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Abstract

For a real number r ≥ 2, a circular r-colouring of a signed graph (G, σ)
is a mapping c : V (G) → [0, r) such that |c(x) − c(y)| ∈ [1, r − 1] for each
positive edge xy and |c(x)− c(y)| ∈ [0, r/2− 1] ∪ [r/2 + 1, r) for each negative
edge xy. This concept is recently introduced by Naserasr, Wang, and Zhu in
2021, and they show that for any ε > 0, there exist signed planar bipartite
graphs (of girth 4) which are not circular (4− ε)-colourable. In this paper, we
prove that for each signed planar graph (G, σ) of girth at least 5, there exists
a real number ε = ε(G, σ) > 0 such that (G, σ) is circular (4 − ε)-colorable.
Our proof utilizes a Thomassen-type inductive argument on the dual version in
terms of circular flows, which is motivated by a result of Richter, Thomassen,
and Younger (2016) on group connectivity of 5-edge-connected planar graphs.

Keywords: circular coloring, signed graphs, circular flow, group connectivity.

1 Introduction

A signed graph is a pair (G, σ), where G is a graph and σ: E(G) → {+,−} is
a signature which assigns to each edge of G a sign. Let r ≥ 2 be a real number.
As introduced by Naserasr, Wang, and Zhu in [6], a circular r-colouring of a signed
graph (G, σ) is a mapping c : V (G) → [0, r) such that |c(x) − c(y)| ∈ [1, r − 1] for
each positive edge xy and |c(x) − c(y)| ∈ [0, r/2 − 1] ∪ [r/2 + 1, r) for each negative
edge xy. The circular chromatic number of a signed graph (G, σ) is defined as

χc(G, σ) = inf{r : G admits a circular r-colouring}.

It is shown in [6] that χc(G, σ) is well-defined and must be a rational number. This
concept is a refinement of 0-free 2k-coloring of signed graphs and extends the circular
coloring concept introduced by Vince [8] from graphs to signed graphs.

1



The classical Grötzsch’s theorem states that every triangle-free planar graph is
circular 3-colorable. This is no longer true for signed graphs, as it is observed in [6]
that χc(G, σ) ≤ 4 for any signed bipartite graph (G, σ), and there exists a sequence
of signed bipartite planar graphs whose circular chromatic numbers are tending to
4. On the other hand, the circular chromatic number of any signed bipartite planar
graph cannot be equal to 4 as proved in [2].

Theorem 1.1. (Kardos, Narboni, Naserasr, and Wang [2]) For every signed bipartite
planar graph (G, σ), χc(G, σ) < 4.

In [2], it is also observed that every 2-degenerate signed graph has circular chromatic
number strictly less than 4. By Euler’s formula, it is straightforward to obtain that
every signed planar graph of girth at least 6 is 2-degenerate, and thus has circular
chromatic number strictly less than 4. Our main result of this paper shows that this
property is still valid for signed planar graphs of girth 5.

Theorem 1.2. For every signed planar graph (G, σ) of girth at least 5, χc(G, σ) < 4.

We conjecture that this conclusion is still true for signed planar graphs of girth 4,
which, if true, would be best possible as can be evidenced by K4 with all positive
signs.

Conjecture 1.3. For every signed planar graph (G, σ) of girth 4, χc(G, σ) < 4.

Note that applying some standard arguments (see Proposition 22 in [6] or Theorem
2.2 in [2]), we may further extend Theorem 1.2 to show that every n-vertex signed
planar graph (G, σ) of girth at least 5 satisfies χc(G, σ) ≤ 4 − 4

n+1
. But this upper

bound still relies on the order of the given signed graph. We propose below a stronger
conjecture to suggest a universal upper bound smaller than 4.

Conjecture 1.4. There exists a constant ε0 > 0 such that every signed planar graph
(G, σ) of girth at least 5 satisfies χc(G, σ) ≤ 4− ε0.

It is proved in [5] that every signed planar graph (G, σ) of girth at least 7 satisfies
χc(G, σ) ≤ 3, and so Conjecture 1.4 is true for that subclass of signed graphs.

2 Duality between circular coloring and circular

flows in signed graphs

Our proof of Theorem 1.2 actually uses the dual concept about circular flows of
signed graphs recently introduced in [3], which is a natural extension of the same
concept on graphs [1].

Definition 2.1. ([3]) Given a signed graph (G, σ) and a real number r ≥ 2, a circular
r-flow is a pair (D, f) where D is an orientation and f : E(G) → (−r, r) satisfies the
following three conditions:
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• for each positive edge e, |f(e)| ∈ [1, r − 1];

• for each negative edge e, |f(e)| ∈ [0, r
2
− 1] ∪ [ r

2
+ 1, r);

• for each vertex v, ∂Df(v) =
∑

e∈
→
E(v)

f(e)− ∑
e∈
←
E(v)

f(e) = 0,

where
→
E(v) is the set of arcs that v is the tail, and

←
E(v) is the set of arcs that v is

the head.

The circular flow number of a signed graph (G, σ) is defined as

Φc(G, σ) = inf{r : G admits a circular r-flow}.

Theorem 2.2. ([3]) A signed plane graph (G, σ) admits a circular r-coloring if and
only if its dual signed graph (G∗, σ∗) admits a circular r-flow, and thus χc(G, σ) =
Φc(G

∗, σ∗).

In the study of circular coloring and circular flows, we usually use the discrete form
for r = p

q
≥ 2, where we have the following equivalent definition: a circular p

q
-flow

is a pair (D, f) where D is an orientation and f : E(G) → {0,±1, . . . ,±(p − 1)}
such that for each edge e ∈ E(G), |f(e)| ∈ {q, . . . , p − q} if σ(e) = + and |f(e)| ∈
{0, . . . , p

2
− q} ∪ {p

2
+ q, . . . , p− 1} if σ(e) = −, and moreover, for each vertex v,

∂Df(v) =
∑

e∈
→
E(v)

f(e)−
∑

e∈
←
E(v)

f(e) = 0.

For convenience, we shall sometimes also use modular flows, whose definition is
almost the same except the equality above is taken modulo p. Some relations between
circular flow number and strongly connected orientation are established in [4].

Theorem 2.3. (Li, Thomassen, Wu, and Zhang [4]) A connected graph has circular
flow number strictly less than p

q
if and only if it admits a modular circular p

q
-flow

(D, f) such that f : E(G) → {q, q + 1, . . . , p− q − 1} and D is strongly connected.

Our result for signed graphs has a similar flavor. In fact, we prove the following
result concerning strongly connected orientations, which implies Theorem 1.2 as a
corollary. We shall need a few more definitions before presenting the following result.
Let k ≥ 2 be an integer. A mapping α : V (G) → Zk is called a Zk-boundary if∑
v∈V (G)

α(v) ≡ 0 (mod k). For a Zk-boundary α, a (Zk, α)-flow on a graph G is a pair

(D, f) where D is an orientation and f : E(G) → {±1,±2, . . . ,±(k − 1)} such that
for each vertex v ∈ V (G), ∂Df(v) =

∑
e∈
→
E(v)

f(e)− ∑
e∈
←
E(v)

f(e) ≡ α(v) (mod k).

Theorem 2.4. Let G be a 5-edge-connected planar graph. Then for any Z4-boundary
α, there exists a (Z4, α)-flow (D, f) on G such that f : E(G) → {1, 2} and D is
strongly connected.
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Proof of Theorem 1.2 assuming Theorem 2.4: Let (G, σ) be a signed planar
graph of girth at least 5, and let (H, σ∗) be its dual signed graph. Then H is 5-edge-
connected. For each vertex v ∈ V (H), denote d−(v) to be the number of negative
edges incident to v. Define α(v) ≡ 2d−(v) (mod 4) for every v ∈ V (H). Then∑

v∈V (H)

α(v) ≡ 2
∑

v∈V (H)

d−(v) = 4|{e : σ∗(e) = −}| ≡ 0 (mod 4),

and so α is a Z4-boundary of H. By Theorem 2.4, H has a (Z4, α)-flow (D, f1) such
that f1 : E(G) → {1, 2} and D is strongly connected.

Define another mapping f2 : E(H) → Z4 such that for each e ∈ E(H),

f2(e) =

{
2 if σ∗(e) = −,

0 if σ∗(e) = +.

Let f3 = f1 + f2. Consider the pair (D, f3). For each edge e ∈ E(H), we have
f3(e) ∈ {1, 2} if e is positive and f3(e) ∈ {0, 3} otherwise. Moreover, for any vertex
v ∈ V (H), we have

∂Df3(v) = ∂Df1(v) + ∂Df2(v) ≡ α(v) + 2d−(v) ≡ 0 (mod 4).

Hence (D, f3) is a (Z4, 0)-flow on H.

Since D is strongly connected, every arc a in D(H) is contained in a directed cycle,
say Ca. For every arc a ∈ A(D(H)), define fa: E(H) → {0, 1} by setting

fa(e) =

{
1 e ∈ E(Ca),

0 otherwise.

Let M = |E(H)| + 1. Define f = Mf3 +
∑

a∈A(D(H)) fa. Clearly, ∂Df(v) ≡ 0

(mod 4M) for each v ∈ V (H) by definition. Furthermore, for any edge e ∈ E(H),
since

∑
a∈A(D(H))

fa(e) ∈ {1, . . . ,M − 1}, we have

f(e) ∈ {M + 1, . . . , 3M − 1} if e is positive

and
f(e) ∈ {1, . . . ,M − 1} ∪ {3M − 1, . . . , 4M − 1} if e is negative.

