
LINKED PARTITION IDEALS AND OVERPARTITIONS

NANCY S.S. GU AND KUO YU

Abstract. Linked partition ideals which were first introduced by Andrews have recent-
ly appeared in a series of works to study generating functions for partitions. Recently,
Andrews found some relations between a certain kind of overpartitions and 4-regular par-
titions into distinct parts. Then with the aid of linked partition ideals for overpartitions,
Andrews and Chern established a general relation between these two sets of partitions.
Motivated by their work, we consider the overpatitions denoted by A k satisfying the fol-
lowing conditions: (1) Only odd parts may be overlined; (2) The difference between any
two parts is > 2k where the inequality is strict if the larger one is overlined. Let S be a set
of given parts. Then A k

S denotes the subset of overpartitions in A k where parts from S
are forbidden. Combining linked partition ideals and a recurrence relation for a family of
multiple series given by Chern, we study the generating functions for A k

S for some given
S. Furthermore, by establishing a q-series identity, we find a relation between A 1

{1} and

distinct partitions. Meanwhile, some statistics on partitions are discussed.

1. Introduction

Here and throughout the paper, we adopt the standard q-series notation [24]. Assume
that q is a complex number such that |q| < 1. For any positive integer n, the q-shifted
factorials are defined by

(a; q)0 := 1, (a; q)n :=
n−1∏
k=0

(1− aqk), (a; q)∞ :=
∞∏
n=0

(1− aqn).

A partition of a positive integer n is a finite weakly decreasing sequence of positive
integers λ1, λ2, . . . , λ` such that

∑`
i=1 λi = n. Let λ be a partition of n. Then |λ| = n. The

λi (1 6 i 6 `) are called the parts of λ, and the number of parts denoted by ](λ) is called
the length of λ. The generating function for p(n) which denotes the number of partitions
of n is stated as ∑

n>0

p(n)qn =
1

(q; q)∞
.

In the development of the theory of partitions, many different kinds of partitions have
been studied. For example, Corteel and Lovejoy [20] introduced the definition of overparti-
tions. An overpartition of n is a partition of n where the first occurrence of a number may
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be overlined. Let p(n) be the total number of overpartitions of n. Then∑
n>0

p(n)qn =
(−q; q)∞
(q; q)∞

.

Another kind of partitions that is often concerned about is `-regular partitions. For a
positive integer ` > 1, a partition is called `-regular if none of its parts is divisible by
`. The number of `-regular partitions of n is usually denoted by b`(n) and its arithmetic
properties were investigated extensively. See, for example, [12, 19, 21–23]. The generating
function for b`(n) is given by ∑

n>0

b`(n)qn =
(q`; q`)∞
(q; q)∞

.

Dating back to 1740s, Euler found the first partition identity:

(−q; q)∞ =
1

(q; q2)∞
,

which means that the number of partitions of n into distinct parts is equal to the number
of partitions of n into odd parts. From another point of view, we may state the above
identity as the number of partitions of n in which the difference between any two parts is
at least 1 equals the number of partitions of n into parts congruent to 1 (mod 2).

In the literature, the relations between partitions with gap conditions and those with
modular conditions have received a great deal of attention. For example, the following
theorem was found by Schur in 1926.

Theorem 1.1. (Schur [29]). Let H1(n) denote the number of partitions of n into parts
congruent to ±1 (mod 6). Let F1(n) denote the number of partitions of n into distinct
parts congruent to ±1 (mod 3). Let G1(n) denote the number of partitions of n of the
form n = b1 + b2 + · · · + bs, where bi − bi+1 > 3 with strict inequality if 3|bi. Then
H1(n) = F1(n) = G1(n).

Schur’s proof was based on a lemma concerning recurrence relations for certain polyno-
mials. Then Andrews [3] gave a new proof by utilizing recurrent sequences. Furthermore,
Andrews [2,4] found two generalizations of Schur’s theorem. In 1980, Bressoud [11] achieved
a more general result related to distinct partitions with parts congruent to ±r (mod m).
In addition, Gleißberg [25] found a refinement of Schur’s result. By the method of weighted
words, Alladi and Gordon [1] discovered some other companion partition functions which
are equal to F1(n).

