaff , we have

(αi + 1)sSM(Σ̊
f )|sit = si

(
sSM(Σ̊

f )|t
)
+ αi · si

(
sSM(Σ̊

sif )|t
)
,(18)

(t(αi) + 1)sSM(Σ̊
f )|tsi = sSM(Σ̊

f )|t + t(αi) · sSM(Σ̊
fsi)|t.(19)

Proof. The first one follows from the definition of TL,∨
i , TL,∨

i (sSM(Σ̊
f )) = sSM(Σ̊

sif ), and
the fact that sLi (γ)|t = si(γ|sit) for any γ ∈ H∗

T (FlG). For the second one, we have

sSM(Σ̊
fsi)|t = 〈[et], sSM(Σ̊

fsi)〉

= 〈[et], T
R,∨
i (sSM(Σ̊

f))〉

= 〈TR
i ([et]), sSM(Σ̊

f )〉

=
1 + tαi

tαi

sSM(Σ̊
f )|tsi −

1

tαi

sSM(Σ̊
f)|t.

This finishes the proof. �

Recall the action of tµ ∈ Ŵ on the lattice X∗(T )⊕Zδ is given by the following formula

tµ(λ+ kδ) = λ+ (k − 〈λ, µ〉)δ,

where λ ∈ X∗(T ) is a character of the maximal torus T , and δ is the imaginary root for
the corresponding affine Kac–Moody algebra. Since we are considering the small torus
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T , δ is zero in H∗
T (pt). Hence, for any µ ∈ X∗(T ), and λ ∈ X∗(T ), tµ(λ) = λ. Therefore,

for any i ∈ I and µ ∈ X∗(T ), by substituting t = tsiµ in (18) and t = tµ in (19), we have

(20) si
(
sSM(Σ̊

f)|tsiµ
)
+ αi · si

(
sSM(Σ̊

sif)|tsiµ
)
= sSM(Σ̊

f )|tµ + αi · sSM(Σ̊
fsi)|tµ.

This equality takes the form of (16), and will be used in the proof of Theorem 6.3.

6. Comparison between the Chern classes

In this section, we will combine the results in the previous two sections to obtain
a relationship between the SM classes of open projected Richardson cells and the SM
classes of affine Schubert cells.

As before, let λ be a dominant cocharacter and P be a parabolic subgroup containing
B such that WP is the stabilizer of λ in W . Let f = fλ

u,w = utλw
−1 ∈ B+, where u ∈ W

and w ∈ W P . Then we have the SM class sSM(Π̊f) ∈ H∗
T (G/P ) of the open projected

Richardson variety. On the other hand, f can be regarded as an element in the extended

affine Weyl group Ŵ , and we have the SM class sSM(Σ̊
f) ∈ H∗

T (FlG).
For any µ ∈ X∗(T ) and γ ∈ H∗

T (GrG), let γ|tµW be the localization at the fixed point
tµW in GrG. There is a pullback map (see [24, Proposition 4.4 in Chapter 4])

r∗ : H∗
T (FlG) → H∗

T (GrG).

In terms of localization, this is defined as follows

r∗(γ)|tµW = γ|tµ,

where µ ∈ X∗(T ).
Recall that iλ : G/P →֒ Grλ and jλ : Grλ →֒ GrG are inclusions. Let q∗λ : H∗

T (FlG) →
H∗

T (Grλ) be the composition of j∗λ ◦ r
∗. The following is one of the main results of this

paper.

Theorem 6.1. Let N be the normal bundle of G/P inside Grλ. Then, for any f =
utλw

−1 ∈ B+,

iλ,∗

(
sSM(Π̊f) · c

T (N )

)
= q∗λ

(
sSM(Σ̊

f )

)
∈ H∗

T (Grλ)loc,

where cT (N ) is the T -equivariant total Chern class of N .

Remark 6.2. By taking the lowest degree terms, we obtain [13, Theorem 5.8], the type
A case was proved in [17, Theorem 7.8].