Therefore, (D, f) is a modular circular 4M
M+1

-flow on the signed graph (H, σ∗). By

duality from Theorem 2.2, we conclude that (G, σ) admits a circular 4M
M+1

-coloring,
i.e., χc(G, σ) < 4. This completes the proof of Theorem 1.2. ■

Next, we shall prove Theorem 2.4 in the rest of this paper. In fact, we utilize a
Thomassen-type induction to prove a stronger theorem, which implies Theorem 2.4.
Our technical theorem and proof ideas are mainly motivated by a result of Richter,
Thomassen, and Younger [7] on group connectivity of 5-edge-connected planar graphs.
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However, we have to make certain modifications for our purpose of searching strongly
connected orientations.

For a Z4-boundary β of a graph G and a subset A ⊆ V (G), we define

β(A) ≡
∑
v∈A

β(v) (mod 4).

For a vertex v ∈ V (G), we use δ(v) to denote the set of edges incident to v, and
similarly we use δ(A) to denote the set of edges with exactly one end in A for a
vertex subset A. We use deg(v) to denote the degree of a vertex v, and we say v is
a k-vertex if deg(v) = k. For a vertex subset A ⊆ V (G), we use Ac to denote the
complement of A in V (G), while Ā is the complement of A in the vertex set of a
certain subgraph of G. A k-cut is an edge cut of size k. A 2-cut [A,Ac] is said to be
bad if β(A) ≡ β(Ac) ≡ 2 (mod 4).

Now we are ready to state our main theorem below:

Theorem 2.5. Let G be a 3-edge-connected planar graph embedded in the plane. Let
β be a given Z4-boundary of G. Suppose that G has at most two specified vertices d
and t such that:

(i) if d exists, then it is in the boundary of the unbounded face, has degree 3, 4, or 5,
and has its incident edges oriented and labelled with 1 or 2 satisfying boundary
β(d) (i.e., at vertex d the outflow minus inflow is congruent to β(d) modulo 4);

(ii) if t exists, then it has degree 3 and is in the boundary of the unbounded face;

(iii) except for possibly δ(d) and δ(t), every edge-cut of G is of size at least 4;

(iv) if d has degree 5, then t does not exist;

(v) every vertex not in the boundary of the unbounded face has five edge-disjoint
paths to the boundary of the unbounded face;

(vi) G− d has no bad 2-cut (Note that G− d = G when d does not exist).

Then the prescription at d can be extended to a (Z4, β)-flow (D, f) on G such that:

(a) ∂Df ≡ β (mod 4), that is,
∑

e∈
→
E(v)

f(e) − ∑
e∈
←
E(v)

f(e) ≡ β(v) (mod 4) for every

v ∈ V (G);

(b) f(e) ∈ {1, 2} for every e ∈ E(G);

(c) D(G− d) is strongly connected.

Theorem 2.4 follows from it when the first specified vertex d does not exist. The
rest of this paper is devoted to a proof of Theorem 2.5. We first investigate the
properties of a potential minimal counterexample in Section 3, especially those about
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small cuts, which will be frequently used later. In Section 4, we apply some more
structural results to find certain local configurations to complete the proof. We will
divide our proof into three different cases, determined by whether there exists a copy
of contractible structure containing t, and whether the set of boundary vertices of
the unbounded face is sparse enough, and deal with them using proper methods
accordingly.

3 Properties of the Minimal Counterexample to

Theorem 2.5

With a little abuse of the usage of symbols, in the remaining part of this paper,
we always use G (with a Z4-boundary β) to denote the minimal counterexample of
Theorem 2.5 in the sense of the lexicographical order (|V (G)|+ |E(G)|, |E(G− d)|).
It is a trivial job to check that |V (G)| > 3.

We will deal with plenty of cuts and edges in the proof, for the sake of clarity
and readability, it is necessary to make a statement about notations at first. When
multiple cuts occur in a part of the proof, we name them after B, F , K and Q in
sequence, and in this section, we always use A to represent a cut when stating the
content of a theorem. When we need to operate on a single edge, if it is unoriented,
we note it e; if it is an arc, we note it a; the two end vertices are chosen to be x and y.
When we need to operate on a vertex, we note it z. These notations are independent
between different theorems, propositions and sections, and we suggest the readers to
keep this statement in mind.

In this section, we study the necessary properties of G and list them by a series
of propositions. Prescribing a vertex means orienting all edges incident to it and
labelling each of them with a value. We say the orientation of a vertex is proper, or
the vertex is properly oriented if it is neither a sink nor a source; in other words, the
vertex has both indegree and outdegree nonzero.

We start with a lemma in [4], and we provide a proof here for completeness. For
convenience, a strongly connected orientation is called strong for short in the rest of
the paper.

Lemma 3.1. ([4]) Let H be a 2-edge-connected graph and e = xy be an edge of H.
If H/e has a strong orientation D, then D can be extended to a strong orientation of
H.

Proof. If D is strong on H − e, just orient e arbitrarily; if D is not strong on H − e,
then there exists an arc e′ ∈ H − e not on a directed cycle, but e′ is on some directed
cycle in H/e. It can be deduced that there is a directed path between x and y in
H− e, and that all such paths are directed the same direction, say from x to y. Then
orient e from y to x. It is now easy to check that there exists a directed path between
any pair of vertices of H, and D is extended to a strong orientation of H.
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Now we begin to present some properties of the minimal counterexample G. The
first one says that G is essentially a simple graph, which is the basis of the whole
proof of Theorem 2.5.

Proposition 3.2. G− d contains no multiple edges (which are unoriented).

Proof. On the contrary, assume two vertices x and y form an unoriented sK2 (s ≥ 2)
in G − d. By the induction, G/{x, y} admits a (Z4, β

′)-flow (D′, f ′) with a strong
orientation D′(G/{x, y} − d), where β′ is the Z4-boundary induced from β, with the
contraction vertex receiving value β(x) + β(y). As for sK2 itself, f ′ induces a Z4-
boundary γ on it, where γ(x) (γ(y)) is the difference of β(x) (β(y)) and the total
value x (y) receives from f ′.

We claim that there always exists a prescription of sK2 with a strong orientation
to realize γ(x) and γ(y) at x and y, except the only case s = 2 and γ(x) = γ(y) = 2.
This is clear when s ≥ 3; as for s = 2, if γ(x) = γ(y) = 0, then we label the two
edges with 1 and orient them oppositely; if {γ(x), γ(y)} = {1, 3}, then we label the
two edges with 1 and 2, and orient them oppositely. In these cases, sK2 receives a
strong orientation, and thus (D′, f ′) can be extended to a flow (D, f) on G naturally
such that D(G− d) is strong, resulting in a contradiction.

When s = 2 and γ(x) = γ(y) = 2, the two parallel edges between x and y must be
oriented to the same direction and labeled with 1. Now we apply Lemma 3.1, there
exists a certain orientation of the two edges to extend D′ to a strong orientation of
G − d, and f ′ is extended to a function f on E(G) with the desired boundary β by
labelling the two edges with 1. A contradiction is obtained too.

Proposition 3.3. G is 2-connected.

Proof. Let z be a cut vertex separating G into two subgraphs G1 and G2 with V (G1)∪
V (G2) = V (G), V (G1) ∩ V (G2) = {z}, and d ∈ V (G1). We use degi(v) to denote
the degree of a vertex v in Gi (i = 1, 2). Notice that degi(z) = |δ(Gi \ {z})|, by
assumption (iii) of Theorem 2.5, degi(z) ≥ 3 holds for i = 1, 2.

If degi(z) = 3 for some i, then δ(Gi \ {z}) is a 3-cut, Gi \ {z} can only be d or t,
and by Proposition 3.2, Gi \ {z} = d. Now d is a pendent vertex of G whose only
neighbour is z, we can apply the induction on G − d (setting the prescribed special
vertex non-existent) and obtain a flow with a strong orientation, which is also a flow
on G satisfying the conditions in Theorem 2.5.

If both deg1(z) ≥ 4 and deg2(z) ≥ 4, then by the minimality of G, G1 admits a
(Z4, β1)-flow (D1, f1) with a strong orientation D1(G1−d), and G2 admits a (Z4, β2)-
flow with a strong orientation D2(G2) (setting the prescribed special vertex non-
existent). (D1 ∪D2, f1 ∪ f2) is a desired (Z4, β)-flow on G with a strong orientation
of G− d, a contradiction.

From Proposition 3.3, we know that the boundary of the unbounded face of G is a
cycle, use C to represent it. We say a cut [A,Ac] of G is essential if min{|A|, |Ac|} ≥ 2,
and peripheral if one of |A| and |Ac| is 1.
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The next several propositions are concerned with essential 4-cuts and 5-cuts. We
use a contraction method in their proofs, that is, contracting the vertex set on one side
of an edge cut to a single vertex. Suppose vertex set X is contracted; the contraction
naturally induces a Z4-boundary of G/X from β, by choosing β(X) as the boundary
value of the vertex contracted from X. In the remaining text, the phrase “the induced
boundary” is used to refer to it. At first we introduce a fact from straightforward
observation of the conditions (i)-(vi) in Theorem 2.5, which implies that contraction
always preserves planarity. Recall that a bond of a graph H is a minimal non-empty
edge cut. If [X,Xc] is a bond, then both H[X] and H[Xc] are connected induced
subgraphs.

Fact 3.4. In G, cuts of size at most 5 are bonds; an essential 6-cut is a bond unless
it is δ({d, t}), on the premise that deg(d) = 3, and d and t are not adjacent.

Proposition 3.5. There does not exist an essential 4-cut [A,Ac] such that d ∈ A and
G[Ac] is 3-edge-connected.

Proof. By contracting Ac to a single vertex and applying the induction on G/Ac, we
obtain a (Z4, β1)-flow (D1, f1) with a strong orientation D1(G/Ac−d). Next, contract
A to a vertex z in G, prescribe z according to f1, and then apply the induction on
G/A by viewing z as the new ”d”. There is another (Z4, β1)-flow (D2, f2) with a
strong orientation D2(G[Ac]−z). Combining the two flows together, we obtain a flow
on G with a strong orientation of G− d, a contradiction.