Recall the celebrated Rogers–Ramanujan identities [27]:∑
n>0

qn
2

(q; q)n
=

1

(q, q4; q5)∞
and

∑
n>0

qn
2+n

(q; q)n
=

1

(q2, q3; q5)∞
.

For i ∈ {1, 2}, these two identities can be interpreted as the number of partitions of n
in which part 1 occurs less than i times and the difference between any two parts is at
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least 2 equals the number of partitions of n into parts 6≡ 0,±i (mod 5). Then Gordon [26]
generalized the combinatorial forms of the Rogers–Ramanujan identities to arbitrary odd
modulus 2k + 1.

Theorem 1.2. (Gordon [26]). Let Bk,i(n) denote the number of partitions of n of the form
(b1b2 · · · bs), where bj − bj+k−1 > 2, and at most i− 1 of the bj equal 1. Let Ak,i(n) denote
the number of partitions of n into parts 6≡ 0,±i (mod 2k + 1). Then Ak,i(n) = Bk,i(n) for
all n.

Subsequently, Andrews [5] discovered the following identity corresponding to the above
theorem.

Theorem 1.3. (Andrews [5]). For 1 6 i 6 k − 1 and k > 2,∑
n1,...,nk−1>0

qN
2
1+N

2
2+···+N2

k−1+Ni+Ni+1+···+Nk−1

(q; q)n1(q; q)n2 · · · (q; q)nk−1

=
(qi, q2k+1−i, q2k+1; q2k+1)∞

(q; q)∞
, (1.1)

where Nj = nj + nj+1 + · · ·+ nk−1.

The identity (1.1) is now commonly referred to as the Andrews–Gordon identity. Bres-
soud [10] succeeded in finding a generalization of (1.1) for any given integer modulus by
using an algebraic approach in the spirit of Andrews. Then Lovejoy proved the analogues
of the cases i = k and i = 1 of Gordon’s theorem for overpartitions [28]. For example,

Theorem 1.4. (Lovejoy [28]). Let Bk(n) denote the number of overpartitions of n of the
form y1 + y2 + · · · + ys, where yj − yj+k−1 > 1 if yj+k−1 is overlined and yj − yj+k−1 > 2
otherwise. Let Ak(n) denote the number of overpartitions of n into parts not divisible by
k. Then Ak(n) = Bk(n).

In 2013, Chen, Sang and Shi [13] derived the overpartition version of Theorem 1.2.
Meanwhile, an identity similar to (1.1) was established.

The discovery of (1.1) has sparked great interest in the study of identities involving
multiple series. In particular, the following family of q-multi-summations which is usually
called the series of Andrews–Gordon type,∑

n1,...,nr≥0

(−1)L1(n1,...,nr)qQ(n1,...,nr)+L2(n1,...,nr)

(qA1 ; qA1)n1 · · · (qAr ; qAr)nr
,

has attracted a lot of attention. Here L1 and L2 are linear forms and Q is a quadratic
form in the indices n1, . . . , nr. In recent years, linked partition ideals which were initially
introduced by Andrews [6, Chapter 8] have experienced a resurgence in a series of recent
projects [8, 9, 14–18]. It is shown that this tool plays a very important role in finding
relations between partitions and multiple series.

Very recently, Andrews and Chern [8] extended the concept of linked partition ideals to

overpartitions, and considered a specific set of overpartitions denoted by A Y
{1} satisfying

the following properties:

(1) Only odd parts larger than 1 may be overlined;
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(2) The difference between any two parts is at least 4, and the inequality is strict if the
larger part is overlined or divisible by 4, with the exception that both 5 and 1 may
simultaneously appear as parts.

For a given overpartition λ, let ]a,M(λ) be the number of parts in λ which are congruent
to a modulo M , and O(λ) denotes the number of overlined parts. In view of generating
functions, Andrews and Chern [8] proved the following theorem which extends two relations
given by Andrews [7].