Proof. By the localization theorem, we only need to check that both sides have the same
localizations at the torus fixed points. The torus fixed points (Grλ)

T are {tµW | µ ∈
Wλ}. Notice that the T -weights of the tangent space of G/P at the identity point is
{−α | 〈λ, α〉 > 0}. Hence, by Lemma 2.3,

cT (N )|λ =
∏

〈λ,α〉>0

(1− α)〈λ,α〉−1.

Therefore, by the G-equivariance of N ,

cT (N )|µ =
∏

〈µ,α〉>0

(1− α)〈µ,α〉−1
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for any µ ∈ W (λ). On the other hand, by the equivariant localization theorem,

iλ,∗

(
sSM(Π̊f ) · c

T (N )

)∣∣∣∣
tµW

= sSM(Π̊f)|µ ·
cT (N )|µ
eT (N )|µ

= sSM(Π̊f)|µ
∏

〈α,µ〉>0

(
1− α

−α

)〈µ,α〉−1

,

where eT (N ) denotes the equivariant Euler class of N . Then the theorem follows from
the above equation and Theorem 6.3 below. �

Theorem 6.3. For any f ∈ B+ and µ ∈ Wλ,

sSM(Π̊f)|µ = sSM(Σ̊
f )|tµ

∏

〈α,µ〉>0

(
1− α

−α

)〈µ,α〉−1

∈ H∗
T (pt)loc,

where the product is over all the roots α.

Proof. Let γ̃f,µ denote the right-hand side of the equation, then we only need to check
that γ̃f,µ satisfies the two equations in Corollary 4.5. Let us first check (15). If

sSM(Σ̊
utλ)|tµ 6= 0,

then utλ ≤ tµ. By Theorem 3.8, we must have u = id. But tλ ≤ tµ if and only if

λ = µ since ℓ(tλ) = ℓ(tµ). Let us compute sSM(Σ̊
tλ)|tλ . Recall that for any w ∈ Ŵ ,

[ew] ∈ HT
∗ (FlG) denotes the class of the corresponding fixed point. Since the CSM class

cSM(Σ̊tλ) is supported on the closure Σ̊tλ , we have

cSM(Σ̊tλ) =
∑

g∈Ŵ ,g≤tλ

ag[eg],

for some coefficients ag ∈ H∗
T (pt)loc. Moreover, the leading coefficient atλ , which is the

equivariant multiplicity of cSM(Σ̊tλ) at the torus fixed point tλ, equals

atλ =
∏

χ

χ+ 1

χ
=

∏

α>0

(
1− α

−α

)〈λ,α〉

,

Here the first equality follows from [31, Theorem 6.5] with χ being the T -weights of the
tangent space Ttλ(ItλI/I), while the last one follows from Lemma 2.2. Therefore,

[etλ ] =
∑

g∈Ŵ ,g≤tλ

bgcSM(Σ̊g),

for some coefficient bg ∈ H∗
T (pt)loc, with

btλ =
1

atλ
=

∏

α>0

(
−α

1− α

)〈λ,α〉

.

Therefore, by the definition of SM class in (17),

sSM(Σ̊
tλ)|tλ = 〈[etλ ], sSM(Σ̊

tλ)〉 = btλ =
∏

α>0

(
−α

1− α

)〈λ,α〉

.
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Hence, (15) is satisfied.
Finally, (16) follows from (20) and the fact that

∏

〈α,µ〉>0

(
1− α

−α

)〈µ,α〉−1

= si

( ∏

〈α,siµ〉>0

(
1− α

−α

)〈siµ,α〉−1 )
. �

Example 6.4. When λ is minuscule, G/P is said to be cominuscule. In this case
Grλ ≃ G/P and N is trivial, see [41]. We have

sSM(Π̊f) = q∗λ

(
sSM(Σ̊

f )

)
.

Example 6.5. When u = w ∈ W P , the corresponding fλ
u,w = tµ for µ = wλ. In this

case the cell Π̊f is the fixed point corresponding to w. In particular,

cSM(Π̊f )|µ = δµλ
∏

β∈R+\R+

P

(−wβ) = δµλ
∏

〈α,µ〉>0

(−α).