Proposition 3.6. There does not exist an essential 5-cut [A,Ac] such that {d, t} ⊆ A,
and G[Ac] is 3-edge-connected.

Proof. The proof is very similar to the proof of Proposition 3.5. Note that, with the
assumption {d, t} ⊆ A, we can apply the induction on G/Ac and G/A appropriately,
as the conditions (i)-(vi) in Theorem 2.5 can be justified for both G/Ac and G/A.
By applying the same method as in the proof of Proposition 3.5, we combine the two
flows on G/Ac and G/A together to construct a flow on G with a strong orientation
of G− d. This leads to a contradiction, hence verifying the proposition.

We are now able to strengthen the two propositions above by deleting the restriction
“3-edge-connected”.

Proposition 3.7. There is no essential 4-cuts in G.

Proof. On the contrary, suppose that there exists an essential 4-cut [A,Ac] with d ∈ A,
we take the one with |Ac| minimized. Since G is 3-edge-connected and the only
possible 3-cuts are δ(d) or δ(t), G[Ac] is 2-edge-connected, and by Proposition 3.5
G[Ac] must contain a 2-cut. From Proposition 3.2, it can be deduced that |Ac| ≥ 3,
and by the minimality of |Ac|, this 2-cut can only be [t, Ac\{t}]. As a result, δ(A∪{t})
is an essential 5-cut.

Among all essential 5-cuts [B,Bc] with A ∪ {t} ⊆ B, choose the one with |Bc|
minimized. G[Bc] is 2-edge-connected, and by Proposition 3.6, G[Bc] has a 2-cut
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[F, F̄ ], with |[B,F ]| = 2 and |[B, F̄ ]| = 3, so |δ(F )| = 4 and |δ(F̄ )| = 5. By minimality
of |Ac| and |Bc|, both F and F̄ are singletons linked by parallel double edges, a
contradiction to Proposition 3.2.

Proposition 3.8. There does not exist an essential 5-cut [A,Ac] such that {d, t} ⊆ A.

Proof. Suppose that there exists such an essential 5-cut, take the one with |Ac| min-
imized. Since G is 3-edge-connected and the only possible 3-cuts are δ(d) or δ(t),
G[Ac] is 2-edge-connected, and by Proposition 3.6 G[Ac] must contain a 2-cut [B, B̄],
|[A,B]| = 2 and |[A, B̄]| = 3, so |δ(B)| = 4 and |δ(B̄)| = 5. From Proposition 3.7 and
the minimality of |Ac|, both B and B̄ are singletons linked by parallel double edges,
a contradiction to Proposition 3.2.

From Proposition 3.7 and Proposition 3.8, two corollaries are obtained, which will
be helpful in later proofs.

Corollary 3.9. G− d is 3-edge-connected.

Proof. Suppose [B, B̄] is a cut of G− d of size at most 2. First we point out that its
size is exactly 2. Assume |[B, B̄]| ≤ 1, since G is 3-edge-connected and deg(d) ≤ 5,
|[d,B]| ≥ 2, |[d, B̄]| ≤ 3, and both |δ(B)| and |δ(B̄)| are at most 4. From Proposition
3.7, both B and B̄ are singletons, but we have mentioned that |V (G)| > 3 at the
beginning of this section.

So |[B, B̄]| = 2, and |[d,B]| ≥ 1, |[d, B̄]| ≥ 1. If |[d,B]| or |[d, B̄]| equals 1 (assume
it is the former), then B = {t}, from condition (iv), deg(d) ≤ 4, hence |[d, B̄]| ≤ 3
and |δ(B̄)| ≤ 5. By Proposition 3.8, B̄ is a singleton as well, limiting G to 3 vertices.

So |[d,B]| ≥ 2, |[d, B̄]| ≥ 2, and since deg(d) ≤ 5, at least one of the equalities holds
(still assume it is B). Thus δ(B) = 4, by Proposition 3.7, B is a singleton. |δ(B̄)| = 4
when deg(d) = 4 and 5 when deg(d) = 5, by Proposition 3.7 or 3.8 respectively, B̄ is
a singleton too, contradicting Proposition 3.2.

Corollary 3.10. An essential 7-cut of G is a bond unless it has the form δ({x1, x2}),
where x1, x2 are two vertices, deg(x1) = 3, deg(x2) = 4, and they are not adjacent in
G.

Proof. Since G is 3-edge-connected, an essential 7-cut which is not a bond can only
be a union of two cuts, whose size are 3 and 4 respectively. By Proposition 3.7, both
of them are formed by a single vertex.

In the following three propositions, we show that the two special vertices d and t
both exist, and they are not adjacent.

Proposition 3.11. d exists in G, and deg(d) = 3 or 4.

Proof. If d does not exist, then G belongs to one of the following cases, and in each
of them we can apply the induction on a smaller graph with less unoriented edges.
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(1) All vertices in the boundary have degree at least 5. Take an edge e in the
boundary and delete it, then essential cuts in G−e have size at least 4 by Proposition
3.7. Apply the induction on G− e.

(2) There is no 3-vertex but a 4-vertex z in the boundary. G−z is 2-edge-connected;
assume there exists a 2-cut [B, B̄]. In this case G has no cut of size at most 3, so
|[z, B]| = |[z, B̄]| = 2. By Proposition 3.7, both B and B̄ are singletons with parallel
double edges in between, violating Proposition 3.2, so G − z is 3-edge-connected.
Prescribe z properly and appoint it as “d” in Theorem 2.5, then we can apply the
induction on G− z.

(3) There exists a 3-vertex z′ in the boundary. Assume there exists a 2-cut [F, F̄ ]
in G− z′, setting |[z′, F ]| = 2, |[z′, F̄ ]| = 1 without loss of generality. By Proposition
3.7, F is a singleton linked to z′ by parallel double edges, violating Proposition 3.2,
so G−z′ is 3-edge-connected. Prescribe z′ properly and appoint it as “d” in Theorem
2.5, then we can apply the induction on G− z′.

Now we have proved the existence of d. If deg(d) = 5, choose an arc a in the
boundary incident to d, and apply the induction on G− a.

Proposition 3.12. t exists.

Proof. Suppose on the contrary that t does not exist. Then all boundary vertices
except d have degree at least 4.

When deg(d) = 4, choose an arc a in the boundary incident to d, and apply the
induction on G− a.

When deg(d) = 3, by Proposition 3.8, an essential cut formed by d and one of its
boundary neighbours has size at least 6, and it can be deduced that the minimum
degree of G − d is at least 4. Moreover, G − d contains no essential cut of size at
most 3, since such a cut yields an essential cut of size at most 4 in G. We apply the
induction on G− d.

Proposition 3.13. d and t are not adjacent.

Proof. If d and t are adjacent, δ({d, t}) is an essential cut of size 4 or 5, contradicting
Proposition 3.7 or Proposition 3.8.

In the following propositions, we make some preliminary descriptions of the struc-
ture of G, which is the basis of our analyses in Section 4. We end this section with a
more detailed depiction about essential 5-cuts as a corollary of these descriptions.

Proposition 3.14. t is not incident to a chord.

Proof. On the contrary, suppose tx is a chord separating G into two subgraphs G1

and G2 with G1 ∪ G2 = G, V (G1) ∩ V (G2) = {t, x}, and d ∈ V (G1). We use degi
to denote the degree of a vertex in Gi (i = 1, 2). In G1, d and t are not adjacent; in
G2, there exists a vertex in the boundary other than {t, x}, with degree at least 4.
By Proposition 3.2, each of Gi has at least four vertices, and it can be deduced from
Proposition 3.7 that degi(x) ≥ 5.
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In G1, contract tx to a vertex z. Denote the Z4-boundary of G1/tx by β1, β1(v) =
β(v) for v ∈ V (G1) \ {t, x} and set the boundary value β1(z) so as to make the sum∑

w∈V (G1/tx)
β1(w) = 0. G1/tx− d contains no bad 2-cut under β1, otherwise yielding

a bad 2-cut under β in G − d. Now apply the induction on G1/tx, and we obtain
a (Z4, β1)-flow (D1, f1) with a strong orientation D1(G1/tx − d). We are going to
construct a flow on G1 stemming from it. From the proof of Proposition 3.2, we can
orient tx to extend D1 to a strong orientation of G1 − d. We choose this orientation,
but do not label tx right now.

Prescribe t to achieve β(t) in G with the two unlabelled edges in G2, hence tx has
been definitely oriented and labelled so far, a flow on G1 is obtained. Add an extra
arc a = tx labelled with a fixed value 1 or 2. G2 + a has no essential cut of size at
most 3, since such a cut must separate t and x, and because |[t, V (G1) \ {t, x}]| = 1,
it will yield an essential cut of size at most 4 in G. Furthermore, G2 − t has no
2-cut, otherwise a cut of size at most 3 is induced in G, which is neither δ(d) nor δ(t).
Denote the Z4-boundary of G2 by β2. Determine β2(t) according to its prescription
in G2 + a, β2(v) = β(v) for v ∈ V (G2) \ {t, x}, and set β2(x) so as to make the
sum

∑
w∈V (G2)

β2(w) = 0. Now we can apply the induction on G2 + a, a (Z4, β2)-

flow (D2, f2) on G2 + a (and thus on G2) is obtained, with a strong orientation
D2(G2 − t). Combining the prescription of t, there arises a (Z4, β)-flow on G with a
strong orientation of G− d, a contradiction.

Proposition 3.15. The degree of boundary neighbours of t is exactly 4.