Theorem 1.5. (Andrews–Chern [8]). Let A(n;m, `) count the number of overpartitions λ

of n in A Y
{1} such that ]1,2(λ) + 2]0,4(λ) = m and ]2,4(λ) +O(λ) = `. Further, let B(n;m, `)

count the number of 4-regular partitions of n into distinct parts with m odd parts and `
even parts. Then A(n;m, `) = B(n;m, `).

Inspired by the work of Andrews and Chern [8], the goal of this paper is to find more
partition identities related to overpartitions. Our first discovery is the following identity.

Theorem 1.6. We have∑
n1,n2,n3>0

xn1+n2yn2+n3q2(
n1
2 )+4(n22 )+2(n32 )+2n1n2+2n1n3+2n2n3+n1+3n2+2n3

(q2; q2)n1(q
2; q2)n2(q

2; q2)n3

= (−xq; q2)∞(−yq2; q2)∞. (1.2)

Definition 1.7. For any integer k > 1, let A k denote the set of overpartitions which
satisfy the following conditions:

(1) Only odd parts may be overlined;
(2) The difference between any two parts is > 2k where the inequality is strict if the larger

one is overlined.

Let S be a set of given parts, and let A k
S denote the subset of overpartitions in A k where

parts from S are not allowed. With the aid of linked partition ideals for overpartitions and
a recurrence relation for a type of q-multi-summations due to Chern [16], we study the
generating functions for A k

S with some given S. In particular, the generating function for
A k
{1} is stated in the following theorem.

Theorem 1.8. We have∑
λ∈A k

{1}

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

n1,n2,n3>0

xn1+n2+n3yn3zn2

(q2; q2)n1(q
2; q2)n2(q

2; q2)n3

× q2k(
n1
2 )+(2k+2)(n22 )+2k(n32 )+2kn1n2+2kn1n3+2kn2n3+n1+3n2+2n3 . (1.3)

Then combining Theorem 1.6 and Theorem 1.8 with k = 1, we find a relation between
A 1
{1} and distinct partitions.

Corollary 1.9. Let C(n;m, `) denote the number of overpartitions λ with |λ| = n in
A 1
{1} where ]1,2(λ) = m and ]0,2(λ) + O(λ) = `. Additionally, let D(n;m, `) count the
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number of partitions of n into distinct parts with m odd parts and ` even parts. Then
C(n;m, `) = D(n;m, `).

Moreover, by giving a combinatorial proof of Corollary 1.9, we find the following fact.

Corollary 1.10. The number of overlined parts in overpatitions of n in A 1
{1} equals the

number of consecutive integer pairs (each part using only one time) in distinct partitions
of n.

The remainder of this paper proceeds as follows. In Section 2, we provide the definition
of linked partition ideals and some other preliminaries. Section 3 is devoted to showing
the proofs of the main results. In Section 4, we conclude the paper by listing some other
generating functions for A k

S with some given S.

2. Preliminaries

In this section, we present some preliminaries.

Lemma 2.1. [24, Equation (1.3.2)] (the q-binomial theorem) For |z| < 1,∑
n>0

(a; q)nz
n

(q; q)n
=

(az; q)∞
(z; q)∞

. (2.1)

Setting a = 0 and a→∞ in (2.1), respectively, we have∑
n>0

zn

(q; q)n
=

1

(z; q)∞
(2.2)

and ∑
n>0

znq(
n
2)

(q; q)n
= (−z; q)∞. (2.3)

We also need the following functional operator B defined on C(q)[[x, y]]:

B

( ∑
m,n>0

cm,nx
myn

)
:=

∑
m,n>0

cm,nq
2(m2 )+2(n2)xmyn, (2.4)

where the coefficients cm,n are in C(q). This operator can be considered as a specialization
of the q-Borel operators, and for more applications, one can see [8, 15].

Next, recall the definition of linked partition ideals for overpartitions given by Andrews
and Chern [8]. Let φm(µ) denote the overpartition given by adding m to each part of the
overpartition µ with overlines preserved. For two overpartitions µ and ν that do not have
any overlapping overlined parts, the operation µ ⊕ ν yields an overpartition including all
the parts in µ and ν.