As a result,

sSM(Π̊f )|µ = δµλ
∏

β∈R+\R+

P

(−wβ) = δµλ
∏

〈α,µ〉>0

−α

1− α
.

On the other hand,

sSM(Σ̊
f )|tµ = δµλ

∏

〈α,µ〉>0

(
−α

1− α

)〈µ,α〉

.

This verifies Theorem 6.3 when f = tµ.

7. Combinatorial formula in type A

In this section, we aim to provide a combinatorial formula for sSM(Π̊f ) in the case of
type A via a string diagram inside R2. In the type A case, we can naturally identify

X∗(T ) = Ze1 ⊕ · · · ⊕ Zen ⊃ Z(e1 − e2)⊕ · · · ⊕ Z(en−1 − en) = Q∨.

The extended affine Weyl group Ŵ can be realized as the group of n-periodic affine
permutations

S̃n = {bijections f : Z → Z such that f(i+ n) = f(i) + n} .

For a cocharacter λ = (λ1, . . . , λn) ∈ X∗(T ) and w ∈ Sn, wtλ ∈ S̃n is the affine permu-
tation determined by

wtλ(i) = w(i) + λi · n, 1 ≤ i ≤ n.

To derive a combinatorial representative for sSM(Π̊f ), we need a localization formula for

sSM(Σ̊
f ).
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7.1. Localization formula for sSM(Σ̊
f ). Following the classical convention of Schubert

calculus, we identify H∗
T (pt) = Q[y1, . . . , yn] where yi ∈ X∗(T ) such that 〈yi, ej〉 = −δij .

In particular, we have

αi = −yi + yi+1 (1 ≤ i ≤ n− 1), α0 = −yn + y1.

We shall represent any element t ∈ S̃n by an n-periodic string diagram Dt. Intuitively,
an n-periodic string diagram is a diagram D of upward strings inside R2, whose endpoints
are the lattice points (i, 0) and (i, 1) with i ∈ Z, such that it satisfies D + (n, 0) = D as
well as the following conditions:

(1) all strings are smooth with tangent direction in [0◦, 180◦) at each point;
(2) the intersection of any three strings must be empty;
(3) the tangent direction at the intersection point of two strings are different.

That is, the following configurations of strings are banned

(S) (M) (X)

For t ∈ S̃n, a diagram Dt is obtained by drawing a string connecting the endpoints
(t−1(i), 0) and (i, 1) for each 1 ≤ i ≤ n, and translating this local configuration of
n strings horizontally such that the resulting diagram is n-periodic. Note that such
diagrams are not unique. However, as will be seen later, we shall concern the weight
generating function of Dt, which is independent of the choice of Dt. In the following
example, we illustrate a string diagram

· · ·

(1,0)

(1,1)

(2,0)

(2,1)

(3,0)

(3,1)

(4,0)

(4,1)

(5,0)

(5,1)

(0,0)

(0,1)

(-1,0)

(-1,1)

(-2,0)

(-2,1)

(-3,0)

(-3,1)

(-4,0)

(-4,1)

(6,0)

(6,1)

(7,0)

(7,1)

(8,0)

(8,1)

(9,0)

(9,1)

(10,0)

(10,1)

· · ·

for the affine permutation t ∈ S̃5 with

t(1) = 4, t(2) = 1, t(3) = 7, t(4) = 3, t(5) = 5.