Proof. Assume one boundary neighbour of t has degree at least 5, then G− t satisfies
conditions (i), (ii) and (v) in Theorem 2.5, and our goal is to check (iii) and (vi) to
apply the induction on G− t. First, since deg(t) = 3, G− t has no essential cut of size
at most 3, otherwise it induces an essential cut of size at most 4 in G. We will show
that (vi) holds if t has been wisely prescribed by a series of Lemmas and Claims.

Say a composition of b ∈ Z4 is a way of writing b as the sum of an ordered sequence
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of values in Z4. We start with a preparing lemma:

Lemma 3.16. Let L1, L2 be two subsets of L3 = {1,−1, 2} ⊆ Z4, where |L1| = |L2| =
2. For every value b ∈ Z4, b has a composition b = b1 + b2 + b3, bi ∈ Li (i = 1, 2, 3),
where either 2 ∈ {b1, b2, b3} or {1,−1} ⊆ {b1, b2, b3}.

Proof of Lemma 3.16. Both L1 and L2 can be regarded to be the remaining part
after deleting one value from L3. We make a table of all possible values of L1 + L2:

Deleted values L1 + L2

1, 1 0, 1, 2
-1, -1 0, -1, 2
2, 2 0, 2
1, -1 0, 1, -1
1, 2 0, 1, -1, 2
-1, 2 0, 1, -1, 2

Anyway, L1 + L2 + L3 = {0, 1,−1, 2}. We discuss the composition of b according
to its parity.

• When b is even, there exists a 2 in any composition of b.

• When b = ±1, then if none of 2 is deleted, b = 2 + 2 + b; if one of 2 is deleted,
b = b+ 2 + 2 or b = 2 + b+ 2; if two of 2 are deleted, b = 1 + (−1) + b.

This completes the proof of Lemma 3.16.

Claim 3.17. t can be prescribed properly without leaving any bad 2-cut in G− d− t,
under the induced Z4-boundary.

Proof. We show that the 2-cuts in G − d − t are too special and rare to make great
influence on the prescription of t. Let [B, B̄] be a 2-cut in G− d− t.

Subclaim 3.17.1. B or B̄ is a single vertex in N(t).

Proof of Subclaim 3.17.1. [B
⋃
t, B̄] or [B, B̄

⋃
t] is a 3-cut of G− d. We may

assume it is [B
⋃

t, B̄], and |[t, B̄]| = 1.

In G, |δ(B⋃
t)| > 4, |δ(B̄)| > 3, and deg(d) = 3 or 4. It can be deduced from

these facts that |[d, B̄]| ≤ 2, |δ(B̄)| = 4 or 5. By Proposition 3.7 or 3.8, B̄ is a single
vertex adjacent to t.

Subclaim 3.17.2. There are at most two 2-cuts in G− d− t.

Proof of Subclaim 3.17.2. We write z the single vertex in a 2-cut for conve-
nience. If deg(d) = 3, deg(z) = 4, z is a boundary neighbour of t and the subclaim
holds. If deg(d) = 4, we presume that all three possible 2-cuts coexist, and the three
corresponding z’s are z1, z2 and z3. The configuration of G is shown in Figure 2.

12
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G is separated into two subgraphs G1 and G2, with V (G1)
⋂
V (G2) = {d, z3, t},

deg(z1) = deg(z2) = 4 and deg(z3) = 5. It can be deduced from Proposition 3.2 that
the internal vertex set of Gi is nonempty, and we use Ui to represent it (i = 1, 2). From
condition (v) of Theorem 2.5, |δ(Ui)| ≥ 5, but |δ(Ui)| = |δ(Ui)∩δ(zi)|+|δ(Ui)∩δ(z3)| ≤
2 + 2 = 4, a contradiction.

Proof of Claim 3.17: To find a proper prescription of t, equivalently, we may
make the three edges incident to t all out-arcs, each of which is equipped with a value
list {1,−1, 2} ∈ Z4. Making at most two 2-cuts not bad is equivalent to selecting at
most two of the lists, and delete one value from each of them. By Lemma 3.16, there
exists a scheme of labelling containing 2 or {1,−1}. Since the edge labelled with 2
can be oriented arbitrarily, it corresponds a proper prescription of t.

At last, we have proved that t has a proper prescription making (vi) hold in G− t.
We can apply the induction on G−t, and gain a flow on G−t with a strong orientation
of G−d− t, which can be naturally extended to a flow on G with a strong orientation
of G− d. The proof of Proposition 3.15 is finished.

Proposition 3.18. A vertex of degree 4 is not incident to an unoriented chord.

Proof. Similarly, let x be the 4-vertex, and xy is a chord separating G into two
subgraphs G1 and G2 with G1 ∪ G2 = G, V (G1) ∩ V (G2) = {x, y}, and d ∈ G1. We
use degi to denote the degree of a vertex in Gi (i = 1, 2). In G2, there exists a vertex
in the boundary other than {x, y}, with degree at least 3, so G2 has at least four
vertices, and by Proposition 3.7, deg2(y) ≥ 4.
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Case 1. V (G1) \ {x, y} = {d}.
In this case deg2(x) = 3, otherwise there are parallel double arcs between d and x,

and thus δ({d, x}) is an essential 3 or 4-cut of G.

If there is an essential cut of size at most 3 in G2, then it separates x and y, or the
cut induces an essential cut of size at most 3 in G. Assume it is [B, B̄] and x ∈ B. d
is connected with B by a single arc dx, and δ(B) is an essential cut of size at most 4
in G. So essential cuts in G2 have size at least 4.

Still in G2, assume [F, F̄ ] is a 2-cut of G2 − x and y ∈ F . |[x, F̄ ]| = 1 or 2,
|δ(F̄ )| ≤ 4, so F̄ is a singleton. If so, |[x, F̄ ]| = 1 and deg(F̄ ) = 3, hence F̄ = {t}, and
the possible 2-cut in G2−x is unique. Denote the Z4-boundary in G2 by β2, β2(x) and
β2(y) are set to achieve β(x) and β(y) under the restriction of d, and β2(w) = β(w)
for w ∈ V (G2) \ {x, y}. The same as the proof of Claim 3.17, x can be prescribed
properly so that there is no bad 2-cut in G2−x under the induced boundary from β2.
Applying the induction on G2, we obtain a flow (D2, f2), where D2(G2−x) is strong,
and thus D2(G2) is strong.

Case 2. V (G1) \ {x, y} has at least two vertices.

Copy the proof of Claim 3.14. G1/xy admits a flow (D1, f1), where D1(G1/xy− d)
is strong. Add an extra arc a = xy labelled with a fixed value 1 or 2, G2 + a contains
no essential cut of size at most 3. Assume [K, K̄] is a 2-cut of G2 − x, and y ∈ K.
|δ(K̄)| ≤ 4, so K̄ must be a single vertex adjacent to x. The only possible 2-cut of
G2 − x is [t, V (G2) \ {x, t}].
(1) If x and t are not adjacent, prescribe x so that D1 is extended to a strong

orientation of G1−d; apply the induction on G2+a, G2 admits a flow (D2, f2) where
D2(G2 − x) is strong. Combining the two parts together, we obtain a flow with a
strong orientation of G− d.

(2) If x and t are adjacent and deg2(x) = 3, prescribe x so that D1 is extended to
a strong orientation of G1 − d and [t, V (G2) \ {x, t}] is not bad under the induced
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Z4-boundary β2: the orientation of xy is fixed, and xt has at most one forbidden
value, so this is equivalent to composing a certain value in Z4 with three copies of
list {1,−1, 2}, at most two of which having one value deleted. By Lemma 3.16, there
exists such a prescription, then apply the induction on G2+a as we have done in (1).

(3) If x and t are adjacent and deg2(x) = 2, prescribe x and t so that: (i) D1 is
extended to a strong orientation of G1 − d; (ii) the orientation of t is proper.

G2 − x − t is 3-edge-connected, and the sizes of essential cuts are at least 4: Let
[Q, Q̄] be a cut of size at most 3 with y ∈ Q, t is linked to Q̄ by at most two edges,
so 4 ≤ |δ(Q̄)| ≤ 5. The only possible case is that Q̄ is a single vertex in N(t) \ {x} of
degree 4 in G, and |[Q, Q̄]| = 3.

We apply the induction on G2−x−t: by Proposition 3.7, the condition deg2(x) = 2
implies deg2(y) ≥ 5; remember t is not incident to a chord, G2 − x − t contains at
most one 3-vertex. By the induction on G2 − x − t (setting the prescribed special
vertex in Theorem 2.5 non-existent), we obtain a flow (D2, f2) where D2(G2 − x− t)
is strong. By prescriptions (i) and (ii), we get a flow with boundary β and a strong
orientation of G− d formed by D1, D2 and {t}. This completes the proof.

Proposition 3.19. There does not exist an essential 5-cut [A,Ac] such that δ(A)∩δ(t)
is a single edge in the boundary.

Proof. Assume there exists such an [A,Ac]. By Proposition 3.8, d and t belong to
different sides of the cut, say d ∈ A and t ∈ Ac. Assume, furthermore that among
all such cuts |Ac| is choosen to be minimum. Prescribe t in some way and delete it.
Denote the boundary edge of δ(A) ∩ δ(t) by e. First contract Ac \ {t} and apply the
induction on (G− t)/(Ac− t) (equivalently G/Ac− e), then contract A and apply the
induction on G/A− t. It will be shown that there exists a proper prescription of t to
guarantee the proceeding of the two inductions.

We shall check the edge connectivity: essential cuts in G/Ac − e have size at least
4 because of Proposition 3.7; G/A − t contains no essential cut of size at most 3,
otherwise yielding an essential cut of size at most 4 in G/A and thus in G.

Claim 3.20. There is at most one 2-cut in G/Ac − e− d.