Definition 2.2. [8, Definition 4.1] Assume that

(1) Π = {π1, π2, . . . , πK} is a finite set of overpartitions, where π1 = ∅;
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(2) for each πa ∈ Π, there exists a corresponding linking set L(πa) ⊂ Π, with especially,
L(π1) = L(∅) = Π and π1 = ∅ ∈ L(πk) for any 1 6 k 6 K;

(3) and there is a positive integer T , referred to as the modulus, which is greater than or
equal to the largest part among all overpartitions in Π.

We say a span one linked partition ideal I = I (〈Π,L〉, T ) is the collection of all over-
partitions of the form

λ = φ0(λ0)⊕ φT (λ1)⊕ · · · ⊕ φNT (λN)⊕ φ(N+1)T (π1)⊕ φ(N+2)T (π1)⊕ · · ·
= φ0(λ0)⊕ φT (λ1)⊕ · · · ⊕ φNT (λN), (2.5)

where λi ∈ L(λi−1) for each i and λN is not the empty partition. Notice that I includes
the empty partition which corresponds to φ0(π1)⊕ φT (π1)⊕ · · · .

It is obvious that each summand φiT (λi) consists of parts ranging in size from iT + 1 to
iT + T , indicating that no part appears in two different summands simultaneously.

Based on the above definition, we derive the following lemma related to A k.

Lemma 2.3. For any positive integer k, A k is equinumerous with the span one linked
partition ideal I (〈Π,L〉, 2k), where Π = {π1 = ∅, π2 = (1), π3 = (1), π4 = (2), . . . , π3k−1 =
(2k − 1), π3k = (2k − 1), π3k+1 = (2k)} and

L(π1) = {π1, π2, π3, π4, . . . , π3k−1, π3k, π3k+1},
L(π2) = L(π3) = {π1, π2, π4, π5, . . . , π3k−1, π3k, π3k+1},

L(π4) = {π1, π4, π5, π6, . . . , π3k−1, π3k, π3k+1},
...

L(π3j−1) = L(π3j) = {π1, π3j−1, π3j+1, π3j+2, . . . , π3k−1, π3k, π3k+1},
L(π3j+1) = {π1, π3j+1, π3j+2, π3j+3, . . . , π3k−1, π3k, π3k+1},

...

L(π3k−1) = L(π3k) = {π1, π3k−1, π3k+1},
L(π3k+1) = {π1, π3k+1}.

Proof. It can be easily verified that all overpartitions in I (〈Π,L〉, 2k) satisfy the conditions
for A k.

On the other hand, for a given positive integer k, decompose each overpartition in A k into
blocks B0,B1, . . ., such that all parts (including those that are overlined) between 2ki+ 1
and 2ki+ 2k belong to the block Bi. It is evident that φ−2ki(Bi) exclusively belongs to Π.
Furthermore, if φ−2ki(Bi) is equal to π1 (i.e., Bi is empty), then φ−2k(i+1)(Bi+1) can be any
element from Π. If φ−2ki(Bi) is equal to π2 or π3 (i.e., Bi is either (2ki+ 1) or (2ki+ 1)),
then Bi+1 cannot be (2ki+ 2k + 1) due to the second condition for A k. Consequently,
φ−2k(i+1)(Bi+1) cannot be π3. Since similar arguments can be applied to other possibilities
of φ−2ki(Bi), the details are omitted. Therefore, we complete the proof. �
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Chern [14] introduced a crucial recurrence relation for a family of q-multi-summations,
and later he gave a refinement of the recurrence in [16]. Let R and J be positive integers.
Then fix a symmetric matrix α = (αi,j) ∈ MatR×R(N), a vector A = (Ar) ∈ NR

>0 and J
vectors γj = (γj,r) ∈ NR

>0 for j = 1, 2, . . . , J. Let x1, x2, . . . , xJ and q be indeterminates

such that the following q-multi-summation H(β) = H(β1, . . . , βR) for β ∈ ZR converges:

H(β) :=
∑

n1,...,nR>0

x
∑R
r=1 γ1,rnr

1 · · ·x
∑R
r=1 γJ,rnr

J q
∑R
r=1 αr,r(

nr
2 )+

∑
16i<j6R αi,jninj+

∑R
r=1 βrnr

(qA1 ; qA1)n1 · · · (qAR ; qAR)nR
. (2.6)

Then Chern [16] established the following recurrence relation.