To state the localization formula, we define two colorings on a string diagram D.
An n-periodic coloring of endpoints of D is a map β : P 7→ β(P ) ∈ Z, which assigns
each endpoint P with an integer, such that β(P + (n, 0)) = β(P ) + n. Notice that the
intersection points of strings cut the strings into pieces. An n-periodic coloring κ on the
pieces assigns each piece an integer such that

• for any piece p, κ(p+ (n, 0)) = κ(p) + n;
• if an intersection point P of two strings has surrounding pieces colored as follows

x

b

y

a

then we require that either a = x 6= b = y or a = y 6= x = b.
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We say that a coloring κ of pieces is compatible with a coloring β of endpoints if for any
piece p and each endpoint P of p, we have κ(p) = β(P ). For example, in the following
figure

· · ·
1

2

2

2

1

1

3

5
5

0
0

4

4

4
3

3

5
5

3

4

1

1

2

0

3

3

4

2

5

4

6

7

7

7

6

6

8

10
10

5
5

9

9

9
8

8

10
10

8

9

6

6

7

5

8

8

9

7

10

9

· · ·

we see that κ is compatible with β, where we set β(i, 0) = i and

β(1, 1) = 1, β(2, 1) = 0, β(3, 1) = 3, β(4, 1) = 2, β(5, 1) = 4, etc.

In the remaining of this section, we always assume that κ is compatible with β.
By assigning a weight to each string (not each piece), we can define the weight of each

intersection point P in the following manner:

wt



u

x

b
u

v
y

a
v


 =

1

1 + u− v

{
1, a = x 6= b = y,

u− v, a = y 6= x = b.

Here u, v are the weights of two intersecting strings. The weight wt(D, β, κ) of a string
diagram D is defined as the product of weights of all intersection points inside one
periodicity (ǫ, ǫ+n]×R for any generic ǫ ∈ R. Moreover, we define the weight wt(D, β)
to be the sum of wt(D, β, κ) with κ running through colorings compatible with β.

The following property is well known, see for example [19, Proposition 2.1].

Theorem 7.1. We have the following weight-preserving local moves

=

Yang–Baxter equation (YBE)

=

unitary equation (UE)

u u
=

uu

normalization (Nm)

For t ∈ S̃n, the first two equations in Theorem 7.1 imply that wt(Dt, β) is well defined,
that is, it is independent of the choice of the string diagram Dt. In fact, since the con-
figuration in (S) is not allowed, one can deform any string, with two endpoints fixed, via
moving horizontally. If we choose the deformation generically, then, during the move-
ment, we will only meet the local configurations (M) and (X). So the string diagrams
just before and just after have the same weights by (YBE) and (UE) respectively. This
means that wt(Dt, β) only depends on how the endpoints are connected.

We now assign the string connecting (t−1(i), 0) and (i, 1) with the weight yi, where
1 ≤ i ≤ n. For f ∈ S̃n, we define βf as the coloring such that βf(i, 0) = i and
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βf (i, 1) = f−1(i). Diagrammatically, it looks like

Dt

β1

y1

β2

y2

β3

y3 · · ·
βn

yn

1 2 3

· · ·
n

βj = f−1(j).

The following localization formula should be known to experts. We include a brief
argument here since we could not find a proof in the literature.

Theorem 7.2. For t, f ∈ S̃n, we have

wt(Dt, βf) = sSM(Σ̊
f )|t.

Proof. When ℓ(t) = 0, it is easily checked that

wt(Dt, βf) = δf,t = sSM(Σ̊
f )|t.

For any t and i ∈ I ∪ {0}, consider the following string diagram for sit:

Dsit =

βi-1

yi−1

βi

yi

βi+1

yi+1

βi+2

yi+2

· · · · · ·

Dt

i-1 i i+1 i+2

· · · · · ·

βj = f−1(j)

Removing the intersection point gives a string diagram Dt. Notice that there are two
choices for the colors of the lower two pieces attached to this intersection point. This
yields the following equality

wt(Dsit, βf ) =
1

1 + yi+1 − yi

(
si
(
wt(Dt, βf )

)
+ (yi+1 − yi)si

(
wt(Dt, βsif)

))

=
1

1 + αi

(
si
(
wt(Dt, βf)

)
+ αisi

(
wt(Dt, βsif )

))
,

which agrees with the recurrence (18) in Proposition 5.2. So the theorem follows by
induction. �
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7.2. Positroid varieties. We are now in a position to construct the symmetric rational
function, denoted F̃f , which represents the class sSM(Π̊f) of the open positroid variety

Π̊f in the Grassmannian. We choose the minuscule cocharacter

λ = e1 + · · ·+ ek ∈ X∗(T ).