Proof of Claim 3.20: By Corollary 3.9, G−d is 3-edge-connected; G/Ac−e−d is
2-edge-connected, and any 2-cut contains edge e in G. Let [B, B̄] be such a 2-cut, and
suppose the vertex contracted from Ac is in B̄. By Proposition 3.7, in G, |[d, B̄]| ≥ 2,
|[d,B]| ≤ 2, |δ(B)| ≤ 5, so B is a singleton from Proposition 3.8, which can only be
the boundary neighbour of t contained in A.

Claim 3.21. There is at most one 2-cut in G[Ac \ {t}].

Proof of Claim 3.21: Assume [F, F̄ ] is a 2-cut of G[Ac \ {t}].
(1) If |[A,F ]| or |[A, F̄ ]| = 4, we may suppose it is the former without loss of

generality (for convenience, we will always choose F as the special one later in this
proof). |δ(F̄ )| ≤ 4, by Proposition 3.7, F̄ is a singleton incident to t, resulting in a
3-vertex w /∈ {d, t} or multiple edges.
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(2) If |[A,F ]| = 3, and |[t, F ]| or |[t, F̄ ]| = 2, then |δ(F̄ )| = 3 or 5, F̄ is a singleton
incident to t, resulting in a 3-vertex w /∈ {d, t} or multiple edges too. So |[t, F ]| =
|[t, F̄ ]| = 1, |δ(F̄ )| = 4, and F̄ is the boundary neighbour of t not in A, see Figure 4.

d

t

F F̄

A

Figure 4

(3) If |[A,F ]| = |[A, F̄ ]| = 2, and |[t, F ]| = |[t, F̄ ]| = 1, then |δ(F )| = |δ(F̄ )| = 5, by
Proposition 3.8, both F and F̄ are singletons with parallel double edges in between.
So t is linked to one of F and F̄ by two edges (See Figure 5, where we take F as the
special one as usual). |δ(F ∪ {t})| = 5, and δ(t) ∩ δ(F ∪ {t}) is a single edge in the
boundary of G, a contradiction to the minimality of |Ac|.

d

t

F F̄

A

Figure 5

With the two claims above, we make a scheme to prescribe t to satisfy condition
(vi) in Theorem 2.5, as we have mentioned at the beginning of this proposition.
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There are three ways to orient and label e, of which we choose the one so that: (I)
the only possible 2-cut of G/Ac − e − d is not bad under the induced Z4-boundary;
(II) the induced boundary value of the remaining two edges of t is not 2. We can
apply the induction on G/Ac− e, and obtain a flow (D1, f1), where D1(G/Ac− e− d)
is strong. Transfer this flow to G/A− t.

If the only possible 2-cut in G/A−t exists, orient and label the remaining two edges
of t to achieve β(t), so that: (1) the 2-cut is not bad under the induced Z4-boundary,
with the restriction of (D1, f1); (2) the orientation of t is proper. Because of (II),
these can be realized, see the illustration in the proof of Proposition 3.2. We can
apply the induction on G/A − t, and obtain a flow (D2, f2), where D2(G[Ac \ {t}])
is strong. Combining (D1, f1), (D2, f2) as well as {t}, we get a flow with a strong
orientation of G− d. This proves Proposition 3.19.

4 Proof of Theorem 2.5

In this section, we denote the two boundary neighbours of t by u and v, while the
internal neighbour is w. The neighbours of v are v1, v2, v3 and t in cyclic order, where
v1 is in the boundary. Let e1 = vv1 and e2 = vv2. d and t cut the boundary cycle
C (We named it in Section 3 when finishing the proof of Proposition 3.3) into two
segments separating u and v. Denote the two boundary neighbours of d by u′ and v′,
where u and u′ are on the same side and v and v′ are on the same side.

With v specialized, we will perform different operations on the neighbours of t to
create turning points for induction. As a result, a flow with a strong orientation of
G− d will be obtained.

4.1 Case 1: w ∈ N(u) ∩N(v), and v and d are not adjacent.

t
vu

w v2

v1

d

e2
e1

u′ v′

Figure 6: Case I, notice v1 and v′ may be identical.
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Orient and label e1 and e2 to realize β(v). Let D∗ = {u, t, v, w}, and denote by d∗

the vertex to which D∗ is contracted. Delete e1 and e2 and let G′ = G/D∗ − e1 − e2.
The Z4-boundary β′ is induced from β by the contraction and deletion.

Lemma 4.1. A flow on G′ − d with a strong orientation can be extended to a flow
on G− d, whose orientation is strong too.

Proof. This can be done by prescribing u and t wisely within the diamond D∗. Let
(D, f) be such a flow on G′−d. First, by Lemma 3.1, there exists a certain orientation
of uw so that D is extended to a strong orientation of G−d− t−v, then we prescribe
u with this orientation of uw to achieve β(u). The value and orientation of ut may
be determined but still, we can prescribe t properly and since the Z4-boundary value
of v in D∗ is 0, we prescribe vw with the same value and orientation as tv. As the
result, utvw is a directed path, or utw, tvw are two directed paths. Anyway, (D, f)
is extended to a flow on G−d−{e1, e2} with a strong orientation, and thus on G−d.

Lemma 4.2. There is no essential cut of size at most 3 in G′.

Proof. Assume [B,Bc] is such a cut with d∗ ∈ B. The only possible case is that
|δ(B)| = 3 and v1, v2 ∈ Bc. But if so, then Bc together with v induces an essential
5-cut in G intersecting δ(t) at tv, a contradiction to Proposition 3.8 or Proposition
3.19.

We now present the last lemma stating that there is at most one 2-cut in G′ − d.
With the three lemmas, we can apply the induction on G′ by making it not bad in
the prescription of e1 and e2.

Lemma 4.3. There is at most one possible 2-cut in G′ − d, and if there is one, it
can only be δ(v1) ∩ E(G′ − d).

Proof of Lemma 4.3: Let [F, F̄ ] be a 2-cut of G′− d with d∗ ∈ F , where F̄ ̸= {v1}.
We will show that such a cut actually cannot exist.

• If |[d, F̄ ]| ≤ 1, then |δ(F̄ )| ≤ |[d, F̄ ]|+ |δ(F̄ ) ∩ {e1, e2}|+ 2 ≤ 5, so F̄ is a single
vertex by Proposition 3.7 or 3.8. The only possible case is that |δ(F̄ )| = 4 and
thus F̄ = {v1}.

• If |[d, F ]| ≤ 1, then |δ(F )| ≤ 5. While by Proposition 3.7, |δ(F )| ≥ 5, the only
possible case is that |δ(F )| = 5, and v1, v2 ∈ F̄ . δ(F \ {v}) is an essential 5-cut
in G intersecting δ(t) at tv, a contradiction to Proposition 3.19.

So |[d, F ]| = |[d, F̄ ]| = 2, and at least one of vi (i = 1, 2) must be in F̄ , since if not,
|δ(F )| = 4, violating Proposition 3.7.

If exactly one vi is in F̄ , |δ(F̄ )| = 5, so it is v2 and F̄ = {v2}. Since d ̸= v1, from
planarity, it can be shown from Figure 6 that {d, v, v2} forms an essential 7-cut which
is not a bond, since G − {d, v, v2} is divided into two non-empty components. By
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Corollary 3.10, this will not happen. So both v1 and v2 are in F̄ . This last case,
see Figure 7, is more subtle than the ones above, requiring further research on the
structures of F and F̄ to eliminate it. Denote the two edges of [F, F̄ ] by e′1 and e′2.
Contract F ∪ {d} to a vertex d1, and contract F̄ ∪ {d} to a vertex d2 (but not at the
same time).

t
vu

w v2

v1

d

e2
e1

u′ v′

F F̄e′1
e′2

Figure 7: |[d, F ]| = |[d, F̄ ]| = 2, and {v1, v2} ⊆ F̄ .

Claim 4.4. G[F̄ ] has at most one possible 2-cut, and if there is one, it can only be
δ(v1) ∩ E(G[F̄ ]); G[F ] has no 2-cut.

Proof. First concentrate on G[F̄ ]. Suppose [K, K̄] is a 2-cut of G[F̄ ]. It is obvious
that both K and K̄ are connected with d1 by at least one edge from E(G′). For
convenience, we call a path P an inner path if internal vertices of P do not lie on C.

Subclaim 4.4.1. Vertices on C from v′ to v1 in cyclic order are contained in F̄ .

Proof of Subclaim 4.4.1: By Fact 3.4, both δ(F ) and δ(F̄ ) are bonds of G, so the
boundary vertices belonging to F and F̄ are consecutive respectively, otherwise G[F ]
and G[F̄ ] cannot be connected at the same time by planarity. F ∪ F̄ ∪ {d} = V (G),
v ∈ F and v1 ∈ F̄ , where it can be deduced that the boundary vertices in F̄ are
vertices from v′ to v1 in cyclic order.

Subclaim 4.4.2. In G′, |[d1, K]| = |[d1, K̄]| = 2 is impossible.

Proof of Subclaim 4.4.2: If so, v1 and v2 cannot be separated by the cut, because
otherwise |δ(K)| = |δ(K̄)| = 5 in G, by Proposition 3.8, K and K̄ are singletons with
parallel double edges in between. Assume v1, v2 ∈ K without loss of generality, then
K̄ is a boundary 4-vertex of G. In fact, K̄ = {v′}, since δ(K) is an essential 6-bond,
the boundary vertices within Kc = F ∪{d}∪ K̄ are consecutive on C. What is more,
|δ(v′) ∩ {e′1, e′2}| = 1 because there is exactly one edge between d and v′.
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F F̄

e′1e′2 M(d)

Figure 8: If v′ forms a 2-cut of G[F̄ ].