Lemma 2.4. [16, Lemma 2.1] For 1 6 r 6 R,

H(β1, . . . , βr, . . . , βR) =H(β1, . . . , βr + Ar, . . . , βR)

+ x
γ1,r
1 · · ·xγJ,rJ qβrH(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R).

In [16], the recurrence is illustrated with a binary tree, in which the coordinate βr is
displayed in boldface. See Figure 1.

H(β1, . . . ,βr, . . . , βR)

H(β1, . . . , βr + Ar, . . . , βR) H(β1 + αr,1, . . . , βr + αr,r, . . . , βR + αr,R)

x
γ1,r
1 · · ·xγJ,rJ qβr1

Figure 1. Node H(β1, . . . , βr, . . . , βR) and its children

3. Proofs of the main results

In this section, we prove Theorems 1.6 and 1.8. Then two proofs of Corollary 1.9 are
provided. Finally, Corollary 1.10 follows from the combinatorial proof of Corollary 1.9.

Proof of Theorem 1.6. First, we prove the following equivalent identity of (1.2).∑
n1,n2,n3>0

xn1+n2yn2+n3q2n1n3+n1+3n2+2n3

(q2; q2)n1(q
2; q2)n2(q

2; q2)n3

=
1

(xq; q2)∞(yq2; q2)∞
. (3.1)

From (2.2), it follows that

LHS(3.1) =
∑

n1,n3>0

xn1yn3q2n1n3+n1+2n3

(q2; q2)n1(q
2; q2)n3

× 1

(xyq3; q2)∞

=
1

(xyq3; q2)∞

∑
n1>0

xn1qn1

(q2; q2)n1

∑
n3>0

(yq2n1+2)n3

(q2; q2)n3
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=
1

(xyq3; q2)∞(yq2; q2)∞

∑
n1>0

xn1qn1(yq2; q2)n1

(q2; q2)n1

=
1

(yq2; q2)∞(xq; q2)∞
= RHS(3.1),

where we use (2.2) to derive the third equality, and the penultimate step follows from (2.1).
Then using the operator B defined in (2.4), we obtain that

LHS(1.2) = B (LHS(3.1)) = B (RHS(3.1))

= B

( ∑
n1,n2>0

(xq)n1(yq2)n2

(q2; q2)n1(q
2; q2)n2

)

=
∑
n1>0

(xq)n1q2(
n1
2 )

(q2; q2)n1

∑
n2>0

(yq2)n2q2(
n2
2 )

(q2; q2)n2

= RHS(1.2),

where we obtain the third equality by using (2.2), and the last step follows from (2.3).
Therefore, we complete the proof. �

Proof of Theorem 1.8. We decompose overpartitions λ ∈ A k = I (〈Π,L〉, 2k) as in
(2.5). Then for 1 6 i 6 3k + 1, define the generating function for overpartitions in A k

according to the first decomposed block:

Gi(x) = Gi(x, y, z, q) :=
∑
λ∈Ak

λ0=πi

x](λ)y]0,2(λ)zO(λ)q|λ|.

It is plain that

Gi(x) = x](πi)y]0,2(πi)zO(πi)q|πi|
∑

j:πj∈L(πi)

Gj(xq
2k).

Hence, 
G1(x)
G2(x)

...
G3k+1(x)

 = W · A ·


G1(xq

2k)
G2(xq

2k)
...

G3k+1(xq
2k)

 , (3.2)

where

W = diag(1, xq, xzq, xyq2, xq3, xzq3, xyq4, . . . , xq2k−1, xzq2k−1, xyq2k) (3.3)
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and

A =



1 1 1 1 1 · · · 1 1 1 1
1 1 0 1 1 · · · 1 1 1 1
1 1 0 1 1 · · · 1 1 1 1
1 0 0 1 1 · · · 1 1 1 1
...