Then G/P is the Grassmannian Grk(C
n). In this case, open projected Richardson vari-

eties are known as open positroid varieties, which are indexed by bounded affine permu-
tations [17]:

B =





bijections f : Z → Z :

f(i+ n) = f(i) + n
1
n

∑n

i=1(f(i)− i) = k

i ≤ f(i) ≤ i+ n




.

Combining Example 6.4 and Theorem 7.2, we obtain the following localization formula
for sSM(Π̊f ).

Corollary 7.3. We have sSM(Π̊f)|λ = wt(Dtλ , βf).

It is known thatH∗
T (Grk(C

n)) can be identified with a quotient ring ofH∗
T (pt)[x1, . . . , xk]

Sk ,
where x1, . . . , xk are the Chern roots of the dual of the tautological bundle.

To define F̃f , let us consider another type of string diagrams: the grid ∆ in Z2 including
k horizontal lines. Color the endpoints of vertical lines using βf as in Subsection 7.1.
The horizontal and vertical lines are assigned with weights x1, . . . , xk and y1, . . . , yn as
illustrated below:

(∆, βf) =

xk

···

x2

x1

1

y1

β1

2

y2

β2

3

y3

β3

· · ·

···

· · ·

· · ·

···

· · ·

· · ·

···

· · ·

n

yn

βn

βj = f−1(j).

Similarly, we may define n-periodic colorings κ of the segments connecting the intersec-
tion points. For each κ which is compatible with βf , we accordingly define the weight
wt(∆, βf , κ) as the product of weights of all intersection points inside one periodicity.
Here the weight of an intersection point obeys the same rule as defined in Subsection
7.1. Summing over all colorings κ compatible with βf , we obtain the weight generating
function wt(∆, βf), which is the polynomial that we require:

F̃f (x1, . . . , xk; y1, . . . , yn) := wt(∆, βf ).

Theorem 7.4. For f ∈ B, the polynomial F̃f is symmetric in x.
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Proof. It suffices to show that F̃f is symmetric if exchanging xi and xi+1. This is illus-
trated by the following procedure:

xi+1

xi

· · · =
xi+1

xi

· · · by (UE)

=
xi+1

xi

· · · by (YBE)

= · · · =

=
xi

xi+1

· · · by (YBE)

=
xi

xi+1

· · · by (UE) �

Theorem 7.5. For f ∈ B, we have

F̃f = sSM(Π̊f) ∈ H∗
T (Grk(C

n)).

Proof. It is enough to check that

F̃f |µ = sSM(Π̊f)|µ

for any µ ∈ Snλ. Let a1 < · · · < ak be the indices such that µai = 1. Then

F̃f |µ = F̃f (ya1, . . . , yak ; y1, . . . , yn) ∈ H∗
T (pt).

We see that (a = ai in the following diagram)



xi

ya ya+1ya-1

· · · · · ·

· · · · · ·




∣∣∣∣∣∣∣
xi 7→ya

=
ya

ya ya+1ya-1

· · · · · ·

· · · · · ·

=

ya

ya

ya+1ya-1

· · · · · ·

· · · · · ·
by (Nm)

So, after the specialization xi 7→ yai , the diagram ∆ becomes a string diagram for tµ. By

Corollary 7.3, we have F̃f |µ = sSM(Π̊f)|µ. �

For a concrete example to illustrate the above proof, consider the case (k, n) = (3, 7)
and µ = (1, 0, 1, 0, 0, 1, 0). Then tµ(1) = 8, tµ(2) = 2, tµ(3) = 10, tµ(4) = 4, tµ(5) =
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5, tµ(6) = 13, tµ(7) = 7.



x3

x2

x1

y1 y2 y3 y4 y5 y6 y7



∣∣∣∣∣∣∣∣∣∣x1 7→y1
x2 7→y3
x3 7→y6

=

y6y3y1 y2 y4 y5 y7

y6

y3

y1

= Dtµ .