δ(F \{v}) and δ(F̄ ∪{v}) are essential 6-bonds, so both G[F \{v}] and G[F̄ ∪{v}]
are connected. Define M(d) to be the internal vertex set which d can reach through
an inner path in G[F̄ ∪{d, v}]. By planarity, d does not form a chord with any vertex
in {v′, . . . , v1, v}, because one of e′1, e

′
2 is incident to v′. But d contributes another

edge to δ(F̄ ) besides dv′, so M(d) ̸= ∅. Still by planarity, there is no inner path
within G[F̄ ∪{d, v}] connecting d with a boundary vertex in F̄ ∪{v} except v′. These
are shown in figure 8. As a result, |δ(M(d))| = |δ(M(d))∩ δ(d)|+ |δ(M(d))∩ δ(v′)|+
|δ(M(d)) ∩ {e′1, e′2}| ≤ 1 + 1 + 1 = 3, a contradiction.

Subclaim 4.4.3. In G′, |[d1, K]| = 1 or 3 is impossible unless v′ = v1 and deg(v1) = 4
in G.

t
vu

w v2

v1

d

e2
e1

u′ v′

F F̄

e′1

e′2 U

Figure 9: If v1 forms a 2-cut of G[F̄ ].

Proof of Subclaim 4.4.3: Let |[d1, K]| = 3 without loss of generality. |δ(K̄)| ≤ 5,
so K̄ is a singleton. Actually K̄ can only be v1 with degree 4 in G. If v′ ̸= v1, then
there is no chord between d and v1, because otherwise there exists an essential 4-cut
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in G. So |δ(v1) ∩ {e′1, e′2}| = 1. Consider the 6-bond δ(F̄ ∪ {v}), by planarity, in
G[F̄ ∪ {v}], no boundary vertex between d and v1 admits an inner path to v. We
define U to be these boundary vertices as well as the internal vertices they can reach
through an inner path in G[F̄ ], see Figure 9. δ(U) is a cut not separating d and t,
while |δ(U)| = |δ(U) ∩ δ(v1)| + |δ(U) ∩ δ(d)| + |δ(U) ∩ {e′1, e′2}| ≤ 2 + 2 + 1 = 5. So
U = {v′} with degree 4 or 5 in G, as the result, at least two inequalities of the three
terms in the sum hold, causing parallel double edges between v′ and d or v1, neither
of which is possible.

The former part of Claim 4.4 can be deduced from the above three subclaims,
and now we turn to G[F ]. Assume [Q, Q̄] is a 2-cut of G[F ] with d∗ ∈ Q. In G′,
|[d2, Q̄]| ≥ 2 and by Proposition 3.7, |[d2, Q]| ≥ 1. If |[d2, Q]| = 1, then |δ(Q)| = 5,
and δ(Q \ {v}) is an essential 5-cut of G intersecting δ(t) at tv, violating Proposition
3.19.
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Figure 10: If u′ forms a 2-cut in G[F ].

So |[d2, Q]| = |[d2, Q̄]| = 2, and Q̄ is a 4-vertex of G. δ(Q̄∪ F̄ ∪{d}) is a 6-bond, so
Q̄ can only be u′ with degree 4 in G. There is exactly one edge between d and u′, so
|δ(u′) ∩ {e′1, e′2}| = 1. Consider the 6-bond δ(F̄ ∪ {d, v, u′}), by planarity, there is no
chord nor an inner path in G[F̄ ∪ {d, v, u′}] connecting u′ with boundary vertices in
{v′, . . . , v1, v} because |δ(d) ∩ δ(F \ {v, u′})| = 1. Define Ũ to be the set of internal
vertices cannot be reached by {v′, . . . , v1, v} through an inner path in G[F̄ ∪{v}], see
Figure 10. It can be deduced that Ũ ̸= ∅ and u′ is linked to Ũ by one of e′1 and e′2.
|δ(Ũ)| = |δ(Ũ) ∩ δ(d)| + |δ(Ũ) ∩ {e′1, e′2}| ≤ 1 + 2 = 3, a contradiction. The proof of
Claim 4.4 is completed.

In the end, we are able to verify Lemma 4.3 by constructing a flow onG[F ] andG[F̄ ]
respectively. Remember we have prescribed e1 and e2 to achieve β(v). Now prescribe
e′1 and e′2 to achieve β(F ) and make sure that the directions of {e1, e2, e′1, e′2} between
F and F̄ are not identical. G[F ] has no 2-cut, applying the induction on F ∪ {d2}
in G′, G[F ] admits a flow with a strong orientation. G[F̄ ] has one possible 2-cut
δ(v1) ∩ E(G[F̄ ]) only when v′ = v1 and the degree of v1 is 4 in G. When this case
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arises, we can guarantee the cut not bad in the prescription of e1 and e2: there are at
least two ways to orient and label e1 to make the cut not bad, of which there exists
one so that e2 is not labelled with 0 to achieve β(v). So we can apply the induction
on F̄ ∪ {d1} and obtain a flow on G[F̄ ] with a strong orientation too. Combining
them together, there is a flow with a strong orientation of G′ − d. By Lemma 4.1, a
flow with a strong orientation of G− d can be obtained. This completes the proof of
Lemma 4.3.

4.2 Case 2: N(v) ∩N(t) = ∅.
In this case we adopt the lifting method. Consider a vertex z with two neighbours

x, y. The lifting of two edges xz and yz means deleting them and adding a new edge
xy (even if one already exists).

t

d

w

vu
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v1
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u′ v′

Figure 11: Case II, v1 and d may be identical.

In G, lift e1 and e2 at v, orient and label the remaining two edges to realize β(v),
and properly prescribe t with the other two edges to realize β(t). Then delete {v, t}
and denote the resulted graph by G′′. Let β′′ be the induced Z4-boundary of G′′. β′′

and β differ only at the three vertices u, w and v3, according to the deletion of t and
v, while for any other vertex z ∈ V (G′′), β′′(z) = β(z).

Lemma 4.5. A flow on G′′ − d with a strong orientation can be extended to a flow
on G− d, whose orientation is strong too.

Proof. If a graph has a flow with a strong orientation, then there is also one if we
subdivide an edge of the graph. In G′′, we subdivide the edge v1v2 from the lifting
with v; since t is properly prescribed, either utw or utv is a directed path. So there
is a flow on G− d with a strong orientation.

Lemma 4.6. There is no essential cut of size at most 3 in G′′.
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Proof. Let [B, B̄] be an essential cut of size s′ ≤ 3 in G′′, with d ∈ B. We use this
cut to restore an essential cut of G by adding v and t to either B or B̄. The rule is
to add v (t) to the side containing the larger number of its neighbours. Since three
vertices in N(v) and two vertices in N(t) are concerned, the resulted cut has size
s ≤ s′ + 3 ≤ 6 (do not forget the edge tv), which must be a bond. Moreover, by
Proposition 3.7, s ≥ 5, so s = s′ + 2 or s′ + 3.

If s = s′ + 2, then s′ = 3, s = 5, and thus t is added to B̄. Notice that if in the
restoration, both t and vt contribute an edge to the cut at the same time, we can
move t to B and obtain an essential cut of size at most 4 in G, so there are only two
possible situations: (1) v is added to B, v contributes one edge and t contributes no
edge; (2) v is added to B̄, and both of them contribute one edge to the cut. As for (1),
we will restore an essential cut of size at most 5 intersecting δ(t) at tv, a contradiction
to Proposition 3.19; as for (2), v1 and v2 cannot be separated, and δ(t) ∩ δ(B) is not
in the boundary, so {v3, w} ⊆ B and {v1, v2, u} ⊆ B̄. δ(B ∪ {t}) is an essential 6-cut
of G which is not a bond, because by planarity, G[B ∪{t}] and G[B̄ ∪{v}] cannot be
connected at the same time, which is a contradiction too.

If s = s′ + 3, then v, t and vt contribute one edge respectively, and moreover, v1
and v2 are not separated. t can be transferred to v’s side, resulting in an essential
cut of size s− 1 in G, so s′ = 3, s = 6; v is added to B̄, and t is added to B. What is
more, by Proposition 3.19, it is implied that {v3, w} ⊆ B and {v1, v2, u} ⊆ B̄, which
is just the content of (2).

Lemma 4.7. There is at most one 2-cut in G′′ − d, and if there is one, it can only
be δ(u) ∩ E(G′′ − d).

Proof of Lemma 4.7: Let [F, F̄ ] be a 2-cut of G′′ − d.

(1) If |[d, F ]| or |[d, F̄ ]| ≤ 1, since essential cuts in G′′ have size at least 4 and the
only 3-vertex except d is u, F or F̄ = {u}. This is just the exception we mentioned
in the statement of the lemma.

(2) If |[d, F ]| = |[d, F̄ ]| = 2, write T = {v, t} for convenience. The first thing we
need to point out is that |[d, F ]| = |[d, F̄ ]| = 2 implies d ̸= v1. When d = v1 happens,
|[T, F ]| + |[T, F̄ ]| = 3, so |δ(F )| ≤ 5 or |δ(F̄ )| ≤ 5 holds in G, whence F or F̄ must
be a singleton. Let v2 ∈ F without loss of generality. If the singleton is F = {v2},
then deg(v2) = 5 and v2 ∈ N(t), contradicting the premise of Case 2; if the singleton
is F̄ , it can only be v3 or w with degree 5 in G, as well as double arcs between d.
As the result, δ({d, w, t}) is a bond of size 6, or δ({d, v3, v}) is a bond of size 5 in
G. However, G is separated by three vertices into two disjoint components in both
situations.

Moreover, |[T, F ]| ≥ 1 and |[T, F̄ ]| ≥ 1, otherwise δ(F ∪ T ) or δ(F̄ ∪ T ) is an
essential 4-cut in G, violating Proposition 3.7. We analyse the possible cuts between
T and the two parts, with F̄ specialized to be the side gaining less edges.