...
...

...
...

. . .
...

...
...

...
1 0 0 0 0 · · · 0 1 0 1
1 0 0 0 0 · · · 0 1 0 1
1 0 0 0 0 · · · 0 0 0 1


. (3.4)

More precisely, W and A are both (3k + 1)× (3k + 1) matrices. Meanwhile, the elements
in the first row of matrix A are all 1, and for 1 6 i 6 k,

A3i−1,j = A3i,j =

{
0, if 1 < j < 3i− 1, or j = 3i,

1, otherwise,

A3i+1,j =

{
0, if 1 < j < 3i+ 1,

1, otherwise.

Recall that A k
S denotes the subset of overpartitions in A k such that parts from S are

forbidden. Define

F1(x) :=
∑
λ∈A k

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

i∈{1,2,3,4,...,3k−1,3k,3k+1}

Gi(x), (3.5)

F2(x) = F3(x) :=
∑

λ∈A k
{1}

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

i∈{1,2,4,5,...,3k−1,3k,3k+1}

Gi(x), (3.6)

F4(x) :=
∑

λ∈A k
{1,1}

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

i∈{1,4,5,6,...,3k−1,3k,3k+1}

Gi(x), (3.7)

...

F3j−1(x) = F3j(x) :=
∑

λ∈A k
{1,1,2,...,2j−2,2j−1}

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

i∈{1,3j−1,3j+1,3j+2,...,3k+1}

Gi(x),

(3.8)

F3j+1(x) :=
∑

λ∈A k
{1,1,2,...,2j−2,2j−1,2j−1}

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

i∈{1,3j+1,3j+2,...,3k+1}

Gi(x),

(3.9)

...

F3k−1(x) = F3k(x) :=
∑

λ∈A k
{1,1,2,...,2k−2,2k−1}

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

i∈{1,3k−1,3k+1}

Gi(x), (3.10)
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F3k+1(x) :=
∑

λ∈A k
{1,1,2,...,2k−2,2k−1,2k−1}

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

i∈{1,3k+1}

Gi(x). (3.11)

It is obvious that


F1(x)
F2(x)

...
F3k+1(x)

 = A ·


G1(x)
G2(x)

...
G3k+1(x)

 = A ·W · A ·


G1(xq

2k)
G2(xq

2k)
...

G3k+1(xq
2k)

 ,

where the last equality follows from (3.2). Thus, we have


F1(x)
F2(x)

...
F3k+1(x)

 = A ·W ·


F1(xq

2k)
F2(xq

2k)
...

F3k+1(xq
2k)

 . (3.12)

Meanwhile, note that Gi(0) = 1 when i = 1 and Gi(0) = 0 otherwise. So,

F1(0) = F2(0) = · · · = F3k+1(0) = 1.

Next, based on the definition of H(β) in (2.6), set R = 3 and J = 3. Then choose

α =

2k 2k 2k
2k 2k + 2 2k
2k 2k 2k

 , A = (2, 2, 2),
x1 = x,
x2 = y,
x3 = z,

γ1 = (1, 1, 1),
γ2 = (0, 0, 1),
γ3 = (0, 1, 0).

So, we obtain

H(β1, β2, β3) =
∑

n1,n2,n3>0

xn1+n2+n3yn3zn2

(q2; q2)n1(q
2; q2)n2(q

2; q2)n3

× q2k(
n1
2 )+(2k+2)(n22 )+2k(n32 )+2kn1n2+2kn1n3+2kn2n3+β1n1+β2n2+β3n3 . (3.13)

Then starting from H(1, 1, 2), we repeatedly apply Lemma 2.4 in (213) order, namely, for
H(β1, β2, β3), we apply Lemma 2.4 with respect to β2, β1 and β3 in sequence. The whole
binary tree is shown in Figure 2. Hence, based on the process, we derive the following
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relation.