7.3. Pipe dream model. If we take the Poincaré dual of the diagram above, we will
reach a pipe dream model of F̃f obtained as follows. Consider all possible n-periodic
tiling on the square grid {1, . . . , k} × Z using tiles

Here, as usual, n-periodicity means the tile at (i, j) is the same as that at (i+ n, j). We
emphasize that i denotes the row index, counted from top to bottom, and j denotes the
column index, counted from left to right. Let us denote by PD(f) the set of all such
tilings with reading affine permutation f . Alternatively, each such tiling is obtained from
a triple (∆, βf , κ) by reconnecting the edges around each vertex such that two edges are
joined if they receive the same color from κ. For example, when n = 7, k = 3, the
following tiling

-9 -6-10-8 -4 -5 0 -2 1 -3 -1 3 2 7 5 8 4 6 10 9 14

· · · · · ·

-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 1011121314

is a pipe dream with reading affine permutation given by

f(1) = 2, f(2) = 6, f(3) = 5, f(4) = 10, f(5) = 8, f(6) = 11, f(7) = 7.

For π ∈ PD(f), set

wt(π) =

k∏

i=1

n∏

j=1

1

1 + xi − yj

{
1, the (i, j)-position is ,

xi − yj, the (i, j)-position is .

Then, in the language of pipe dreams, we see that

F̃f =
∑

π∈PD(f)

wt(π).

Remark 7.6. Comparing with [39], it follows that the lowest degree component of F̃f is
the double affine Stanley symmetric function [25].

Example 7.7. Consider the case Pn−1 ∼= Gr(1, n). Let f ∈ B. Define

A = {1 ≤ i ≤ n : f(i) = i} ⊂ [n].

Note that there is only one element in PD(f), i.e. for 1 ≤ i ≤ n

the (1, i) tile is

{
, i /∈ A,

, i ∈ A.
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For example, when A = {2, 4, 5, 6, 9} ⊂ [9],

-1 2 1 4 5 6 3 7 9

1 2 3 4 5 6 7 8 9

is the only element in PD(f) with weight

(x− y2)(x− y4)(x− y5)(x− y6)(x− y9)

(1 + x− y1)(1 + x− y2) · · · (1 + x− y9)
.

Geometrically, the open positroid variety can be described as a torus orbit

Π̊f =
{
[x1 : · · · : xn] : xi = i ⇐⇒ i ∈ A

}
.

Note that in a smooth toric variety, the CSM class of a toric orbit is nothing but the
fundamental class of its closure [9, Section 5.3 Lemma], so

cSM(Π̊f ) = [Πf ] =
∏

i∈A

(x− yi) ∈ H∗
T (P

n−1).

Thus

sSM(Π̊f) =
n∏

i=1

1

1 + x− yi

{
1, i /∈ A,

x− yi, i ∈ A.

This agrees with our formula.

Example 7.8. Let f ∈ S̃4 be such that

f(1) = 2, f(2) = 5, f(3) = 4, f(4) = 7, etc.

Compute sSM(Π̊f) ∈ H∗
T (Gr(2, 4)). There are six elements in PD(f):

-2 1 0 3

1 2 3 4

-2 1 0 3

1 2 3 4

-2 1 0 3

1 2 3 4

-2 1 0 3

1 2 3 4

-2 1 0 3

1 2 3 4

-2 1 0 3

1 2 3 4

Thus

sSM(Π̊f) =
1

2∏

i=1

4∏

j=1

(1 + xi − yj)




(x2 − y1)(x2 − y3) + (x1 − y2)(x2 − y3)
+(x1 − y4)(x2 − y1) + (x1 − y2)(x1 − y4)
+(x1 − y3)(x1 − y4)(x2 − y1)(x2 − y2)
+(x1 − y1)(x1 − y2)(x2 − y3)(x2 − y4)


 .
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[36] J. Schürmann, Chern classes and transversality for singular spaces, In Singularities in Geometry,

Topology, Foliations and Dynamics, Trends in Mathematics, pages 207–231. Birkhäuser, Basel,
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