• |[T, F̄ ]| = 1. F̄ is a singleton with degree 4 or 5 in G, and degree 4 in G′′,
so F̄ ∈ {w, v1, v3}. If F̄ = {w}, then δ({t, w, d}) is an essential 5 or 6-cut
which cannot be a bond by planarity, a contradiction to Fact 3.4; if F̄ = {v1},
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δ({d, v1}) is an essential 4-cut of G, a contradiction to Proposition 3.7; if F̄ =
{v3}, deg(v3) = 5 and δ({v, v3, d}) is an essential 7-cut which is not a bond by
planarity, a contradiction to Corollary 3.10.

• |[T, F̄ ]| is 2. If {w, v} ⊆ F̄ , then δ(F̄ ∪ {d, t}) is an essential 5-cut in G, a
contradiction to Proposition 3.8.

If two neighbours of v are in F̄ : δ(F̄ ∪ {d, v}) is an essential 5-cut intersecting
δ(t) at tv if v3 ∈ F̄ , violating Proposition 3.19, so {v1, v2} ⊆ F̄ and v3 ∈ F .

If one of {w, u} and one of {v1, v2, v3} are in F̄ : δ(F̄ ∪ {d, t}) is an essential
6 or 7-cut, which must be a bond, so the boundary vertices of G contained in
F̄ ∪ {d, t} are consecutive. v /∈ F̄ , so u ∈ F̄ and w ∈ F . If v1 or v2 ∈ F̄ , δ(F̄ ) is
an essential 5-cut in G not separating d and t, violating Proposition 3.8. Above
all, the only possible case is {u, v3} ⊆ F̄ .
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Figure 12: Two bad situations.

Figure 12 shows the configurations of the two possible situations, and for the five
concerning vertices {u,w, v1, v2, v3}, we marked each of them with a small circle if
it is in F , or a small square if it is in F̄ . The same as the proof of Case 1, to
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exclude them, we will work on F and F̄ respectively. We inherit the notations e′1,
e′2, d1, d2 and M(d) from Case 1. We will discuss the two situations separately with
two claims. Actually there is little difference between the proofs of them, and some
notations are shared by both proofs.

4.2.1 {v1, v2} ⊆ F̄ .

Claim 4.8. G[F̄ ] has no 2-cut; G[F ] has at most one possible 2-cut, and if there is
one, it can only be δ(u) ∩ E(G[F ]).

Proof of Claim 4.8: We shall prove Claim 4.8 by a series of subclaims.

Subclaim 4.8.1. Boundary vertices from v′ to v1 in cyclic order are contained in F̄ .

Proof. The proof is quite similar to that of Subclaim 4.4.1. By Fact 3.4 and Corollary
3.10, both δ(F ) and δ(F̄ ) are bonds of G, so the boundary vertices belonging to F and
F̄ are consecutive on C respectively, otherwise G[F ] and G[F̄ ] cannot be connected
at the same time by planarity. F ∪ F̄ ∪ {d, t, v} = V (G), v1 ∈ F̄ and u ∈ F , so it can
be deduced that the boundary vertices in F̄ are vertices from v′ to v1 in cyclic order.

Suppose [K, K̄] is a 2-cut of G[F̄ ]. By Proposition 3.7, bothK and K̄ are connected
with d1 by at least one edge.

Subclaim 4.8.2. |[d1, K]| = |[d1, K̄]| = 2 is impossible.

Proof. v1 and v2 cannot be separated by such a cut, otherwise |δ(K)| = |δ(K̄)| = 4 in
G, by Proposition 3.7,K and K̄ are just the two vertices v1 and v2, whence deg(v2) = 4
is ridiculous. So assume {v1, v2} ⊆ K̄ without loss of generality, then |δ(K)| = 4, K
is a single 4-vertex in the boundary; |δ(K̄)| = 6, δ(K̄) is an essential 6-bond, and the
boundary vertices in K̄ are consecutive. It can be deduced that K = {v′} distinct
from v1. There is exactly one edge between d and v′, so |δ(v′) ∩ {e′1, e′2}| = 1.
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Figure 13: If |[d1, K]| = |[d1, K̄]| = 2, and v′ forms a 2-cut in G[F̄ ].

25



δ(F ∪{t}) and δ(F̄ ∪{v}) are essential 6-bonds, so both G[F ∪{t}] and G[F̄ ∪{v}]
are connected. Define M(d) to be the internal vertex set which d can reach through
an inner path in G[F̄ ∪{d, v}]. By planarity, d does not form a chord with any vertex
in {v′, . . . , v1, v}, because one of e′1, e

′
2 is incident to v′. But d contributes another

edge to δ(F̄ ) besides dv′, so M(d) ̸= ∅. Still by planarity, there is no inner path within
G[F̄ ∪ {d, v}] connecting d with a boundary vertex in F̄ ∪ {v} except v′. These are
shown in Figure 13. As a result, |δ(M(d))| = |δ(M(d)) ∩ δ(d)| + |δ(M(d)) ∩ δ(v′)| +
|δ(M(d)) ∩ {e′1, e′2}| ≤ 1 + 1 + 1 = 3, a contradiction.

Subclaim 4.8.3. |[d1, K]| = 1 or 3 is impossible.

Proof. By symmetry, we only need to prove |[d1, K]| = 1 does not hold. If |[d1, K]| =
1, then |δ(K)| ≤ 5 in G, by Proposition 3.8, it is a single vertex with degree at least
4, so |[T,K]| ≥ 1, and K = {v1} or {v2}. Remember we added an extra edge between
v1 and v2 in the lifting, it is deduced that the degree of K is actually 3 in G, which
is impossible.

We have finished the former part of the claim, now we turn to G[F ]. Assume [Q, Q̄]
is a 2-cut of G[F ]. By Proposition 3.7 and 3.8, both Q and Q̄ are connected with d2
by at least one edge.

Subclaim 4.8.4. |[d2, Q]| = |[d2, Q̄]| = 2 is impossible.

Proof. We prove this fact by analysing the edges between T and the two parts, and
suppose |[T,Q]| < |[T, Q̄]| without loss of generality. Then there are two possibilities:
|[T,Q]| = 0 or |[T,Q]| = 1.
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Figure 14: If |[T,Q]| = 0, and u′ forms a 2-cut in G[F ].

If |[T,Q]| = 0, |δ(Q)| = 4 in G, then Q is a 4-vertex by Proposition 3.7. Moreover,
δ(F̄ ∪Q ∪ {d}) is an essential 6-cut which must be a bond, so the boundary vertices
contained in F̄ ∪ Q ∪ {d} are consecutive in cyclic order. It can be deduced that
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Q = {u′}, and u′ ̸= u. Moreover, |δ(u′) ∩ {e′1, e′2}| = 1 because there is exactly one
edge between d and u′.

Since G[F̄ ] is connected, there is an inner path within G[F̄ ∪{d, u′}] linking u′ to a
boundary vertex of {v′, . . . , v1} (note it ũ′, see Figure 14), while d contributes another
edge to δ(F̄ ∪ {d, u′}), violating planarity.

If |[T,Q]| = 1, |δ(Q)| = 5 in G, so Q is a 5-vertex by Proposition 3.8. Since
deg(u) = 4, Q = {v3} or {w}. Q = {v3} is impossible: if so, δ(Q̄∪{t}) is an essential
5-cut intersecting δ(t) at tv, a contradiction to Proposition 3.19. So Q = {w}.
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Figure 15: If |[T,Q]| = 1, and w forms a 2-cut in G[F ].

There are two edges in δ(d) ∩ δ(F ), one of which is the boundary edge du′, so
|δ(w) ∩ {e′1, e′2}| ≥ 1. Because G[F̄ ] is connected, there is an inner path Pw linking
w to a boundary vertex of {v′, . . . , v1} (note it w̃), whose internal vertices lie in F̄ .
wPww̃Ctw is a cycle enclosing a non-empty set of internal vertices not in F̄ (v3 is
enclosed), see Figure 15. Use Sw to denote this set, |δ(Sw)| = |δ(Sw)∩δ(v)|+ |δ(Sw)∩
δ(w)|+ |δ(Sw) ∩ {e′1, e′2}| ≤ 1 + 2 + 1 = 4, a contradiction.

Subclaim 4.8.5. |[d2, Q]| = 1 or 3 is impossible unless u′ = u and the degree of u is
4 in G.
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Figure 16: If |[d2, Q]| = 1, and u forms a 2-cut in G[F ].

Proof. By symmetry, it is enough to prove the subclaim holds when |[d2, Q]| = 1.
obviously |[T,Q]| > 0. If |[T,Q]| = 3, δ(Q∪{t}) is an essential 5-cut intersecting δ(t)
at tv, a contradiction to 3.19. So |[T,Q] ≤ 2, |δ(Q)| ≤ 5, and thus Q is a single vertex
by Proposition 3.7 and 3.8. The only possible case is that Q = {u}, and deg(u) = 4.

When u′ ̸= u, there is no chord between d and u, because otherwise there exists
an essential 4-cut in G. So the edge d2u is one of e′1, e

′
2. There is an inner path

Pu linking u to some vertex in {v′, . . . , v1} (note it ũ), whose internal vertices lie
in F̄ , and uPuũCtu is a cycle enclosing a non-empty set of internal vertices not in
F̄ (v3 and w are enclosed), see Figure 16. Use Su to denote this set,, |δ(Su)| =
|δ(Su)∩ δ(v)|+ |δ(Su)∩ δ(t)|+ |δ(Su)∩ δ(u)|+ |δ(Su)∩{e′1, e′2}| ≤ 1+1+1+1 = 4, a
contradiction. So the only possible case of this configuration is u = u′, and the only
2-cut is δ(u) ∩ E(G[F ]). This completes the proof of Claim 4.8.

4.2.2 {u, v3} ⊆ F̄ .