H(1, 1, 2)
H(1, 3, 2)
H(1, 3, 2)
H(3, 3, 2)

...
H(2i− 1, 2i+ 1, 2i)
H(2i− 1, 2i+ 1, 2i)
H(2i+ 1, 2i+ 1, 2i)

...
H(2k − 1, 2k + 1, 2k)
H(2k − 1, 2k + 1, 2k)
H(2k + 1, 2k + 1, 2k)



= A ·W ·



H(1 + 2k, 1 + 2k, 2 + 2k)
H(1 + 2k, 3 + 2k, 2 + 2k)
H(1 + 2k, 3 + 2k, 2 + 2k)
H(3 + 2k, 3 + 2k, 2 + 2k)

...
H(2k + 2i− 1, 2k + 2i+ 1, 2k + 2i)
H(2k + 2i− 1, 2k + 2i+ 1, 2k + 2i)
H(2k + 2i+ 1, 2k + 2i+ 1, 2k + 2i)

...
H(4k − 1, 4k + 1, 4k)
H(4k − 1, 4k + 1, 4k)
H(4k + 1, 4k + 1, 4k)



, (3.14)

in which W and A are the same as (3.3) and (3.4), respectively. Therefore, the vector
on the left-hand side of (3.12) and that on the left-hand side of (3.14) satisfy the same
recurrence relation. Furthermore, taking x = 0 in the H-vector on the left-hand side of
(3.14) gives (1, 1, 1, . . . , 1, 1)T . So, these two vectors also have the same initial condition.
Thus, we derive that 

F1(x)
F2(x)
F3(x)
F4(x)

...
F3k−1(x)
F3k(x)
F3k+1(x)


=



H(1, 1, 2)
H(1, 3, 2)
H(1, 3, 2)
H(3, 3, 2)

...
H(2k − 1, 2k + 1, 2k)
H(2k − 1, 2k + 1, 2k)
H(2k + 1, 2k + 1, 2k)


. (3.15)

To consider A k
{1}, we need F2(x) = H(1, 3, 2) derived from the above equation. Then

combining (3.6) and (3.13) yields (1.3). Hence, we complete the proof. �

Next, combining Theorems 1.6 and 1.8, we provide an analytic proof of Corollary 1.9.

First proof of Corollary 1.9. It is plain that∑
l,m,n>0

C(n;m, l)xmylqn =
∑

λ∈A 1
{1}

x]1,2(λ)y]0,2(λ)+O(λ)q|λ|

=
∑

λ∈A 1
{1}

x](λ)(x−1y)]0,2(λ)yO(λ)q|λ|

=
∑

n1,n2,n3>0

xn1+n2yn2+n3

(q2; q2)n1(q
2; q2)n2(q

2; q2)n3
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H(1,1, 2)

H(1, 3, 2)

H(3, 3,2)

· · ·

H(2i− 1,2i− 1, 2i)

H(2i− 1, 2i+ 1, 2i)

H(2i+ 1, 2i+ 1,2i)

· · ·

H(2k + 1, 2k + 1, 2k + 2)

H(2k + 1, 2k + 3, 2k + 2)

H(2k + 1, 2k + 3, 2k + 2)

H(2k + 3, 2k + 3, 2k + 2)

· · ·

H(2k + 2i− 1, 2k + 2i+ 1, 2k + 2i)

H(2k + 2i− 1, 2k + 2i+ 1, 2k + 2i)

H(2k + 2i+ 1, 2k + 2i+ 1, 2k + 2i)

H(4k + 1, 4k + 1, 4k)

1

1

1

1

1

1

1

1

xzq

xq

xyq2

xzq2i−1

xq2i−1

xyq2i

xyq2k

Figure 2. The binary tree for arbitrary k

× q2(
n1
2 )+4(n22 )+2(n32 )+2n1n2+2n1n3+2n2n3+n1+3n2+2n3

= (−xq; q2)∞(−yq2; q2)∞
=

∑
l,m,n>0

D(n;m, l)xmylqn,

where the third equality follows from (1.3) with k = 1, y → x−1y, z → y, and we obtain
the penultimate step by using (1.2). Therefore, we complete the proof. �
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In the following, inspired by the work of Bressoud [11], we provide a bijective proof of
Corollary 1.9.

Second proof of Corollary 1.9. We first describe the map ξ from overpartitions in A 1
{1}

to distinct partitions. For a given overpartition λ ∈ A 1
{1}, we list all parts of λ in a single

column for convenience. Since only odd parts larger than 1 may be overlined, we split each
overlined part into two consecutive integers which we call pairs remaining in the same row
as before. So the number of pairs is equal to the number of overlined parts in λ. In the
following, if we call a pair larger, it means that the sum of the two integers in the pair is
larger.

Next, we start the map ξ from the smallest pair, and deal with the pairs in increasing
order. Let (a + 1, a) denote a pair under consideration, and b is the part below it. If
a < b + 2, then subtract two from the larger part of the pair; add two to the part below;
and switch their positions. The operation is shown as follows.

a+ 1 a
b

a<b+2−−−−→ b+ 2
a a− 1.

For the new pair (a, a− 1), repeat the above operation until the smaller part of the pair is
greater than or equal to the part below with two up, or another pair is just under this pair,
or there is nothing under it. Then we continue to deal with the next larger pair. Clearly,
the process ends in a partition ξ(λ) whose parts are distinct, where from the smallest part,
the consecutive parts are paired up. Therefore, we derive the desired distinct partition,
and the number of odd (resp. even) parts of ξ(λ) is ]1,2(λ) (resp. ]0,2(λ) +O(λ)).

Conversely, for a given partition µ with distinct parts, put all the parts in a column.
Then starting from the smallest part, let two consecutive integers be a pair and put them
in a row. Next, we treat these pairs in decreasing order. Let (c, c − 1) be a pair under
consideration, and let d be the part above it. Then if the sum of the pair is larger than
d − 2, we subtract two from the part above; add two to the smaller part of the pair; and
switch their positions. The operation is stated as follows.

d
c c− 1

2c−1>d−2−−−−−−→ c+ 1 c
d− 2.

For the pair (c + 1, c), repeat the operation until the sum of the pair is less than or equal
to the part above reduced two, or there is a pair just above this pair, or there is nothing
above it. Then we move to a smaller pair. Once we complete the process for all pairs,
merge the pairs together and overline their sums. As a result, we obtain an overpartition
belonging to A 1

{1}. Hence, we complete the proof. �
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Example 3.1. For λ = 25 + 23 + 17 + 14 + 11 + 4 + 2 ∈ A 1
{1}, we obtain ξ(λ) = µ =

25 + 18 + 11 + 10 + 8 + 7 + 6 + 5 + 4 + 2.

λ =

25
23
17
14
11
4
2

7→

25
12 11
9 8
14
6 5
4
2

7→

25
12 11
9 8
14
6
5 4
2

7→

25
12 11
16
8 7
6
5 4
2

7→

25
12 11
16
8
7 6
5 4
2

7→

25
18
11 10
8
7 6
5 4
2

= µ.

We establish λ from µ according to the above transformation in reverse order.

Proof of Corollary 1.10. Based on the bijection in the above proof, the corollary follows
immediately. �

4. Concluding remarks

From (3.5)-(3.11), (3.13) and (3.15), in addition to Theorem 1.8, we can also establish
some other generating functions for A k

S for some given S. For example, the generating
functions for A k and A k

{1,1} are given below.∑
λ∈A k

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

n1,n2,n3>0

xn1+n2+n3yn3zn2

(q2; q2)n1(q
2; q2)n2(q

2; q2)n3

× q2k(
n1
2 )+(2k+2)(n22 )+2k(n32 )+2kn1n2+2kn1n3+2kn2n3+n1+n2+2n3 ,∑

λ∈A k
{1,1}

x](λ)y]0,2(λ)zO(λ)q|λ| =
∑

n1,n2,n3>0

xn1+n2+n3yn3zn2

(q2; q2)n1(q
2; q2)n2(q

2; q2)n3

× q2k(
n1
2 )+(2k+2)(n22 )+2k(n32 )+2kn1n2+2kn1n3+2kn2n3+3n1+3n2+2n3 .

So it would be interesting to find some other q-series identities like (1.2) to establish more
relations among partitions.
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