Claim 4.9. G[F̄ ] has at most one possible 2-cut, and if there exists one, it can only
be δ(u) ∩ E(G[F̄ ]); G[F ] has no 2-cut.

Proof of Claim 4.9: We shall present the proof of Claim 4.9 by a series of five
subclaims.

Subclaim 4.9.1. Boundary vertices from v′ to v1 in cyclic order are contained in F .

Proof. By Fact 3.4 and Corollary 3.10, both δ(F ) and δ(F̄ ) are bonds of G, so the
boundary vertices belonging to F and F̄ are consecutive on C respectively, otherwise
G[F ] and G[F̄ ] cannot be connected at the same time by planarity. Because F ∪ F̄ ∪
{d, t, v} = V (G), v1 ∈ F and u ∈ F̄ , it can be deduced from these facts that the
boundary vertices in F are vertices from v′ to v1 in cyclic order.
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Suppose [K, K̄] is a 2-cut of G[F̄ ]. |[T,K]| + |T, K̄| = 2, both K and K̄ are
connected with d1 by at least one edge because otherwise there exists an essential
4-cut in G.

Subclaim 4.9.2. |[d1, K]| = |[d1, K̄]| = 2 is impossible.
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Figure 17: If |[d1, K]| = |[d1, K̄]| = 2, and u′ forms a 2-cut in G[F̄ ].

Proof. If so, then u and v3 cannot be separated by the cut, because otherwise |δ(K)| =
|δ(K̄)| = 5 in G, and K and K̄ are singletons with parallel double edges in between.
So assume u, v3 ∈ K without loss of generality, then K̄ is a boundary 4-vertex of G.
In fact, K̄ = {u′}, since δ(F ∪ {d, u′}) is an essential 7-bond, the boundary vertices
in F ∪ {d, u′} must be consecutive. Moreover, |δ(u′) ∩ {e′1, e′2}| = 1 because there is
exactly one edge between d and u′.

As a result, consider the 7-cut δ(F ∪ {d, u′}), there is an inner path within G[F ∪
{d, u′}] linking u′ to a boundary vertex of {v′, . . . , v1} (note it ũ′, see Figure 17), while
d contributes an edge to δ(F ∪ {d, u′}), violating planarity.

Subclaim 4.9.3. |[d1, K̄]| = 1 or 3 is impossible unless u′ = u and the degree of u is
4 in G.
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Figure 18: If u′ ̸= u, and u forms a 2-cut in G[F̄ ].

Proof. By symmetry, we only need to prove the subclaim holds when |[d1, K̄]| = 1.
|δ(K̄)| ≤ 5 in G, so K̄ is a singleton. Actually |δ(K̄)| = 4 and K̄ can only be {u}.
If u′ ̸= u, then there is no chord between d and u, because otherwise there exists
an essential 4-cut in G. So the edge d1u is one of e′1, e

′
2. There is an inner path Pu

linking u to some vertex in {v′, . . . , v1} (note it ũ), whose internal vertices lie in F ,
and uPuũCtu is a cycle enclosing a non-empty set of internal vertices not in F (v3 is
enclosed), see Figure 18. Use Su to denote this set, |δ(Su)| = |δ(Su)∩ δ(v)|+ |δ(Su)∩
δ(u)| + |δ(Su) ∩ {e′1, e′2}| ≤ 1 + 1 + 1 = 3, a contradiction. So [K, K̄] does not exist
on the premise that |[d1, K̄]| = 1 unless u = u′, whence the only possible 2-cut is
δ(u) ∩ E(G[F̄ ]).

Now we deal with G[F ]. Suppose [Q, Q̄] is a 2-cut of G[F ], |[T,Q]|+ |T, Q̄| = 3, so
Q and Q̄ are connected with d2 by at least one edge for otherwise in G, there exists
an essential 4-cut, or an essential 5-cut not separating d and t.

Subclaim 4.9.4. |[d2, Q]| = |[d2, Q̄]| = 2 is impossible.

Proof. v1 and v2 cannot be separated by such a cut, for otherwise Q or Q̄ containing
w induces an essential 5-cut not separating d and t. There are two possibilities: w and
{v1, v2} are separated; or all three vertices are on the same side. We now eliminate
them respectively with Q̄ specialized.
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Figure 19: If |[d2, Q]| = |[d2, Q̄]| = 2, and w forms a 2-cut in G[F ].

If w ∈ Q and {v1, v2} ⊆ Q̄, then |δ(Q)| = 5 in G and Q = {w}. δ(d) ∩ δ(F )
contains one boundary edge dv′, so |δ(w) ∩ {e′1, e′2}| ≥ 1. Because G[F ] is connected,
there is an inner path Pw linking w to a boundary vertex of {v′, . . . , v1} (note it w̃),
whose internal vertices lie in F . wPww̃Ctw is a cycle enclosing a non-empty set of
internal vertices not in F (v3 is enclosed), see Figure 19. Use Sw to denote this set,
|δ(Sw)| = |δ(Sw) ∩ δ(v)|+ |δ(Sw) ∩ {e′1, e′2}| ≤ 1 + 2 = 3, a contradiction.
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Figure 20: If |[d2, Q]| = |[d2, Q̄]| = 2, and v′ forms a 2-cut in G[F ].

If {v1, v2, w} ⊆ Q̄, then Q is a boundary 4-vertex of G in F . In fact, Q = {v′},
since δ(F̄ ∪{d,Q}) is an essential 6-bond, the boundary vertices in δ(F̄ ∪{d,Q}) must
be consecutive. There is exactly one edge between d and v′, so |δ(v′) ∩ {e′1, e′2}| =
1. Define M(d) to be the set of internal vertices which d can reach through an
inner path in G[F ∪ {d}]. By planarity, d does not form a chord with any vertex
in {v′, . . . , v1}, while d contributes another edge to δ(F ) besides dv′, so M(d) ̸= ∅.
Still by planarity, there is no inner path within G[F ∪ {d}] connecting d with w
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or v2, nor a boundary vertex in F except v′. These are shown in Figure 20. So
|δ(M(d))| = |δ(M(d))∩δ(d)|+ |δ(M(d))∩δ(v′)|+ |δ(M(d))∩{e′1, e′2}| ≤ 1+1+1 = 3,
a contradiction.

Subclaim 4.9.5. |[d2, Q]| = 1 or 3 is impossible.

Proof. By symmetry, it is enough to prove the subclaim holds when |[d2, Q]| = 1.
3 ≤ |δ(Q)| ≤ 3 + |[T,Q]| ≤ 6, by Proposition 3.7 and 3.8, |[T,Q]| = 1 or 3 are
possible, whence |δ(Q)| = 4 or 6. If |δ(Q)| = 4, Q can only be {v1}, however v1 and
v2 are separated and thus deg(v1) = 3 in G, which is ridiculous. So |δ(Q)| = 6 and
{v1, v2, w} ⊆ Q, then δ(Q ∪ {t, v}) is an essential 5-cut intersecting δ(t) at tu, which
is a contradiction to Proposition 3.19. This completes the proof of Claim 4.9.

Having finished the proofs of Claim 4.8 and Claim 4.9, now we can eliminate the
two situations we mentioned at the beginning of Lemma 4.7.

By Lemma 3.16, t can be prescribed properly so that: when d and u are adjacent,
δ(u)∩E(G[F ]) (or δ(u)∩E(G[F̄ ])) is not a bad 2-cut under the induced Z4− boundary;
the value of arc vt is not β(v) so that the value of vv3 is non-zero. Remember we
lifted the two edges vv1 and vv2. In G, orient the 3-path v1vv2 as the orientation of
edge v1v2, and label the two edges with the same value. Then in G there is a directed
3-path through v connecting F with F̄ , and prescribe {e′1, e′2} to make sure that at
least one of them has an opposite direction to this path. By the induction, both G[F ]
and G[F̄ ] admit a flow with a strong orientation respectively, from which we manage
to construct a flow with a strong orientation of G − d. This completes the proof of
Lemma 4.7.

Having proved Lemma 4.6 and Lemma 4.7, we can prescribe t properly so that the
only possible 2-cut in Lemma 4.7 is not bad under β′′, as we just mentioned. Then we
can apply the induction on G′′ to obtain a flow with a strong orientation of G′′ − d.
By Lemma 4.5, it can be naturally extended to a flow with a strong orientation of
G− d.
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4.3 Case 3: w, d ∈ N(u) ∩N(v).

t
vu

w

d

Figure 21

Finally we show that this last case is not possible either. When deg(w) > 5, we
can still lift e1 and e2, prescribe t and v wisely to achieve β(t) and β(v), then delete
them as we have done in Case 2. This is actually a special case of Case 2 with
v3 = w, so we can repeat the analyses about essential cuts and bad 2-cuts before,
and the restriction v3 = w will only make things simpler. The method of Case 2 is
still available when deg(w) > 5, so deg(w) = 5, and this last configuration is shown
in Figure 21. Write Y = {d, u, v, w, t}, d and w cannot be adjacent, otherwise G is
separated into two parts by the path dwt. A cut of size at most 3 would be formed
by a set of internal vertices. Obviously |Y c| ≥ 2. First contract Y c, there is a flow
(D1, f1) on G/Y c and D1(G/Y c − d) is strong; then contract Y to a vertex y and
delete an edge in E(y). y has degree 5 in the resulted graph G̃, G̃ neither contains
a vertex of degree less than 4 nor an essential cut of size less than 5. What is more,
G̃ − y has no 2-cut, otherwise this will yield double edges or an essential cut of size
at most 5 not separating d and t in G. By the induction, G/Y admits a flow (D2, f2)
and D2(Y

c) is strong. Combining (D1, f1) and (D2, f2) together, we can obtain a flow
(D, f) of G and D(G− d) is strong. This completes the proof of Theorem 2.5.
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